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 19 

Abstract 20 

 21 

Distillers’ Dried Grains with Solubles (DDGS) is the major by-product of bioethanol and distillery 22 

plants. Due to its high content of proteins, water-soluble vitamins and minerals, DDGS has been 23 

long marketed as animal feed for livestock. EU legislation on liquid biofuels could raise the 24 

demand on bioethanol production in Europe, with a resulting increase in DDGS availability. 25 

DDGS contains a spectrum of complex organic macromolecules, particularly polysaccharides, in 26 

addition to proteins and vitamins, and its use as a starting raw material within a biomass-based 27 

biorefining strategy could lead to the development of multi-stream processes for the production of 28 

commodities, platform molecules or speciality chemicals, with concomitant economic benefits 29 

and waste reduction for bioethanol plants. The present review aims to outline the compositional 30 

characteristics of DDGS and evaluate its potential utilisation as a starting material for the 31 

production of added-value products. Parameters of influence on the chemical and physical 32 

characteristics of DDGS are discussed. Moreover, various pre-treatment strategies are outlined in 33 

terms of efficient DDGS fractionation into several added value streams. Additional processing 34 

steps for the production of medium and high added value compounds from DDGS are evaluated 35 

and their potential applications in the food and chemical industry sector are identified. 36 

 37 

 38 

 39 
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1. Introduction 44 

Bioethanol represents one of the most important biofuels for automotive transportation. In 2013, 45 

global bioethanol production reached 88 billion litres, with economic projections estimating 46 

further increases in annual production until 2020 [1]. US contributions account for almost half of 47 

the total worldwide bioethanol production, followed by Brazil and European Union (EU). On the 48 

basis of feedstock, the USA and EU produce bioethanol through the utilisation of grains (maize 49 

and wheat, respectively), while Brazilian plants employ sugar cane as raw material. Based on the 50 

OECD-FAO Agricultural Outlook for 2011-2020, the major producers of grain-based ethanol are 51 

USA, Canada and the EU. 52 

 53 

The production of grain-based ethanol results in the generation of distillers dried grains with 54 

solubles (DDGS) as a by-product. A schematic representation of the dry grind bioethanol 55 

production process and by-product streams is given in Figure 1. Briefly, the whole grain is milled 56 

and liquefied, while the addition of amylolytic enzymes facilitates the conversion of starch into 57 

fermentable glucose. Then, yeast is added to ferment the available carbon into ethanol and carbon 58 

dioxide. Ethanol is distilled and dehydrated, whereas the non-volatile components are centrifuged 59 

to produce a liquid fraction (thin stillage, TS) and a solid fraction (wet distillers’ grains, WDG). 60 

Around 15% or more of the thin stillage is used as backset (i.e. added to the new batch) for the 61 

liquefaction of the ground grain and the rest is concentrated into condensed distiller soluble 62 

(CDS). CDS is mixed with WDG and drum dried at high temperatures to produce the final DDGS. 63 

Partial recycling of DDGS to the drum dryer is also a common practice in the ethanol industry, in 64 

order to increase the drying efficiency of the equipment [2]. It is estimated that in the dry milling 65 

process, the utilization of 100 kg of grain results in 40.2 litres of ethanol, 32.3 kg of DDGS and 66 

32.3 kg of CO2. As far as global bioethanol derived DDGS production is concerned, OECD-FAO 67 
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projections estimate that the USA will reach 44 million tonnes by 2018, whereas EU and Canada 68 

contributions are expected to be equal to nine and one million tonnes, respectively [3]. 69 

 70 

Another industry that contributes to the global surplus of DDGS is the beverage alcohol industry 71 

(e.g. distilleries for whisky and other spirits). The production process is similar to that of dry grind 72 

bioethanol, although considerable emphasis is placed on Good Manufacturing Practices and 73 

hygiene aspects since the final product (potable ethanol) is intended directly for human 74 

consumption. It is also worth noting that grain whisky distilleries often utilise blended grains as 75 

raw materials that may include wheat, barley, maize and rye. As a result, the final composition of 76 

DDGS may vary more than that of strictly corn or wheat derived DDGS. 77 

 78 

DDGS has been recognised as an important source of energy, protein, water-soluble vitamins and 79 

minerals and for this reason it has been long marketed as feed for livestock [4, 5]. This 80 

exploitation contributes significantly to the profitability of distillery and bioethanol plants. In 81 

2014, the annual market price for wheat DDGS in the United Kingdom averaged around £230 per 82 

tonne, while the respective price for maize DDGS the same year, mainly produced in the USA, 83 

was within the range of $225-240 per tonne (source UK Home Grown Cereal Authorities-HCGA). 84 

During the first quarter of 2015, around 49.5 thousand tonnes of distillery by-products were used 85 

for the production of animal feed in the UK, increased by 46% compared to the first quarter of 86 

2014 as reported by the UK Department for Environmental Food and Rural Affairs [6]. 87 

 88 

The production of bioethanol as “first generation” biofuel is likely to rise in future years in Europe 89 

as the Directive of EU regulatory framework for biofuels [7] requires that 10% of the energy used 90 

in transport should be of a renewable nature by 2020, the majority of which is anticipated to 91 

correspond to liquid biofuels. This fact is likely to increase the demand on bioethanol in Europe 92 
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with a resulting increase in DDGS availability. Moreover, it is of importance to state that the 93 

addition of DDGS to livestock feed can account for up to 30% (dry matter basis) of the diet, as 94 

higher levels may cause palatability and excessive protein consumption issues [5]. Additionally, 95 

the compositional variation in DDGS in relation to its nutritional value and quality still constitutes 96 

an obstacle to its primary use as animal feed supplement for ruminants [8, 9]. Taking these into 97 

account, the need to find alternative routes to exploit and upgrade DDGS can be considered 98 

imperative. In 2011, the Integrated Biorefining Research and Technology Club (IBTI) of the UK 99 

Biotechnology and Biological Sciences Research Council (BBSRC) awarded in excess of £2.5M 100 

in research grants as part of an initiative to identify alternative ways to enhance the value of 101 

DDGS. Moreover, earlier in 2010, the Home Grown Cereals Authority (HGCA) in UK co-funded 102 

a collaborative 3-year project named ENBBIO LINK, aiming to identify routes to improve the 103 

nutritional value of DDGS as feed for both ruminant and non-ruminant species. 104 

 105 

DDGS contains a spectrum of complex organic macromolecules, such as carbohydrates, proteins 106 

and oil. Its incorporation as a starting raw material within a biomass-based biorefining strategy 107 

could therefore lead to the development of multi-stream processes for the production of 108 

commodities, platform molecules or specialty chemicals, with concomitant economic benefits and 109 

waste reduction for bioethanol plants. The scope of the present review is to outline the 110 

characteristics of DDGS, with respect to its components, and investigate its potential utilisation 111 

for the production of added-value products, within a biorefinery concept. 112 

 113 

2. Chemical composition of DDGS 114 

2.1 Compositional variation of DDGS 115 

The composition of DDGS is of great interest, particularly in relation to animal nutrition. To this 116 

end, parameters such as nutrient composition, digestibility, and amino acid and mineral profiles 117 
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have been investigated by a number of research groups [10,11, 12]. The nutrient contents of 118 

DDGS have been reported to vary according to the nature of the raw material, e.g. wheat or maize, 119 

but also among production plants or even between batches from the same plant [13]. This 120 

variation can be directly correlated with compositional differences in the wheat and maize grains, 121 

the growing, harvesting and handling conditions of grains, but also with the addition of distillers’ 122 

solubles in the dried grains, and the dehydration process as applied by each manufacturer [2, 14]. 123 

 124 

A summary of representative studies on the chemical composition of DDGS deriving from various 125 

starting materials is presented in Table 1. In the case of maize and wheat DDGS, a comparison of 126 

their chemical characteristics often reveals differences in the percentages of oil, protein, as well as 127 

in acid and neutral detergent fibre (ADF and NDF, respectively) (Table 1). Maize bioethanol 128 

DDGS is often richer in oil (11-15%, w/w) compared to wheat bioethanol DDGS (4-6%, w/w), 129 

although in both cases the lignin content is low (3-5%, w/w) and is often expressed as acid 130 

detergent fibre (ADF), including the recalcitrant cellulose [12, 15]. On the other hand, distillery 131 

DDGS can be differentiated in terms of its protein and NDF content, mainly due to the fact that 132 

distillery plants utilise blended grains, such as wheat, barley, maize and rye, instead of a single 133 

type of grain. Therefore, the choice of the starting material is a determinant factor for the final 134 

DDGS composition. Additionally, variation in the production process of DDGS between plants 135 

directly affects the chemical composition of the by-product. Spiehs et al. [16] investigated the 136 

variation in the composition of maize DDGS from ten ethanol plants in Minnesota and South 137 

Dakota. The coefficients of variation for protein, oil and crude fibre were reported to be lower 138 

than 10%, whereas even less variation was estimated for dry matter. Variation in the nutrient 139 

content of DDGS was mostly attributed to the maize grain used, the percentage of solubles added 140 

back to distillers’ dried grains, as well as to possible deviations from the standard practices 141 

followed during the fermentation process. As far as wheat DDGS composition is concerned, Jarret 142 
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et al. [17] characterized the chemical composition of wheat DDGS samples supplied by seven 143 

European ethanol plants. Differences in the origin and process of biofuel production between 144 

plants were directly related to the variation in the percentage of fibre (NDF and ADF) and to 145 

possible Maillard reactions taking place during the process. Furthermore, Cromwell et al. [14] 146 

compared seven sources of DDGS deriving from beverage alcohol manufacturers and two sources 147 

of DDGS from bioethanol plants, in order to evaluate their nutritional value for non-ruminants. 148 

Physical characteristics, such as odour and colour, reflected differences in the drying processes 149 

and were directly correlated with the nutritional properties of DDGS, whereas notable variation 150 

was identified in terms of the oil, fibre and ash contents between samples which could be 151 

attributed to grain variety. In another study, Pedersen et al. [18] reported the compositional 152 

variation in DDGS from various bioethanol plants, including maize, wheat and mixed DDGS 153 

(containing wheat, triticale, barley and rye, in unknown proportions). Maize DDGS presented 154 

higher amounts of oil compared to the other DDGS tested, while wheat and mixed DDGS 155 

composition in terms of protein, total sugars and ash were similar, indicating that wheat was the 156 

major grain in mixed DDGS. 157 

 158 

2.2 Effect of processing on DDGS chemical composition 159 

From a processing point of view, it has been demonstrated that the mixing ratio of wet distillers’ 160 

grains (WDG) and condensed distillers’ soluble (CDS) can considerably affect the chemical 161 

composition of the DDGS [2, 19]. The removal of starch during the fermentation step, as well as 162 

the thermal treatment of CDS and WDG, can lead to an approximately 3-fold concentration of the 163 

remaining macromolecules in DDGS, such as carbohydrates, protein and oil, whereas the 164 

inorganic content can be also substantially increased during the production process [20]. 165 

Generally, WDG contains higher amounts of insoluble fibre, whereas CDS contains soluble 166 

oligosaccharides, ash, as well as organic acids and glycerol generated as by-products during the 167 
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ethanol fermentation process [2, 13]. In terms of insoluble carbohydrates, it has been reported that 168 

after completion of the fermentation, more than 60% of the initial water-insoluble glucan from 169 

cellulose is left in WGD, whereas for hemicellulosic components, approximately 55% of the 170 

initial xylan and 65% of the initial arabinan remained in the insoluble fraction, indicating the 171 

partial degradation of cellulose, xylan and arabinan during the process [21]. As far as protein is 172 

concerned, the liquefaction and subsequent fermentation of starch results in an approximate 2.5 to 173 

3-fold increase in the DDGS protein content, taking also into account the contribution of yeast, 174 

which is estimated to be around 20% [20]. However, over half of DDGS protein may become 175 

insoluble during the dry-grind ethanol process [22, 23]. In terms of amino acids, these are 176 

concentrated in the WGD fraction and the addition of CDS prior to the drying process is reported 177 

to slightly decrease the overall amino acid content in DDGS [2]. Yeast protein demonstrates a 178 

better amino acid profile, particularly with regards to limiting amino acids such as lysine, and its 179 

presence influences the amino acid profile of downstream products [13, 20]. 180 

 181 

3. Treatment strategies for DDGS 182 

Several studies have reported the use of various treatment steps in order to extract and further 183 

process macromolecules contained in DDGS. As mentioned above, DDGS is characterized by a 184 

complex structure, consisting of hemicellulose, cellulose and proteins; therefore, an optimum 185 

combination of different treatment steps is often necessary for the efficient fractionation of its 186 

components. Due to the absence of a rigid lignocellulosic structure, DDGS is amenable to 187 

relatively mild processing that can lead to the production of several value-added streams, which 188 

can act either as end-products or starting materials for secondary processing; the types of value-189 

added products that can be derived from DDGS are discussed in section 4. The processing steps 190 

may include physical treatments to improve the material texture, chemical processes for the 191 

fractionation of compounds of interest and subsequent extraction and purification, enzyme-192 
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assisted processes, or a combination of these. The efficiency of such treatment steps on DDGS 193 

valorisation is summarised and discussed in the following sub-sections. 194 

 195 

3.1 Physical treatments 196 

DDGS samples can show significant variation in terms of their particle size distribution, ranging 197 

from 0.11 to 3.66 mm, a fact that reflects the highly heterogeneous distribution of nutrients among 198 

the different size fractions [24]. The reduction of particle size by mechanical stress is often the 199 

first pre-treatment step of the solid starting materials, in order to facilitate subsequent chemical or 200 

enzymatic hydrolysis. Generally, small particles up to 0.40 mm are preferred for the efficient 201 

enzymatic hydrolysis of the solid materials [25], due their higher specific surface area, while for 202 

compounds such as cellulose, reductions in both the degree of polymerisation (DP) and 203 

crystallinity can be achieved this way [26]. Moreover, the particle size distribution is associated 204 

with the chemical and physical characteristics of DDGS and related materials, affecting aspects of 205 

the handling systems used, the processing facilities, as well as the digestibility and nutrient 206 

availability of DDGS feed [27]. Apart from this, a minimal particle size reduction is needed in 207 

most pre-treatment strategies, in order to overcome mass and heat transport issues. 208 

 209 

In addition, the particle size distribution could determine the initial steps required for the 210 

fractionation of DDGS, aiming to generate compositionally enriched fractions. Based on this, the 211 

combination of sieving and air classification (also known as the Elusieve process), has been 212 

shown to effectively separate fibre from DDGS [28, 29]. Pilot scale experiments on maize DDGS 213 

samples demonstrated that through this approach, DDGS is separated into fibre and an enhanced 214 

fraction with lower fibre and 4.8% more protein than the initial material, which can be potentially 215 

more suitable for non-ruminant animals [29]. The Elusieve process is a simple, non-intrusive 216 

method that can be operated at the end of the dry-mill process with a capital investment estimation 217 
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of $1.4 million, which includes an equipment purchase cost of around $0.43 million [29]. 218 

However, the highest revenue potential can be acquired only by the protein-enriched DDGS 219 

fraction, whereas  the conversion of the low fibre fraction to ethanol is not currently economically 220 

feasible and therefore its exploitation will only be profitable if the fibre market value is high [28, 221 

29]. 222 

 223 

3.2 Chemical and physicochemical treatments 224 

A number of chemical treatment strategies have been studied for their efficiency for the 225 

fractionation or degradation of the structural components of DDGS. These include either the use 226 

of concentrated and diluted acid and alkali, or a combination of chemical and physical processing, 227 

as in the case of ammonia fibre explosion (AFEX) and liquid hot water treatment. Depending on 228 

the treatment of the raw material, however, different types of components might be formed that 229 

can act as inhibitors and hinder subsequent processing, such as enzymatic hydrolysis or 230 

fermentation. These inhibitors are degradation products and include organic acids (mainly acetic, 231 

levulinic and formic acid), furan aldehydes, such as furfural deriving from xylose and 5-232 

(hydroxymethyl)-furfural (5-HMF) deriving from glucose, as well as phenolic acids and aromatic 233 

compounds formed from lignin [30]. Therefore, the effectiveness of the chosen chemical pre-234 

treatment is determined by criteria such as high conversion yields, minimum formation of toxic 235 

degradation products, efficient waste treatment and minimum energy input [31]. A summary of 236 

the chemical treatments applied for DDGS and related by-products is given in Table 2. 237 

 238 

3.2.1 Ammonia fibre expansion (AFEX) 239 

Ammonia fibre expansion (AFEX) technology possesses the advantage of combining physical 240 

(high pressure and temperature conditions) and chemical (ammonia) processes for the efficient 241 

pre-treatment of lignocellulosic materials. The incorporation of AFEX as a pre-treatment step 242 
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leads to biomass swelling and consequently increases the accessible surface area, while supporting 243 

cellulose decrystallisation. A minor part of hemicellulose is solubilised into its respective 244 

monomers, whereas the lignin structure is rigorously altered and thus rendered more susceptible to 245 

digestion [26, 32]. In the case of DDGS, AFEX can be performed under relatively mild conditions 246 

(temperatures below 90°C and pressure range between 200-400 psi), due to the low lignin content, 247 

with the aim to increase subsequent enzymatic digestibility targeting  monosaccharide production 248 

[33, 34, 35]. Bals et al. [33] evaluated the efficacy of AFEX pre-treatment on the enzymatic 249 

hydrolysis of maize DDGS and reported AFEX conditions of 70°C and 0.8:1 kg/kg ammonia 250 

loading as optimal for subsequent enzymatic hydrolysis of the pre-treated DDGS samples. AFEX 251 

is an advantageous method for DDGS treatment due to the low lignin content, whereas moderate 252 

operation conditions and short residence times minimise the formation of microbial inhibitors 253 

such as furfural and 5-hydroxylmethylfurfural (5-HMF). Moreover, the potential of ammonia 254 

recovery and recycling minimises chemical usage, and carrying out the process as a continuous 255 

operation is a viable option. On the other hand, application of AFEX on a large scale is still 256 

influenced considerably by the cost of ammonia, as well as by environmental concerns related to 257 

its unpleasant odour [26]. Additionally, AFEX treatment does not convert xylan into xylose 258 

monomers. In the case of DDGS, xylan represents around 35-40% of the total carbohydrate 259 

content; thus, the combination of AFEX treatment with hemicellulosic enzymes would be 260 

necessary in order to convert all the available DDGS carbohydrates into fermentable 261 

monosaccharides.  262 

 263 

3.2.2 Liquid hot water (LHW)/ Autohydrolysis 264 

Liquid hot water falls into the category of hydrothermal treatments, applied in order to solubilise 265 

hemicelluloses and disrupt the cellulose and cell wall structure. These processes are also known as 266 

autohydrolysis, hot compressed water (HCW) or hydrothermolysis. The autohydrolysis mode of 267 
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action lies on the weakening of H-bonding during exposure of materials to water at high 268 

temperatures (150-240°C). Water is auto-ionised into acidic hydronium ions (H3O
+) that act as 269 

catalysts on the glycosidic bonds. Additionally, hydronium ions are formed from the cleavage of 270 

O-acetyl groups and uronic acid substitution on arabinoxylan (glucuronoarabinoxylan), which 271 

further enable the catalysis of hemicellulose into oligosaccharides or monomeric sugars [36]. 272 

However, the latter mechanism can cause further degradation of monosaccharides into aldehydes 273 

(furfural from pentoses and 5-hydroxymethyl furfural from hexoses) that can hinder subsequent 274 

microbial fermentation. The formation of inhibitors can be reduced by controlling the pH in the 275 

range of 4-7 during the process. This type of pre-treatment produces mainly oligosaccharides [37, 276 

38]. Moreover, since cellulose and lignin are hardly modified, they are amenable for recovery and 277 

further processing [39]. Recently, Samala et al. [40] studied the effect of autohydrolysis on maize 278 

DDGS fibre, separated using the Elusieve method. Under optimum conditions (180°C, 20 min), 279 

54.6% of the initial xylan content was hydrolysed to xylooligoasaccharides (XOS) (reported DPs 280 

up to 6), followed by traces of degradation products. The application of LHW on maize fibre has 281 

shown to yield 80% of soluble oligosaccharides and 20% of monosaccharides, while less than 1% 282 

of the initial carbohydrate content is lost due to the formation of degradation products [41]. DDGS 283 

pre-treatment with LHW has been reported to significantly increase the rate of the enzymatic 284 

hydrolysis of the samples post-treatment, leading to the generation of monosaccharide-rich 285 

streams, with glucose hydrolysis yields higher than 90% [34, 35]. LHW treatments attract interest 286 

due to the lack of a requirement for a catalyst and the low-corrosion potential. However, the 287 

process requires large volumes of water and high energy input. In the same manner as AFEX, 288 

LHW treatment requires subsequent enzymatic hydrolysis of the hemicellulosic content in the 289 

case of DDGS or related materials with high arabinoxylan presence. 290 

 291 

3.2.3 Dilute acid hydrolysis 292 
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Dilute acid treatment has been extensively investigated as the means for enhancing biomass 293 

digestibility through the breakage of rigid lignocellulosic structures. Hydrochloric, nitric and 294 

sulphuric acids have been evaluated for biomass treatment, with the latter being the most common 295 

acid of choice [36, 42, 43]. A disadvantage of this method is that depending on the hydrolysis 296 

conditions, high levels of sugar degradation compounds such as furfural and 5-HMF, as well as 297 

aromatic lignin degradation compounds can be formed. A number of studies have reported the 298 

feasibility of using dilute sulphuric acid treatment for DDGS. For instance, Noureddini et al. [44] 299 

performed a three-step acid pre-treatment followed by a single step enzymatic hydrolysis of maize 300 

DDGS, yielding 128 g/L of total monosaccharides (xylose and glucose monomers) that could 301 

result in about 6.4 wt. % ethanol. The effects of reaction temperature, time and acid concentration 302 

on the yields of monomeric sugars, namely xylose, arabinose and glucose, have been primarily 303 

investigated [45, 46, 47]. Low biomass concentrations (5.0% -10.0%, w/v) have been found to 304 

favour hydrolysis of the hemicelluloses in DDGS samples, whereas increased acid concentrations 305 

(3.0%-4.0%, v/v) decreased the duration of hydrolysis down to 30 min. However, the temperature 306 

of the treatment is critical since high temperatures (up to 140°C) promote the formation of pentose 307 

degradation products (furfural and furan resins) [45]. 308 

 309 

3.2.4 Alkali pre-treatment 310 

Apart from the use of ammonia in AFEX technology as discussed above, bases such as sodium, 311 

potassium, calcium and ammonium hydroxide have been evaluated for biomass pre-treatment. In 312 

the presence of alkali, ester and glycosidic side chains are degraded whereas structural alteration 313 

of lignin and partial solubilisation of hemicellulose can occur [31] which provide the opportunity 314 

to separate intact hemicellulose components, such as arabinoxylan. Moreover, the chemical 315 

swelling of cellulose via the disruption of crosslinks between hemicelluloses and other 316 

components increases the porosity of biomass rendering it more accessible to enzymes [48]. 317 
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Alkaline pre-treatments offer the advantage of low temperature operation compared to other 318 

chemical treatments [49]. However, long residence time is needed followed by neutralisation of 319 

the generated slurry in order to remove lignin and other inhibitors (phenolic acids, aldehydes, 320 

furfural and salts) of enzymes. Moreover, alkaline treatment has been used on maize fibre for 321 

hemicellulose extraction [50, 51], and more recently for DDGS, resulting in the isolation of a 322 

hemicellulose-rich biopolymer [52]. Xu et al. [53] utilised a combination of alkali and xylanase 323 

pre-treatment in order to extract cellulose from DDGS, achieving a crude cellulose yield of 7.2 % 324 

(w/w) with a cellulose content of 81% (w/w). Recently, lime has been proposed for biomass pre-325 

treatment, offering the advantage of lower cost and less safety requirements compared to other 326 

alkaline compounds [31]. Additionally, lime can be easily recovered from aqueous solutions as 327 

insoluble calcium carbonate by reaction with CO2 [36]. 328 

 329 

3.3. Biological treatments 330 

The application of enzymes is considered an efficient approach for the successful valorisation of 331 

materials consisting of cellulose and hemicellulose. Enzymatic hydrolysis is often a secondary 332 

treatment step and is required for the conversion of previously generated carbohydrate-rich 333 

streams into their respective monomers. These can then be utilised as feedstock for the production 334 

of chemicals through microbial fermentation and enzymatic or chemical synthesis reactions. 335 

Aspects, such as the nature of the hemicellulose as well as the desired end-products of the 336 

bioconversion define the choice of enzymes in this step. 337 

 338 

The main enzymes used in hydrolysis of physically and/or chemically pre-treated DDGS are 339 

hemicellulases and cellulases, often co-operating in a synergistic fashion for the degradation of 340 

the hemicelluloses and cellulose present. A summary of the most frequently used enzymes 341 

employed in hydrolysis of hemicellulosic materials is presented in Table 3. 342 
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 343 

3.3.1 Cellulases 344 

Cellulases are derived from microorganisms or plants; they constitute a mixture of several 345 

enzymes and are responsible for hydrolyzing cellulose to soluble monosaccharides. Based on their 346 

structural properties, three major types of cellulase activities can be distinguished: endo-1,4-β-347 

glucanases (EC 3.2.1.4), cellobiohydrolase (EC 3.2.1.176), exo-1,4-β-glucanases (EC 3.2.1.91) 348 

and β-glucosidases (EC 3.2.1.21) [54,55]. Endo-glucanases cleave cellulose chains in low 349 

crystallinity regions of the cellulose fibre and create free-chain ends that can be further attacked 350 

by exo-glucanases, acting from the non-reducing end, or by cellobiohydrolases acting 351 

progressively from the reducing end of cellulose both releasing cellobiose units. The latter are 352 

hydrolysed by β-glucosidase to produce glucose. In lignocellulosic biomass, the lignin can block 353 

the access of cellulases to cellulose; therefore, pre-treatment processes that separate lignin from 354 

cellulose and the hemicellulose component can substantially increase hydrolysis rates [31]. 355 

However, DDGS contains relatively low amounts of lignin 3-5% (w/w) and therefore a 356 

delignificationpre-treatment step is not required. 357 

 358 

3.3.2 Hemicellulases 359 

Hemicellulose is a heterogeneous mixture of polysaccharides and, as a consequence, a range of 360 

enzymes is needed in order to achieve effective hydrolysis. The major hemicellulose in cereal 361 

grains is arabinoxylan and enzymes involved in its degradation can be divided into 362 

depolymerising enzymes, which act on the xylan backbone, and accessory enzymes that remove 363 

substituent groups [55]. The principal hydrolytic enzymes employed for xylan degradation to 364 

monomers are endo-1,4-β-xylanase (EC 3.2.1.8), which attack the xylan backbone and yield short-365 

chain oligosaccharides, and β-xylosidase (EC 3.2.1.37), which cleave oligosaccharides into xylose 366 

monomers. Moreover, the xylan backbone can be decorated with various substituents, such as 367 
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arabinose and galactose, ferulate and acetate, so the action of ancillary enzymes is required to 368 

remove these substituent groups and facilitate backbone degradation [55]. To this end, α-369 

arabinofuranosidase (EC 3.2.1.55), feruloyl esterase (EC 3.1.1.73), α-galactosidase (EC 3.2.1.22) 370 

acetyl xylan esterase (EC 3.1.1.72) and xylan α-1,2-glucuronidase (EC 3.2.1.131) act 371 

synergistically with xylanases and xylosidases to achieve complete xylan hydrolysis [56]. 372 

 373 

3.3.3 Enzymatic degradation of DDGS 374 

For the enzymatic hydrolysis of DDGS and related materials, the choice of enzymes is related to 375 

the desired end-product. A summary of enzyme combinations that have been employed for DDGS 376 

hydrolysis and their respective conversion yields is presented in Table 4. If the DDGS hydrolysate 377 

is intended to be utilized as a fermentation feedstock (e.g. for production of ethanol or platform 378 

chemicals), cellulose-degrading enzymes can be used for the release of the glucose monomers 379 

[57]. Cellulose conversion rates from untreated DDGS are reported to be relatively higher in the 380 

presence of cellulase and β-glucosidase enzyme mixtures, compared to other biomass by-products 381 

such as maize stover. Glucose yields of 76% were achieved after 72 h of hydrolysis of maize 382 

DDGS with low solid loadings (5%, w/w) [35]. On the other hand, pre-treatment of DDGS is 383 

highly advantageous for nearly complete cellulose hydrolysis (98%) within the same time [35]. 384 

WDG can be less susceptible to hydrolysis, showing lower yields by approximately 30% in high 385 

substrate loadings (15%, w/w). This can be overcome through the use of auxiliary enzymes 386 

(xylanases, ferulic acid esterases) that act on the hemicellulose structure during the course of 387 

hydrolysis, and as more sites become susceptible to cellulase attack, glucose yield is increased 388 

[35]. Additionally, compounds produced during the pre-treatment step, such as lignin-derived 389 

phenolics as well as xylan oligomers, can act as inhibitors of cellulases [58]. Due to the fact that 390 

cellulases have a minor impact on hemicellulose hydrolysis, further digestion with xylanase and 391 

ferulic acid esterase mixtures is required for the production of hemicellulose-derived pentosans 392 
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[59]. However, Dien et al. [34] observed that additions of the above mentioned commercial 393 

enzymes did not favour the release of xylose and arabinose from pre-treated DDGS. On the 394 

contrary, cellulase blends with pectinase and ferulic acid esterase, increased the hemicellulose 395 

conversion yields. Although DDGS does not contain any pectin, commercial pectinases usually 396 

contain multiple side-activities and may contribute to achieving increased monosaccharide yields 397 

[34]. Banerjee et al. [60] reported that increased levels of mannanase were also needed in order to 398 

enhance the release of glucose from AFEX-treated DDGS. In addition to glycosyl hydrolases, 399 

proteolytic enzymes can be applied for the extraction of proteins from DDGS [22, 33], as the 400 

means for increasing arabinoxylan extraction [61]. 401 

 402 

The choice of the pre-treatment strategy for DDGS depends greatly on the aims of the biorefinery. 403 

On one hand, enzymatic hydrolysis is a less energy intensive process as opposed to chemical 404 

treatments, offering the advantage of selective catalysis of carbohydrates, generating 405 

monosaccharide-rich streams suitable for microbial conversion. However, enzymatic pre-406 

treatment is often hindered by substrate concentration, enzyme activity and end-product 407 

inhibition. To this end, the production of tailored multi-enzyme cocktails (containing optimised 408 

cellulase/hemicellulase proportions) with higher specific activities compared to current 409 

commercial enzymes, obtained through screening or protein engineering approaches, is expected 410 

to reduce capital costs associated with the pre-treatment step. Physico-chemical treatments such as 411 

steam explosion are considered cost-effective and have a realistic potential for industrial scale 412 

processing. They can offer high yields of monomeric sugars and enhanced hemicellulose 413 

hydrolysis. However, their combination with subsequent enzymatic processes is often problematic 414 

due to the formation of inhibitory compounds during the pre-treatment process (e.g. in the case of 415 

dilute acid hydrolysis) or to the requirement for additional steps prior to enzyme hydrolysis (e.g. 416 

neutralisation step in the case of alkaline treatment). Thus, it seems rather unlikely that a process 417 
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aiming to fully exploit DDGS will rely on a single treatment step due to the complex structure of 418 

DDGS. 419 

 420 

4. Value-added products from DDGS 421 

The heterogeneous nature of DDGS allows its biotransformation into several added-value 422 

products. These can either be subjected to further purification leading to primary products, or used 423 

as starting materials for secondary processing, as part of a biorefinery strategy. A schematic 424 

representation of various added-value products from DDGS based on the biorefinery concept is 425 

given in Fig. 2. These include biofuels, biopolymers, platform chemicals, prebiotic 426 

oligosaccharides as well as packaging materials. All the above mentioned products could be 427 

derived by effectively exploiting two principal components that account for 65-70% of the total 428 

DDGS composition, i.e. carbohydrates and proteins, and have a variety of potential applications in 429 

industrial sectors such as food, chemicals and packaging. Currently, the bioethanol production 430 

process generates DDGS and CO2 as co-product streams, both of which have market values for 431 

the industry. Therefore, the choice of product(s) deriving from DDGS should be of higher added 432 

value in order to compensate for the additional energy and equipment costs. Ideally, the additional 433 

process should be easily incorporated into existing production processes. Moreover, a successful 434 

process should not be affected by feedstock variability, which could stem from the use of blended 435 

cereals as raw materials for bioethanol production. A biorefinery strategy could aim to use 436 

intermediate products of the DDGS biotransformation process as starting materials for the 437 

generation of added-value components. From an economic perspective, in the bioethanol 438 

production process, apart from feedstock price fluctuation, the thermal processing of the WDG-439 

CDS mixture is the most costly part of production [62]; however it is required in order to confer 440 

shelf-life stability during transportation of the DDGS used as animal feed. Taking this into 441 

account, WDG could be used as substrate for chemical/enzymatic treatments as it has been shown 442 
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to contain higher amounts of total carbohydrate and protein (on a dry matter basis) compared to 443 

DDGS [13]. Another in-process sample that can be utilised for the production of added-value 444 

components is thin stillage (TS). TS contains a complex mixture of carbon sources, such as 445 

soluble sugars, by-products of fermentation, such as glycerol and organic acids, and also yeast 446 

cells [13] that can serve as an ideal source of nutrients for microbial fermentations. A number of 447 

studies have demonstrated the feasibility of using TS directly as a fermentation feedstock or as 448 

source of liquid nutrients supplemented with additional carbon sources for the production of 449 

microbial metabolites such as lipids, solvents, organic acids and extracellular polysaccharides 450 

(Table 5). An additional advantage reported in these studies is the potential remediation of TS 451 

through the reduction of their total solids and chemical oxygen demand (COD) [63, 64]. 452 

 453 

4.1 Biofuels, platform chemicals and biopolymers 454 

One of the most studied biotechnological processes for DDGS upgrade is bioethanol production, 455 

as the means for generating additional profit to bioethanol plants, through the microbial 456 

conversion of non-starch carbohydrates. Initial studies aimed to produce a cellulose-derived 457 

glucose-rich stream from DDGS which can be fermented by hexose-consuming wild-type 458 

microbial strains that exhibit high ethanol tolerance, such as Saccharomyces cerevisiae and 459 

Zymomonas mobilis. However, genetic engineering has since allowed the development of 460 

modified strains capable of fermenting pentoses (i.e. xylose and arabinose) by introducing 461 

pentose-metabolizing pathways from bacterial strains of E. coli or natural xylose-fermenting 462 

yeasts such as Pichia stipitis and Candida shehatae to S. cerevisiae strains [65]. More recently, 463 

the concept of consolidated bioprocessing (CBP) has emerged, aiming to reduce the cost of added 464 

enzymes in the pre-treatment step. In CBP, lignocellulosic materials can be directly fermented 465 

into the desired products in a single step by microorganisms performing simultaneous 466 

saccharification and fermentation of the substrate [66, 67]. CBP benefits from the elimination of 467 
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the enzyme production process, since engineered yeast strains capable of secreting hydrolytic 468 

enzymes, such as cellulases, can be used. However, in some cases, high density cultures (100 g/L 469 

wet cell weight) are required for the effective hydrolysis of the raw materials [68]. A major 470 

obstacle in the process is the difference in the optimum temperatures between saccharification and 471 

fermentation [69]. To this end, research on the construction of thermotolerant recombinant yeast 472 

strains is ongoing [70]. Apart from DDGS, complementary ethanol production can be achieved 473 

through the direct fermentation of TS. A metabolically engineered Escherichia coli strain was 474 

capable of ethanol production, by utilizing simultaneously glycerol and the sugars present in TS 475 

media, after supplementation with mineral salts [71]. 476 

 477 

Typically, DDGS contains around 14-18% of cellulose. Based on literature data, the combination 478 

of AFEX treatment and subsequent enzymatic hydrolysis can convert up to 93% of cellulose to 479 

fermentable glucose. If the hemicellulose content (accounting for around 25-28% of total DDGS 480 

composition) is further hydrolysed, an overall yield of 92% of total hemicellulose and cellulose 481 

conversion into fermentable hexoses and pentoses can be achieved (Fig 2). In the ideal scenario of 482 

a complete fermentation of the available sugars and the absence of inhibitory parameters, the 483 

process may contribute up to 15% more ethanol than the conventional dry-grind process, whereas 484 

the generated DDGS in such a process would be enriched with protein (30-40% of total mass, 485 

compared to ~30% in standard DDGS) and could be marketed as a livestock feed at a higher price 486 

than its current price, especially if it provides the amino acid requirements for animal feeds, in 487 

terms of lysine content [72]. Kim et al. [72] investigated three case studies of process alternatives 488 

based on recycling the pre-treated and hydrolysed distillers’ grains, and assessed their effect on 489 

the overall ethanol yields. They concluded that a 14% ethanol yield increase could be achieved by 490 

releasing the additional fermentable sugars present in distiller’s grains by further processing and 491 

hydrolysis of fermentable glucans [72]. However, the cost of cellulosic ethanol is still high 492 
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(estimated typically around £0.6 per litre) [73]. It has been proposed that the combination of 493 

reduced enzyme costs and the higher market price of DDGS enriched in protein could render the 494 

’DDGS to bioethanol’ process a viable prospect for the biofuel industry [74]. 495 

 496 

Another approach towards the production of added-value compounds is the microbial 497 

transformation of DDGS hydrolysates into platform chemicals, such as succinic acid. The latter 498 

can be used as a precursor for a variety of chemical compounds that have a number of applications 499 

in the food, pharmaceutical, and plastic industries [75]. The potential of replacing a petroleum-500 

based chemical process with a bio-based process for succinic acid production attracts much 501 

research interest recently. The current market price of succinic acid is estimated as around £4,000-502 

6,000 per tonne, depending on its purity [76]. Microbial production of succinic acid by strains of 503 

Anaerobiospirillum succiniciproducens can be achieved at conversion yields as high as 91% (on 504 

glucose-based substrates) [77]. Based on the same scenario, which includes the conversion of 505 

cellulose to glucose, around 19% of the initial DDGS amount could be converted into succinic 506 

acid, taking into account an optimum bioconversion yield of 91% (Fig 2). DDGS bioconversion to 507 

succinic acid could be further enhanced, since most of succinic acid-producing strains 508 

(Actinobacillus succinogenes, Mannheimia succiniciproducens) are capable of utilising pentose 509 

sugars as carbon substrates with satisfactory conversion yields (55-80%) [78, 79]. 510 

 511 

An additional promising bioconversion route of DDGS hydrolysates includes the microbial 512 

production of biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs). The 513 

biodegradable plastics industry is currently growing fast, with world production reaching nearly 514 

740,000 tonnes in 2013, while projections estimate that the total production volume will reach 515 

approximately 2.96 million tonnes by 2021 [80]. PHAs are polyesters that contain hydroxyl-516 

alkanoic acids as monomers and exhibit resistance against high temperatures (up to 180°C) as 517 



22 

 

well as oxygen barrier properties. Among the PHAs, polyhydroxybutyrate (PHB) is the most 518 

common biopolymer with a wide spectrum of applications. PHAs are synthesized intracellularly 519 

by a number of bacterial strains such as Cupriavidus necator, Bacillus sp., Pseudomonas sp. or 520 

Aeromonas sp. [81]. PHAs market price is still much higher than those of other bio-based 521 

polyesters (approx. £7-9/kg), [80] whereas around 50% of the total PHAs cost is due to the 522 

substrate cost [82]. The use of low-value feedstocks derived from waste streams in combination 523 

with an environmentally friendly and cost effective extraction step, could potentially lead to the 524 

establishment of a competitive PHA production process based on DDGS.  525 

 526 

Based on the applied pre-treatments, DDGS hydrolysates can contain a mixture of glucose, xylose 527 

and arabinose as carbon sources for microbial conversions. A number of PHA-producing strains 528 

have been reported to catabolise xylose, the majority of which however demonstrate low specific 529 

PHA rates and production yields [83,84] compared to those achieved in glucose or sucrose-based 530 

media [85, 86]. Taking a best case scenario based on literature data showing a 38% of DDGS 531 

cellulose-derived glucose after AFEX treatment [34], approximately 8 kg of PHB per 100 kg of 532 

DDGS can be potentially achieved (calculations based on glucose conversion data from Ryu et al. 533 

[87]). 534 

 535 

Poly-lactic acid (PLA), originating from lactic acid polymerisation, represents another important 536 

polymer in the field of biodegradable materials. PLA has unique biodegradability and 537 

biocompatibility properties, with potential applications in packaging and agricultural products, as 538 

well as in medical and textile industries [88]. In 2013, about 143,200 tonnes of PLA were 539 

produced worldwide; the total PLA market volume for 2021 is forecasted to rise to approximately 540 

465,500 tonnes with a rise in demand of around 16%, and its current price is around £2-4/kg [80]. 541 

Europe is the third largest market after North America and Asia-Pacific [80]. The building 542 
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monomer for PLA, lactic acid, occurs in two optical isomers, L- and D-lactic acid, which can be 543 

obtained via chemical synthesis (hydrolysis of lactonitrile) or through microbial fermentation. In 544 

the latter case, the enzymatic capacity of bacterial strains (Lactobacillus spp.) determines the 545 

stereo specificity of the lactic acid produced. For this reason, obtaining optically pure lactic acid is 546 

of great importance [89]. As is the case for most microbial conversions, the operation and 547 

purification costs are also of primary importance. In lactic acid bacteria (LAB), hexose catabolism 548 

is usually performed via the homofermentative pathway, producing solely lactic acid. On the other 549 

hand, most LAB catabolise pentoses via the heterofermentative pathway, generating by-products 550 

such as acetic acid and ethanol. This causes a decrease in lactic acid yield. Although a number of 551 

novel lactic acid-producing strains have been reported to efficiently ferment xylose to lactic acid 552 

with high yields and optical purity (95% and 99.6%, respectively) [90], the microorganism of 553 

choice should be capable of utilising simultaneously the mixed sugars present in the 554 

hemicellulosic hydrolysates. Recently, Tsuge et al. [91] reported the homofermentative D-lactic 555 

acid production by an engineered L. plantarum strain capable of simultaneously catabolising 556 

xylose and glucose in a two-step production system, based on the sequential cultivations of 557 

growing and resting cells. Lactic acid production yields were higher than 90% (w/w). In such a 558 

case, the fermentation of the mixed sugars contained in a DDGS hydrolysate could potentially 559 

lead to approximately 28 kg of lactic acid per 100 kg of DDGS. 560 

 561 

4.2 Xylan and xylo-oligosacchrides 562 

Xylan constitutes part of the hemicellulosic fraction and represents the major polysaccharide in 563 

bioethanol DDGS, accounting for approximately 35-40% of the total carbohydrates (Kim et al. 564 

2008a). In the wheat grain cell, the xylan consists of a linear backbone of D-xylopyranosyl units, 565 

which may be mono-substituted with a-L-arabinofuranosyl residues on position O-3 (~21%) or di-566 

substituted on positions O-2 and O-3 (~13%) [92, 93]. Glucuronic acid or its 4-methyl ether 567 
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derivative can also be linked in the O-2 position of xylopyranosyl residues. Arabinofuranosyl 568 

residues linked on position O-3 of the xylose units may be ester-linked to ferulic acid, which may 569 

undergo oxidative dimerization to form covalent cross-linkages between the xylan chains [93]. 570 

These cross-links, in addition to the interactions of arabinoxylans (AX) with other cell wall 571 

components such as cellulose and lignin, are responsible for the water-insoluble nature of a high 572 

proportion of wheat grain arabinoxylan. In wheat flour, water-soluble AX account for 25% of the 573 

total AX content, but the proportion is much lower in bran and whole grain [94]. The structure and 574 

chemical properties of soluble and insoluble AX in the wheat grain have been intensively studied, 575 

however for DDGS limited information is available. Most studies on DDGS exploitation are 576 

focused on the solubilisation of the insoluble AX fraction, while hardly any information is 577 

available on the effect of the DDGS production process on the solubility of AX. In a recent study 578 

[18] comparing the composition of maize grain to that of maize DDGS, an increase in the soluble 579 

AX content in DDGS compared to grain was observed, which suggests that the non-starch 580 

polysaccharide fraction is modified during the fermentation process and the subsequent drying 581 

process. This can be attributed to factors such as the presence of exogenous or yeast -derived fibre 582 

degrading enzymes, as well as to the mechanical and heat treatments during DDGS production 583 

[18].  584 

 585 

Apart from xylan hydrolysis to its respective monomers, an alternative way for the efficient 586 

valorisation of DDGS xylan is its conversion to xylo-oligosaccharides (XOS) or arabinoxylo-587 

oligosaccharides (AXOS), compounds that exert potential prebiotic health effects. According to 588 

Gibson et al. [95], “prebiotics are selectively fermented ingredients that allow specific changes, 589 

both in the composition and/or activity in the gastrointestinal microflora that confers benefits”. 590 

Prebiotics stimulate the population of beneficiary bacteria (e.g. Bifidobacterium spp. and 591 

Lactobacillus spp.) leading to the production of short-chained fatty acids (SCFAs), mainly acetate, 592 
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propionate and butyrate. SCFAs are used as energy source by colonic epithelial cells and may 593 

function as primary protective agents against colonic disorders, inhibit the growth of pathogenic 594 

microorganisms, while they also have immunomodulatory properties. The main commercial 595 

prebiotics include fructo-oligosaccharides (FOS), inulin-type fructans and galacto-596 

oligosaccharides (GOS). In the case of XOS (mainly mixtures of DP2 and DP3 are produced 597 

commercially) and the AXOS prebiotic effects have been shown primarily in vitro, whereas data 598 

from human studies are limited although a study has been recently published [96]. 599 

 600 

A small number of studies have exploited the isolation of insoluble xylan from cereal- based by-601 

products, such as maize fibre or maize cobs. Different methods have been assessed for their 602 

efficiency towards xylan extraction, including chemical (alkaline, acid, bleach, organic solvents), 603 

enzymatic (xylanases) and mechanical assisted treatments (extrusion, hydrothermal, ultrasound 604 

and microwave) [97]. DDGS is an advantageous starting material for xylan extraction as it 605 

contains low amounts of lignin (3-5%), therefore a delignification step is not needed. Yields of up 606 

to ~25% were obtained from DDGS in a process consisting of alkaline extraction and ethanol 607 

precipitation [53]. 608 

 609 

DDGS xylan has been previously evaluated as an additive for the preparation of gluten-based 610 

biodegradable films [98]. The water vapour transfer rate of the films was not affected by xylan 611 

addition, whereas the production conditions and xylan origin influenced their mechanical and 612 

solubility properties. More recently, the feasibility of producing films from hemicellulose-rich 613 

fractions of DDGS was evaluated [53]. The extracted fraction contained around 52% 614 

hemicelluloses (mainly arabinoxylan) and 18% protein. The films produced from this fraction 615 

were stiff and had a high glass transition temperature, as a result of a greater degree of 616 

polymerisation in DDGS arabinoxylans, and due to the presence of impurities in the extracted 617 
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fraction. However, when tested as paper coating, the DDGS-derived arabinoxylan/protein mixture 618 

increased considerably the paper tensile strength. Although a promising application has been 619 

identified, optimisation of the extraction procedure is needed in order to increase the purity of the 620 

extracted xylan, decrease the environmental impact of the extraction process and eliminate the 621 

presence of impurities, such as proteins and crude fat. Finally, it is worth mentioning that a xylan-622 

based packaging material is currently marketed by Xylophane under the commercial name 623 

Skalax®. Specifically, cereal hulls and husks are used as starting materials and the extracted 624 

material is used as paper coating, acting as a migration barrier. 625 

 626 

4.3 Protein 627 

DDGS contains substantial amounts of protein (~30-35%, w/w), that justifies its application as a 628 

dietary supplement in livestock feed. Wheat proteins comprise gluten storage proteins, which 629 

account for about 80% of the total grain protein, and a heterogeneous range of non-gluten proteins 630 

(~20%). The non-gluten proteins comprise structural and metabolic components as well as storage 631 

components, and include abundant water-soluble (albumin) components of mass below about 632 

25kDa [99]. By contrast, gluten proteins are not soluble in water and are classically divided into 633 

monomeric gliadins and polymeric glutenins. Both groups are defined as prolamins as they are 634 

soluble in alcohol-water mixtures, either as native monomers (gliadins) or after reduction of the 635 

inter-chain disulphide bonds (glutenin subunits) [100, 101]. Based on their genetics, structure and 636 

evolution, wheat prolamins can be categorised in three major groups: sulphur-rich (S-poor) 637 

prolamins which correspond to ω-gliadin monomers, sulphur-poor (S-rich) prolamins 638 

corresponding to of α- and γ-gliadins monomers and low molecular weight subunits of glutenin in 639 

wheat, and high molecular weight (HMW) prolamins corresponding to high molecular weight 640 

subunits [101]. The maize prolamins, known as zein, account for almost 80% of the total grain 641 
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protein. a-Zeins are the major prolamin group occurring as monomers or oligomers, whereas 642 

minor zien groups (β-, γ- and δ-zeins) occur as polymers [101]. 643 

 644 

Praire Gold Inc. developed a process named COPE (Corn Oil and Protein Extraction) for the 645 

extraction of zein and oil from maize DDGS; this was achieved by fractionation at the front-end 646 

of the dry-grind ethanol process. Through this technology, several grades of high quality zein 647 

fractions are produced, containing varying amounts of xanthophylls. However, zein yields are low 648 

(2-5%, w/w) and high amounts of solvents are required in the process. On the other hand, a back-649 

end process for protein extraction is more attractive since DDGS contains high amounts of protein 650 

as a result of starch removal and mass reduction [102]. Nevertheless, a commercial back-end 651 

extraction of proteins from DDGS protein has not been applied. 652 

 653 

Several different approaches have been proposed for DDGS protein extraction, including aqueous 654 

ethanol, alkaline-ethanol and enzyme treatments. Bandara et al. [103] investigated the efficiency 655 

of protein extraction from triticale DDGS and concluded that treatment with alkaline ethanol gave 656 

maximum protein purity of 66% (w/w); however, extraction yields were limited to 21-30% (w/w). 657 

For corn DDGS, higher purities of extracted protein have been reported (90% w/w) accompanied 658 

by average extraction yields of 44% (w/w) using aqueous ethanol extraction in the presence of 659 

reducing agents [104]. The purity and yield of the extracted proteins from DDGS still remains a 660 

challenge, since an ideal method should provide high protein purity without compromising 661 

extraction yields. DDGS proteins often show low extractability, possibly due to the heating 662 

process that is applied and can cause denaturation of the proteins and changes in their properties 663 

[103]. During the final stage of the dry-grind ethanol production process (Fig. 1), the WDG and 664 

CDS mixture is subjected to intense thermal treatment. The extent of heating varies between 665 

plants for DDGS production but can reach up to 200°C. It is possible that the utilisation of in-666 
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process samples, such as whole stillage or WDG, could lead to the extraction of proteins with 667 

higher yields and purity, since up to that point of the process, mild heating steps are applied 668 

during the liquefaction of biomass (~50°C) and the distillation of ethanol (~80°C). Looking 669 

towards the commercialisation of a large-scale protein extraction process from DDGS, 670 

environmental aspects should also be taken into account, with respect to solvent selection and 671 

extraction method, as well as energy usage. 672 

 673 

DDGS protein can be exploited in a variety of medium-value industrial applications, such as for 674 

the production of biodegradable films, coatings and biodegradable plastics, which can be used in 675 

food and agricultural applications [105, 106]. In particular, wheat gluten has been extensively 676 

researched as a natural starting material for the development of biodegradable films, due to its 677 

remarkable cohesive and elastic properties, as well as its susceptibility to chemical modifications 678 

[107, 108]. For the production of protein-based films, plasticisers are usually added in levels of 679 

15-40% of protein weight and contribute to the improvement in the flexibility and extensibility 680 

properties of films. Low molecular size components of low volatility, such as sorbitol, xylitol, 681 

glycerol, mannitol, diglycerol and polyvinyl alcohol, have been tested as plasticisers for wheat 682 

gluten films [109]. Among those, glycerol has many advantages as it is non-toxic and suitable for 683 

use in the food industry. Wheat gluten-based films are water-insoluble and present properties 684 

similar to those of zein films [110]. They possess higher water vapour permeability but their 685 

mechanical properties are inferior compared to most synthetic films [111]. By contrast, starch-686 

based films are used primarily in food packaging, and possess excellent oxygen-barrier properties 687 

but poor mechanical properties. Moreover, cellulose-based films hold their share of the market, 688 

producing tough, flexible and transparent films, resistant to fats and oils and sensitive to water. 689 

Gluten-based films possess better mechanical and gas barrier properties compared to 690 

polysaccharide films, while their mechanical stability can be improved by the incorporation of 691 
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plasticisers [112]. The commercial production of gluten-based films is yet to be established, 692 

whereas starch-based biodegradable products hold a major share, with a market volume of 693 

162,500 tonnes in 2013 [80]. Attempts have been made to modify the structure and improve the 694 

functionality of gluten for films using a variety of methods, including incorporation of 695 

hydrophobic compounds [113], enzymatic cross-linking [114], controlled thermal treatment [115] 696 

and gamma-irradiation [116]. Further research is needed in order to develop processes and 697 

products that can be applied on a commercial scale and compete in terms of price and 698 

functionality with petroleum-derived polymers. 699 

 700 

4.4 Phenolic acids 701 

DDGS is a potential source of phytochemicals and in particular phenolic compounds, including 702 

ferulic, sinapic, p-coumaric, caffeic and vanillic acids. Among these, ferulic and p-coumaric 703 

account for 80% of the total phenolics [117]. Luthria et al. [118] reported a total phenolic acid 704 

concentration of 5.99 mg/g for DDGS, consisting of 4.59 mg/g ferulic acid and 0.72 mg/g p-705 

coumaric acid. Additionally, it has been demonstrated that the phenolic content of DDGS is 706 

enhanced approximately 3-fold (in dry basis) compared to the starting material before 707 

fermentation as a result of starch depletion [119], whereas the effect of the dry mill processing on 708 

phenolic acid content is minimal [120]. Due to their unique physiological properties, phenolic 709 

acids have been proposed to have numerous health benefits due to their radical scavenging ability, 710 

inhibition of lipid peroxidation and protection against LDL oxidation in the human body [121]. 711 

For this reason, they could be marketed as nutraceuticals, and more specifically as natural sources 712 

of antioxidants in foods and dietary supplements [122]. Moreover, ferulic acid can be used for the 713 

commercial production of bio-vanillin, an aromatic flavour compound used by the food, 714 

pharmaceutical and cosmetics industries, via microbiological conversion routes [123,124].  715 

 716 
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Ferulic acid is predominantly bound on the cell wall AX components, with dimeric forms 717 

accounting for between 4.2 and 8.6% in wheat cultivars [125]. An enzymatic hydrolysis process 718 

utilising feruloyl esterases, in synergy with main-chain degrading enzymes such as endo-719 

xylanases and pectinases, can lead to the extraction of ferulic acid and its respective dimers 720 

[126,127]. The combination of xylanase and ferulic acid esterase has been reported to release up 721 

to 86% (w/w) of the total ferulic acid in wheat aleurone [128]. In the case of DDGS, solvent-722 

assisted methods, such as aqueous ethanol, or ultrasound pre-treatments, have been studied for the 723 

extraction of phenolic acids from DDGS. Ultrasound pre-treatment of DDGS was reported to 724 

increase the extraction yield of phenolic compounds by 14.9%, as opposed to non-treated DDGS 725 

[129] Additionally, the application of microwave irradiation in 50% aqueous ethanol solutions of 726 

DDGS led to the production of extracts with 12 mg/g of phenolic content [117]. So far, lab-scale 727 

studies have indicated the potential of producing phenolic-rich extracts from DDGS. Future work 728 

is needed in order to evaluate the scalability of the technologies and assess the economic 729 

implications of such processes. 730 

 731 

4.5 Oil and Biodiesel 732 

Typically, DDGS contains around 10-12% (w/w) of oil. The fatty acid composition of DDGS oil 733 

resembles that of the starting grain (usually maize or wheat), being rich in linoleic acid (~55%, 734 

w/w), while it also contains substantial amounts of oleic (~28%, w/w) and palmitic acid (~16%) 735 

[130]. Extracting oil from DDGS creates an additional profit to bioethanol plants as the crude 736 

maize oil price was estimated at around £500 per ton in 2013. The extracted oil is marketed either 737 

for biodiesel production or as refined maize oil. Oil removal leads to the production of DDGS 738 

with a higher protein content, a valuable feed component which due to its low residual oil content 739 

(5-9%, w/w compared to ~ 10-14% in DDGS) can be marketed for non-ruminant diets (e.g. 740 

swine). Currently in the US, more than 50% of maize-based bioethanol plants are extracting oil, 741 
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the majority of which is channelled towards the biodiesel industry and the rest is used in blended 742 

feed-fats, mainly by the poultry industry.  743 

 744 

Maize oil is either extracted from the germ of the grain prior to fermentation via a 745 

solvent/pressing-assisted process, or post-fermentation from the whole or thin stillage (back-end 746 

extraction process). In the latter case, oil is extracted by a series of centrifugation, heating and 747 

condensation steps, yielding 60-75% of the total oil content. Moreover, DDGS extracted oils were 748 

found to contain increased amounts of tocotrienols and carotenoids (1762 and 75 μg/g, 749 

respectively) compared to maize germ oil (235 and 1.3 μg/g, respectively); this offers the 750 

advantage of increased stability for crude maize oil as opposed to maize germ oil due to the 751 

antioxidant activity of the above compounds [130]. In the case of a DDGS biorefinery, the 752 

formation of glycerol as a by-product of the biodiesel process could be potentially used as a 753 

plasticiser for the production of biodegradable films from DDGS proteins (Fig. 2). 754 

 755 

5. Conclusions 756 

DDGS constitutes a by-product with potential for transformation into numerous added-value 757 

products. Due to its heterogeneous nature several pre-treatment steps have been proposed 758 

targeting specific compounds of interest as primary products or starting materials for subsequent 759 

bioconversion processes. The parent grains as well as the processing systems have been shown to 760 

significantly influence the physical and chemical characteristics of DDGS, and consequently the 761 

availability and extractability and of its components. The development of a commercially viable 762 

process scheme for the valorisation of DDGS within the biorefinery concept requires the 763 

production of medium to high added-value compounds in order to counterbalance capital 764 

investment and operating costs. Research thus far has demonstrated that this is feasible at the 765 
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laboratory and in some cases pilot scale although more industrial research coupled with detailed 766 

process economics are needed before leading to commercial realisation and exploitation.  767 
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Figure legends: 1116 

 1117 

Figure 1 Simplified schematic representation of a dry-mill bioethanol production process and by-product 1118 

production streams 1119 

 1120 

Figure 2 DDGS valorisation based on a conceptual biorefinery strategy 1121 
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Fig 1 1132 

 1133 

Cereal storage Milling 

+ Water 

+ Enzymes + Yeast 

Saccharification Fermentation 

Distillation/ 

Rectification 

Dehydration 

Bioethanol 

Evaporation 

Thin stillage 

(TS) 

Wet Distillers 

Grains (WDG) 

Condensed Distillers 

Solubles (CDS) 

Distillers Dried Grains 

with Solubles (DDGS) 

Centrifugation 



49 

 

 1134 

Fig. 2  1135 
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Table 1. Composition of DDGS from different plants and sources (expressed in %, dry matter basis) 1140 

 Maize DDGS[16[ Wheat DDGS[17] Distillery DDGS[14] Mixed DDGS[18]a 

Dry matter 87.2-90.2 89.3-94.4 90.5-92.7 87.3-92.6 

Oil 10.2-11.4 3.6-5.6 8.1-12.8 11.0-12.4 

Protein 28.7-31.6 32.6-38.9 23.4-27.9 33.8-38.3 

Crude fibre 8.3-9.7 6.2-10.9 9.6-10.6 5.6-7.6 

ADF 13.8-18.5 7.7-17.9 15.4-19.3 11.5-12.3 

NDF 36.7-49.1 25.1-33.8 34.8-40.3 28.9-31.2 

Ash 5.2-6.7 4.3-6.7 3.4-7.3 8.0-10.2 

a: Parent grains of mixed DDGS were wheat, triticale, barley and rye.  1141 
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Table 2. Summary of main products and yields from DDGS chemical pre-treatments 1143 

Raw material Treatment Conditions Main products Yield Reference 

Maize Distillers 

Grains 

Dilute acid 

hydrolysis 

Acid conc. 1.0% 

Solid load. 10% 

Temp. 140°C 

Monosaccharides 

(Xyl, Ara, Gluc, Gal) 

61.3 g/100 g 

carbohydrates 

[45] 

Maize DDGS Dilute acid 

hydrolysis 

Acid conc. 3.1% 

Solid load. 15% 

Temp. 112°C 

Monosaccharides 

(Xyl, Ara, Gluc) 

43.4 g/100 g 

dry matter 

[47] 

Maize DDGS Three stage 

dilute acid 

hydrolysis 

Acid conc. 1% 

Solid load. 15% 

Temp. 120°C 

Monosaccharides 35.8 g/100 g 

carbohydrates 

[44] 

Maize DDGS fibre Autohydrolysis Temp. 180°C, 15 min 

Solid load. 10% 

Xylo-oligosaccharides 18.6% (w/w) of 

feedstock 

[40] 

Maize DDGS Liquid hot water Solid load. 15.7% 

Temp. 160°C, 20 min 

Monosaccharides 86% Glu, 29% 

Xyl, 37% Ara 

[34] 

Maize DDGS AFEX Solid load. 25g 

Ammonia load. 80% 

Temp. 70°C,  

Pressure 350-430 psi 

Monosaccharides 93% Glu, 14% 

Xyl, 20% Ara 

[34] 
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 1146 

Table 3. Enzymes involved in the degradation of cellulosic and hemicellulosic materials  1147 

Category Enzymes Linkage hydrolysed Products 

 Endo-1,4-β-glucanase Internal β-1,4 Cellobiose 

 

Cellobiohydrolase Terminal β-1,4 

(reducing end) 

Cellobiose 

Cellulases 

Exo-1,4-β-glucanase Terminal β-1,4 

(non-reducing end) 

Cellotetrose, Cellobiose 

 

β-glucosidase Terminal β-1,4 

(non-reducing end) 

Glucose 

 Endo-1,4-β-xylanase Internal β-1,4 Xylo-oligosaccharides 

Hemicellulases 

Exo-1,4-β-xylanase Terminal β-1,4  

(reducing end ) 

Xylose, xylobiose 

 

β-Xylosidase Terminal β-1,4 

(non-reducing end) 

Xylose 

 

α-L-Arabinofuranosidases Terminal α-1,2/ α-1,3/ α-

1,5 (non-reducing end) 

Arabinose 

Accessory α-D-Glucuronidases α-1,2-glycosidic bond Methylglucuronic acids 

xylanolytic  Acetyl xylan esterase Acetyl ester bond Acetic acid 

enzymes Feruloyl esterase Ester bond Ferulic acid 

 p-Coumaroyl esterase Ester bond Coumaric acid 

 1148 

 1149 
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Table 4. Enzyme combinations and main product yields from chemically pre-treated DDGS  1151 

Raw material Pre-treatment Enzymes Yields Reference 

Maize DDGS LHW 

 

AFEX 

Cellulase (GC220), β-

glucosidase (Novo188), 

multifect pectinase, feruloyl 

esterase (Depol 740L) 

91% Glu, 82% Xyl, 70% Ara 

 

100% Glu, 81% Xyl, 98%, Ara 

[34] 

Maize DDGS None Cellulase (Spezyme CP), β-

glucosidase (Novozyme 188) 

76% Glu [35] 

Maize WDG LHW 

 

AFEX 

Cellulase (GC220), β-

glucosidase (Novozyme 188), 

Xylanase (Multifect Pectinase), 

feruloyl esterase (Depol 740L) 

77% Glu, 41% Xy 

 

72% Glu, 45% Xyl 

[35] 

Maize DDGS Dilute acid 

hydrolysis 

Cellulase & β-glycosidase 

(Sigma) 

80% Glu, 82% Xyl [44] 
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Table 5. Microbial conversions of DDGS-derived hydrolysates and thin stillage 1155 

Feedstock Microorganism Carbon source Product Yield a Reference 

Pre-treated  Clostridium acetobutylicum Mixed sugars ABE 34 % [131] 

DDGS Saccharomyces cerevisiae Glucose-Xylose Ethanol 49 % [35] 

 Mucor circinelloides Mixed sugars Microbial oil 46 % b [63] 

 Aureobasidium sp. Mixed sugars Pullulan 21 % [132] 

 Rhizopus oligosporus Glycerol Single cell protein 43 % [133] 

Thin  Gluconacetobacter xylinus Glucose Bacterial cellulose 57 % [134] 

stillage Cl. pasteurianum Glycerol Butanol 44 % [135] 

 Escherichia coli (recombinant) Glycerol Ethanol 40 % [136] 

 Aspergillus niger Glycerol-Mixed sugars Malic acid 80 % [137] 

 Lactobacillus panis (recombinant) Glycerol- Glucose 1,3- Propanediol 74 % [138] 

 Lactobacillus rhamnosus Mixed sugars Lactic acid 96 % [139] 

a 
Expressed as %, w/w of consumed substrate 1156 

b Expressed as % w/w of produced biomass 1157 
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