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To improve the quantity and impact of observations used in data assimilation, it is necessary
to take into account the full, potentially correlated, observation error statistics. A number
of methods for estimating correlated observation errors exist, but a popular method is
a diagnostic that makes use of statistical averages of observation-minus-background and
observation-minus-analysis residuals. The accuracy of the results it yields is unknown as the
diagnostic is sensitive to the difference between the exact background and exact observation
error covariances and those that are chosen for use within the assimilation. It has often
been stated in the literature that the results using this diagnostic are only valid when the
background and observation error correlation length-scales are well separated. Here we
develop new theory relating to the diagnostic. For observations on a 1D periodic domain
we are able to the show the effect of changes in the assumed error statistics used in the
assimilation on the estimated observation error covariance matrix. We also provide bounds
for the estimated observation error variance and eigenvalues of the estimated observation
error correlation matrix. We demonstrate that it is still possible to obtain useful results
from the diagnostic when the background and observation error length-scales are similar.
In general, our results suggest that when correlated observation errors are treated as
uncorrelated in the assimilation, the diagnostic will underestimate the correlation length-
scale. We support our theoretical results with simple illustrative examples. These results
have potential use for interpreting the derived covariances estimated using an operational
system.
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1. Introduction

Data assimilation techniques combine model states, known as
forecasts or backgrounds, with observations, weighted by their
respective errors, to provide a best estimate of the state, known as
the analysis. The accurate representation of these error statistics
is essential for obtaining an accurate estimate of the state. Until
recently, research has predominately concentrated on how to
estimate and represent the background error covariance matrix
e.g. Bannister (2008). Observation errors have been assumed
uncorrelated and often the data is thinned or ‘superobbed’ in
an attempt to satisfy this assumption (Lorenc, 1981). However,
with the desire and need to make better use of the observations,
especially for high-resolution forecasting, the understanding and
accurate representation of these statistics needs to be addressed.

Observation errors can be attributed to a number of different
sources, some of which may be state dependent and dependent
on the model resolution (Lorenc, 1986; Janjic and Cohn, 2006;
Waller, 2013; Waller et al., 2014a, 2014b). A number of methods
exist for estimating the observation error covariances, but none
are without fault. Previously, estimates of the observation error
covariance matrix have been calculated using methods such as
those proposed by Hollingsworth and Lönnberg (1986), Dee and
Da Silva (1999) and Desroziers and Ivanov (2001). At present, a
popular method is the diagnostic proposed in Desroziers et al.
(2005) (see section 2 for a detailed discussion of this diagnostic).
Initially proposed as a consistency check, the diagnostic uses
the statistical average of observation-minus-background and
observation-minus-analysis residuals to provide an estimate of
the observation error covariance matrix. The diagnostic provides
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an exact estimate of the observation error covariance matrix if the
assumed background and assumed observation error statistics that
are used in the assimilation are correct. In practice the statistics
used in the assimilation will not be exact, but Desroziers et al.
(2005) show that in this case the diagnostic may still be used to gain
an estimate of the observation error variances and correlations.
It is also shown that the result may be improved if successive
iterations of the diagnostic are applied. As well as providing a
diagnostic for estimating the observation error covariance matrix,
Desroziers et al. (2005) provide a diagnostic for estimating the
background error covariance matrix mapped into observation
space. They also provide one diagnostic that does not rely on the
background and observation error statistics that are used in the
assimilation; this diagnostic calculates the statistical expectation
of the observation-minus-background residuals and provides a
result equal to the sum of the observation error statistics and
the background error statistics mapped into observation space.
This relation, first suggested by Hollingsworth and Lönnberg
(1986), has been used recently to diagnose both background
and observation errors e.g. Bormann and Bauer (2010) and
Bormann et al. (2003). However, when estimating correlated
errors, determining how to split the estimated quantity into
observation and background errors is non-trivial.

Todling (2015) highlighted the limitations of the diagnostics
of Desroziers et al. (2005) in an observing system simulation
experiment framework. Despite the limitations the diagnostic has
been successfully used in some studies to estimate observation
error variances and correlations. It has been used in simple model
experiments in both variational (Stewart, 2010) and ensemble (Li
et al., 2009; Miyoshi et al., 2013) data assimilation systems and to
estimate time varying observation errors (Waller et al., 2014a). The
diagnostic has also been applied to operational numerical weather
prediction (NWP) observation types such as ATOVS, AIRS and
IASI to calculate inter-channel error covariances (Bormann and
Bauer, 2010; Bormann et al., 2010; Stewart et al., 2014; Weston
et al., 2014). When the correlated errors calculated using the
diagnostic have been accounted for in the assimilation, it has
been shown to lead to a more accurate analysis (Healy and
White, 2005; Stewart, 2010; Stewart et al., 2013), the inclusion of
more observation information content (Stewart et al., 2008) and
improvements in the forecast skill score (Weston et al., 2014).
Indeed, Stewart et al. (2013) and Healy and White (2005) show
that even the use of a crude approximation to the observation
error covariance matrix may provide significant benefit.

In an operational setting the iteration of the diagnostic for
estimating spatially correlated observation errors is not feasible
as the use of correlated errors in assimilation systems is in its
infancy. In many cases iterating the diagnostic will be costly and
time consuming and may produce disappointing results due to the
many assumptions that are already required to permit operational
assimilation. In some cases the computational framework for
including these correlated errors in the assimilation is not yet
developed and this in itself is a necessary challenge to overcome if
the correlated observation errors are to be used and the diagnostic
is to be iterated.

As the popularity of this diagnostic grows, it is important
to have a better understanding of the results it produces.
Theoretical results relating to the diagnostic under some
simplifying assumptions have been previously published, both
in the original manuscript of Desroziers et al. (2005) and in
workshop proceedings (Ménard et al., 2009; Desroziers et al.,
2009). These results relate to scalar cases or consider the estimation
of variances or the convergence of the method under iteration.
We discuss these results in further detail in section 4. In this
work we develop new theoretical results relating to the diagnostic
for observations on a 1D periodic domain and provide insight
into how well the observation error covariances may be estimated
using just one application of the diagnostic. We support these
theoretical results with illustrative examples using some simple
correlation matrices. We provide results that show what effect

changes in the error statistics used in the assimilation have on the
estimated observation error covariance matrix. From the results
discussed in section 5, we show that:

• The estimated observation error variance decreases as
assumed background error variance increases.

• The estimated observation error variance increases as
assumed observation error variance increases.

• The power in the largest scales of the estimated observation
error correlation matrix decreases as assumed background
error variance increases.

• The power in the largest scales of the estimated observation
error correlation matrix increases as assumed observation
error variance increases.

The power in the largest scales can be obtained by considering
the eigenstructure of the estimated matrix and provides some
insight into the behaviour of the estimated correlation length-
scale. These results provide an understanding of the diagnostic
that can aid the interpretation of results when the diagnostic is
used to estimate spatial correlations in an operational setting e.g.
Waller et al. (2015). We note that in the results presented here, the
statistical nature of the estimation is not considered since results
are calculated directly and not from samples of the analysis and
background residuals. When estimates are calculated in this way
it is inevitable that further noise will be introduced.

We begin in section 2 by describing in detail the diagnostics
of Desroziers et al. (2005). We present the diagnostic in spectral
form in section 3. In section 4 we prove some new theoretical
results and we illustrate and expand these results in section 5. We
conclude in section 6.

2. The diagnostic of Desroziers et al. (2005)

2.1. Notation

Data assimilation techniques combine observations, y ∈ R
p,

available at time t, with a model prediction of the state, the
background, xb ∈ R

n, which is often determined by a previous
forecast. Here p and n denote the dimensions of the observation
and model state vectors respectively. In the assimilation, the
observations and background are weighted by their respective
errors, using the background and observation error covariance
matrices B ∈ R

n×n and R ∈ R
p×p, to provide a best estimate

of the state xa ∈ R
n, known as the analysis. The calculation of

the analysis requires a comparison of the background with the
observations. To achieve this the background is mapped into
the observation space using the, possibly non-linear, observation
operator H : R

n → R
p. After an assimilation step the analysis is

then evolved forward in time using a (possibly nonlinear) model,
to provide a background at the next assimilation time.

2.2. The diagnostics

The diagnostics described in Desroziers et al. (2005) provide
estimates of the observation and background error covariance
matrices given that the analysis is determined using,

xa = xb + B̃HT(HB̃HT + R̃)−1do
b, (1)

where H is the observation operator linearised about the current
state and R̃ and B̃ are the assumed observation and background
error statistics used to weight the observations and background
in the assimilation. The background residual, also known as the
innovation,

do
b = y − H(xb), (2)

is the difference between the observation y and the mapping of
the forecast vector, xb, into observation space by the observation
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operator H. The analysis residuals,

do
a = y − H(xa), (3)

≈ y − H(xb) − HKdo
b. (4)

are similar to the background residuals, but with the forecast
vector replaced by the analysis vector xa.

We now restrict ourselves to the use of a linear operator
H (this allows Eq. (4) to be written as an equality) and make
the assumption that the forecast and observation errors are
uncorrelated. Taking the statistical expectation of the outer
product of the background residuals results in

E[do
bdo

b
T] = HBHT + R = S, (5)

the sum of the observation and mapped background error
statistics. Note that S is a direct estimate of the sum of the
true statistics and does not depend on the background and
observation error statistics used in the assimilation. However, in
practice the estimate will be subject to sampling error.

Desroziers et al. (2005) show that an estimate of the observation
error correlation matrix can be obtained by taking the statistical
expectation of the outer product of the analysis and background
residuals,

E[do
a do

b
T] = R̃(HB̃HT+R̃)−1(HBHT + R) = Re, (6)

where Re is the estimated observation error covariance matrix and
B and R are the exact background and observation covariance
matrices. If the observation and forecast errors used in the
assimilation are exact, R̃ = R and B̃ = B, then

E[do
a do

b
T] = R. (7)

A further diagnostic makes use of the background residual
and the difference between the mapping of the background and
analysis into observation space da

b = H(xa) − H(xb). This allows
the estimation of HBeHT,

E[da
bdo

b
T] = HB̃HT(HB̃HT+R̃)−1(HBHT + R) = HBeHT. (8)

Again HBeHT = HBHT when the matrices B̃ and R̃ used in the
analysis update Eq. (1) are exact.

It has been shown by Desroziers et al. (2005) that using
Eq. (6) it is possible to obtain a reasonable estimate of Re

even if the matrices R̃ and B̃ used in the assimilation are not
correctly specified, and successive applications of the diagnostic
and assimilation scheme may be applied to converge to a solution.
Ménard et al. (2009) prove, in the case of scalar observation and
background error variances, that if the observation error variance
is unknown and the background error variance is known then
successive applications of Eq. (6) will lead to the convergence
of the observation error variance to the exact value. Similarly
if the observation error variance is known, then an unknown
background error variance may be obtained by iterating Eq. (8).
However, in the case where both the observation and background
error variances are unknown, it is shown that the iteration of
either Eq. (6) or Eq. (8) will converge to a solution, but one
that does not match the exact statistics. Ménard et al. (2009) also
show, again in the scalar case, that if both variances are iterated
concurrently then the diagnostics converge in one iteration to a
solution, possibly incorrect, that depends on the assumed error
variances. The results may or may not be close to the true
values, but the estimate cannot be improved. Ménard et al. (2009)
then extend these results to a system with periodic 1D domain;
however, we note that the results shown in Ménard et al. (2009)
do not hold in the multi-dimensional case as an application
of the diagnostic changes both the variances and correlations
in the observation error covariance matrix, a process which is
overlooked in equation (46) of Ménard et al. (2009).

Desroziers et al. (2005) show for the multi-dimensional case
that the method may be used to estimate error variances and
correlations, but state that it ‘appears that the adjustment of
background and observation error variances is only relevant if
those errors have different structures’. As a result it is often stated
that the method will not yield an accurate result if the scales
in the background and observation error statistics are similar
(Bormann and Bauer, 2010; Bormann et al., 2010; Stewart et al.,
2014; Weston et al., 2014). However, it is actually the convergence
of the iterations that may be slow or even fail if the scales in the
true observation and background or assumed observation and
background error covariance matrices are proportional. Although
this scale separation causes problems for the iteration procedure,
it may not result in the failure of the diagnostic. Previously in
Waller et al. (2014a), using twin experiments, the diagnostic
produced accurate estimates of the observation error statistics
even when the length-scales of the background and observation
error statistics were similar. If one is fortunate with the underlying
statistics or the choice of assumed statistics, then it is possible that
the diagnostic will give a reasonable estimate of the observation
error covariance matrix after one iteration and the failure of the
convergence will not be an issue (see section 4 for an example).

In operational systems many of the assumptions made for using
the diagnostics are violated. The B̃ and R̃ used in the assimilation
are not exact and the linearisation of the observation operator
will introduce further error. To attempt to understand the impact
of the incorrect B̃ and R̃ used in the assimilation we will consider
the performance of the diagnostic in an idealised framework that
allows the spectral form of the diagnostics to be used.

3. The diagnostic in Fourier space

Desroziers et al. (2005, 2009) and Ménard et al. (2009) show that
by making some simplifying assumptions the diagnostics may
be written in Fourier space. We now assume that observations
have uniform density over a 1D periodic domain and that the
observation operator is the identity. We also require the true and
assumed observation and background errors to be homogeneous
with R = ρCr, R̃ = ρ̃C̃r, B = βCb and B̃ = β̃C̃b where ρ, ρ̃, β

and β̃ are the exact and assumed observation and background
error variances and Cr, C̃r, Cb and C̃b are the circulant exact and
assumed observation and background error correlation matrices.
(A circulant matrix is a matrix where each row is determined by
cyclically shifting the preceding row; Gray, 2006). Our approach
also applies if we instead assume a non-identity observation
operator so long as HBHT and HB̃HT are circulant (in this case
the matrices in following Eqs (9)–(12) would be of size p × p),
although here we choose the identity operator as it allows us to
consider directly how changes in the assumed background error
statistics alter the performance of the diagnostic. Under these
assumptions the matrices share common eigenvectors and it is
possible to write,

B = βF�FT, (9)

R = ρF�FT, (10)

B̃ = β̃F�̃FT, (11)

R̃ = ρ̃F�̃FT, (12)

where F is a n × n orthogonal matrix of common eigenvectors
such that FT = F−1 and �, �, �̃ and �̃ are n × n diagonal matrices
that contain the eigenvalues γk, λk, γ̃k and λ̃k, of Cb, Cr, C̃b and C̃r

respectively. Since the correlation matrices are positive definite
and circulant, the eigenvalues are positive and can be found
using a discrete Fourier transform with the eigenvectors being the
discrete Fourier basis (Gray, 2006). These eigenvalues are ordered
according to wave number. In this case the order of the eigenvalues
has a relation to the length-scales in the correlation matrix, with
the first eigenvalue relating to the eigenvector with the largest
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Table 1. Summary of parameters used in Eqs (16)–(18).

Parameter Exact Assumed Estimated
quantity quantity quantity

Observation error variance ρ ρ̃ ρe

Eigenvalues of the observation error
correlation matrix

λk λ̃k λe
k

Background error variance β β̃ βe

Eigenvalues of the background error
correlation matrix

γk γ̃k γ e
k

Background residual variance σ – –
Eigenvalues of the background residual

correlation matrix
ωk – –

length-scales. This ordering is not linked to the magnitude of the
eigenvalues.

Substituting Eqs (9)–(12) into Eq. (5) allows the background
residual covariance, given by Eq. (5), to be written as

σ� = β� + ρ�, (13)

where σ is the background residual variance and � is a matrix of
eigenvalues ωk of the background residual correlation matrix S.
The matrix S may be written in this form since it is the sum of
circulant matrices, and therefore circulant itself.

Using Eqs (9)–(12) and (6) a relationship for Re, defined as in
Eq. (7), may be written as,

ρe�e = ρ̃�̃(ρ̃�̃ + β̃�̃)−1(ρ� + β�), (14)

where ρe is the estimated variance and �e is the matrix containing
eigenvalues, λe

k.
Similarly a relationship for Be, defined as in Eq. (8), may be

written as,

βe�e = β̃�̃(ρ̃�̃ + β̃�̃)−1(ρ� + β�), (15)

where βe is the estimated variance and 	e is the matrix containing
eigenvalues, γ e

k .
Hence for each wave number, k = 0, . . . , n − 1, we have the

following relations,

σωk = ρλk + βγk, (16)

ρeλe
k = ρ̃λ̃k

ρλk + βγk

ρ̃λ̃k + β̃γ̃k

, (17)

βeγ e
k = β̃γ̃k

ρλk + βγk

ρ̃λ̃k + β̃γ̃k

. (18)

The majority of this manuscript focuses on describing the
behaviour of Eq. (17) and deriving results based on this equation.
However similar results may be derived for Eq. (18). For
convenience we summarise the parameters used in these equations
in Table 1.

When considering the result obtained from Eq. (14) or Eq. (15)
the eigenvalues will be positive as the products, sums and
inverses of positive definite matrices are also positive definite. The
estimated covariance matrix will also be symmetric as circulant
matrices are commutative and the product of commutative
symmetric matrices is symmetric (Gray, 2006).

When the incorrect matrices, R̃ and B̃, are used in the
assimilation, the diagnostics may contain errors in both the
estimation of the variances and in the correlations. Considering
the diagnostics in spectral space allows the misspecification of
the power in the wave numbers of the correlation function to be
assessed.

To prove some further results using Eqs (16)–(18) we make
use of the eigenvalue relationship that states that the sum of the
eigenvalues αk of a matrix A is equal to the trace of that matrix
(Golub and Van Loan, 2013), that is,

n−1∑
k=0

αk = Tr(A). (19)

In our case we are considering the eigenvalues of n × n correlation
matrices with ones on the diagonal, and therefore the trace of
such a matrix and hence the sum of the eigenvalues will be n.

By applying Eq. (19) to Eq. (16) we are able to show that the
background residual variance,

σ = ρ + β (20)

is the sum of the observation and background error variances.
Furthermore the eigenvalues of the background residual
correlation matrix may be written as,

ωk = ρλk + βγk

ρ + β
. (21)

These are quantities that we are able to calculate using the
diagnostic that provide valuable information on the unknown
true error statistics.

As discussed in section 2, using Eqs (17) and (18) it is possible
to show that even when the structure of the background and
observation errors are similar the diagnostic may still produce a
useful result. Let us assume that the underlying exact background
and observation error statistics are identical and the assumed
background and observation error statistics are identical, that is
ρλk = βγk and ρ̃λ̃k = β̃γ̃k; it is not necessary that ρλk = ρ̃λ̃k.
In this case just one application of Eqs (17) and (18) results in

ρeλe
k = ρλk, βeγ e

k = βγk, (22)

with the observation and background errors being estimated
exactly. This will occur for any choice of exact and assumed
observation and background error statistics provided that R = B
and R̃ = B̃. This application of the diagnostic highlights two
things: firstly that the diagnostic can produce good results when
the observation and background error length-scales are equal,
and secondly, if there is any knowledge that the underlying
statistics are equal, then to obtain the best performance from the
diagnostic, the assumed observation and assumed background
error statistics should be chosen to be identical.

The fact that the diagnostic can yield a good result if the
scales in the background and observation error statistics are
similar can also be shown under other conditions. It is possible
to show that R = Re as soon as the background and observation
error covariance matrices are proportional, that is R = gHBHT

and R̃ = gHB̃HT, where the constants of proportionality g are
equal. This result (highlighted by an anonymous referee) provides
another set of circumstances under which the diagnostic produces
an exact result even when the background and observation error
length-scales are similar.

4. The assumption of uncorrelated observation errors

In most operational cases it is assumed that the observation error
correlation matrix is diagonal, R̃ = ρ̃I where I is the identity
matrix. As we are attempting to provide information on how
the diagnostic may perform in operational cases we now assume
that the assimilated observation error variance matrix is diagonal.
With this additional assumption, Eq. (17) simplifies to

ρeλe
k = ρλk + βγk

1 + (β̃/ρ̃)γ̃k

. (23)
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Using Eq. (19) allows the estimated error variance to be
written as,

ρe = 1

n

n−1∑
k=0

ρλk + βγk

1 + (β̃/ρ̃)γ̃k

. (24)

We see from Eq. (24) that as the assumed observation error
variance, ρ̃ increases, the estimated observation error variance,
ρe, increases. We also see that as the assumed background error
variance, β̃ increases, the estimated observation error decreases.
It is also possible to obtain a similar result in the case where the
assumed observation errors are correlated by applying the trace
rule to Eq. (17).

We now show how to obtain bounds for the estimated
observation error variance, which provide further information
on how the diagnostic behaves. To calculate the upper bound,
we note that since β̃, ρ̃, γ̃k > 0, the denominator in Eq. (24) is
bounded from below by 1. To calculate the lower bound we
consider the maximum value of the denominator. This occurs
when γ̃k = γ̃max, the maximum eigenvalue. A further application
of Eq. (19) gives an inequality for the estimated error variance,

σ

1 + (β̃/ρ̃)γ̃max

≤ ρe ≤ σ. (25)

All quantities in this inequality are known: those denoted with
a tilde are assumed in the assimilation and σ may be calculated
using Eq. (20). We see that the upper bound is constant and
equal to the sum of the true background and observation error
variances. From Eq. (25) we see that the lower bound will
behave differently depending on the behaviour of the assumed
background and observation error variances; the lower bound
increases as ρ̃ increases and decreases as β̃ increases. We illustrate
this with examples in sections 5.3.2 and 5.3.3. In the limit of very
large ρ̃ the estimated error variance will tend to the sum of the
true background and observation error variances.

The eigenvalues of the estimated observation correlation matrix
are given by dividing Eq. (23) by the estimated observation
error variance, Eq. (24). The behaviour of the eigenvalues of
the estimated correlation matrix will depend on the spectra for
the assumed and exact matrices. If there is some knowledge
of these it may be possible to say something further about
the behaviour of the eigenvalues (see sections 5.3.2 and 5.3.3
for some examples). It is possible to put bounds on the
eigenvalues using the bounds on the estimated observation error
variance, Eq. (25),

ωk

1 + (β̃/ρ̃)γ̃k

≤ λe
k ≤ ωk

1 + (β̃/ρ̃)γ̃max

1 + (β̃/ρ̃)γ̃k

. (26)

As with Eq. (25) all quantities in this inequality are known as they
are either assumed or may be calculated. By assuming that B and
R are fixed, and considering the upper and lower bounds we gain
some understanding of how the estimated eigenvalues change
when the assumed background and observation error statistics
are altered. From Eq. (26) we see that the lower bound increases
as ρ̃ increases and decreases as β̃ increases. By considering the
gradient we find that the upper bound is a decreasing function of
ρ̃ and an increasing function of β̃. From this we see that the upper
bound decreases as ρ̃ increases and increases as β̃ increases.

These theoretical results allow us to understand some
behaviour of the diagnostic under the given assumptions. We
now consider the performance of the diagnostic using simple
examples.

5. Results in an idealised framework

5.1. The observation and background error covariance matrices

Using Eq. (6), under the assumptions used to write the diagnostics
in spectral space, it is possible to test the diagnostic in an idealised
framework. The assumptions restrict us to working in a 1D
periodic domain. Here we choose a periodic domain of length
l = 32π and assume that we are calculating statistics for 16
equally spaced points on this domain. We note that the inverse
matrices in Eq. (6) are calculated using a standard direct (Gaussian
elimination) method since the matrices are small.

To define the correlated error matrices we use the second-order
autoregressive function (SOAR), also known as the Balgovind
(Balgovind et al., 1983) correlation function, on the finite domain,

c(i, j) =
⎛
⎝1 +

∣∣∣2a sin
(

θi,j

2

)∣∣∣
L

⎞
⎠ exp

⎛
⎝−

∣∣∣2a sin
(

θi,j

2

)∣∣∣
L

⎞
⎠ , (27)

where c is the correlation between two points i and j (Yaglom,
1986). The SOAR function is defined in terms of chordal distance
on the periodic domain, a circle of radius a = l/2π , where θi,j

is the central angle between points i and j. The length-scale of
the correlation function is defined by L. We choose the SOAR
function because at large correlation length-scales it resembles the
observation error covariance structure found in Bormann et al.
(2003). The SOAR correlation function has also been used to
model the background error correlations in operational systems
e.g. Ingleby (2001) and Simonin et al. (2014). When defining the
observation and background correlation matrices we use either
an identity matrix or the function in Eq. (27). In Figure 1 we
plot the a row of the correlation matrix generated by the SOAR
function for different values of L along with the corresponding
eigenspectrum (note only half the correlation and eigenspectrum
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Figure 1. The SOAR function (a) and its eigenspectrum (b). L = 2 (solid line squares), L = 3 (solid line circles), L = 4 (solid line triangles), L = 5 (dashed line
squares), L = 6 (dashed line circles), L = 7 (dashed line triangles).
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Figure 2. Correlation functions (a) and corresponding eigenvalues (b). Estimated observation error correlations (dot-dashed line squares) when R = R̃ = I (solid line
squares) and the length-scale in the assumed background error covariance (black dashed line circles) is L = 7 compared to the actual background covariance function
(solid line circles) where L = 5. On (b) the thin horizontal line shows the 1/ρe = 0.93 value and the vertical line divides the plot into regions where λe

k < 1/ρe (left of
line) and λe

k > 1/ρe (right of line).

are plotted due to their symmetric nature). In this and subsequent
figures we show piecewise linear plots of discrete valued functions.

From Figure 1 we see that all eigenvalues are positive and the
eigenvalues for a particular correlation function decrease as the
wave number increases; this is a property of circulant matrices
that have been constructed using positive coefficients (Gray,
2006). As we noted in section 3, the eigenvalues are ordered such
that the first eigenvalue is associated with the longest length-scale.
We see from the figure that as the correlation length-scale
increases, the magnitude of the first eigenvalue increases. Given
the result in Eq. (19) the sum of the eigenvalues must be
conserved so that an increase in one, or some eigenvalues, must
result in a decrease in other eigenvalues.

When considering the result of Eq. (6), there is no guarantee
that the coefficients of the estimated circulant matrix will be
positive and the eigenvalues may not be decreasing as a function
of wave number.

5.2. Exact uncorrelated observation errors

We begin by considering the case where both R and R̃ are
diagonal. In the fortunate situation where the true variances are
equal ρ = β (note that the value of this variance may be found
using Eq. (20)) and the assumed variances are equal ρ̃ = β̃ Eq.
(17) reduces to,

ρeλe
k = ρ

1 + γk

1 + γ̃k
, (28)

and the eigenvalues may be estimated using,

λe
k = ρ

ρe

(
1 + γk

1 + γ̃k

)
. (29)

We see that,

if γk < γ̃k then λe
k <

ρ

ρe
,

if γk > γ̃k then λe
k >

ρ

ρe
,

and if γk = γ̃k then λe
k = ρ

ρe
. (30)

In a practical situation we would not know the eigenvalues
corresponding to the true background error correlation matrix;
however we are able to calculate the estimated observation error
variance, ρe, and the eigenvalues, λe

k, of the estimated observation
error correlation matrix. Therefore, if we believe we are in the
situation where the observation errors are uncorrelated but we

are unsure of the background error structure, then the above
equations may give some insight on where the eigenvalues
corresponding to the assumed background error correlation
matrix are too small or too large.

We now consider a simple example to show if misspecifying
a length-scale in B̃ can introduce correlations in the estimated
observation error matrix even where both R and R̃ are diagonal.
We set the exact background error length-scale to be L = 5 and
the assumed background length-scale to be L = 7. All assumed
and exact variances are set to be ρ = β = ρ̃ = β̃ = 1. We plot
the exact and estimated correlation functions and corresponding
eigenvalues for our SOAR example in Figure 2. We find that:

• Despite the correct matrix being used in the assimilation,
the estimated observation error variance in this case is
slightly larger than the actual variance (ρe = 1.07).

• The misspecified length-scale in B̃ results in correlations
in the estimated observation error covariance matrix, even
though the matrix R̃ used in the assimilation is correct.

From Eq. (30) and Figure 2 we see that the value of
1/ρe and the eigenvalues of the estimated observation error
correlation matrix provide information on where the assumed
background error correlation eigenvalues are larger or smaller
than the true background error eigenvalues. In particular at low
wave numbers, λe

k < 1/ρe = 0.93, indicating that the assumed
background eigenvalues are too large. Hence in the estimated
eigenvalues, we have less power in the larger scales. For the high
wave numbers, λe

k > 1/ρe = 0.93, indicating that the assumed
background eigenvalues are too small so in the estimated
eigenvalues we expect to find increased power in the smaller scales.

5.3. Exact observation errors correlated but assumed uncorrelated
in the assimilation

In all the following cases we set the assumed observation error
covariance matrix to be diagonal, R̃ = ρ̃I, with error variance
ρ̃. Correlations for the exact observation error and exact and
assumed background errors are defined using the SOAR function,
Eq. (27); for the exact observation error covariance we set L = 2
and for the exact background error matrix we set L = 5. Both the
error variances are chosen to be β = ρ = 1. The length-scales are
chosen with the background error correlation length-scale longer
than that of the observation error correlation length-scale as in an
operational system it is expected that the background correlation
length-scale would be larger than those of the observations. We
consider how well the diagnostic estimates Re, both in terms of
variance and length-scale. Details of the assumed background
error variance, β̃, assumed observation error variance, ρ̃ and
length-scale for B̃ chosen for use in the assimilation for each
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Table 2. Estimated observation error variances when length-scales (defined using
the SOAR function in Eq. (27)) and variances in R̃ and B̃ used in the assimilation
are incorrect. The exact observation and background error variances are set to
ρ = β = 1 and length-scales to L = 2 and L = 5 respectively. The matrix R̃ used

in the assimilation is always diagonal.

Exp. label ρ̃ β̃ B̃ ρe

Length-scale (L)

Control 1 1 5 0.94

ρ0.5 0.5 1 5 0.68
ρ1.1 1.1 1 5 0.98
ρ2 2 1 5 1.22
ρ10 10 1 5 1.73

β0.5 1 0.5 5 1.22
β0.75 1 0.75 5 1.06
β0.99 1 0.99 5 0.94
β1.5 1 1.5 5 0.78
β2 1 2 5 0.68

L3 1 1 3 0.91
L4 1 1 4 0.92
L6 1 1 6 0.97
L7 1 1 7 1.00

ρ2β1.5L6 2 1.5 6 1.08
ρ2β2L6 2 2 6 0.97
ρ2β1.5L7 2 1.5 7 1.10
ρ2β2L7 2 2 7 1.00

experiment are detailed in Table 2 along with the estimated
observation error variance.

5.3.1. Control experiment

We first consider the estimation of the observation error
covariance matrix when the exact background error covariance
matrix is used in the assimilation, B̃ = B, but the observation
error covariance matrix is assumed diagonal. In this case the only
misspecified quantity is the length-scale in the observation error
covariance matrix. This provides a reference solution that helps us
understand how assuming uncorrelated observation errors affects
the diagnostic. We plot a row of the exact, assumed and estimated
correlation matrices and corresponding eigenvalues in Figure 3,
the estimated observation error variance is given in Table 2, for
the experiment labelled Control.

We see that although the correct background error is used,
the assumption that the observation error covariance matrix is
diagonal results in:

• An underestimated variance.
• An underestimated correlation length-scale.
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Figure 4. Estimated observation error variance and bounds when B̃ = B and
R̃ = ρ̃I. Change in estimated observation error variance with increasing assumed
observation error variance (solid line). Upper and lower bounds given in Eq. (25)
are also shown (dashed lines).

We note that the estimated observation error correlation
structure shows some signature of the assumed observation
error correlation structure. This result is similar to those
shown in Todling (2015). Nevertheless, the estimated observation
error covariance matrix is a better approximation of the exact
observation error correlation compared to the diagonal assumed
observation error covariance matrix. From the eigenvalues in
Figure 3 it is clear that the estimated eigenvalues of the observation
error correlation matrix are under (over) estimated when the
assumed observation error eigenvalues are too small (large). The
first eigenvalue is related to the eigenvector with the longest
length-scales and hence an under (over) estimation of this
eigenvalue will result in an under (over) estimation of the power
in the largest scales.

We now examine in more detail the effect on the estimated
observation error matrix of misrepresenting the observation and
background error statistics in the assimilation.

5.3.2. Impact of misspecifying the observation error variance

We begin by considering how changing the variance of the
assumed diagonal matrix R̃ affects the estimates of the observation
error covariance matrix. Table 2 Experiments ρ0.5, ρ2 and ρ10
show the estimated error variance when the assumed background
error matrix is correct, B̃ = B and the assumed observation error
covariance matrix is diagonal with an incorrect variance. We also
plot in Figure 4 the change in estimated observation error variance
with increasing assumed observation error variance and the values
of the upper and lower bounds of the variance calculated using
Eq. (25) when B̃ = B and R̃ = ρ̃I.
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Figure 3. Correlation functions (a) and corresponding eigenvalues (b) for the Control Experiment. Estimated observation error (dot-dashed line squares), when
B̃ = B (solid line circles), with L = 2 for R (solid line squares) and R̃ = I (black dashed line squares).
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Figure 5. Estimated observation error correlations (a) and corresponding eigenvalues (b) for Experiments ρ0.5 (ρ̃ = 0.5, dashed line crosses), Control (ρ̃ = 1,
dashed line triangles), ρ2 (ρ̃ = 2, dashed line squares) and ρ10 (ρ̃ = 10 , dashed line circles) when observation errors are assumed uncorrelated and the variance
misspecified in the assimilation. The exact observation error correlation function (solid line) is plotted for comparison.

The results in the figure and table verify Eq. (24), that is, as
the assumed observation error variance increases the estimated
observation error variance increases. We also note that the
theoretical bounds are respected in the experimental case.

Ménard et al. (2009) show for the case of scalar background and
observation error variances that when the assumed observation
error variance is too small (large) then the estimated observation
error variance is underestimated (overestimated). Experiments
ρ0.5, ρ2 and ρ10 support this conclusion for the multi-
dimensional case. However, experiment ρ1.1 shows that this
conclusion is not general as, for example, a choice of ρ̃ = 1.1
results in ρe = 0.98. The underestimation of the error variance is
a result of the observation error correlations being neglected.

Next we consider the effect on the estimated length-scales. By
using Eqs (23) and (24) we are able to consider the first eigenvalue,

λe
0 = 1

1
n

n−1∑
k=0

ρλk + βγk

1 + (β̃/ρ̃)γ̃k

(
ρλ0 + βγ0

1 + (β̃/ρ̃)γ̃0

)
. (31)

This provides useful information as the first eigenvalue is related
to the power in the largest scales and therefore can tell us
something about the estimated correlation length-scale.

In section 4 we provided bounds for the estimated eigenvalues
but not any results relating to the specific behaviour of the
eigenvalues. Since here we are considering observation and
background error covariance matrices that are diagonal or defined
by the SOAR function, the assumed and exact correlation matrices
have only non-negative coefficients. For any correlation matrix
with non-negative coefficients the eigenvalues decrease as the
wave number increases. Using this additional information we
are able to determine what happens to the first eigenvalue. As
γ̃0 ≥ γ̃k, the derivative of Eq. (31) with respect to ρ̃ is positive
and hence Eq. (31) is an increasing function with ρ̃. Therefore,
we expect the estimated first eigenvalue, and hence the power in
the lowest wave numbers, to increase as a function of ρ̃.

We plot the estimated correlation function and corresponding
eigenvalues in Figure 5. From this we verify our theoretical result,
that the power in the lowest wave numbers (largest scales) also
increases as the assumed observation error variance increases. We
find that error covariance length-scales are underestimated when
the assumed variance is too small or correct and overestimated
when the assumed variance is too large. From the eigenvalues we
see that an assumed observation error variance that is too small
results in the power in the large scales being underestimated and
small scales overestimated.

In summary, in the case of misspecified observation error
variances we are able to show that:

• As the assumed observation error variance increases the
estimated observation error variance increases.
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Figure 6. Change in estimated observation error variance with increasing
assumed background error variance (solid line). Upper and lower bounds are also
shown (dashed lines). Here R̃ = ρI and B̃ = β̃Cb.

• As the assumed observation error variance increases the
estimated power in the largest scales increases.

• In the case where observation errors are assumed
uncorrelated, it does not hold that an assumed observation
error variance that is too small (large) will result in an
estimated observation error variance that is underestimated
(overestimated).

5.3.3. Impact of misspecifying the background error variance

In Experiments β0.5, β0.75, β1.5 and β2 we consider how
the estimate of Re alters when the assumed background error
variance β̃ is misspecified, but the length-scale in the assumed
background correlation matrix is correct. We provide the assumed
background variances and estimated observation error variances
in Table 2. We also plot in Figure 6 the change in estimated
observation error variance with increasing assumed background
error variance and the values of the upper and lower bounds
of the variance from Eq. (25). Again the results in the figure
and table verify what is shown in Eq. (24), that as the assumed
background error variance is increased the estimated observation
error variance decreases. We also note that the theoretical bounds
are respected in the experimental case. Experiments β0.5, β0.75,
β1.5 and β2 support the conclusion from Ménard et al. (2009)
that for the case of scalar background and observation error
variances that when the assumed background error variance is
too small (large) then the estimated observation error variance
is overestimated (underestimated). However, the assumption of
uncorrelated errors means that this conclusion is not valid in the
multidimensional case: for example Experiment β̃0.99 shows that
using an assumed background error variance that is too small,
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Figure 7. Estimated observation error correlations (a) and corresponding eigenvalues (b) for Experiments β0.5 (β̃ = 0.5, dashed line circles), β0.75 (β̃ = 0.75 ,
dashed line squares), Control (β̃ = 1.0, dashed line triangles), β1.5 (β̃ = 1.5, dashed line crosses) and β2 (β̃ = 2.0, dashed line diamonds) when the variance in the
background error covariance matrix is misspecified in the assimilation. The exact observation correlation function (solid line) is plotted for comparison.
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Figure 8. Estimated observation error correlations (a) and corresponding eigenvalues (b) for Experiments L3 (assumed background correlation length-scale L = 3,
dashed line circles), L4 (L = 4, dashed line squares), Control (L = 5, dashed line triangles), L6 (L = 6, dashed line crosses) and L7 (L = 7, dashed line diamonds)
when the length-scale in the background error covariance matrix is misspecified in the assimilation. The exact observation error correlation function (solid line) is
plotted for comparison.

β̃ = 0.99, can result in an underestimate of the observation error
variance ρe = 0.94.

We next consider what happens to the estimated length-scale
as the assumed background error variance increases. We again
consider the first eigenvalue in the theoretical case. In this instance
we find that, as γ̃0 ≥ γ̃k, the derivative of Eq. (31) with respect to β̃

is negative. Therefore, we expect the estimated first eigenvalue and
the estimated correlation length-scale to decrease as a function
of β̃.

We plot the estimated correlation length-scales for Experiments
β0.5, β7.5, β1.5, β2 and Control, along with the corresponding
eigenvalues in Figure 7.

From the figure we see that the observation error correlation
function is shortest, and most underestimated when the back-
ground error variance is largest. The observation error correlation
length-scale remains underestimated as the background error
variance decreases. The observation error correlation length-scale
is only overestimated when the assumed background error
variance is half the value of the actual background error variance
or less. Considering the eigenvalues of Re we see that unless
the assumed background error variance is much smaller than
the true background error variance, the power in the low wave
numbers (large scales) will be underestimated and the power in
the high wave numbers (small scales) will be overestimated. This
is consistent with the theoretical result that the first eigenvalue
decreases as β̃ increases.

In summary, in the case of misspecified background error
variances we are able to show that:

• As the assumed background error variance increases the
estimated observation error variance decreases.

• As the assumed background error variance increases the
estimated power in the largest scales decreases.

• In the case where observation errors are assumed
uncorrelated, it does not hold that an assumed observation
error variance that is too small (large) will result in an
estimated observation error variance that is overestimated
(underestimated).

5.3.4. Impact of misspecifying the background error correlation
length-scale

We now consider what happens when the background error
variance is correctly specified but the correlation length-scale
is misspecified. We give the assumed background correlation
function length-scales and estimated observation error variances
in Table 2, Experiments L3, L4, L6 and L7 and we plot
the estimated observation error correlation functions and
corresponding eigenvalues in Figure 8. Again we plot the result
from the control experiment for comparison.

From the table and figure we see that:

• As the assumed background error length-scale increases,
the estimated observation error variance increases.

• As the assumed background error length-scale increases,
the estimated correlation length-scale and leading eigen-
values decrease.

However, in all but the case of the largest length-scale, the
observation error variances are underestimated. We see that, when
the assumed background correlation length-scale is too large, the
estimated observation error length-scale is underestimated.
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Figure 9. Change in estimated variance and first eigenvalue as a function of assumed background and observation error variance. The thick black lines show the true
values of the background and observation error variance. (a) Estimated observation error variance, ρe, as a function of assumed background and observation error
variance. Red shows an overestimate, white an accurate estimate and blue an underestimate. (b) First eigenvalue, γ e

0 , of the estimated observation error correlation as
a function of assumed background and observation error variance. Red shows an overestimate, white an accurate estimate and blue an underestimate.

5.3.5. Impact of misspecifying the observation and background
error variance

We now consider what happens when both the background
and observation error variance are misspecified. The observation
errors are still assumed uncorrelated, but the assumed background
error correlation is chosen to be exact. Theoretically it is complex
to prove results when multiple variables are changing. Here we
consider the general trends for the estimated observation error
variance and length-scales for a variety of values for β̃ and ρ̃.

In sections 4 and 5.3.2 we showed that as the assumed
observation error variance increases, the estimated observation
error variance increases. In sections 4 and 5.3.3 we showed
that as the assumed background error variance increases,
the estimated observation error variance decreases. So for a
combination of too small (large) background variances and
too large (small) observation error variances we expect an
overestimated (underestimated) ρe. This is shown in Figure 9(a)
where we plot the change in estimated observation error variance
for different values of assumed background and observation
error variance. However, it is also clear from the figure that
when the effects of changes in B̃ and R̃ conflict with each
other, the over- or underestimation of ρe will be dominated
by whichever assumed variance has the larger error. From
Figure 9(b) we see that in this experimental situation the first
eigenvalue is almost always underestimated and it is only in
the case of low assumed background error variances or large
assumed observation error variance that the leading eigenvalue is
overestimated. This suggests that in most cases the length-scale
of the estimated correlation matrix will be too short. This is
likely to be a result of assuming uncorrelated observation errors
(diagonal R̃).

In summary when both the assumed observation and
background variance are misspecified we find that:

• Knowledge of the impact of individual errors on
the estimated quantities may be combined to provide
information about the impact on the estimated quantities
when multiple errors are present.

• A combination of too small (large) background error
variances and too large (small) observation error
variances will result in an overestimated (underestimated)
observation error variance.

• When observation errors are assumed uncorrelated, it
is likely that the diagnostic will produce an estimated
observation error correlation where the length-scale is
underestimated.

5.3.6. Impact of misspecifying the background error variance and
correlation length-scale

We now consider what happens when both the length-scale and
variance of the assumed background error matrix are misspecified.
The observation errors are still assumed uncorrelated, but the
assumed observation error variance is chosen to be exact, ρ̃ = ρ.
Again we consider the general trends for the estimated observation
error variance and length-scales for a variety of values for β̃ and
the length-scale in B̃, before considering some specific cases.

In Figure 10(a,b) we show how the estimated variance and
leading eigenvalue vary when different values are used for the
assumed background error statistics.

From Eq. (24) we proved that as the assumed background
error variance was increased the estimated observation error
variance decreased and this can be seen by comparing any
given row of Figure 10(a). However, it is more complex to say
whether the variance will be over- or underestimated in any given
circumstance. It is clear in this case that it is the assumed variance
that has the largest impact on the estimated error variance as the
horizontal gradient is much larger than the vertical gradient.

It is clear from Figure 10(b) that the estimated leading
eigenvalue decreases as assumed background error variance and
length-scale increases. Hence it is likely that the correlation
length-scale will decrease as assumed background error variances
and length-scales are increased. When estimating the leading
eigenvalue it appears that the largest change is caused by the
change in assumed background error length-scale rather than
background error variance.

Expert opinion can often provide information on the
anticipated relationship between the true and assumed statistics.
In the Met Office operational convection-permitting data
assimilation scheme it is suggested that both the background
error variance and correlation length-scale are overestimated.
Results in Waller et al. (2015) used the diagnostic to estimate
spatial observation error statistics for Doppler radar radial
winds assimilated using two different sets of background error
statistics. The qualitative results agree with the findings given
here, namely that when both the background error variance
and correlation length-scale are overestimated the diagnostic will
provide an underestimate of both the observation error variance
and correlation length-scale. This suggests that although the
results here are derived under a simplified framework, they still
may be able to provide useful information in the operational case.

In summary when both the assumed background variance and
length-scale are misspecified we find that:

• Errors in the assumed background error variance have the
largest impact on the estimated observation error variance.
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• Errors in the assumed background error length-scale have
the largest impact on the estimated observation error
eigenvalues.

• A combination of too small (large) assumed background
error variances and too small (large) assumed background
length-scale will result in an overestimation (underestima-
tion) of the power in the largest scales of the estimated
observation error covariance matrix.

5.3.7. Impact of misspecifying the observation error variance and
background correlation length-scale

We next consider how the diagnostic behaves when the assumed
observation error variance and assumed background error length-
scales are misspecified. In Figure 11(a,b) we show how the
estimated variance and leading eigenvalue vary when different
values are used for the assumed background error length-scale
and assumed observation error variance.

We see that the observation error variance is always
underestimated when the assumed observation error variance is
too small; it is overestimated when the assumed observation error
variance is much too large. The first eigenvalue is over (under)
estimated when both the assumed observation error variance
is too large (small) and assumed background error length-
scale too small (large). When both the assumed observation
error variance and background error length-scale are too large
(small) the eigenvalue may be over or under estimated. Again
we see that the change in assumed observation error variance
appears to be the dominating factor in the change in estimated
observation error variance, with the variance underestimated
when the assumed variance is underestimated. The dominant
factor in the change of the first eigenvalue appears to be
the change in length-scale of the assumed background error
correlation.

In summary when the assumed observation error variance and
assumed background error length-scale are misspecified we find
that:

• Errors in the assumed background error variance have the
largest impact on the estimated observation error variance.

• Errors in the assumed background error length-scale have
the largest impact on the estimated observation error
eigenvalues.

• A combination of too small (large) assumed observation
error variances and too large (small) assumed back-
ground length-scale will result in an underestimation
(overestimation) of the power in the largest scales of the
estimated observation error covariance matrix.

5.3.8. Impact of misspecifying all assumed error variances and
length-scales

In an operational setting it is likely that none of the assumed
error statistics are exact. In the previous three sections we have
seen that it may be possible to combine our knowledge of the
results from sections 5.3.2 to 5.3.4 to give an understanding of
what may happen to the estimated quantities when two of the
assumed quantities are in error. We now consider if it is possible
to make any similar conclusions when all assumed error variances
and length-scales are misspecified.

Here again we restrict ourselves to consider only cases that
are relevant to operational assimilation. Experiments ρ2β1.5L6,
ρ2β2L6, ρ2β1.5L7 and ρ2β2L7 detail how the diagnostic
performs when the observation error variance is too large and the
length-scales and error variances in B̃ are too large.

From Table 2 and Figure 12 we see that for each of the
Experiments ρ2β1.5L6, ρ2β2L6, ρ2β1.5L7 and ρ2β2L7 the
observation error correlation length-scale is underestimated
and for experiments ρ2β1.5L6 and ρ2β1.5L7 we find that the
observation error variance is overestimated.

This case, where all assumed quantities are misspecified, is a
nonlinear problem, so it is not clear that combining individual
results will give a clear prediction of what happens when all
parameters are varied together. The exact performance of the
diagnostic will always be complex to predict without detailed
knowledge of the assumed and exact correlation structures.
However in some circumstances, where there is some expert
opinion on the assumed structures and their relation to the true
statistics, it may be possible to make a valid prediction on the
behaviour of the diagnostic.

6. Conclusions

To make better use of observations in data assimilation it is
necessary to understand and correctly represent their associated
error statistics in the assimilation method. One popular method
for estimating observation error statistics, which makes use of
information in the background and analysis residuals, is the
method of Desroziers et al. (2005). Although this method has
been used both in simple experiments and operational systems to
provide estimates of the observation error statistics, the behaviour
of the diagnostic is not well understood. In this work we
have developed a theoretical understanding of the non-iterative
application of this diagnostic and illustrated this with simple
examples. We note that in these cases the statistical nature of the
diagnostic is not considered, as the values are calculated directly
and not from samples of the analysis and background residuals.
When estimates are calculated in this way it is inevitable that
further noise will be introduced.

To prove theoretical results relating to the diagnostic it is
necessary to introduce some simplifying assumptions. We assume
that the observation and background errors are homogeneous and
that the observations have uniform density over a periodic domain
and that the observation operator is the identity. The approach
used here would also apply if we instead assume a non-identity
observation operator so long as HBHT is circulant.

We begin by showing that the diagnostic can provide a
satisfactory solution when the structures of the background and
observation errors are similar. We highlight that the documented
failure of the method in this case is a failure on the iteration
of the method. Therefore if the first estimates produced from
the diagnostic are close to the truth then, although no closer
approximation can be obtained by iteration, the estimate may
well be good enough to provide information on the error statistics.
We are also able to show that results relating to under or
overestimation of variance in the scalar case do not always hold
in the multidimensional case.

We then restricted the theoretical work to consider only cases
where the observations were assumed uncorrelated and only
a single application of the diagnostic is performed. This case
is of particular interest as in many operational systems the
observations are assumed uncorrelated and it is not feasible to
iterate the diagnostic. Under the simplifying assumptions we find
that an error in just one of the assumed variances or length-scales
will have an impact on both the estimated observation error
variance and length-scales. In section 4 we provided bounds for
the estimated observation error variance and eigenvalues of the
estimated correlation matrix. From these we are able to show that
the estimated observation error variance can never be larger than
the sum of the true background and observation error variances.
We are also able to prove that:

• The estimated observation error variance increases as
assumed observation error variance increases.

• The estimated observation error variance decreases as
assumed background error variance increases.

We are able to verify this through our experiments and show
that the bounds on the variance are respected in the experimental
cases. Under the additional assumption of the exact and assumed
correlation matrices having non-negative coefficients, we are also
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Figure 10. Change in estimated variance and first eigenvalue as a function of assumed background error variance and correlation length-scale. The thick black lines
show the true values of the background error variance and length-scale. (a) Estimated observation error variance, ρe, as a function of assumed background error
variance and correlation length-scale. Red shows an overestimate, white an accurate estimate and blue an underestimate. (b) First eigenvalue, γ e

0 , of the estimated
observation error correlation as a function of assumed background error variance and correlation length-scale. Red shows an overestimate, white an accurate estimate
and blue an underestimate.
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Figure 11. Change in estimated variance and first eigenvalue as a function of assumed observation error variance and background correlation length-scale. The thick
black lines show the true values of the observation error variance and background correlation length-scale. (a) Estimated observation error variance, ρe, as a function
of assumed observation error variance and background correlation length-scale. Red shows an overestimate, white an accurate estimate and blue an underestimate.
(b) First eigenvalue, γ e

0 , of the estimated observation error correlation matrix as a function of assumed observation error variance and background correlation
length-scale. Red shows an overestimate, white an accurate estimate and blue an underestimate.
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able to prove results relating to the first eigenvalue, which provide
some information about the estimated correlation length-scale.
We prove that:

• The power in the large scales of the estimated observation
error correlation matrix increases as assumed observation
error variance increases.

• The power in the large scales of the estimated observation
error correlation matrix decreases as assumed background
error variance increases.

This provides some insight into the behaviour of the estimated
correlation length-scale. In general we are able to show that
if observation error correlations are neglected in the assumed
observation error covariance matrix, then it is likely that the
diagnostic will underestimate the strength of the correlations,
though the result from the diagnostic will be a better estimate of
R than one that is assumed diagonal.

The theoretical results are more complex when the background
error length-scales are misspecified, so to aid our understanding
we considered the results of some simple experiments. A more
detailed knowledge of the exact and assumed spectra are required
to predict whether the variance will increase or decrease as the
assumed background error length-scales are increased. It does
appear, however, in the case of the SOAR function that an
increase in the assumed background error length-scales causes a
reduction in the estimated observation error length-scales.

Misspecification of more than one of the background or
observation error variances and length-scales is likely. Using
illustrative examples we are able to show that in the case of
multiple misspecification in the assimilation:

• Errors in the assumed variances will have larger impacts
on the estimated observation error variances.

• Errors in the assumed length-scales will have a larger impact
on the estimated observation error length-scales.

So with this knowledge and knowledge of the impact of the
individual variables it is possible to hypothesize what may happen
to the estimated quantities.

Another important conclusion drawn from the examples is that
if the observation error covariance matrix is assumed diagonal
in the assimilation, then the observation error correlation matrix
calculated by the diagnostic is likely to have underestimated
correlation length-scales unless the observation error variance is
greatly overestimated. This is an important conclusion to bear
in mind when considering operational results as in many cases
the observations are assumed uncorrelated, and although the
observation error variance may have been inflated it is unlikely
that it is large enough for the correlations to be estimated
accurately using the method of Desroziers et al. (2005).

The results detailed here are dependent on specific underlying
assumptions, and no theoretical proof is given that these

results would hold in a more general framework. However, the
diagnostic has been used to estimate observation error statistics for
operationally assimilated observations (Waller et al., 2015). Where
operational scenarios are similar to those presented here, the
results are consistent. We note that understanding the estimated
error statistics may not be possible if nothing is known about
the relationship of the true to the assumed statistics. However,
expert opinion can often provide information on the nature of
this relationship. In this case, one can use the results presented
here to make an informed decision on how to interpret the results
obtained from the diagnostics.
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