

Walking in a winter wonderland? Strategies for Early and Middle Pleistocene survival in mid-latitude Europe

Article

Accepted Version

Hosfield, R. ORCID: https://orcid.org/0000-0001-6357-2805 (2016) Walking in a winter wonderland? Strategies for Early and Middle Pleistocene survival in mid-latitude Europe. Current Anthropology, 57 (5). pp. 653-682. ISSN 0011-3204 doi: https://doi.org/10.1086/688579 Available at https://centaur.reading.ac.uk/43354/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1086/688579

Publisher: University of Chicago Press

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Site	T _{min} (°C)	T _{max} (°C)	Evidence ¹	Age (MIS)	Source	
Happisburgh III (Bed E)	-3 – 0	+16 – 18	Coleoptera	21 or 25	2,10	
Pakefield (Bed Cii–Ciii)	-6 – +4	+17 – 23	Coleoptera	17 or 19	2,5	
Boxgrove (Unit 4c &	-4 - +4	+15 – 20	Ostracods (MOTR) &	13	2,7,8	
Freshwater Silt Bed ≈			Herpetofauna (MCR)			
Units 4b & 4c)						
Happisburgh I (Organic	-11 – -3	+12 – 15	Coleoptera	13/15 or 17	2,5	
Mud)						
High Lodge (Bed C1)	-4 - +1	+15 – 16	Coleoptera	13	5	
Waverley Wood	-	+10 – 15	Coleoptera	13 or 15	5,11	
(Channel 2, Organic						
Mud)						
Brooksby (Redland's	-10 - +2	+15 – 16	Coleoptera	13 or 15	5	
Brooksby Channel)						
Barnham (Unit 5c; Holl)	-	+17 – 18	Herpetofauna	11	6	
Hoxne (Stratum D ⁵ ;	-10 – +6	+15 – 19	Coleoptera	11	3,4	
Hollla ⁶)						
Bilzingsleben	-0.5 – +3	+20 – 25	Mollusca & ostracods ⁹	11	9	

Table 1: Winter and summer temperature estimates for Early and Middle Pleistocene north-western and north-central European sites. ¹Sensitivity tests on coleopterabased MCR procedures suggest that winter temperature estimates are usually too warm (Pettitt and White 2012:35); ²Ashton and Lewis 2012 (Pakefield listed as -4 – +6°C); ³Ashton *et al.* 2008a; ⁴Coope 1993; ⁵Coope 2006; ⁶Holman 1998; ⁷Holman 1999; ⁸Holmes *et al.* 2009; ⁹Mania 1995 (the specific source of the palaeotemperature estimates is not stated, but the fauna includes molluscs and ostracods); ¹⁰Parfitt *et al.* 2010; ¹¹Shotton *et al.* 1993.

Species	Home range ¹	Density ¹	Mobility ¹	Site examples
M. martes	3–82km ²	1/0.8–10km ²	Solitary; not highly	Swanscombe (LL) ⁴
			territorial; hunting trips	
			upto 28km	
F. sylvestris	0.6–3.5km ²	1/0.7–10km ²	Sedentary; nomadic	Boxgrove ³
				Swanscombe (LG) ⁴
C. fiber	500m–5.5km	1.0–1.8/km ²	Family movements	Boxgrove ³
	(along river)		within territory	Bilzingsleben ²
				Hoxne (Beds C &
				E) ⁵
				Swanscombe (LL) ⁴
C. lupus	100–10,000km ²	1/50-80km ²	Territorial (and	Bilzsingsleben ²
	(food-dependent)		correlating with prey	Swanscombe
			migrations)	(LL/LG) ⁴

Table 2: Fur-bearing animals, with modern distribution data for comparison, documented on northern European Middle Pleistocene sites. Other documented species include: *V. vulpus; M. putorius; M. erminea; M. lutreola; and L. lutra.* ¹Macdonald and Barrett 1993 (modern European data; it is fully acknowledged that Early and Middle Pleistocene species' ecology would not have been identical to their modern equivalents); ²Mania and Mania 2005; ³Parfitt 1999; ⁴Schreve 1996; ⁵Stuart *et al.* 1993. Site units: Swanscombe (LL): Lower Loam; Swanscombe (LG): Lower Gravels.

Species	Home range ³	Density ³	Mobility ³	Site examples
C. capreolus	0.05–1km ²	15–25/km ²	Reduced territoriality in	Boxgrove ¹
		Solitary/small	winter & congregation	Bilzinsleben ⁴
		groups in closed	(herds up to 30)	Hoxne ¹⁰
		woodland		Swanscombe (LL) ⁸
D. dama ⁶	0.5–2.5km ²	12(?)/km²	Habitat use shifts	Barnham⁵
		Small groups	seasonally (e.g. summer	Bilzingsleben ⁴
		(<7/8) in	in open habitats &	High Lodge? ⁹
		woodland ¹²	autumn $ ightarrow$ spring in	Hoxne ¹⁰
		woodiana	woodlands ⁷)	Swanscombe (LG) ⁸
C. elaphus	0.5–8km ²	5–45/km ²	Summer \rightarrow winter	Barnham⁵
	Smaller upper limits	Small groups (1–	range migrations up to	Bilzingsleben ⁴
	also suggested ²	3) in closed	6km (e.g. lowland	Boxgrove ⁶
		woodland	woodlands \rightarrow open	High Lodge? ⁹
			uplands [UK])	Hoxne ¹⁰
				Schöningen 13-I &
				13 II-4 ^{11,12}
				Swanscombe (LL) ⁸

Table 3: Modern home range, density and mobility data for selected ungulate species, documented on Middle Pleistocene sites. ¹Bello, Parfitt, and Stringer 2009; ²Clutton-Brock, Guinness, and Albon 1982; ³Macdonald and Barrett 1993 (modern European data; it is fully acknowledged that Early and Middle Pleistocene species' ecology would not have been identical to their modern equivalents); ⁴Mania and Mania 2005; ⁵Parfitt 1998; ⁶Parfitt 1999 (notes that the fallow deer's late rut results in males' poor condition during winter); ⁷Putman 1988; ⁸Schreve 1996; ⁹Stuart 1992; ¹⁰Stuart *et al.* 1993; ¹¹Thieme 2005; ¹²Voormolen 2008. Site units: Swanscombe (LL): Lower Loam; Swanscombe (LG): Lower Gravels.

Species	Home range ²	Density ²	Mobility ²	Site examples
C. fiber	500m–5.5km	1.0–1.8/km ²	Family movements	Bilzingsleben ³
	(along river)		within territory	Boxgrove ⁵
				Hoxne ⁸
				Swanscombe (LL) ⁶
S. scrofa	2–20km ²	ND	Sedentary (if stable	Barnham⁴
			env.);	Bilzingsleben ³
			♀Small herds; ♂Solitary	
U. arctos	150–4000km ²	1–190/	Solitary; Travel 2–	Swanscombe
		10,000km ²	3.5km/day; Hibernation	(LL/LG) ⁶
			(with accumulated fat) ¹	Barnham⁴
				Hoxne ⁸
D. bicornis	Few ha–75 sq. km	ND	\mathbb{Q} + young; \mathbb{Z} Solitary;	Barnham⁴
			Resident & local (if	Bilzingsleben ³
			resources sufficient)	Boxgrove ⁵
				Hoxne ⁸
				High Lodge ⁷
				Swanscombe (LG) ⁶

Table 4: Fat-bearing and/or residential winter animals, with modern distribution data for comparison, documented on Middle Pleistocene sites. ¹Jochim 1981; ²Macdonald and Barrett 1993 (modern European data); ³Mania and Mania 2005; ⁴Parfitt 1998; ⁵Parfitt 1999; ⁶Schreve 1996; ⁷Stuart 1992; ⁸Stuart *et al.* 1993.

Species	Butchery evidence	Sites
Bos or Bison sp.	Marrow extraction & cut-marks (filleting?); Filleting; Cut-marks, defleshing and marrow bone breakage;	Barnham ⁴ Boxgrove ⁵ Happisburgh I ²
	Dismembering, filleting, defleshing & marrow bone breakage	Schöningen 13 II-4'
C. capreolus	Cut-marks; Defleshing	Boxgrove ³ Happisburgh I ²
C. elaphus	Skinning, dismemberment, filleting & marrow bone breakage;	Boxgrove⁵
	Marrow bone breakage & cut-marks (<u>seasonality</u> <u>data: late Summer → Spring</u>);	Hoxne ⁶
	Skinning, dismemberment & filleting; Cut-mark	Schöningen 13 II-4 ⁷ Westbury ¹
E. ferus	Disarticulation, filleting & marrow bone breakage; Marrow bone breakage & cut-marks;	Boxgrove⁵ Hoxne ⁶
	Dismemberment, filleting, boning, defleshing & marrow bone breakage	Schöningen 13 II-4 ⁷
S. hundsheimensis	Disarticulation & filleting; Disarticulation	Boxgrove ⁵ Happisburgh I ²
U. deningeri	Skinning	Boxgrove⁵

Table 5: Butchery by species and technique, from selected Lower Palaeolithic sites.

¹Andrews and Ghaleb 1999; ²Ashton *et al.* 2008b; ³Bello, Parfitt, and Stringer 2009;

⁴Parfitt 1998; ⁵Parfitt and Roberts 1999; ⁶Stopp 1993; ⁷Voormolen 2008.

Family/Species	Мос	Modern winter foraging species ^{1,2}			
identified at Hoxne ³	Species	Habitat	Key Nutrients		
Caryophyllaceae	Common chickweed	Woodland fringe	Vitamins A, D, B		
	(Stellaria media)		complex, C, and Rutin		
	Common mouse-ear	Grassland	-		
	chickweed				
	(Cerastium				
	holosteoides)				
Brassicaceae	Garlic mustard or Jack-	Woodland fringe	Vitamins A, C & E		
(previously Cruciferae)	by-the-hedge				
	(Alliaria petiolata)				
Ericaceae	Cowberry	Pine forest	Vitamins A, B & C		
	(Vaccinium vitis-idaea)				
Apiaceae (or	Wild parsnip	Grassland	Potassium		
Umbelliferae)	(Pastinaca sativa)				
T. latifolia	Reed mace/Bulrush	Wetland	Protein &		
	(Typha latifolia)		carbohydrate		
Urticaceae	Stinging nettle	Woodland & river	Protein and vitamin C		
	(Urtica dioica)	valley			

Table 6: Plant families identified at Hoxne, with comparison to modern plant species available to winter foragers. ¹Mabey 2012; ²Mears and Hillman 2007; ³Mullenders 1993, table 6.3 & figs. 6.1–6.3.

Figure 1: Comparison of winter temperature ranges for Spanish (Early Pleistocene; EP) and British (Early Pleistocene and Middle Pleistocene; EP & MP) sites. Number of sites calculated according to the temperature ranges for each site (e.g. 7 sites have a T_{min} range which spans -3°C). Spanish site data (Almenara-Casablanca 3; Cal Guardiola; Cúllar Baza 1; Barranca León 5; Fuente Nueva 3; Trinchera Dolina (TD6); Trinchera Elefante (TERc)) from Agusti *et al.* (2009); British site data (Boxgrove, Brooksby, Happisburgh II, High Lodge, Hoxne, Pakefield) from Ashton *et al.* 2008a; Ashton and Lewis 2012; Coope 1993, 2006; Holman 1998, 1999; Holmes *et al.* 2009; Mania 1995; Parfitt *et al.* 2010.

Figure 2: Mean winter air temperature data (°C) from the Stage 3 Project's MIS-3 'warm' simulation (Barron, van Andel, and Pollard 2003, fig. 5.7 [Stage 3 Warm Phase DJF]). Dashed white line: Modern European coastline.

Figure 3: Summer/winter contrasts in mean air temperature data (°C) from the Stage 3 Project's MIS-3 'warm' simulation (Barron, van Andel, and Pollard 2003, appendix 5.1). Dashed white line: Modern European coastline.

Figure 4: Snow depth (cm) data from the Stage 3 Project's MIS-3 'warm' simulation (Barron, van Andel, and Pollard 2003, fig. 5.9). Dashed white line: Modern European coastline.

Figure 5: Number of days with snow cover data from the Stage 3 Project's MIS-3 'warm' simulation (Barron, van Andel, and Pollard 2003, fig. 5.9). Dashed white line: Modern European coastline.

Figure 6: Wind chill (°F) data from the Stage 3 Project's MIS-3 'warm' simulation (Barron, van Andel, and Pollard 2003, appendix 5.1). Dashed white line: Modern European coastline.

Figure 7: Precipitation (mm/day) data from the Stage 3 Project's MIS-3 'warm' simulation (Barron, van Andel, and Pollard 2003, appendix 5.1). Dashed white line: Modern European coastline.

Figure 8: Relationship between effective temperature and average distance/residential move (after Kelly 1995, fig. 4-7). Note the examples (circled) for groups making relatively short mean residential moves in low effective temperature environments (see Kelly 1995:128–130 for details). Effective Temperature (*ET*) is derived from the mean temperatures (°C) of the warmest and coldest months (*W* and *C*; where $ET = \frac{18 W - 10 C}{(W - C) + 8}$), and its value varies from 26 (equator) to 8 (poles). High *ET* values are associated with tropical, non-seasonal environments (in terms of temperature, not precipitation) with long growing seasons. Low *ET* values are associated with cold, seasonal environments with short growing seasons (Kelly 1995:66–69).

Figure 9: Selected sources of vitamins in Arctic hunter-gatherer diets (data from Hidiroglou *et al.* 2008; Kuhnlein *et al.* 2006). Values per 100g of fresh raw caribou liver (e.g. 1.58mg for Riboflavin) compared against alternative food sources (e.g. raw moose liver [6.51mg] and raw beluga muktuk [0.02mg] for Riboflavin). G&D: growth and development.

Figure 10: A winter residency model.

Supplementary Materials

	H. ere	ectus ¹	H. sapiens ²		
	Kleiber	Elevated	Kleiber	Elevated	
	BMR ³	BMR⁴	BMR³	BMR ⁴	
Body Mass (kg)	68	68	70	70	
Stature (cm)	185	185	177	177	
BMR	80.512	92.589	82.282	94.624	
Body surface area ⁵	1.900	1.900	1.862	1.862	
Human Conductance A ⁶	5.0	5.0	5.0	5.0	
Total Conductance A ⁷	9.498	9.498	9.312	9.312	
Lower Critical Temperature A (°C) ⁸	28.5	27.3	28.2	26.8	
Minimum Sustainable Temperature A (°C) ⁹	11.6	7.8	10.5	6.5	
Human Conductance B ¹⁰	4.750	4.750	4.750	4.750	
Total Conductance B ⁷	9.023	9.023	8.846	8.846	
Lower Critical Temperature B (°C) ⁸	28.1	26.7	27.7	26.3	
Minimum Sustainable Temperature B (°C) ⁹	10.2	6.2	9.1	4.9	
Human Conductance C ¹¹	2.817	2.817	2.817	2.817	
Total Conductance C ⁷	5.351	5.351	5.246	5.246	
Lower Critical Temperature C (°C) ⁸	22.0	19.7	21.3	19.0	
Minimum Sustainable Temperature C (°C) ⁹	-8.1	-14.9	-10.1	-17.1	

Table 1: Lower critical and minimum sustainable ambient temperatures for *H. erectus* and *H. sapiens* (after Aiello and Wheeler 2003, tables 9.1–9.3). ¹*H. erectus* data from KNM-WT 15000 (Ruff 1994); ²*H. sapiens* data from Předmost 3 & 9, Skhul 4 and Grotte des Enfants 4 (Ruff 1994); ³BMR = 3.4 x mass (kg)^{0.75} (Kleiber 1961); ⁴Elevated BMR = BMR raised by 15% to account for climatic and dietary-induced increases (after Aiello and Wheeler 2003:150); ⁵Body surface area (m²) = 0.00718 x mass (kg)^{0.425} x stature (cm)^{0.725}; ⁶Typical human conductance = 5 W.m⁻².°C⁻¹; ⁷Total conductance = typical human conductance x surface area (m²); ⁸Critical temperature (°C) = 37°C – (BMR/Total conductance); ⁹Minimum sustainable ambient temperature (°C) = 37°C – ((3 x BMR)/Total conductance); ¹⁰Typical human conductance reduced by 5% to account for hominin muscularity (after Aiello and Wheeler 2003:150); ¹¹Typical human conductance reduced by c. 44% to account for 1 clo of insulation (after Aiello and Wheeler 2003:150). 1 clo is roughly equivalent to the insulation provided by a western business suit.

Palaeoclimate Measure ¹	MIS 3 'warm' interval		Modern data			
	52°N 0°E	45°N 0°E	50°N 10°E	52°N 0°E	45°N 0°E	50°N 10°E
Min. monthly lowest-level air temperature (°C)	-4 - 0	0-+4	-48	4 – 8	4 – 8	0-4
T _{max} – T _{min} (°C)	12 – 16	12 – 16	16 – 20	9 – 12	9 – 12	12 – 16
Diurnal range of lowest level air temperature (°C)	1 – 2	2 – 3	1 – 2	1 – 2	3 – 4	1 – 2
No. of days/year with snow cover	90 - 120	10 - 30	150 – 180	< 10	< 10	30 – 60
Snow depth, actual (cm)	5 – 10	0 – 5	20 – 50	0 – 5	0	0 – 5
Wind chill (°F)	0 - 10	10 - 20	0 - 10	20 – 50	20 – 50	10-20
Precipitation (mm/day)	2 – 3	3 – 5	2 – 3	2 – 3	3 – 5	1.5 – 2
Net primary productivity (gC/m2/year)	200 - 300	300 – 400	200 – 300	600 – 700	900 - 1000	600 – 700
Annual growing days above 5°C (°C.day)	750 – 1000	1000 - 1500	1000 - 1500	1500 - 2000	2000 - 3000	1500 – 2000
Annual growing days above 0°C (°C.day)	1500 - 2000	2000 - 3000	2000 - 3000	3000 - 4000	4000 - 5000	3000 - 4000

Table 2: Selected palaeoclimate simulation data for three point-specific locations, for an MIS 3 'warm' interval and the present day. Data from Barron, van Andel, and Pollard (2003). ¹Descriptions of palaeoclimate measures from Barron, van Andel, and Pollard (2003:78).