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Abstract6

The England and Wales Precipitation (EWP) dataset is a homogeneous time series of7

daily accumulations from 1931 to 2014, composed from rain gauge observations spanning8

the region. The daily precipitation statistics are shown to be well described by a Weibull9

distribution, which is used to define extremes in terms of percentiles. Computed trends in10

annual and seasonal precipitation are sensitive to the period chosen, due to large variability on11

interannual and decadal timescales. Atmospheric circulation patterns associated with seasonal12

precipitation variability are identified. These patterns project onto known leading modes of13

variability, all of which involve displacements of the jet stream and storm-track over the eastern14

Atlantic.15

The intensity of daily precipitation for each calendar season is investigated by partitioning16

all observations into 8 intensity categories contributing equally to the total precipitation in17

the dataset. Contrary to previous results based on shorter periods, no significant trends of18

the most intense categories are found between 1961-2014, except for a small negative trend in19

the most extreme category of summer precipitation. The area-average precipitation is found20

to share statistical properties common to the majority of individual stations across England21

and Wales used in previous studies.22

Statistics of the EWP data are examined for multi-day accumulations up to 10 days, which23

are more relevant for river flooding. Four recent years (2000, 2007, 2008 and 2012) have a24

greater number of extreme events than any previous year in the record. It is the duration of25
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precipitation events in these years that is remarkable, rather than the magnitude of the daily26

accumulations.27

Keywords: atmospheric circulation variability, precipitation statistics, extremes28

1 Introduction29

The United Kingdom is situated at the downstream end of the North Atlantic storm-track and is30

characterised by strong variations in precipitation. This variability of precipitation on monthly,31

seasonal and interannual timescales has a major impact on society through, for example, crop32

production [Porter and Semenov, 2005] and water supply [Wilby et al., 2006].33

Local precipitation totals are influenced by many factors and, as a result, individual rain34

gauge accumulations can vary substantially on a day to day basis, even when separated by only35

several kilometers. Therefore, to study mean precipitation changes and variability over a country,36

a dense rain gauge network is needed to estimate the area average precipitation. There is a long37

history of precipitation measurements in the UK, with a dense rain gauge network measuring38

precipitation for many years. The longest rain gauge records date back to the eighteenth century,39

making them one of the longest precipitation observation records in the world [Woodley, 1996,40

Rodda et al., 2009].41

The availability of high resolution observations in the UK has resulted in a large number of42

studies investigating the occurrence of variability and trends in precipitation on various timescales43

[Hand et al., 2004, Burt and Ferranti, 2012, Jones et al., 2014]. Despite using different analysis44

methods and rain gauge configurations, most studies conclude that the annual precipitation totals45

are approximately unchanged since the 1960s [Thompson, 1999, Fowler and Kilsby, 2003, Biggs46

and Atkinson, 2011].47

In contrast, large variations have been observed in seasonal precipitation totals. Wigley48

et al. [1984b] and Wigley and Jones [1987] (later updated by Jones and Conway [1997]) investigated49

the area-average seasonal precipitation series for England and Wales between 1767 and 1995 and50

concluded that winter (DJF) precipitation increased significantly over that period (a linear trend51

gives an increase of 67mm between 1767-1995, which is 28% of the climatological average). In52

contrast, precipitation decreased in summer (JJA) as a linear trend between 1767-1995 gives a53

decrease of 41mm, which is 17% of the climatological average. Jones and Conway [1997] only54
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found the winter trend to be significant at the 95% level and even here an apparent step change55

in the 1860s suggested issues with data inhomogeneity in the earlier period. Shorter period trends56

were found to be of questionable significance due to large interannual variability. As a result,57

spring and autumn have not shown any significant long term trends. Similar results have been58

found when including more recent observations (e.g. Alexander and Jones [2000], Osborn and59

Hulme [2002], Mills [2005]).60

A number of studies have linked variability and trends in UK seasonal precipitation over61

recent decades to changes in the large scale atmospheric circulation, including the North Atlantic62

storm-track. Increasing winter precipitation between the 1960s and 1990s has been linked to a trend63

towards more westerly flow and increased storm frequency, characterised as a trend from negative64

to positive phase of the North Atlantic Oscillation (NAO) [Jones and Conway, 1997, Osborn and65

Hulme, 2002]. However, since the 1990s this trend in the NAO has reversed [Hartmann et al., 2013].66

More recently Sutton and Dong [2012] and Dong et al. [2013] have linked changes on decadal67

timescales in summer precipitation over north-west Europe, including the UK, to variability in68

Atlantic sea surface temperatures, represented by the Atlantic Multi-decadal Oscillation (AMO)69

[Sutton and Hodson, 2005], and associated changes in the summer NAO atmospheric circulation.70

Several studies have sought to identify seasonal precipitation variability with large-scale at-71

mospheric flow patterns by computing pointwise regressions of precipitation with indices of known72

modes of variability. Wibig [1999] used this method to obtain patterns of monthly precipitation73

variability associated with the leading modes of Atlantic and European circulation variability,74

including the NAO and the East Atlantic (EA) pattern (previously identified by Barnston and75

Livezey [1987]). Bladé et al. [2012] obtained precipitation and surface air temperature anomalies76

associated with the winter and summer NAO. In winter, positive NAO is associated with posi-77

tive precipitation anomalies over northern Europe, including Scotland and Northern Ireland, and78

negative anomalies over southern Europe. In summer the correlations are reversed and displaced79

equatorward, with a negative correlation between NAO and precipitation over the entire UK. This80

seasonal reversal is related to differing locations of the NAO geopotential height and surface pres-81

sure anomalies in winter and summer, which in turn are related to jet stream latitude and the82

preferred paths of Atlantic storms [Woollings et al., 2010].83

In recent years there has been an additional focus on the characteristics of daily and84
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multi-day precipitation and their extremes, which are particularly relevant to flooding. A number85

of studies sought evidence for increases in the intensity of UK daily precipitation and the frequency86

of extremes [Osborn et al., 2000, Osborn and Hulme, 2002, Maraun et al., 2008, Jones et al., 2013,87

2014], consistent with hypothesised changes in the global hydrological cycle for a warming climate88

[Trenberth et al., 2003].89

Using data from over 100 rain gauges in the UK, Osborn et al. [2000] found that the main90

contributor to increases in seasonal precipitation in winter for the period 1961-1995 was wet day91

amount, a measure of precipitation intensity. Trends in wet day probability were more spatially92

variable, but contributed to increased winter precipitation in the west of the UK. In contrast,93

decreasing seasonal precipitation in summer was found to be associated mainly with a decrease in94

wet day probability.95

By partitioning daily precipitation into 10 intensity categories, Osborn et al. [2000] showed96

that the trends in precipitation intensity were characterised by a decreasing relative contribution97

of light precipitation and an increasing contribution of heavy precipitation in winter, with an98

opposite shift towards days with lighter precipitation in summer. Using the same methodology,99

Osborn and Hulme [2002] and Maraun et al. [2008] extended the analysis period to 2000 and 2006100

respectively. These studies found a weaker trend in intensity in winter for the extended periods101

and a reversal of the previous summer trend to 2006, with evidence that the summer trend was102

more likely associated with interdecadal variability, being strongly influenced by several extreme103

events in the 1960s [Maraun et al., 2008], and that observations over the last two decades had104

shown increased inter-annual variability [Wood, 2004]. Using sparser observations over a longer105

period for the UK, Maraun et al. [2008] also presented evidence of increased daily precipitation106

intensity in spring and autumn.107

The impact of flooding associated a number of the extreme wet seasons in recent years108

in the UK (autumn 2000, summer 2007, summer/autumn 2012, winter 2013/14) motivates a re-109

examination of the entire EWP timeseries and previous conclusions regarding variability. This110

paper investigates and updates timeseries of observed annual, seasonal and daily precipitation111

accumulations across England and Wales using an area-average precipitation dataset (EWP, de-112

scribed in section 2.). The focus is to characterise the observed precipitation variability and the113

nature of multi-decadal variations and to link this with the variability in the circulation patterns.114
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In addition, multi-day accumulations are also investigated for possible changes in pre-115

cipitation intensity. Based on decadal return period estimates of 1, 2, 5 and 10 day precipitation116

accumulations, both Jones et al. [2013] and Jones et al. [2014] found a small increase in the strength117

of 5-day and 10-day precipitation accumulation events across various subregions in the UK between118

1961-2010 and indicated their potential impact on e.g. flood risk management.119

Section 2 describes the EWP dataset and the methodology used to investigate precipitation120

variability. The results for annual and seasonal precipitation observations are discussed in section121

3, together with the large scale atmospheric circulation patterns associated with variations and122

extremes in seasonal precipitation. The daily precipitation is investigated in section 4. In section123

5 multi-day precipitation and its implications are presented. Finally section 6 summarises and124

discusses the findings.125

2 Observations: England and Wales Precipitation126

The England and Wales Precipitation (EWP) data used in this study are a spatial average of127

individual rain gauge observations over the England and Wales region [Alexander and Jones, 2000].128

The daily data are maintained and updated by the Met Office Hadley Centre and are available129

from 1931 to the present day (www.metoffice.gov.uk/hadobs/hadukp/). They have been used as a130

standard precipitation measure by many studies (e.g. Jones and Conway [1997] and Mills [2005]),131

as they constitute one of the longest homogeneous daily precipitation datasets available.132

The England and Wales precipitation estimates are based on the weighted contribution of133

5 climatologically different sub-regions defined by Wigley et al. [1984b]. In each sub-region, 7-15134

evenly distributed stations (depending on the availability of data [Alexander and Jones, 2000]) are135

included to determine the precipitation accumulation for the region. Each station is scaled by its136

corresponding regional monthly climatological average, so that the regional data are not weighted137

towards sites with locally high precipitation (e.g. due to local orographic effects). This scaling138

also allows varying gauge configurations (due to changing networks) to be combined to produce139

a robust and homogeneous time series. The England and Wales Precipitation series (EWP) is a140

weighted average of the five regions, where the weights are determined by regression analysis. More141

information on the definition of the five regions, the averaging and the regression analyses can be142

found in Wigley et al. [1984a], Wigley et al. [1984b], Wigley and Jones [1987] and Alexander and143
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Jones [2000].144

When describing extreme precipitation events, recent work by Jones et al. [2014] suggests145

that the 5 sub-regions defined by Wigley et al. [1984b] across the England and Wales region are not146

sufficient to capture the sub-regional changes. Instead, 9 different sub-regions were defined that147

are thought better able to capture trends and variability in sub-regional extreme precipitation.148

However, Jones et al. [2014] did not discuss the combined impact of these new 9 sub-regions on149

the England and Wales area average extremes, but only investigated the precipitation signals in150

the individual sub-regions. As no EWP equivalent dataset is available based on the 9 sub-regions,151

the impact on the area average precipitation cannot be assessed directly.152

However, studies by Croxton et al. [2006] and Simpson and Jones [2012] showed that higher153

density datasets for the England and Wales region only resulted in marginal improvement of the154

areal precipitation estimate. Simpson and Jones [2012] compared the EWP observations with a155

newly developed 5-km gridded daily precipitation set by the Met Office Hadley Centre. They found156

that for 98% of all daily observations, both datasets agreed within 1 mm and 90% agreed within157

0.5 mm. Croxton et al. [2006] used the EWP data to show that monthly precipitation timeseries158

of individual stations are strongly correlated with the area average precipitation amount over the159

England and Wales region. This gives confidence that the EWP dataset is a robust estimate of160

precipitation for the entire region and that the EWP data may be used to investigate trends and161

variability in precipitation over England and Wales.162

Daily EWP observations will be separated between ‘precipitation’ days and ‘dry’ days,163

to investigate variability and trends in precipitation intensity, with days having less than 0.1 mm164

of area-averaged precipitation defined to be dry. In previous studies the definition of a ‘dry’ day165

at individual gauge stations varies between 0.1-0.3 mm/day, related to the precision of gauge166

measurements. As the EWP data are an area average, the lower threshold is selected here. Using167

a higher threshold (0.2 or 0.3 mm/day) has only a small impact on the results presented.168
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3 Seasonal precipitation variability and its relation to large-169

scale circulation170

Using daily EWP observations from 1931-2014, a timeseries of annual precipitation accumulations171

was constructed and is shown in figure 1. The long-term mean annual precipitation for this period172

and corresponding interannual standard deviation can be found in table 1. There is significant173

interannual variability, with a standard deviation of 115.1 mm (equivalent to 0.315 mm/day),174

which results in a coefficient of variation (CV, defined as the ratio of the standard deviation to175

the mean) of 0.12. Using a linear least squares fit, the annual precipitation dataset was tested for176

robust trends between 1931 and 2014 using the standard Mann-Kendall test. In agreement with177

previous studies, no significant trend in annual precipitation was found (the slope of the best fit is178

0.85± 1.02 mm/year).179

In contrast to annual precipitation, previous studies have found significant trends in sea-180

sonal precipitation accumulations over the UK [Alexander and Jones, 2000, Mills, 2005]. The181

EWP observations for individual seasons (table 1) show a seasonal dependence of the precipitation182

accumulations, with a maximum in autumn (SON) and a minimum in spring (MAM). The data183

also show large interannual variability. The standard deviations shown in table 1 result in a CV184

between 0.26 and 0.29 for all four seasons. Note that DJF is labeled by the year containing Jan-185

uary. As a result, the DJF seasonal analyses are for the period 1932-2014, rather than 1931-2014186

used for the other three seasons.187

In addition to large interannual variability in seasonal EWP, figure 2 also reveals the188

presence of decadal and multi-decadal variability, including clusters of wet and dry seasons. To189

investigate whether this is true for all four seasonal averages, linear trends were determined for190

the entire 84 year period and for three additional periods (1961-2006, 1961-2014 and 1979-2014),191

using linear least squares fits. For the 1931-2014 period, no significant trend is found in any of the192

seasons (see table 1).193

The period between 1961-2006 used in previous studies (e.g. Maraun et al. [2008]) gives194

a positive trend in winter and a negative trend in summer for the EWP observations, although195

neither trend is significant at the 95% level (see table 1 and figure 2). For DJF, MAM and SON the196

linear trends are slightly modified by including the data between 2007 and 2014. However, more197
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interestingly, including the most recent observations for JJA changes the slope from negative to198

positive. For JJA the period 2007-2012 was consistently wet, with all 6 years above the long199

term average including the most extreme wet summers (2007 and 2012) recorded since 1931.200

Although the JJA trend for the period 1961-2014 is not significant (using the standard Mann-201

Kendall significance test) for the EWP dataset, it clearly illustrates the danger of computing trends202

following extremes, where extremes at the end (or beginning) of series more strongly influences203

the trend. Figure 2 shows that the linear trends in seasonal precipitation observations are strongly204

influenced by the large variability. Therefore they should not be interpreted as climatic trends in205

precipitation over the England and Wales region.206

As discussed in the introduction, several previous studies have used regression analysis207

to identify precipitation patterns associated with the principal component time series for pat-208

terns of atmospheric variability obtained by analyses of covariance in geopotential height. Here,209

atmospheric circulation patterns associated with EWP variability are sought using pointwise re-210

gressions of dynamical variables with the timeseries of seasonal EWP. This identifies the large-scale211

flow anomalies specifically related to precipitation variability over England and Wales.212

Figure 3 shows the pointwise correlation of seasonal average 500hPa geopotential height213

with seasonal average EWP observations. This calculation uses the NCEP-NCAR reanalysis over214

the period 1961-2013 for each of the four calendar seasons over the Northern Hemisphere extra-215

tropics. The common feature at all times of year is a strong negative correlation centered close216

to the British Isles, representing the centre of a mid-tropospheric trough in the wetter seasons.217

This feature corresponds to an equatorward displacement and extension of the seasonal jet stream218

near the UK, since the climatological jet latitude is close to 55◦N over the eastern Atlantic in219

all seasons. A similar feature to that in 500hPa height appears in correlations with mean sea-220

level pressure (not shown), consistent with the contribution of extra-tropical cyclones to England221

and Wales precipitation in all seasons [Hawcroft et al., 2012]. The reversed pattern in dry seasons222

corresponds to a ridge over the British Isles and poleward displacement of the jet stream and storm-223

track. Further from the British Isles, large differences are evident between the seasonal 500hPa224

height correlation patterns. In winter the pattern over the Atlantic basin more closely resembles225

the East Atlantic (EA) pattern identified by Barnston and Livezey [1987] than the North Atlantic226

Oscillation (NAO). These two patterns of variability form a quadrature pair in latitude in winter,227
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and it is the EA pattern whose main node of geopotential height variability is at the latitude of228

the UK. The summer correlation pattern more closely resembles the negative phase of the summer229

NAO, which has its negative height centre near 55◦N and its positive centre over Greenland in230

that season. Note also the trough present further upstream over eastern North America, which231

is related to a stationary Rossby wave pattern as discussed for summer 2007 by Blackburn et al.232

[2008]. In spring and autumn the height correlation patterns are more suggestive of wavetrains233

propagating from the sub-tropical Atlantic. For autumn, the negative centre close to the UK234

and positive centre over Scandinavia project strongly onto the Scandinavian pattern of variability,235

identified as a leading mode of variability in autumn by Barnston and Livezey [1987]. This pattern236

of height anomalies was a feature of the extreme wet Autumn over England and Wales in 2000237

[Hoskins, 2003].238

In order to test the linearity of the seasonal correlations, figure 4 shows 500hPa geopotential239

height composites for the five wettest and driest seasons in EWP over the period 1961-2013, for240

winter and summer only. Note that the pattern observed for the 5 wettest summers in figure 4b is241

very similar to that found for the summers 2007-2012 (not shown): two of the five wettest seasons242

(2007 and 2012) are part of the composite shown here. The difference between the wet and dry243

composites is predominantly a sign reversal of the anomalies, and the patterns closely resemble the244

correlation maps shown in figure 3. However, the dry composites more closely resemble an isolated245

high/ridge over the UK surrounded more symmetrically by low heights, indicative of blocking246

episodes, whereas the wet composites have larger zonal scale or (in spring and autumn, not shown)247

more closely resemble wavetrains with specific orientation.248

4 Daily precipitation and extremes249

The observed variability shown in the seasonal precipitation can be related to a change in the ‘wet’250

day probability and/or an increase in precipitation intensity on ‘wet’ days. To investigate possible251

changes in the area average precipitation intensity over England and Wales, it is necessary to define252

a threshold for extremes based on the statistical distribution of daily EWP. Figure 5 shows the253

probability density function (PDF) for the daily precipitation between 1931-2014, including only254

the ‘precipitation’ days for all calendar months, where a ‘precipitation’ day is defined having more255

than 0.1mm of precipitation. The figure uses a logarithmic frequency scale, to focus on the wet256
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extremes. Following Mills [2005], the observations are fitted using a Weibull distribution (not valid257

for x < 0)258

f(x) =
k

λ
(
x

λ
)k−1 exp[−(

x

λ
)k] forx ≥ 0, (1)

where λ is the scale parameter and k the shape parameter. The best representation of259

the daily observations is given by the Weibull distribution with scale and shape parameters of260

λ = 2.30± 0.06 and k = 0.72± 0.02 respectively, as indicated by the solid line in figure 5.261

The close fit of daily precipitation by the Weibull distribution allows a threshold for ex-262

tremes to be determined that is independent of the limited number of extreme events in the263

observations. Here the upper 2% of the total distribution is defined as extreme, which corresponds264

to approximately 4 events per year. The resulting threshold using data for all calendar months265

(13.8 mm/day) is depicted by the dashed line in figure 5.266

Previous studies [Thompson, 1999, Alexander and Jones, 2000, Jones et al., 2013] have267

found large variations in daily extremes between the seasons, hence table 2 also shows the 2%268

extreme threshold for each season. Although the daily EWP distributions for individual seasons269

are more noisy, the shapes of the seasonal distributions are similar and the seasonal Weibull shape270

parameters do not vary significantly from their annual values. The scale parameter, representing271

the overall magnitude of the distribution, is strongly coupled to differences in the seasonal pre-272

cipitation accumulations presented in table 1. As a result, the 2% threshold criterion does have a273

strong seasonal dependence, with a maximum of 15.8 mm/day in autumn and a minimum of 12.0274

mm/day in spring. Seasonal thresholds are therefore used throughout this paper to define extreme275

events for daily and multi-day accumulations.276

Recent studies of daily intensity extremes have mostly found a positive trend in extreme277

winter precipitation, related to increased cyclonic activity over the region [Maraun et al., 2011,278

Rodda et al., 2010, Jones et al., 2013]. In summer a negative trend in extreme precipitation279

has been observed between 1961 and 1995 [Osborn et al., 2000], but recent studies indicate that280

intense summer precipitation trends might have reversed since 2000 [Maraun et al., 2008, Jones281

et al., 2014], suggesting that changes in summer precipitation intensity are related to variability282

on seasonal to decadal timescales rather than being indicative of long-term trends.283

Trends in daily extreme precipitation for the calendar seasons are investigated in the EWP284

data using the methodology introduced by Osborn et al. [2000] and also used by Osborn and Hulme285
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[2002] and Maraun et al. [2008] to investigate seasonal extreme precipitation and its trends over286

the UK using a dense network of gauges (individual time series). In these studies, for each calendar287

season and individual gauge, all ‘precipitation day’ observations (> 0.1 mm/day) between 1961-288

1995 were sorted by intensity, and sub-divided into 10 precipitation categories. The categories were289

defined such that each category accounts for 10% of the total precipitation accumulation between290

1961-1995 (i.e. category 1 contains all the light precipitation events that together contribute to291

10% of the total accumulation between 1961-1995). Using this ‘accumulation criterion’ rather than292

an ‘event based criterion’ (by which each category would contain 10% of all precipitation days)293

results in fewer events in each of the high intensity categories, giving more detailed information on294

extreme precipitation.295

In the original method developed by Osborn et al. [2000], the precipitation spectrum296

was divided into 10 categories (each category containing 10% of the total precipitation over the297

reference period 1961-1995). The EWP dataset used in this study is an aggregate of multiple298

rain gauge stations, resulting in a precipitation timeseries that is smoother and contains smaller299

extreme values compared to the individual gauge observations used by Maraun et al. [2008]. To300

reduce the sampling error due to a small number of extreme events in the most extreme category,301

only 8 categories are used here, each representing 12.5% of the total precipitation.302

Using standard linear regression, each of the EWP categories for each calendar season is303

investigated for trends. The results are shown in figures 6 and 7, where coloured bars indicate304

trends that are significant at the 90% level using a standard Mann-Kendall test. To compare the305

area average EWP observations and the individual gauge data used by Maraun et al. [2008], trends306

for all categories are first investigated for the same years used in their study (1961-2006) and shown307

in figure 6. Results are shown for the four seasons separately.308

For winter (DJF) no significant trends are present in any of the precipitation categories.309

Therefore we cannot reject the null-hypothesis that the seasonal precipitation timeseries are sta-310

tionary. However, the variation of trend with precipitation category agrees with the results of311

Maraun et al. [2008], who found a decrease in the lighter precipitation categories and an increase312

in the most extreme precipitation categories. Figure 6c shows that the opposite trends are observed313

in EWP in summer, with a significant decrease in the most extreme precipitation category between314

1961-2006. This is also in agreement with the results of Maraun et al. [2008]. The area average315
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EWP observations therefore contain the same qualitative changes in precipitation intensity that316

are present in individual station data.317

When the timeseries are extended to 2014, shown in figure 7, the category trends are in318

general qualitatively similar but weakened, indicating that the previous trends in precipitation319

intensity have not been sustained. This is consistent with a recent study of 223 individual rain320

gauge records by Jones et al. [2013], which found that wet summers have been more frequent in321

the last decade.322

Only summer shows a trend towards decreasing precipitation intensity which is significant323

at the 90% level in both periods. However, when the period is extended further backwards in time324

to 1931, shown in figure 8, no significant trends remain for any of the seasons. There is therefore325

no robust evidence to distinguish long-term linear trends from variability in EWP for any season,326

either for total seasonal precipitation or for daily precipitation intensity.327

5 Multi-day accumulations and extremes328

When considering the impact of precipitation on flooding, it is important to also consider multi-day329

precipitation accumulations [Jones et al., 2013, 2014]. Figure 9 shows PDFs and corresponding330

cumulative distribution functions (CDFs) of running 1, 3, 5 and 10 day accumulations of daily331

EWP. Overlapping multi-day periods are counted as separate events. Using these distributions, the332

extreme events are defined as those exceeding the upper 2% of multi-day accumulated precipitation333

(see table 2), as previously used for the 1-day accumulations. The 2% precipitation threshold is334

obtained using the empirical CDF and is determined separately for each season to account for the335

seasonal differences in mean precipitation (table 1 and figure 2). The resulting threshold values336

for extreme events in each season and for each accumulation period can be found in table 2.337

Based on the upper 2% threshold value for precipitation in each calendar season, the338

number of extreme events is determined for each calendar year. Figure 10 shows the total number339

of extreme events for the 4 accumulation intervals discussed earlier. Note that the total number340

of events in the 1-day observations differs from the multi-day accumulations. This is related to341

the fact that individual ‘dry’ days (< 0.1mm) are excluded from the 1-day observations but are342

included in the multi-day precipitation accumulations, which only exclude multi-day ‘dry’ periods343

with < 0.1mm over the accumulation period. As a result, the average number of extreme events344
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in the 1-day accumulations is smaller and should not be compared with the number of events in345

the other panels.346

Figure 10 reveals that there is strong interannual variability for each of the precipitation347

accumulation periods. There is a small upward trend in the daily accumulations toward more348

extreme events (a least squares linear fit gives an increase of 0.3 days/decade), although high num-349

bers of extreme events were also observed in the early 1980s and 2000s. This result is in agreement350

with figure 7, where the combined effect of the highest category (sum of the righthand bars for351

all four seasons) gives a similar small upward trend in the extreme precipitation accumulations.352

However, as a result of the large variability, the trend is not significant at the 90% level.353

For longer accumulation periods, it is apparent from figure 10 that more extreme events354

have been observed in the last decade. It is also clear that 2012 has the highest number of extreme355

1, 5 and 10-day precipitation accumulation events since the start of the daily EWP observation356

period and it is the second most extreme year for the running 3-day accumulation.357

Furthermore, for the 3, 5 and 10 day accumulations, the most extreme years occur from358

2000 onward. For 2000, 2007, 2008 and 2012 the number of extreme periods in the 3 and 5 day359

accumulations is much larger than in the period prior to 2000.360

The extreme events contributing to the most exceptional annual counts took place in361

different seasons (autumn 2000, summer 2007, spring 2008 and summer/autumn 2012), so no362

individual season is responsible. Comparing all four timeseries in figure 10 indicates that, although363

the number of daily extremes has been above average, it is the duration of extreme events since364

2000 that has been exceptional.365

6 Conclusions and Discussion366

Using the England and Wales Precipitation (EWP) data, which are an area average precipitation367

estimate for England and Wales, the variability in annual, seasonal and daily precipitation totals368

has been investigated for the period 1931-2014. In agreement with previous studies (e.g. Fowler369

and Kilsby [2003] and Biggs and Atkinson [2011]), no robust linear trends in annual precipitation370

totals can be distinguished from the interannual variability (the coefficient of variation has a value371

of 0.12). The EWP seasonal precipitation is characterised by a larger variability on interannual372

to decadal timescales (coefficient of variation between 0.26 and 0.30), which previous studies have373
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related to changes in the large-scale circulation and the sea surface temperature anomalies over374

the North Atlantic region (e.g. Sutton and Dong [2012] and Dong et al. [2013] for summer).375

Previous studies investigating precipitation variability in the UK have been mostly based376

on either individual rain gauge timeseries [Osborn et al., 2000, Maraun et al., 2008] or averages over377

smaller subregions of England and Wales [Jones et al., 2013, 2014]. In this study the country-wide378

EWP dataset is found to give similar results, which indicates coherent behaviour on the scale of379

England and Wales and the synoptic scale nature of the precipitation variability.380

Spatial maps of pointwise correlation of seasonal average 500hPa geopotential height with381

seasonal average EWP show for all seasons a strong negative correlation centered close to the382

British Isles. This is consistent with the large contribution of extra-tropical cyclones to England383

and Wales precipitation in all seasons [Hawcroft et al., 2012]. In winter, the 500hPa geopotential384

height correlation pattern over the Atlantic basin more closely resembles the East Atlantic (EA)385

pattern than the North Atlantic Oscillation (NAO), while the summer correlation pattern closely386

resembles the negative phase of the summer NAO. In spring and autumn the height correlation387

patterns are more suggestive of wavetrains propagating from the sub-tropical Atlantic. Differences388

between composites for the five wettest and driest seasons in EWP over the period 1961-2013 show389

predominantly a sign reversal of the anomalies, indicating approximate linearity of the seasonal390

correlations. For all wet seasons, the common factor is an equatorward shift and eastward extension391

of the North-Atlantic jet and the associated storm-track over the eastern Atlantic.392

Due to the large variability in seasonal precipitation, computed long term trends are393

sensitive to the period chosen. For the 1931-2014 period, no significant trend has been found for394

the seasonal precipitation timeseries. DJF precipitation increased from the 1960s to a maximum395

in the early 1990s, but has decreased since then, removing the significant upward trend reported396

previously by others [Jones and Conway, 1997, Osborn et al., 2000]. Previous reported negative397

trends for the summer season [Osborn and Hulme, 2002] have been reversed since 2007, as all398

summers between 2007 and 2012 were anomalously wet, with 2007 and 2012 being the two wettest399

summers on record in the EWP dataset.400

Following the method developed by Osborn et al. [2000] for individual rain gauges within401

England and Wales, the daily precipitation has been divided into 8 intensity categories (separately402

for each season), contributing equal weight to the total precipitation. The EWP data between 1961-403
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2014 show no significant long term trends in autumn, winter or spring for any extreme categories.404

The only significant trend present is the downward trend for most extreme events for JJA. For the405

shorter period (1961-2006) used by Maraun et al. [2008], the EWP dataset generally show similar406

results to those at individual rain gauge stations. However this period shows a stronger negative407

trend in the most extreme events for JJA and a non-significant trend in the most extreme category408

in DJF. These trends are not robust for the 1931-2014 window. Contrary to the study by Maraun409

et al. [2008], EWP shows a significant increase of the most extreme events in autumn.410

The probability distribution of daily EWP observations is best described by a Weibull411

distribution. This gives a close fit to the observations for both light and extreme events, giving412

confidence that it can be used to represent the entire range of area average precipitation. An413

extreme precipitation threshold has been determined using the Weibull distribution for all daily414

data since 1931 (no separation between seasons), with the upper 2% of ’precipitation days’ (days415

with more than 0.1mm) being selected to represent extreme events. The 2% extreme threshold416

shows a strong seasonal dependence, consistent with differences between the seasonal average417

accumulations (Table 2).418

Finally the frequency of multi-day precipitation accumulations has been investigated, using419

the same 2% extreme threshold for multi-day accumulations as used for daily data. The 3, 5420

and 10 day accumulations show that the period 2000-2014 contained more extreme multi-day421

accumulations than the average between 1931-2014, while the daily precipitation did not. The422

5 and 10 day accumulations in particular contain 4 very distinct years (2000, 2007, 2008, 2012),423

in which the number of extremes is 5 times higher than the long term average. The extreme424

precipitation periods occurred in different seasons for each of these years (autumn 2000, summer425

2007, spring 2008, summer/autumn 2012), suggesting a similar behaviour throughout the year with426

more extremes on the multi-day accumulation scale in the recent years.427

The recent cluster of extreme multi-day accumulations merits further investigation. Figure428

4 indicates that it has been accompanied by persistence of an upper level trough over the east429

Atlantic and the British Isles, as discussed for summer 2007 by Blackburn et al. [2008]. Many430

studies have shown impact of large scale circulation variability on European climate. Saeed et al.431

[2014] showed that the upper level circulation has a large influence on the European summer432

precipitation variability. While the circulation patterns related to internal variability are known,433
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the reason for their increased occurrence in recent years is unknown. It is therefore important434

to investigate the dynamical processes associated with this behaviour and whether they can be435

ascribed to anomalous forcing or change in global circulation.436

The results indicate that in future climate, changes in circulation could exert a strong437

influence on precipitation variability. However it is uncertain whether current climate models are438

able to capture the circulation variability. For example Pearson et al. [2014] have shown that,439

although the high-resolution climate model HIGEM can simulate the accumulated precipitation440

in a case study (such as the Tewkesbury storm in July 2007), the statistics of precipitation in441

a historic twentieth century simulation differ markedly from the observed EWP characteristics.442

While the PDF of daily accumulations over England and Wales from a simulation with prescribed443

SSTs matches closely the PDF derived from the EWP data (as shown in figure 9), the model444

underestimates the occurrence of large accumulations on 3, 5 and 10-day timescales. This indicates445

that the model does not represent persistence in circulation patterns associated with the most446

extreme rainfall events. The reasons for this deficiency in climate model performance are not447

known, but the spatial resolution may be an important factor. For example, Dawson et al. [2012]448

have shown using the ECMWF forecast model that the 4 dominant patterns of North Atlantic449

atmospheric variability seen in analyses only emerge in free-running simulations when the resolution450

is increased to T1279 (approximately equivalent to a 16km grid spacing) as used in current high451

resolution deterministic forecasts.452
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Total EWP SD 1931-2014 1961-2006 1961-2014 1979-2014
Annual 931 115.1 0.85 1.35 1.82 1.32
DJF 255 70.0 0.43 0.48 0.81 0.36
MAM 191 51.1 0.18 −0.07 −0.28 −1.22
JJA 216 61.1 0.05 −0.33 0.59 1.63
SON 271 71.8 0.20 1.16 0.70 0.34

Table 1: The annual and seasonal average EWP precipitation (mm), the standard deviation SD
(mm) as a measure of variability based on the period 1931-2014 (1932-2014 for DJF). In remaining
columns show the precipitation trends (mm/year) based on a linear least squares fit for four relevant
time windows (1931-2014, 1961-2006, 1961-2014 and the ERA-Interim period 1979-2014).

1 day 3 days 5 days 10 days
Annual 13.8 28.0 40.9 69.3
DJF 13.8 28.2 42.1 71.1
MAM 12.0 23.5 33.0 54.3
JJA 13.5 26.3 37.6 62.9
SON 15.8 31.8 45.7 76.9

Table 2: Threshold values (mm) for extreme daily and multi-day accumulations for both annual
and seasonal EWP observations. Extremes are defined by the upper 2% of the precipitation
accumulations.
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Figure 1: Timeseries of the annual precipitation accumulations between 1931-2014 (mm/day).
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Figure 2: The anomalies compared to the mean daily precipitation between 1932-2014 for a) winter
(DJF) and between 1931-2014 for b) spring (MAM), c) summer (JJA) and d) autumn (SON).
Included are the identified trend (black line) for the time period 1961-2006 used in a previous
study by Maraun et al. [2008] and the trend (red line) including the last 8 years (1961-2014). See
table 1 for values. Note that the identified trends are not significant on the 95% significance level
when using the entire dataset (1931-2014).
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Figure 3: Pointwise, temporal correlation of the seasonal average 500hPa geopotential height from
NCEP-NCAR reanalysis with EWP observations (1961-2013) for each of the four calendar seasons.
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Figure 4: The NCEP-NCAR reanalysis seasonal 500hPa geopotential height anomalies (m) for the
composited of the five seasons between 1981-2013 based on EWP observations with a) the most
precipitation in winter b) most precipitation in summer, c) least precipitation in winter and d)
least precipitation in summer.
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Figure 5: The frequency of daily precipitation as a function of precipitation intensity. The solid
line indicates the best Weibull fit to the observations. The black dashed line indicates the 98%
value used to define extreme events.
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Figure 6: Trend over the years 1961-2006 for 8 EWP precipitation intensity categories, using the
method and period described by Osborn et al. [2000] and Maraun et al. [2008]. The results are
shown for a) winter (DJF), b) spring (MAM), c) summer (JJA) and autumn (SON). Coloured bars
indicate trends that are significant at the 90% level using a standard Mann-Kendall trend test.
The contribution trend as shown on the y-axis is the change in precipitation fraction over 40 years
relative to the mean, where the mean fraction for each category is 0.125.
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Figure 7: As for figure 6, but for the extended period 1961-2014.
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Figure 8: As for figure 6, but for the extended period 1931-2014.
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Figure 9: Normalised probability distribution functions (PDFs) of 1,3,5 and 10 precipitation ac-
cumulations (1931-2014). The corresponding cumulative distribution functions (CDFs) are shown
by solid lines. The dashed grey lines indicate the specific quantiles as labeled on the right hand
side axis in each panel. The top two lines indicate the 95% and 98% probability lines. The
corresponding precipitation values for the 98% threshold are summarised in table 2.
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Figure 10: Counts of extreme days per calendar year (January 1931 - December 2014) measured
by overlapping multi-day a) 1 day, b) 3-day, c) 5-day and d) 10-day precipitation accumulations.
The extremes exceed the 98% threshold derived from all the data for each season separately (figure
9). The corresponding threshold precipitation values are given in table 2.
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