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Abstract 

Key message 

Four QTL conferring resistance to ergot were identified in the UK winter wheat varieties ‘Robigus’ and 

‘Solstice’. Two QTL co-located with semi-dwarfing alleles at the Rht loci Rht-1B and Rht-1D implicating a role 

of these DELLA proteins in infection success of Claviceps purpurea. 

Abstract 

The fungal pathogen Claviceps purpurea infects ovaries of a broad range of temperate grasses and cereals, 

including hexaploid wheat, causing a disease commonly known as ergot. Sclerotia produced in place of seed 

carry a cocktail of harmful alkaloid compounds that result in a range of symptoms in humans and animals, 

causing ergotism. Following a field assessment of C. purpurea infection in winter wheat, two varieties 

‘Robigus’ and ‘Solstice’ were selected which consistently produced the largest differential effect on ergot 

sclerotia weights. They were crossed to produce a doubled haploid mapping population, and a marker map, 

consisting of 714 genetic loci and a total length of 2895 cM was produced. Four ergot reducing QTL were 

identified using both sclerotia weight and size as phenotypic parameters; QCp.niab.2A and QCp.niab.4B being 

detected in the wheat variety ‘Robigus’, and QCp.niab.6A and QCp.niab.4D in the variety ‘Solstice’. The ergot 

resistance QTL QCp.niab.4B and QCp.niab.4D peaks mapped to the same markers as the known reduced height 

(Rht) loci on chromosomes 4B and 4D, Rht-B1 and Rht-D1, respectively. In both cases the reduction in sclerotia 

weight and size were associated with the semi-dwarfing alleles, Rht-B1b from ‘Robigus’ and Rht-D1b from 

‘Solstice’. Two-dimensional, two-QTL scans identified significant additive interactions between QTL 

QCp.niab.4B and QCp.niab.4D, and between QCp.niab.2A and QCp.niab.4B when looking at sclerotia size, but 

not between QCp.niab.2A and QCp.niab.4D. The two plant height QTL, QPh.niab.4B and QPh.niab.4D, which 

mapped to the same locations as QCp.niab.4B and QCp.niab.4D, displayed both epistatic and additive 

interactions. 

 

Keywords 

Claviceps purpurea, dwarfing alleles, ergot sclerotia, Rht, Triticun aestivum, wheat 
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Introduction 

The ergot fungus Claviceps purpurea infects the ovaries of many species of cereals and grasses, including the 

economically important cereals wheat, barley, oats, triticale, rye and millet (Tenberge 1999). Conidiospores and 

ascospores germinate on receptive stigma producing hyphae which grow down the lumen of the stigma towards 

the ovule tissue, following the route that would normally be taken by pollen tubes (Tudzynski et al. 2004). 

Within 24 hours of spore germination the fungal germ tube enters the transmitting tissue of the ovule and 

continues to the ovule base, where the xylem and phloem enter from the rachis. Three to four days post 

infection, when the hyphae have surrounded the ovary, hyphae become more branched. At 5 days post infection 

there is complete host cell collapse and the fungus enters the sphacelial stage, where it becomes soft, white and 

porous, and begins to generate asexual conidiospores. Around 6-7 days post infection an exudate, known as 

honeydew, is produced consisting of plant sap and C. purpurea asexual, haploid conidia which are believed to 

be dispersed by rain drops and insects (Tenberge 1999). 

 

The infected ovary is eventually replaced by a purplish-black sclerotium, commonly referred to as an ergot, a 

hardened mass of white fungal mycelia that is covered with a purplish black outer surface. These overwintering 

sclerotia eventually give rise to sexual reproductive structures, stroma or apothecia, from which wind-borne 

ascospores are produced (Mantle and Shaw 1976). Sclerotia contain a wide range of toxic alkaloids produced by 

the fungus, including ergometrine, ergotamine, ergosine, ergocristine, ergocryptine (which is a mixture of α- and 

β- isomers), ergocornine, and the corresponding -inine epimers. The alkaloids found within sclerotia can cause 

severe health problems in both humans and animals, responsible for the disease known as ergotism. Ergot 

alkaloids are classified as tryptophan derived alkaloids with physiological effects occurring from the absorption 

in the gastrointestinal tract. Toxicity associated with ergot alkaloids occurs through their action on 

neurotransmitters which can affect the nervous system (De Costa 2002) and at higher doses negatively impact 

the reproductive system in animals (De Groot et al. 1993). 

 

C. purpurea infection and sclerotia production therefore cause serious quality issues for cereal production. The 

European Union has imposed limits on the amount of ergot sclerotia allowed in grain destined for human and 

animal consumption to 0.01% (1g per kg) (Alexander et al. 2012). As C. purpurea enters the ovary via the 

stigma and style, incidents of infection are more common in open flowering cereals, with rye and Triticale often 

being heavily infected. As wheat is a closed-flowering cereal, the window of opportunity for infection is small. 



5 
 

Consequently only 1-5% of seed lots examined between 2002 and 2005 by the UK’s Official Seeds Testing 

Station were found to contain ergot sclerotia. However, male sterility, whether genetic or as a consequence of 

environmental factors such as copper deficiency or drought, results in the flowers gaping open and presents an 

increased risk of infection. The production of hybrid cereal seed on cytoplasmic male sterile (CMS) mother 

plants is therefore particularly at risk. Further work completed within populations of CMS lines however, 

suggests that there are differences in ergot sensitivity which have a genetic basis rather than differences in floral 

morphology (Miedaner et al 2010).  

 

Complete resistance to C. purpurea infection is unknown and a hypersensitive response to this fungus has not 

been observed in floral tissue (Tenberge 1999). A source of partial resistance was identified in the hexaploid 

wheat line ‘Kenya Farmer’ in the 1970s (Platford and Bernier 1970), which resulted in the production of smaller 

sclerotia (Platford and Bernier 1970, Pageau and Lajeunesse 2006). A reduction in sclerotial size may have an 

epidemiological impact, resulting in fewer ascospores germinating in the following season (Cooke and Mitchell 

1966). Good partial resistance was identified in the tetraploid durum wheat line 9260B-172A, where there was 

both a reduction in sclerotia size and in the amount of honeydew produced (Menzies 2004). In sorghum nine 

QTL were identified that affect percentage infection by C. africana (Parh et al. 2008).  

 

As few sources of resistance to C. purpurea have been reported in wheat, this study set out to identify UK wheat 

varieties that differed in their ability to support sclerotia development and then determine the genetic 

components accounting for these differences. Significant differences were identified between winter wheat 

varieties in the average weights of sclerotia produced in manually inoculated florets. As the varieties ‘Robigus’ 

and ‘Solstice’ represented the extremes of this variation a doubled haploid population was made from their F1 

cross. Phenotypic data was gathered over multiple years of replicated, inoculated field trials to identify the QTL 

responsible for the differences in sclerotia weight and size seen between ‘Robigus’ and ‘Solstice’. 
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Materials and Methods 

Plant materials and Doubled Haploid mapping population 

Fourteen wheat varieties were tested over multiple years (Table 1) as part of the HGCA-Defra LINK project 

LK0963, “Towards a sustainable whole-farm approach to the control of Ergot” (Bayles et al. 2008). In each year 

the wheat varieties were sown in replicate field trials at sites near NIAB, Cambridge, UK. 

 

‘Robigus’, a soft biscuit wheat (KWS UK, Ltd) and ‘Solstice’, a hard bread wheat (Limagrain UK) were crossed 

and a doubled haploid (DH) population of 159 lines produced by Saaten Union (Saaten-Union GmbH, 

Hovedisser Str. 92 D - 33818 Leopoldshoehe, Germany). This DH population was screened for C. purpurea 

resistance in field trials in 2009/10 and again in 2010/11 at sites near NIAB, Cambridge, UK.  

 

Preparation of Claviceps purpurea isolates  

C. purpurea conidia were obtained by culture on potato dextrose agar (PDA) and on wheat ears of the spring 

wheat variety ‘Paragon’. Ergot sclerotia were surface sterilized for 4 minutes in 5% sodium hypochlorite and 

washed four times in sterile distilled water. After surface sterilization the sclerotia were cut in half and placed on 

90-mm Petri plates with PDA (Merk 39g/l) with 125mg streptomycin/l. Colonies were sub-cultured on PDA, 

without antibiotic, after approximately 10 days of culture at 25
o
C in the dark. The resulting C. purpurea 

colonies were confirmed based on conidial morphology and grown at 20
o
C in the dark for 14 days to harvest 

conidia. Conidia were scraped from the centre of the colony and suspended in sterile distilled water. 

 

Conidia, collected as honeydew, were produced by inoculating florets of the wheat variety ‘Paragon’. ‘Paragon’ 

was grown in the glasshouse in Levingtons M2 compost with slow-release osmacote fertilizer, with a 16h day 

length, 6000 Lux and day/night temperatures of 18
o
C/10

o
C. Ears were inoculated before anthesis with a 

suspension of conidia from individual isolates (Table 2), using either a hypodermic needle to fill the space 

between the lemma and palea of each floret (approximately 0.025ml of suspension at 10
6
 conidia/ml), or by 

dipping wounded ears in the conidia suspension.  

 

Honeydew produced by inoculating ‘Paragon’ was collected approximately 10 days after inoculation using 

either a Pasteur pipette or an inoculation loop and suspended in water. Honeydew was collected every 2-3 days 
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and the suspensions stored at 5
o
C between collections. Conidial collections were bulked and stored as individual 

isolates in 10% glycerol at -20
o
C. Frozen suspensions were found to retain pathogenicity for at least two years.  

 

Claviceps purpurea inoculated field trials 

For the UK winter wheat variety field assessments equal amounts of the five C. purpurea isolates (Table 2), at a 

final concentration of 10
6 

conidia ml
-1

 were used. For the field inoculation of the ‘Robigus’ x ‘Solstice’ DH 

population one isolate, 04-97 was selected based on the differential ergot sclerotia size produced on ‘Robigus’ 

and ‘Solstice’ in glasshouse tests and a single spore inoculum was produced and used in all subsequent 

experiments (called 04-97.1). In 2009/10, due to variable seed set on the primary doubled haploid plants, just 

105 DH lines and the parental varieties were sown in 1m double-row plots. There were two replicates for all but 

17 of the DH lines where seed quantity was limited. The ears from six primary tillers (6 plants) per plot were 

inoculated with the C. purpurea isolate 04-97.1 between 1
st
 and 7

th
 June 2010. Twenty florets per ear were hand-

inoculated with a conidia suspension by syringe. In 2010/11 three randomized blocks of all 159 DH lines and 

the parental varieties were sown in 1m plots. Again 20 florets per ear, on the primary tiller of six plants were 

inoculated per line in each plot. Inoculations were carried out by hand between 18
th

 and 27
th
 May 2011. 

 

Inoculum was prepared daily from newly emerging honeydew exuding from ‘Paragon’. The honeydew was 

diluted with water to a concentration of 6 x 10
6
 conidia/ml. Ears were inoculated when anthers in the middle 

third of the ear had begun to turn yellow i.e. 1-2 days prior to anthesis. The first fully formed spikelet at the base 

of each ear was removed to identify the start of the inoculated region. The inoculum was delivered between the 

lemma and palea of the outer two florets of each spikelet using a 2ml syringe and needle until the void was full 

of inoculum. Twenty florets on each ear were inoculated (10 on each side) and the ear labelled with a coloured 

tag, dated and initialled by the researcher who undertook the inoculation. Ears were harvested 7-8 weeks after 

anthesis and before the mature ergots began to drop from the ears. Ears were left to dry before removing ergot 

sclerotia. This inoculation protocol routinely achieved infection in 70-100% of inoculated spikelets and was 

designed to minimise the chances for differences in ear morphology or effectiveness of pollen competition to 

influence the results, as we were more interested in post-infection resistance than ‘escape’ mechanisms. 

 

Phenotypic assessment of ergot sclerotia development 
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Ergot sclerotia were removed by hand from the 20 inoculated florets of each ear and the following parameters 

measured: 

 

(1) Total sclerotia weight per ear – The weight of all sclerotia collected from one ear.  

(2) Average sclerotia weight per ear – The total sclerotia weight per ear/ the total number of sclerotia 

collected from that ear.  

(3) Sclerotia size was determined using a numerical value according to the sclerotia’s size within the seed 

cavity. The NIAB Ergot Scale index points are as follows (Online Resource 1): 0: Dried-out ovule 

(ovule was infected, but no sclerotia formed); 1: Sclerotia < 2 mm in length; 2: Sclerotia < 3 mm in 

length; 3: < 5 x 2 mm in size ; 4: Sclerotia > 5 x 2 mm in size; 5: > 8 x 5 mm in size ; 6: > 10 x 5 mm 

in size; and 7: > 17 x 5 mm in size. 

(4) Average sclerotia size was calculated as follows, where ni= is the number of sclerotia assigned to each 

NIAB scale from 0 to 7 and nj is the total number of sclerotia. 

 (ni x NIAB scale [0 to 7]) 

    nj 

 

Plant height 

Just before harvest plant heights were recorded for each of the DH lines of the ‘Robigus’ x ‘Solstice’ DH 

population. Plant height was measured as the height from the base of the plant to the bottom of the primary ear. 

These measurements were taken on ten random plants per line in each plot.  

 

Statistical data analysis 

Analysis of variance (ANOVA) of total sclerotia weight per ear, average sclerotia weight, average sclerotia size 

and plant heights were undertaken using Restricted Maximum Likelihood (REML). Predicted means for the DH 

lines were extracted from the REML analyses for each phenotypic data set. Where required, data were 

transformed using log or square root transformation to achieve near normality and independence of the means 

and variances. The effects of test replications and genotypes were accounted for in the model. For the 2010 field 

trial data each inoculated ear was treated as a replicate to derive the predicted means. All analyses were 

performed using the statistical package Genstat for Windows, release 12 (Payne et al, 2009). Variance 
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components for Vg and Ve were calculated by REML analysis in Genstat and were used to calculate heritability 

(Holland et al, 2010) using the following formula: 

h
2
 = Vg/(Vg+Ve) 

Vg = Estimated genetic variance between lines 

Ve =  environmental error from DH.reps       +  residual error 

     r                             (r*n) 

 

Where r is number of replicates, n is number of plants per rep. 

 

Genotyping of the ‘Robigus’ x ‘Solstice’ Doubled Haploid population 

Genomic DNA was extracted from leaf tissue using a modified Tanksley method (Fulton et al. 1995), which 

included an RNase digestion step. Genomic DNA was genotyped by Diversity Arrays Technology Ltd (Akbari 

et al. 2006) using the DArT array version 2 and by Victoria Agri-Biosciences Centre, Australia for SNPs using 

the Infinium iSelect 9k chip. In addition, the DH population was screened with two chromosome 4D Kaspar 

markers, 10920_kasp9 and HV132-1_kasp9 developed for improving marker coverage of the 4D short arm by 

Dr Chris Burt, and two PCR markers developed for the SNPs causing the Rht-B1b and Rht-D1b allele mutations 

(Wilhelm 2011). 

 

Construction of a DNA marker linkage map for the ‘Robigus’ x ‘Solstice’ DH population 

MapDisto version 1.7.5 Beta 4 (Lorieux 2012) was used to construct a linkage map from 700 DArT, 1902 

Infinium iSelect 9k chip SNP markers and the 4 additional Kaspar/PCR markers. Markers that significantly 

differed from the expected 1:1 segregation ratio were removed from the genotype file before mapping. The 

Haldane mapping function, with a maximum recombination fraction of 0.3 and LOD of 6 was used to create the 

map. Several rounds of remapping were undertaken, where co-segregant markers were removed. The “order 

sequence” function was run using ripple option and bootstrap analysis.  

 

In order to assign linkage groups to physical chromosomes linkage groups were aligned with existing wheat 

consensus maps. In total 78.4% of the mapped DArT markers were assigned a chromosomal location (218 out of 

278) by reference to the consensus DArT map (Huang et al. 2012) and by searching the DArT BIN maps on the 

CerealsDB website (Wilkinson et al. 2012). For the Infinium iSelect SNPs markers 72.7% (314 out of 432) 

could be assigned a chromosomal location by comparison with the Wang consensus map (Wang et al. 2014).  

  

QTL analyses  
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QTL analyses were carried out using the QTL package R/qtl, version 1.33-7 (Broman et al. 2003). Predicted 

means were obtained for each phenotypic data set from the REML analysis, and used as additional data sets in 

the QTL analyses. Single marker regression (SMR), interval mapping (IM) and composite interval mapping 

(CIM) were performed with all ergot phenotypic data sets and plant height. 1000 permutation tests were 

performed for each phenotypic data set to obtain the 5% LOD significance thresholds. Peak markers identified 

by SMR and IM were used as co-factors in CIM analyses. Any significant additional QTL were noted and were 

examined further using a two-dimensional, two-QTL approach. 

 

Two-dimensional, two-QTL scans  

Two-dimensional genome scans (Broman et al. 2009) were carried out for the C. purpurea and plant height 

traits to identify QTL interactions. Where a pair of loci is identified this analysis is able to diagnose additive 

and/or epistatic interactions. In addition this analysis confirms the presence of two or more loci, especially if the 

additional loci have a more modest effect. By comparing the outputs of the scantwo function in R/qtl, one 

emerges with a pair-wise model which can be illustrated graphically using effect plot and dot plot functions 

within R. All phenotypic traits analysed by the scantwo function were subjected to 1000 permutation tests, and 

instead of thresholds, significance p-values are presented.  
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Results 

Field assessment of ergot resistance 

Fourteen UK winter wheat varieties were assessed for resistance to C. purpurea in inoculated field trials over 

four growing seasons from 2005 to 2008. Between four and ten varieties were tested every year, some over 

more than one growing season (Table 1). The total and average sclerotia weight for the wheat varieties ‘Xi-19’, 

‘Robigus’, ‘Solstice’, ‘Glasgow’ and ‘Rialto’ are shown in Fig. 1. 

 

While there were some differences in ergot sclerotium formation across the different growing seasons (Year, F 

prob. < 0.001 for both phenotypic data sets) the wheat varieties showed consistent, significant differences in 

total and average sclerotial weights, implying an underlying genetic response. The variety ‘Robigus’ produced 

significantly lower total and average sclerotia weights to ‘Solstice’ (P < 0.001)’, ‘Rialto’ (P < 0.001) and ‘Xi19’ 

(P = 0.001), but not ‘Glasgow’ (total weight, P = 0.263 and average weight, P = 0.347). As the biggest 

difference in ergot sclerotia sizes was between ‘Robigus’ and ‘Solstice’, these varieties were selected for genetic 

mapping to locate loci influencing ergot sclerotial development in hexaploid wheat.  

 

Frequency distributions across the ‘Robigus’ x ‘Solstice’ DH population indicated a normal, quantitative 

distribution for average sclerotia size (Fig. 2), while the frequency distributions of total and average sclerotia 

weight were positively skewed, (Fig. 2). Plant height was bi-modally distributed and confirms the postulated 

presence of different Rht dwarfing alleles in ‘Robigus’ and ‘Solstice’, ‘Robigus’ carrying the Rht-B1b allele at 

locus Rht-B1 on chromosome 4B, while ‘Solstice’ carries the Rht-D1b allele on chromosome 4D (Figure 5). 

 

Analysis of variance indicated significant differences (F prob. < 0.001) between the parents and the DH lines for 

all ergot sclerotial phenotypes . Transgressive segregation was apparent for all sclerotial phenotypes, with five 

DH lines having significantly (t-test < 0.001) lower sclerotial weights than ‘Robigus’ and 13 lines showing 

smaller sclerotia at a t-test probability of < 0.001. Heritability values indicated that all three sclerotia phenotypes 

and plant height had a relatively high genetic component contributing to the phenotypes. The highest h
2
 values 

were obtained for average sclerotia weight (h
2
 = 0.7616) and average sclerotia size (h

2
 = 0.7242), with total 

sclerotia weight having a slightly lower h
2
 value of 0.6212 (all values shown calculated using 2011 field data). 

Plant height had an h
2
 value of 0.9138. The full set of h

2
 values can be found in Online Resource 2. 
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Identification of QTL underlying the response to ergot infection in the ‘Robigus’ x ‘Solstice’ cross 

A genetic marker map, total length 2895 cM, consisting of 38 linkage groups and representing all 21 

chromosomes of hexaploid wheat was constructed for the ‘Robigus’ x ‘Solstice’ cross. The map consisted of 

714 loci; 432 Infinium iSelect SNPs and 278 DArTs markers, plus two PCR markers which distinguished the 

Rht mutant alleles from the wild type; Rht-D1a/b and Rht-B1a/b (Willhelm 2011), and two additional SNP 

markers tightly linked to the Rht locus on 4DS. Details of all markers and their positions can be found in Online 

Resources 3 and 4. 

 

The QTL reported are those identified using the predicted means and having a LOD value above the global  

threshold given in Table 3. Three QTL, QCp.niab.2A, QCp.niab.4B and QCp.niab.4D were consistently 

identified in ‘Robigus’ on chromosomes 2A, 4B and 4D, respectively using the phenotypic data sets for average 

sclerotia size and average sclerotia weight (Fig. 3). The QTL regions on 4B and 4D were also detected using 

total sclerotia weight per ear. In general, the percentage phenotypic variance explained by individual QTL was 

relatively small, ranging from a maximum of 4.76% for QCp.niab.2A, 5.88% for QCp.niab.4B and 13.94% for 

QCp.niab.4D. While  some QTL were not significant using IM in either 2010 or 2011, all three QTL were 

significant in both years using CIM (Table 3). A smaller effect QTL, QCp.niab.6A, was detected with the 2010 

total sclerotia weight per ear data set in ‘Solstice’ on chromosome 6A. QCp.niab.6A had a LOD of 3.49 and a 

percentage variance of 3.14%. 

 

As ‘Robigus’ and ‘Solstice’ were known to carry different semi-dwarfing alleles, ‘Robigus’ having Rht-B1b 

(located on chromosome 4B) and ‘Solstice’ having Rht-D1b (located on chromosome 4D), plant height was 

mapped in the ‘Robigus’ x ‘Solstice’ DH population. CIM identified two QTL for plant height, QPh.niab.4B 

and QPh.niab.4D on chromosomes 4B and 4D, respectively, where the PCR markers Rht-B1b and Rht-D1b 

were the peak markers. In 2010 QPh.niab.4B and QPh.niab.4D accounted for 6.95% and 13.79% of the 

phenotypic variance in plant height, while in 2011 they accounted for 24.01% and 31.70%, respectively. 

Interestingly, a QTL for plant height was also identified with the 2010 plant height data set in the same region as 

QCp.niab.6A, with the height-reducing allele and the resistance allele both coming from ‘Solstice’ (Online 

Resource 5).  
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Two-dimensional, two-QTL scans were undertaken to identify pair-wise interactions between QTLs (Online 

Resource 6). These analyses identify additive effects (LODav1) between QTL, where the presence of two genes 

(usually from different pathways) has a straightforward additive effect on the phenotype. They also identify 

epistatic-interacting effects (LODi) where the effect of one QTL can only be shown in the presence of another, 

usually explained by their sequential action in the same pathway. These analyses were undertaken using the 

average sclerotia size and plant height data sets. Additive effects were seen with the QTL for average sclerotia 

size, the largest effect being seen with the 2010 data set between QTL QCp.niab.4B and QCp.niab.4D (LODav1 

= 6.81; P < 0.001). With the 2011 average sclerotia size data set, the same QTL interaction had a LODav1 = 3.01; 

however this was just over the significance threshold with a p-value of 0.172. An additive interaction was also 

seen between QCp.niab.2A and QCp.niab.4B, with both the 2010 (LODav1 = 3.03; P = 0.072) and 2011 (LODav1 

= 3.93; P = 0.037) data sets, however no interaction was identified between QCp.niab.2A and QCp.niab.4D. To 

visualise the QTL additive effects for average sclerotia size dot plots of the phenotypic averages of the lines 

carrying the QTL QCp.niab.2A, QCp.niab.4B and QCp.niab.4D alone or in combination are presented (Fig. 4). 

 

Two-dimensional, two-QTL scans suggested that the relationship between the plant height QTL QPh.niab.4B 

and QPh.niab.4D is both epistatic (2010, LODi = 16.01; P < 0.001 and 2011, LODi = 7.84; P < 0.001) and 

additive (2010, LODav1 = 23.97; P < 0.001 and 2011, LODav1 = 11.79; P < 0.001) (Online Resource 6). An 

additional height QTL to QPh.niab.4B and QPh.niab.4D was identified using two-dimensional two-QTL 

analysis on chromosome 2B, designated QPh.niab.2B, which has an epistatic interaction with QPh.niab.4B 

(LODi = 7.37; P < 0.001), further reducing the height of Rht-B1b carrying plants (Online Resource 5). The 

dependence of expression of a phenotype for QPh.niab.2B on the presence of QPh.niab.4B may indicate why 

QPh.niab.2B was not detected by IM alone. 
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Discussion  

Ergot is a plant disease of considerable importance to human and animal health due to the toxic effects of 

alkaloids present in the sclerotia (De Costa 2002). Few sources of genetic resistance to C. purpurea have been 

reported, with the best source of resistance identified to date being found in a durum wheat genotype (Menzies 

2004). In this study we report genetic variation in the response of hexaploid wheat varieties to C. purpurea and 

identify interacting QTL in the varieties ‘Robigus’ and ‘Solstice’ that influence the size and weight of sclerotia 

produced by C. purpurea.  

 

Together the three QTL QCp.niab.2A, QCp.niab.4B and QCp.niab.4D at best only explained 24.6% of the 

phenotypic variation for sclerotial weight (2010 data set), while dividing the percentage phenotypic variance by 

its corresponding heritability value (h
2
 = 0.78) gave a maximum genetic variation of 31.7%. This implies that 

the majority of the genetic variation affecting ergot development and sclerotium formation in the ‘Robigus’ x 

‘Solstice’ population was not detectable. This is likely due to the presence of many small genetic influences 

affecting sclerotial development, each genetic locus producing a phenotypic effect below the current resolution 

of QTL analysis, which is limited by the modest size of the population. 

 

The QTL with the largest effect, QCp.niab.4B and QCp.niab.4D, mapped to the same location as the Reduced 

Height (Rht) loci Rht-B1 and Rht-D1 (Peng et al. 1999), with the resistance effect co-segregating with the 

dwarfing alleles Rht-B1b (from ‘Robigus’) and Rht-D1b (from ‘Solstice’), respectively. As a result, the general 

trend was for shorter DH lines to produce smaller sclerotia, although there was significant overlap in the 

sclerotial size distributions of tall, semi-dwarf and double-dwarf plant size classes indicating the presence of 

additional genes, not linked to height, influencing sclerotia size (Fig. 5). 

 

Rht-B1 and Rht-D1 encode for DELLA proteins (Peng et al. 1999). In Arabidopsis DELLA proteins have been 

shown to be nuclear-located and are putative transcriptional regulators that interact with the gibberellic acid 

receptor protein GID1 (GA-Insensitive Dwarf), resulting in growth repression. In the presence of gibberellic 

acid (GA) the DELLA proteins are degraded via the 26S proteasome SCF complex, resulting in subsequent 

stimulation of plant growth (Dill et al. 2004). The gain-of-function dwarfing alleles Rht-B1b and Rht-D1b 

produce GA-insensitive mutant DELLA proteins, resulting in a partially stable pool of DELLA protein that 

continues to suppress plant growth, producing semi-dwarfed plants (Pearce et al. 2011).  
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The association between QCp.niab.4B and Rht-B1b, and QCp.niab.4D and Rht-D1b may be pleiotropic, i.e. the 

same locus affects both sclerotium formation and plant height, or could be due to close genetic linkage of 

functionally independent genes. In the latter case, height and ergot resistance should be genetically separable if a 

sufficiently high resolution mapping approach was brought to bear. If the former is the case, attention should be 

devoted to testable hypotheses that might flow from a postulated pleiotropy between wheat DELLA function 

and ergot sclerotia size. Although neither scenario can be ruled out, some further observations lend more weight 

to the pleiotropy scenario.  

 

Firstly, wheat DELLA/Rht genes have been demonstrated to have potential pleiotropic effects on disease 

resistance to multiple pathogens, with gain-of-function mutant alleles conferring increased susceptibility to 

biotrophic pathogens and increased resistance to necrotrophic pathogens (Saville et al. 2011). In Arabidopsis, 

DELLA mutants have been shown to suppress hypersensitive cell death, leading to increased resistance to 

necrotrophic pathogens and increased susceptibility towards pathogens with a biotrophic life stage (Navarro et 

al. 2008). In the wheat-Fusarium Head Blight (FHB) pathosystem, the semi-dwarfing alleles Rht-B1b and Rht-

D1b were associated with decreased resistance to primary infection (Type I resistance) of wheat florets by 

Fusarium species, with the early stages of Fusarium infection currently thought to represent a biotrophic phase 

(Hilton et al. 1999; Draeger et al. 2007, Srinivasachary et al. 2009). However, while C. purpurea is considered a 

biotroph, in the present study the Rht gain-of-function mutant alleles were associated with increased resistance 

and not susceptibility. The Rht alleles therefore have contrasting effects on the infection of florets and ovules by 

C. purpurea and Fusarium species.  

Secondly, the association between ergot resistance and GA-regulated plant height may not be confined to the 

Rht-D1 and Rht–B1 loci, as the small effect QTL QCp.niab.6A was detected with both the plant height and total 

sclerotia weight per ear phenotypic data sets, with the ‘Solstice’ allele being responsible for both reduced 

sclerotia and reduced height. Previous studies have identified plant height genes on chromosome 6A (Watanabe 

2008), the alleles Rht14, Rht16 and Rht18 at this locus conferring GA-sensitive reduced plant height. 

Unfortunately, we were not able to confirm a common location for QCp.niab.6A and the plant height QTL 

reported on chromosome 6A (Watanabe 2008). 
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Thirdly, there seems to be a more general association between hormone signalling and quantitative development 

of ear diseases in wheat. A QTL for Type I FHB resistance has also been reported on chromosome 2A, however 

common markers were not available to compare the position of this QTL with the ergot resistance QTL 

QCp.niab.2A found in this study (Lin et al. 2006, Diethelm et al. 2014). Characterisation of the peak marker for 

the 2A FHB QTL suggests that the gene underlying the QTL may be a wheat homologue of NPR1 (non-

expresser of pathogenesis related protein 1) (Diethelm et al. 2014). NPR1 is at the heart of hormonal cross-talk 

between the salicylic acid (SA) and jasmonic acid (JA) pathways, being involved in the SA-mediated 

suppression of the JA pathway (Spoel et al. 2003). The functional annotation of transcripts differentially 

expressed between ovaries inoculated with C. purpurea versus mock-inoculated ovaries in RNA-Seq 

experiments also highlights hormone signalling as one of the most responsive functional categories (unpublished 

data). 

 

Gibberellins play a crucial role in many aspects of plant development. Active forms of these phytohormones are 

known to control processes such as seed germination, stem elongation, floral development and anther extrusion 

(Cheng et al. 2004, Peng et al. 1997). C. purpurea may have evolved an ability to manipulate the endogenous 

host hormone signalling pathways to command the resources necessary to produce sclerotia many times the 

fresh weight of a fully developed grain. Mutations in key hormone signalling pathway genes, such as the Rht-

B1b and Rht-D1b alleles, are therefore attractive candidates that could explain how the ability to re-programme 

host resource allocation is partly compromised in the absence of any symptoms resembling a typical immune 

response. In the case of the Rht mutants one may speculate that perturbed GA levels may interact with normal 

mechanisms by which C. purpurea colonise floral tissues, resulting in altered levels of colonisation. In semi-

dwarf and dwarf lines GA levels increase in expanding leaf tissues (Appleford and Lenton 1991, Wu et al. 

2011), but to our knowledge GA levels in ovule tissue pre-pollination have never been measured and are a 

potential avenue of further investigation.  

An alternative hypothesis is that C. purpurea produces and exudes its own GA which acts as a pathogenicity 

factor (for example by triggering an increase in the nutrient flow into the ovule tissue resulting in larger 

sclerotia). In this regards, it is noteworthy perhaps that the reference Claviceps purpurea genome (reference 

Helmholtz genome dB and  Schardl et al, 2013)possesses  a duplicated GA synthesis gene cluster with similarity 

to that found in the GA-synthesizing pathogen Fusarium fujikori (Tudzynski & Hölter, 1998, Tudzynski 2005). We 

have shown that these genes are highly expressed in the first 7 days of infection (A. Gordon,  manuscript in 

http://pedant.helmholtz-muenchen.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_p76493_Cla_purpu
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preparation). So in the case of the Rht mutants one may speculate that host GA insensitivity has the 

serendipitous consequence of reducing response to an exogenous pathogen-derived GA signal required to 

develop full potential sclerotial size. 
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Figure Legends 

Fig. 1 Inoculated field trial data showing the mean across replicates for total sclerotia weight per ear and 

average sclerotia weight for five UK winter wheat varieties. Data was collected from replicated field trials over 

4 years, from 2005 to 2008. Error bars show the standard error between replicates, apart from 2006, where all 

replicates of sclerotia were pooled together before weighing 

 

Fig. 2 Distribution of total sclerotia weight per ear, average sclerotia size, average sclerotia weight and plant 

height phenotypes in the ‘Robigus’ x ‘Solstice’ double haploid population. Arrowheads indicate the phenotypic 

averages of the parents  

 

Fig. 3 QTL positions for ergot sclerotia total and average weights, sclerotia size and plant height in the 

‘Robigus’ x ‘Solstice’ cross following CIM or IM analysis. QTL positions are shown to the right of the linkage 

maps on chromosomes 2A, 4B, 4D and 6A. QTL bars represent 1.5 LOD support intervals around the peak 

score marker. Marker locations are shown to the left of each linkage map, along with marker number, 

chromosome identifier and position in centimorgans from the top of the linkage group. The full marker names 

can be found in Table S1 

 

Fig. 4 Phenotypic distribution for sclerotia size in ‘Robigus’ x ‘Solstice’ doubled haploid lines carrying one or 

more of the three major QTL contributing to reduced sclerotia size, QCp.niab.2A, QCp.niab.4B and 

QCp.niab.4D. The peak marker used to identify each QTL, the QTL parental origin and chromosomal location 

are indicated above each plot. Phenotypic data from 2010 and 2011 field trials is shown. Error bars are ± 1 

standard errors 

 

Fig. 5 Relationship between ergot sclerotia size and plant height in doubled haploid lines from the cross 

‘Robigus’ x ‘Solstice’, 2011 data set. The Rht-B1 and Rht-D1 a (wild-type) and b (dwarf mutant) alleles carried 

by each line are indicated. ‘Robigus’ genotype Rht-B1b/Rht-D1a and ‘Solstice’ genotype Rht-1Ba/Rht-1Db 
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Table 1 UK winter wheat varieties screened for ergot resistance in inoculated field trials 

 

Table 2 Claviceps purpurea isolates 

 

Table 3 QTL identified in the ‘Robigus’ x ‘Solstice’ cross for ergot sclerotia development and plant height 

 

Electronic Supplementary Material / Online Resources 

Online Resource 1  The NIAB ergot sclerotia sizing scale 

Online Resource 2  Heritability of all traits recorded from the Robigus x Solstice population over two 

years of field trials. h
2
 = Vg/(Vg+Ve). Variance components were estimated by REML as implemented within 

GenStat (Payne et al 2009) 

 

Online Resource 3  ‘Robigus’ x ‘Solstice’ genetic map, including co-segregating markers. 

Online Resource 4  Complete linkage map of the ‘Robigus’ x ‘Solstice’ doubled haploid population, 

consisting of 38 linkage groups, representing all 21 chromosomes of hexaploid wheat and having a total length 

of 2895 cM. Marker locations are shown to the right of each linkage group along with marker number, 

chromosome identifier and position in centimorgans from the top 

Online Resource 5 (a) Dot plots showing the effect of QCp.niab.6A on total sclerotia weight and 

QPh.niab.6A on plant height in 2010. Doubled haploid lines with the ‘Solstice’ allele at the QTL positions on 

chromosome 6A have lower total sclerotia weights and are shorter. (b) Effect plot and dot plot for QPh.niab.4B 

and its interacting partner QPh.niab.2B showing epistatic effects on plant height. QPh.niab.2B only reduces 

height in the presence of QPh.niab.4B 

Online Resource 6 Summary of outputs from two-dimensional, two-QTL scans 
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Table 1 Winter wheat varieties screened for ergot resistance in inoculated field trials 

 

 

 

 

 

 

 

 

 

 

  

Year of 

field trial 

Number of ears per variety 

inoculated with Claviceps purpurea 

Wheat varieties screened 

2004/05 

10 ears (2 reps) 

Variable number of florets inoculated 

per ear 

Caphorn, Drifter, Paragon, Rialto, Robigus, 

Solstice, Tommi, Welford, Xi19 

2005/06 
3 ears (4 reps) 

20 florets inoculated per ear 

Apache, Caphorn, Drifter, Paragon, Rialto, 

Robigus, Solstice, Tommi, Welford, Xi19 

2006/07 
12 ears (2 reps) 

10 florets inoculated per ear 

Brompton, Cordiale, Glasgow, Mascot, 

Rialto, Robigus, Solstice, Xi19 

2007/08 
10 ears (1 rep) 

20 florets inoculated per ear 
Glasgow, Robigus, Solstice, Xi19 
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Table 2 Claviceps purpurea isolates used in inoculated field trials (Bayles et al, 2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Isolate 

name 

Year of 

collection 

Location  Plant host 

04-02 2004 Cambridge Blackgrass (Alopecurus myosuroides) 

04-29 2004 Little Saxham, Suffolk Wheat (cv. Hereward) 

04-97 2004 Long Hoos IV, Rothamsted Blackgrass (Alopecurus myosuroides) 

03-20 2003 Elm Farm, Cirencester Wheat (cv. Chablis) 

03-43 2003 Elm Farm, Wakelyn’s, Suffolk Wheat (cv. Claire) 
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Table 3 QTL identified in the ‘Robigus’ x ‘Solstice’ cross for ergot sclerotia development and plant height  

 

 

 

 

 

 

 

 

 

 

 

 

a
The contributing parental alleles, R = ‘Robigus’ and S = ‘Solstice’ confer smaller sclerotia and shorter plants. 

b
Phenotypic data codes: SS - Average Sclerotia Size; SW - 

Average Sclerotia Weight; TW - Total Sclerotial Weight per Ear; and PH - Plant Height. 
c
QTL analyses were performed using single marker regression (SMR), Interval 

Mapping (IM) and Composite Interval Mapping (CIM). The position of the QTL is shown in centimorgans (cM). 
 

  

QTL 

designation 

Chromosome 

location 

Peak Marker Position 

(cM) 

LOD 

value 

%Variance 

explained 

a
Parental 

Allele 

b
Phenotypic 

data set 

c
QTL Analysis 

QCp.niab.2A 2A wsnp_BQ168780B_Ta_2_1 108 4.631 4.17 R 

 

2010-SS SMR,IM,CIM 

wsnp_Ex_c2337_4379619 134 3.899 2.47 2011-SS SMR,IM, CIM 

wsnp_BQ168780B_Ta_2_1 108 5.28 4.76 2010-SW SMR,IM, CIM 

QCp.niab.4B 4B Rht-B1b 72.76 4.827 4.35 R 

 

2010-SS CIM 

wsnp_CAP12_c13_8078            70.9 6.497 4.11 2011-SS SMR,IM, CIM 

Rht-B1b 72.0 6.527 5.88 2010-SW CIM 

wsnp_CAP12_c13_8078            70.9 8.52 5.39 2011-SW SMR,IM, CIM 

wsnp_CAP12_c13_8078            70.9 5.1 4.62 2010-TW CIM 

QPh.niab.4B Rht-B1b 72.75 11.67 6.95 2010-PH CIM 

Rht-B1b 72.75 24.25 24.0 2011-PH SMR,IM, CIM 

QCp.niab.4D 4D Rht-D1b 13 13.53 12.19 S 2010-SS SMR,IM, CIM 

Rht-D1b 8 3.45 2.19 2011-SS CIM 

Rht-D1b 14 15.4 13.94 2010-SW SMR,IM, CIM 

Rht-D1b 12 12.07 10.87 2010-TW SMR,IM, CIM 

QPh.niab.4D Rht-D1b 9 23.16 13.79 2010-PH SMR,IM, CIM 

Rht-D1b 9 32.01 31.70 2011-PH CIM 

QCp.niab.6A 6A wPt-665636_NA 0 3.49 3.14 S 2010-TW SMR 

QPh.niab.6A wPt-665636_NA 0 4.76 2.83 2010-PH SMR, IM 
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QTL 

Phenotype 
Chromosomal 

locations 
Position 
QTL1 full 

Position 
QTL2 full 

LODf 

(v 
null) 

LODfv1 
P 

value 
fv1 

LODi 
P 

value 
Position 

QTL1 add 
Position 

QTL2 add 
LODav1 

P 
value 
av1 

Relationship 
between the 

QTL pairs 

QCp.niab.2A 
QCp.niab.4B 

Ergot size 2010 

2A:4B 100 12.5 12.2 3.11 0.974 0.0724 1 100 12.5 3.03 0.072 Additive 

QCp.niab.4B 
QCp.niab.4D 4B:4D 75 12.5 16.2 7.06 0 0.2468 1 75 12.5 6.81 0 Additive 

QCp.niab.2A 
QCp.niab.4B 

Ergot size 2011 

2A:4B 132 70 10.8 4.35 0.344 0.419 1 132 70 3.93 0.037 Additive 

QCp.niab.4B 
QCp.niab.4D 4B:4D 67.5 25 10.7 4.21 0.421 1.199 1 70 2.5 3.01 0.172 Additive 

QPh.niab.2B 
QPh.niab.4B 

plant height 
2010 

2B:4B 40 75 19.16 8.15 0 7.37 0 110 72.5 0.78 1 Interacting 

QPh.niab.4B 
QPh.niab.4D 4B:4D 75 12.5 57.66 39.97 0 16.01 0 72.5 10 23.968 0 

Both 
interacting 

and additive 

QPh.niab.4B 
QPh.niab.4D 

plant height 
2011 

4B:4D 75 10 32.1 19.63 0 7.84 0 72.5 10 11.79 0 
Both 

interacting 
and additive 
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