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Abstract As part of an international intercomparison project, a set of single-column models (SCMs) and
cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the
damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method
involves a simulated column which is coupled to a reference state defined with profiles obtained from the
same model in radiative-convective equilibrium. The simulated column has the same surface conditions as
the reference state and is initialized with profiles from the reference state. We performed systematic com-
parison of the behavior of different models under a consistent implementation of the WTG method and the
DGW method and systematic comparison of the WTG and DGW methods in models with different physics
and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of
the models reproduce the reference state while others sustain a large-scale circulation which results in
either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a
fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of
behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual
SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation.
When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state.
The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG
simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilib-
rium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In
some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.

1. Introduction

The two-way interaction between tropical deep convection and large-scale tropical dynamics is a key issue
in understanding tropical climate and its variability. In the past decade, this issue has been studied at a rea-
sonable computational cost in both single-column models (SCMs) and cloud-resolving models (CRMs), using
various forms of parameterized large-scale dynamics. Parameterized large-scale dynamics is a set of meth-
ods developed to capture the feedbacks of large-scale tropical dynamics on convection, without explicitly
simulating the large scale, based on a physical understanding of the tropical atmosphere.

One of the large-scale parameterization methods, namely, the weak-temperature gradient (WTG) approxi-
mation, has been used in many studies [e.g., Sobel and Bretherton, 2000; Raymond and Zeng, 2005; Sobel
et al, 2007; Sessions et al., 2010; Daleu et al.,, 2012]. The WTG method relies on the physical principle that
horizontal temperature gradients are very weak in the tropics, due to gravity waves which act to redistribute
local buoyancy anomalies [Bretherton and Smolarkiewcz, 1989; Mapes and Houze, 1995; Yano and Bonazzola,
2009]. This method is valid only near the equator where the action of the Coriolis force is small, and in the
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tropical free troposphere at levels where the stratification allows such waves. Sobel and Bretherton [2000]
made use of this physical principle to parameterize a large-scale tropical circulation that consumes the
simulated heating and accordingly maintains zero horizontal temperature gradient. Most subsequent WTG
studies have imposed a weaker constraint in which the parameterized large-scale circulation removes the
horizontal temperature gradient over a short but nonzero time scale [e.g., Shaevitz and Sobel, 2004; Ray-
mond and Zeng, 2005; Sobel et al., 2007; Sessions et al., 2010; Wang and Sobel, 2011; Daleu et al., 2012; Wang
et al.,, 2013]. A recent innovation of this method is WTG simulations with spectral decomposition of heating
in the vertical dimension [Herman and Raymond, 2014].

Another large-scale parameterization method, namely, the damped gravity wave (DGW) method, derives
the large-scale vertical velocity directly from the approximated momentum equations. This parameteriza-
tion method has been applied in several studies that simulate the two-way coupling between convection
and large-scale dynamics, with the latter being simplified to a linear gravity wave of a single horizontal
wave number [Kuang, 2008, 2011; Wang et al., 2013; Romps, 2012a, 2012b; Edman and Romps, 2015].

These two large-scale parameterization methods (the WTG method and the DGW method) have proved to
be useful frameworks that offer a pathway to attack the key question of what controls large-scale variation
of tropical deep convection. The configuration that is studied usually involves a reference reservoir column
which is coupled to an interactive column simulated by a CRM or a SCM [e.g., Raymond and Zeng, 2005;
Sobel et al., 2007; Sessions et al., 2010; Wang and Sobel, 2011; Kuang, 2008, 2011; Wang and Sobel, 2012;
Wang et al., 2013; Romps, 2012a, 2012b]. Recently, however, Daleu et al. [2012] developed a new configura-
tion that couples two interacting columns via a WTG derived large-scale circulation to study the influence
on local convection due to changes in remote convection [Daleu et al., 2014].

Much insight has been learned from these efforts. Unfortunately, many aspects of these large-scale parame-
terization methods remain uncertain since the published results using these methods show both similarities
and discrepancies in model behavior. An example of a discrepancy is found in an evaluation of the simula-
tions of SCMs and CRMs with surface conditions identical to those of the reference column. In some studies,
the equilibrium state obtained is almost identical to the state of the reference column [e.g., Sobel and Breth-
erton, 2000], while others obtained a simulated mean precipitation rate which is either greater than the
implied value for the reference column [e.g., Sobel et al., 2007], or smaller than the implied value for the ref-
erence column [e.g., Raymond and Zeng, 2005; Daleu et al., 2012; Herman and Raymond, 2014].

Other examples of discrepancies are found in the evaluation of the shape of the derived large-scale vertical
velocity, the sensitivity of the simulated precipitation to changes in surface conditions, and the sensitivity of
the final equilibrium state to the initial moisture conditions. The WTG method often produces large-scale verti-
cal velocities that are top-heavy and not as smooth [e.g., Raymond and Zeng, 2005; Sobel et al., 2007; Daleu
et al, 2012] as those obtained from the DGW method [e.g., Kuang, 2012; Wang et al.,, 2013]. Romps [2012a,
2012b] presented a particularly straightforward comparison of this attribute between the two schemes. For a
given method of parameterization of the large-scale circulation, some models are less sensitive to changes in
surface conditions compared to others. Finally, while some models that parameterize the large-scale circula-
tion are not sensitive to the initial moisture conditions, others can sustain either an equilibrium state with per-
sistent, precipitating convection or else an equilibrium state with zero precipitation depending on the initial
moisture conditions [e.g., Sobel et al., 2007; Sessions et al., 2010; Emanuel et al., 2014].

In practice, the WTG method is not applied in the boundary layer. This requirement is respected by impos-
ing a nominal boundary layer top below which the values of the large-scale vertical velocities are calculated
by the linear interpolation from the value diagnosed at the nominal top to the value of zero at the surface
[e.g., Sobel and Bretherton, 2000; Raymond and Zeng, 2005; Daleu et al., 2012]. In addition, the WTG method
performs poorly at levels where the static stability is close to zero [e.g., Raymond and Zeng, 2005; Daleu
et al., 2012]. This problem is commonly resolved by imposing a lower bound to the static stability used to
calculate the WTG vertical velocity [e.g., Raymond and Zeng, 2005; Sessions et al., 2010; Daleu et al., 2012].
Given these two required fixes in addition to the fact that the WTG method derives the large-scale vertical
velocity from the buoyancy anomalies rather than from the momentum equations as in the DGW method,
it may appear that the WTG method is a less appropriate approach to capture the relevant dynamics, and
the nature of the results may be sensitive to the details of its implementation. Caveats arise in the use of
the DGW method as well, since it has its own assumptions. In particular, it considers one horizontal wave
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Table 1. List of Cloud-Resolving Models (CRMs) That Participated in This Study®
Cloud-Resolving Models (CRMs)

Model Type Columbia University CNRM-GAME NASA New Mexico Tech UK Met Office
Modelling Group
Model ID WRF MesoNH LaRC-CRM NMTCMv3 LEMv2.4
Symbol . A * | v
Contributor S. Wang P. Peyrille A. Cheng M. J. Herman C. Daleu
Country U.sS. France UsS. us. UK
Dimension 3-D 3-D 2-D 2-D 2-D
Hor. size (km) 190 X 190 150 X 150 256 200 128
Hor. res (km) 2X2 3Xx3 4 1 0.5
No. of levels in 49 46 30 81 59
the vertical

“The symbols serve as a legend for results presented in section 4.

number at a time and assumes a simplified form of damping which requires an extra parameter besides the
gravity wave horizontal length scale. Previous direct comparisons between the WTG and DGW schemes are
found in Romps [2012a, 2012b], Edman and Romps [2014], and Edman and Romps [2015].

However, it should also be recognized that various other factors are important for the evolution of convec-
tive cells and thus, the results of their interactions with large-scale dynamics. These include model physics,
geometry [e.g., Bretherton and Smolarkiewcz, 1989; Tompkins, 2000; Petch et al., 2008], horizontal domain
size [e.g., Tompkins, 2000; Bretherton and Smolarkiewcz, 1989], horizontal resolution [e.g., Bryan et al., 2003],
and cloud-radiative feedbacks [e.g., Held et al., 1993; Tompkins and Craig, 1998]. Therefore, some of the dis-
crepancies between different studies that are seen in the published results may simply be the result of
model dependency or different model setups.

It is clear that differences in the published results may be the result of the choice of large-scale parameter-
ization method and its implementation or may be the result of differences of the cloud model physics used
to simulate convection. The Global Energy and Water Exchanges (GEWEX) Global Atmospheric Systems
Modelling Panel (GASS) developed this international intercomparison project, the GASS-WTG project, to
develop community understanding of the large-scale parameterization methods currently in use, to identify
differences in behavior of different SCMs to inform parameterization development, and to assess the useful-
ness of these approaches as tool for parameterization development. As part of this project, we perform sys-
tematic comparisons of the WTG and DGW methods with a consistent implementation in a number of
CRMs and SCMs, and systematic comparison of the behavior of CRMs and SCMs under the WTG method
and DGW method. Part 1 of this study considers the case of equivalent surface conditions between the
simulated column and the reference column, while Part 2 will focus on the sensitivity to SST in the simu-
lated column. Part 1 is organized as follows. Section 2.1 describes the models that have contributed to this
study. Section 2.2 presents the radiative-convective equilibrium states that are used to define the reference
states and to provide a set of initial conditions for the simulations with parameterized large-scale circula-
tion. Section 3 details our implementation of the WTG and DGW methods. Section 4 compares the results of
the WTG and DGW simulations over uniform SST, including the results from the sensitivity to initial moisture
conditions. Finally, the conclusions and the implications of our study are discussed in section 5.

2. Models Description and Radiative-Convective Equilibrium Simulations

2.1. Models Description

Six groups participating in this intercomparison study performed simulations with 12 models. Five of these
models are CRMs (two use three-dimensions [3-D] and three use two-dimensions [2-D]) while seven are
SCMs. The models are listed in Tables 1 and 2 for CRMs and SCMs, respectively.

2.1.1. Clouds Resolving Models

The Weather Research and Forecast (WRF) model version 3.3 [Skamarock et al., 2008] is configured in the
WTG and DGW mode [Wang and Sobel, 2012; Anber et al., 2014]. Microphysics scheme is the Purdue-Lin
bulk scheme [Lin et al., 1983; Rutledge and Hobbs, 1984]. This scheme has six species: water vapor, cloud
water, cloud ice, rain, snow, and graupel. The 2-D Smagorinsky first-order closure scheme is used to parame-
terize the horizontal transports by subgrid eddies. The surface fluxes of moisture and heat are
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Table 2. List of Single-Column Models (SCMs) That Participated in This Study®
Single-Column Models (SCMs)

Royal Netherlands

Model Type LMD/IPSL NASA CNRM-GAME UK Met Office Meteorological Institute
Modelling Group
Model ID LMDzA LMDzB GISS-SCM ARPEGEV6 (ARPV6) UMv7.8 EC-Earthv1 EC-Earthv3
Symbol < > o Y * <& O
Contributor G. Bellon G. Bellon D. Kim G. Bellon C. Daleu B. van Ulft B. van Ulft
Country France France us. France UK NL NL
No. of levels in 39 39 40 91 63 61 61

the vertical

“The symbols serve as a legend for results presented in section 4.

parameterized following Monin-Obukhov similarity theory. The Yonsei University (YSU) first-order closure
scheme is used to parameterize boundary layer turbulence and vertical subgrid scale eddy diffusion [Hong
and Pan, 1996; Noh et al., 2003; Hong et al., 2006].

The mesoscale, nonhydrostatic atmospheric model MesoNH is described in Lafore et al. [1997]. The structure
and evolution of the boundary layer is determined with a 1-D eddy diffusivity turbulent scheme with a 1.5-
order closure for prognostic turbulent kinetic energy [Cuxart et al., 2000]. Thermals and shallow convection
are parameterized with a mass flux approach from Pergaud et al. [2009]. The cloud microphysics are
described by a mixed-phase scheme [Caniaux et al., 1994; Pinty and Jabouille, 1998] that takes into account
six water variables (water vapor, cloud droplets, raindrops, pristine ice, snow, and graupel). Surface fluxes
are determined over the ocean from an iterative method based on Belamari [2005] and Weill et al. [2003].

The Langley Research Centre Cloud-Resolving Model (LaRC-CRM) is described in Cheng and Xu [2006]. It
uses the analytical double-Gaussian Il probability distribution function proposed by Larson et al. [2002] to
derive the cloud fraction and liquid water, and the buoyancy production terms of the second-order and
third-order moment equations.

The New Mexico Tech cloud model is a toy model introduced in Raymond and Zeng [2005], with modifica-
tions and enhancements described in Herman and Raymond [2014]. A complete model description is found
in the appendix of the latter work. The prognostic variables are specific moist entropy, total water mixing
ratio (advected condensate and water vapor), rainfall mixing ratio, and momentum. The model is fully com-
pressible with Smagorinsky turbulent mixing, bulk surface fluxes and a simplified microphysics scheme. An
approximated ideal gas law is used such that water loading is not considered.

The Met Office Large Eddy Model at version 2.4 is described in Shutts and Gray [1994] and Petch and Gray
[2001]. It includes a five-category prognostic microphysical scheme [Swann, 1998; Brown and Heymsfield,
2001] with prognostic variables for the mixing ratios of cloud water, rain, ice, graupel, and snow, and for the
number concentrations of ice, graupel, and snow. The subgrid turbulence scheme is based on the first-
order SmagorinskyLilly approach [Brown et al., 1994].

2.1.2. Single-Column Models

LMDzA and LMDzB are the SCM versions of the atmospheric components of IPSL-CM5A and IPSL-CM5B
[Dufresne et al,, 2013]. In LMDzA, convection is parameterized by the Emanuel's [1991] mass flux scheme where
closure and triggering take into account both tropospheric instability and convective inhibition. The statistical
cloud scheme follows Bony and Emanuel [2001]. LMDzB shows a new set of physical parameterizations including
representations of boundary layer thermal plumes and of cold pools. Deep convection triggering and closure of
deep convection are controlled by lifting due to these subgrid processes [Hourdin et al., 2013].

GISS-SCM is the single-column form of the post-CMIP5 version of the National Aeronautics and Space
Administration Goddard Institute for Space Studies (GISS) GCM Model E2. This version is an updated from
the one used in CMIP5 [Schmidt et al., 2014]. The cumulus [Kim et al., 2012] and planetary boundary layer
parameterizations [Yao and Cheng, 2012] have been changed from the CMIP5 version, which led Model E2
to simulate a much better Madden-Julian oscillation and slightly improved marine stratocumulus.

ARPEGE is the SCM version of the atmospheric component of the CNRM-CM5 model [Voldoire et al., 2013].
Convection is parameterized by a mass flux scheme in which triggering depends on atmospheric stability
and the closure is a function of moisture convergence [Bougeault, 1985]. A statistical cloud scheme
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developed by Ricard and Royer [1993] is included. This study uses a more recent version of the same model;
ARPEGE version 6.04 (ARPv6) which has a buoyancy-based parameterization of convection that includes
prognostic condensates and improved convective transport (PCMT, Prognostic Condensates Microphysics
and Transport) [Piriou et al., 2007; Guérémy, 2011].

UMv7.8 is the single-column form of the Met Office Unified Model [Davies et al., 2005]. The convection parame-
terization is based on the bulk mass flux approach of Gregory and Rowntree [1990], with various subsequent
modifications being described by Derbyshire et al. [2011], including an adaptive detrainment specification. Strati-
form clouds are represented using the prognostic PC2 scheme of Wilson et al. [2008] with the associated micro-
physics following Wilson and Ballard [1999]. The boundary layer parameterization is that of Lock et al. [2000].

The SCM version of EC-Earthv1 is based on the atmospheric circulation model IFS, cycle 31r1 of the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) [Hazeleger et al., 2010]. Convection is based on
a bulk mass flux scheme proposed by Tiedtke [1989] with updates described in Bechtold et al. [2004]. A cloud
scheme with prognostic cloud water and cloud fraction developed described in Tiedtke [1993] is used. The
boundary layer turbulence for convective conditions is parameterized by a combined Eddy-Diffusivity Mass
Flux (EDMF) approach [Kohler et al., 2011]. The SCM version of EC-Earthv3 is based on IFS, cycle 36r4. The
main relevant differences with version v1 are the introduction of a humidity-dependent entrainment formu-
lation [Bechtold et al., 2008] and the introduction of prognostic ice and rain water.

2.1.3. Overall Approach

The lateral boundary conditions are periodic for all prognostic variables in all CRMs. To avoid the develop-
ment of along-domain wind shear that may occur [Tompkins, 2000; Mapes and Wu, 2001] and encourage
the formation of squall lines [Robe and Emanuel, 2001; Tao et al., 1999] for the CRMs in 2-D, the domain-
mean wind speeds in the along-domain direction and in the across-domain direction are relaxed toward
vertically uniform values of 0 and 5 m s, respectively; both with a relaxation time scale of 6 h. For the pur-
pose of fair comparison between 2-D and 3-D simulations, the horizontal domain-mean wind speed compo-
nents in the 3-D models are relaxed toward vertically uniform values of 0 and 5 m s~ '. The horizontal
domain-mean wind speed components in the SCMs are also relaxed toward vertically uniform values of 0
and 5 m s~ . Applying a vertically uniform wind speed of 5 m s~ ' does not affect the dynamics of convec-
tion. It is simply used to increase the value of surface evaporation compared to the no wind value.

In all models, we use a spatially uniform and time-independent sea surface temperature (SST) as the lower
boundary condition and no Coriolis force is applied. Aside from any large-scale circulation that might
develop via the WTG or DGW method, these models are forced using an idealized cooling profile roughly
approximating the effects of longwave radiation on the tropical troposphere. Such a cooling will henceforth
be referred to as radiative cooling. It cools the temperature at a constant rate of 1.5 K d ™' from the surface
to 200 hPa while maintaining the temperature of the upper troposphere and stratosphere at a uniform
value of 200 K. Thus, the tendency of temperature due to radiative cooling, (0T /0t)g. is written as

-1.5 if p > 200

oT p—100 200—p\ - ) _

a3y 27 . - T-2 f1 2

(&)RC 5( 100 ) ocr< 100 )( 00) if 100 < p < 200 (1)
—o7(T—200) if p <100

where the overbar denotes a horizontal domain-average, p is the pressure in hPa, and o7 '=1 day is the
relaxation time scale of the temperature T toward a fixed value of 200 K at levels with p < 100 hPa. This
treatment of radiative cooling is similar to that of Pauluis and Garner [2006] and Wang and Sobel [2011] for
example. It produces a horizontally homogeneous and noninteractive cooling throughout most of the tro-
posphere and hence, does not permit complications that may arise from radiative-convective instability
such as convective organization [Held et al., 1993; Tompkins and Craig, 1998]. The main focus of this study is
the interactions between convection and large-scale dynamics. Hence, the choice of using an idealized radi-
ative cooling profile is made for simplicity only, and experiments to assess sensitivities to cloud-radiation
interactions are left to a future study.

2.2. Radiative-Convective Equilibrium Simulations
To provide a reference profile which is consistent with the equilibrium state of each the models, we perform
radiative-convective equilibrium (RCE) simulations with the values of SST equal to 298, 300, and 302 K. The
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Figure 1. Mean precipitation rates at equilibrium. Results are obtained in the RCE simulations over an SST of 298 K (light blue), 300 K
(black), and 302 K (red). The CRM and SCM results are shown on the left-hand and right-hand sides of the vertical line, respectively.

RCE simulations are run for a minimum period of 50 days, enough for each model to produce a quasi-
equilibrium state in which precipitation balances surface evaporation and the sensible and latent heat
fluxes balance the radiative cooling.

Figure 1 shows the mean precipitation rates at equilibrium in the RCE simulations of each of the models
listed in Tables 1 and 2 with the SSTs of 298, 300, and 302 K. For all models, there is a slight increase in
mean precipitation rate with SST. The increase in precipitation rate with SST is consistent with an increasing
contribution from evaporation with increasing SST to the surface energy flux required to balance the radia-
tive cooling.

Figure 2 shows the mean profiles of temperature and humidity obtained by averaging the RCE profiles of all
CRM:s. Figure 3 shows the differences in temperature and humidity between the RCE profiles in each model
compared to the profiles obtained by averaging over all CRMs (profiles shown in Figure 2). Results are
shown for the RCE simulations over an SST of 300 K. Note the difference in the range of temperature and
moisture profile differences for CRMs and SCMs. The moisture profile differences among CRMs are less than
2 g kg~ in the boundary layer and less than 1 g kg™ ' in the free troposphere. The temperature profile dif-
ferences among CRMs are within 2 K throughout the column. However, there is a large spread among SCMs
with a maximum moisture difference over 4 g kg~' and a maximum temperature difference over 7 K. The
shapes of temperature profiles are roughly similar. In all cases, temperature gradually decreases with pres-
sure up to the first model level just above 200 hPa and then relaxes toward the fixed value of 200 K around
100 hPa (results not shown). Most models have similar static stability profiles except MesoNH, UMv7.8, and
GISS-SCM.

0 : : : : : 0 : :
(@) (b)
200 - L 200 - :
[
o
£ 400 L 400 :
o
2 600 - 600 -
o
- 800 - 800 A -
00 . . : . . 1000 . :
180 200 220 240 260 280 300 0 5 10 15
T (K) q (g kg")

Figure 2. Profiles of (a) temperature and (b) specific humidity. Results are obtained by averaging RCE profiles of all CRMs. Results are
shown for the RCE simulations with an SST of 300 K.
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Figure 3. Difference in (a, b) temperature and (c, d) specific humidity between the RCE profiles of each of the models listed in Tables 1 and 2 and the profiles obtained by averaging
over all CRMs. Results are those obtained in the (Figures 3a and 3c) CRMs and (Figures 3b and 3d) SCMs in a state of RCE over an SST of 300 K.

For all SSTs, the value of temperature at the model level just below 200 hPa differs from model to model,
with the smallest value produced by ARPv6. As a result, ARPv6 produces the smallest radiative cooling (see
equation (1)) compared to all other models. Since the radiative cooling rate is constant below 200 hPa,
ARPV6 also produces the smallest column-integrated radiative cooling rate. The value of surface sensible
heat flux differs between models (results not shown) but is much smaller than surface latent heat flux. Thus,
the main balance in RCE is between the column-integrated radiative cooling rate and precipitation rate.
Hence, models with weaker radiative cooling will generate less convective heating and therefore less
precipitation than models with stronger radiative cooling. This is evident by noting that ARPv6 exhibits
the smallest radiative cooling and produces the lowest precipitation rate (Figure 1). This flexibility in the
value of column-integrated radiative cooling rate combined with the flexibility in the value of surface sensi-
ble heat flux result in different values of precipitation rates when comparing models against each other.
CRMs show less variation in mean precipitation rates compared to SCMs. UMv7.8 is much warmer and mois-
ter at the surface compared to all other models (see Figures 2b and 2d). However, since UMv7.8 produces
values of surface fluxes which are very close to the values produced by other models, the analysis of the
relationship between surface evaporation and moisture deficit reveals that UMv7.8 also has a much higher
transfer coefficient compared to all other models (not shown). The RCE thermodynamic profiles are used to
define the reference states in the implementation of the WTG and DGW methods, as well as providing initial
conditions for the WTG and DGW simulations.

3. Parameterization of the Large-Scale Dynamics

We use the WTG and DGW methods to parameterize large-scale dynamics in the set of CRMs and SCMs
listed in Tables 1 and 2. The WTG method relies on observations that in the deep tropics horizontal gra-
dients of virtual potential temperature are small in the free troposphere. Assuming that the large-scale
dynamics act to maintain the domain-mean virtual potential temperature close to a reference virtual
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potential temperature 0ve in the free troposphere, the large-scale pressure velocity, @ is diagnosed there
. . .7 oRef

from the virtual potential temperature anomalies HV—HVe as

o2 _f(P) (0,—0%" 2)

with the relaxation time scale = = 3 h. The dimensionless function f(p) is introduced to allow the adjustment
rate A(p)=f(p)/t to be function of pressure. The results presented in this paper are obtained from simula-
tions performed with f;(p)=1 as in Wang and Sobel [2011]. Some results from simulations performed with
the half-sine profile f,(p)=sin (n(ps—p)/(ps—p:)) (@s used in Raymond and Zeng [2005] and Sessions et al.
[2010], with ps; and p; the pressures at the surface and the tropopause, respectively) have also been
obtained and these are mentioned in section 4.4.

In the boundary layer, surface fluxes create temperature gradients more efficiently than gravity waves
damp them [Sobel and Bretherton, 2000]. In this study, the boundary layer is defined somewhat arbitrarily as
those levels with pressures higher than or equal to p, = 850 hPa. We apply equation (2) from the first model
level above p, to 100 hPa. Below p,, the values of @ are obtained by linear interpolation in pressure from
the value diagnosed at the first model level above p,, to zero at the surface.

Equation (2) could produce very large and unphysical values of @ if the static stability is very weak. To pre-
vent our simulations from producing such values, we follow Raymond and Zeng [2005] and Daleu et al.
[2012] and impose a lower bound equivalent to 1 K km ™" on the static stability when using equation (2).

The DGW method derives @ from a wave equation that is obtained by combining the momentum and ther-
modynamics equations. This method has been used to allow the coupling between convection and large-
scale dynamics, which is simplified to a linear gravity wave of a single horizontal wave number [e.g., Kuang,
2008, 2011]. The DGW method relates the second-order derivative of @ to the virtual temperature anoma-

lies T_‘,—Tfef as
0 o[0) K2Ry = —pef
o5 (<39~ o 1T ®

where ¢ is the mechanical damping coefficient, k is the horizontal wave number, R, is the gas constant of
dry air, T, is the horizontal domain-mean virtual temperature, and TCEf is the target virtual temperature
against which wave perturbations are computed. The elliptical equation (3) can be solved efficiently using a
standard triangular matrix solver with boundary conditions @ =0 at the surface and at 100 hPa. A full
description of the implementation of the DGW method used here is given in Kuang [2008, 2011]. Although
some details of the implementation of the DGW method are different from the studies of Romps [2012a,

2012b], their common effect is to enforce a weak horizontal pressure gradient.

The parameters t in the WTG method and k and e in the DGW method are the key parameters that cou-
ple convection to the large-scale motion and vice versa. In the WTG calculations, the same adjustment
time scale, =3 h, is used for all vertical modes. In the DGW calculations, we fix the value of e = 1 day '
and solve equation (3) with a single horizontal wave number k=107 m~". These are typical values
used in previous WTG and DGW studies [e.g., Herman and Raymond, 2014; Daleu et al., 2012; Wang and
Sobel, 2011; Wang et al., 2013]. In this study, the values of 1, k, and e have been chosen such that the
strength of the large-scale circulations produced by a buoyancy anomaly with a first internal mode
structure is comparable for the WTG and DGW methods. Wang et al. [2013] used the same values of k
and € and obtained a large-scale circulation in a DGW simulation that was comparable in strength to
that produced in a corresponding WTG simulation with the adjustment time scale of 4 h [see Wang
et al., 2013, Figure 5]. The calculations of @ given by equations (2) and (3) are performed either every 10
min (for models with integration time steps less than 10 min) or at every model time step (for models
with larger time steps).

The large-scale circulation parameterized in the model using either equation (2) or (3) introduces additional
source and sink terms to the heat and moisture budgets. In this study, we consider its effects on potential
temperature and water vapor only, so that the derived large-scale circulation does not advect any other
form of hydrometeor. Adiabatic heating or cooling of the column due to the derived large-scale circulation,
(00/0¢t), s is written as
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00 a0
=) =—a— 4
(at)LS “op @
and the transport of moisture by the derived large-scale circulation, (0q,/0t), is written as
aqy _0q, 0w _Ref  —
=— + il _
( Bt )LS 05, TMax| 5,20 (@7 ~a,) (5)

where g, is the domain-mean specific humidity of water vapor and ¢ is the specific humidity of the refer-

ence state. The term on the right-hand side of equation (4) and the first term of the right-hand side of equa-
tion (5) are the large-scale vertical advection of potential temperature and water vapor, respectively. The
second term on the right-hand side of equation (5) is nonzero only if there is convergence into the simu-
lated column. It represents the large-scale horizontal advection of water vapor which in this study is para-
meterized as the drawing of the reference state air into the simulated domain by the diagnosed large-scale
circulation. It is described as “lateral entrainment” by Raymond and Zeng [2005] and used in many other
studies [e.g., Raymond and Sessions, 2007; Sessions et al., 2010; Wang et al., 2013; Herman and Raymond,
2014]. However, it should be noted that other studies incorporated different representations of the horizon-
tal moisture advection [e.g., Sobel et al., 2007; Sobel and Bellon, 2009; Wang and Sobel, 2012].

4, Results

For the implementation of the WTG and DGW methods, we need to prescribe the profiles of the reference
state. For each model and for a given SST, the profiles of the reference state and the profiles used to initial-
ize the WTG and DGW simulations are those obtained in the RCE simulation of the same model with the
same SST.

We conducted a set of WTG and DGW simulations using each of the models listed in Tables 1 and 2. How-
ever, the time scale of adjustment of each model to a quasi-equilibrium state with the parameterized large-
scale circulation is different and it is also different depending on which large-scale parameterization
method is used. Therefore, the simulations to be discussed were integrated over a period of time ranging
between 50 and 250 days, and the mean states and statistics at equilibrium of each simulation have been
obtained by averaging over a period of time such that a statistically steady state can be defined. The aver-
aging period was the last 20 days in the 50 day simulations, 30 days in the 100 day simulations, and 100
days in the 250 day simulations.

4.1. Equilibrium State With Parameterized Large-Scale Circulation

We compared the equilibrium states produced in the WTG and DGW simulations to the RCE reference states
using a ratio of mean precipitation rate of the simulated column, P, to the mean precipitation rate of the
corresponding RCE reference state, Pger, that is P/Pges. The values of P/Pges are shown in the top, middle,
and bottom of Figure 4 for P obtained at equilibrium in the WTG and DGW simulations over an SST of 298,
300, and 302 K, respectively. We also consider Figure 5, which shows the profiles of @. These profiles are
obtained at equilibrium in the WTG and DGW simulations performed over an SST of 300 K. For models in
height coordinates, we expressed the large-scale vertical velocities in Pa s~ by applying the factor “—pg,”
where p is density and g is the gravitational acceleration.

Since the simulated column in the WTG and DGW simulations has the same domain character (domain size,
horizontal resolution, surface conditions, etc.) as the respective model’s RCE reference state and is initialized
with the profiles of the RCE reference state, the RCE reference state is a stable equilibrium state under the
WTG and DGW configurations if the equilibrium state produced in the simulated column is similar to the
RCE reference state. To provide a more quantitative evaluation of the simulations with parameterized large-
scale circulation, we calculated the mass-weighted vertical integral of the large-scale pressure velocities pre-
sented in Figure 5. That is Q= [ @dp/Ap. Here we consider the derived large-scale circulation to be negligi-
ble (@ ~ 0) if |Q] < 0.4X1072 Pa s~ ' and the mean precipitation rate in the simulated column to be
comparable to that in the RCE reference state if 0.9 < P/Pges < 1.1. We chose P to be comparable to Pg if
it is within 10% of Pg.r and for a typical value of column-averaged static stability, our mass-weighted large-
scale pressure velocity corresponds to column-averaged large-scale heating of about 10% of the radiative
cooling rate imposed in the troposphere, and the two measures are self-consistent.
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Figure 4. Ratios of mean precipitation rate of the simulated column P to the mean precipitation rate of the corresponding RCE reference
state Prer. Results are those obtained at equilibrium in the WTG (black circles) and DGW (red circles) simulations over an SST of (a) 298 K,
(b) 300 K, and (c) 302 K. The CRM and SCM results are shown on the left-hand and right-hand sides of the vertical line, respectively. The
grey area indicates 0.9 < P/Pges < 1.1.

The numerical values of Q and P/Pgs are summarized in Tables 3 and 4 for CRMs and SCMs, respectively.
Results in bold correspond to |Q < 0.4X1072 Pa s ' or 0.9 < P/Pgs < 1.1. Figure 6 shows scatterplots of
Q and P/Pger for the simulations which produce |Q| < 0.4X1072 Pa s"'and 0.9 < P/Prer < 1.1. A model
under the WTG or DGW method is considered to replicate the RCE conditions to a good approximation if
the numerical values of Q and P/Pg are bold faced (Tables 3 and 4 insets) or if the corresponding symbol
on the scatterplot of Q versus P/Pg is represented in Figure 6. Some models replicate the RCE reference
state to a good approximation under both WTG and DGW, regardless of the SST. An example is WRF (light
blue, black, and red solid circles in Figures 6a and 6c). Some models replicate the RCE reference state to a
good approximation under either the WTG method or DGW method and for some SSTs only (e.g.,
NMTCMv3 under the WTG method; light blue and black solid squares in Figure 6a) and some do not repro-
duce the RCE reference state for any SST under any method (e.g., EC-Earthv1; light blue, black, and red
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Figure 5. Large-scale pressure velocities obtained at equilibrium in (top) the WTG and (bottom) DGW simulations over an SST of 300 K. Results are shown for the (left) CRMs and (right)
SCMs. For each model, the reference profiles and the initial conditions are their own RCE profiles at 300 K.

diamonds are not represented in Figures 6b and 6d). The DGW simulations are slightly more likely to repro-
duce the RCE reference state than the WTG simulations.

Figure 7 shows scatterplots of Q and P/Pg for the WTG and DGW simulations of all the models listed in
Tables 1 and 2. Note the difference in axis for CRMs and SCMs. The grey areas in Figure 7 indicate |Q| < 0.4
X1072 Pas™ ' and 0.9 < P/Pres < 1.1, shown in detail in Figure 6. A symbol which is outside the grey areas
in Figure 7 corresponds to a model which, under the WTG or DGW method produces an equilibrium state
which is significantly different from its RCE reference state (e.g., LEMv2.4 under the WTG method with an
SST of 300 K; black solid inverted triangles in Figure 7a). For such WTG or DGW simulations, the equilibrium
state produced in the simulated column is maintained by a large-scale circulation established in the system.

The strength and direction of the circulation that develops over uniform SST differs from simulation to simu-
lation, with a range of behaviors—including uniform ascent or descent, as well as layers of ascent and
descent in the simulated column (see Figure 5). The simulations which produce uniform large-scale ascent
have an increase in mean precipitation rate relative to the value of the RCE reference state (e.g., the WTG
simulation of LMDzB with an SST of 300 K; dashed blue curve in Figure 5b and black right facing triangle in
Figure 7b) while those which produce uniform large-scale descent have a decrease in mean precipitation
rate relative to the value of the RCE reference state (e.g., the DGW simulation of UMv7.8 with an SST of
300 K; green curve in Figure 5d and black star in Figure 7d), consistent with the large-scale moisture trans-
ports by the large-scale circulation. In some SCMs under the WTG method, the large-scale descent in the
simulated column can be strong enough to inhibit precipitating convection completely. An example is the
WTG simulation of EC-Earthv1 with an SST of 302 K which shows P/Pg.s=0 in Figure 4c.

For the simulations which produce a large-scale circulation with layers of both ascent and descent in the
simulated column, the mean precipitation rate at equilibrium depends on the strength and the location of
the ascending and descending branches. In some of those simulations, the enhancement or reduction of
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mean precipitation rate relative to the
Table 3. Table Showing the Numerical Values of Q (the Mass-Weighted
Vertical Integral of the Large-Scale Pressure Velocity) and P/Pger (the Ratio value of the RCE reference state follows
of Mean Precipitation Rate of the Simulated Column to the Mean Precipita- the Sign of the lower tropospheric circula-
tion Rate of the RCE Reference State) for WTG and DGW Simulations Over a tion. For instance, the upper tropospheric

Uniform SST* T ) )
descent and drying in the WTG simulation

Model-CRMs WTG/DGW SST (K) QX107 2Pas" P/Pret
f EC-Earthv1 with an SST of K (soli
WRF WTG 298 0.110 0.990 of EC-Ea t. . th an S5T of 300 K (solid
300 0.180 1.020 red curve in Figure 5b) does not prevent
302 0.005 0.987 an increase in precipitation rate because
DGW 298 —0.031 1.010 the | ¢ heri th X
2 e e e lower tropospheric ascent has a ne
302 0.009 0.960 moistening effect as a consequence of
MesoH WIG 298 =0.380 0.886 vertical advection and lateral transport of
300 -0.290 0.896 ) . .
302 —0.009 0.980 moist environmental air near the bound-
DGW 298 —0.106 0.950 ary layer (equation (5)). Similarly, the
300 0.060 0.970 upper tropospheric ascent and moisten-
302 0.086 1.015 e ) )
LaRC-CRM WTG 208 1.150 1.180 ing in the DGW simulation of EC-Earthv1
300 0.970 1.200 an SST of 298 K does not prevent a reduc-
302 1.240 1.280 L s hat i
DGW 208 1340 1.240 tion In precipitation rate that is conse-
300 0.610 1.102 quence of lower tropospheric descent and
e G0 2k warming (large-scale pressure velocity
NMTCMv3 WTG 298 0.005 1.009 . ) .
300 0.100 1.028 profile is not shown). In other simulations,
302 —-1.320 0.670 the enhancement or reduction of precipi-
DGW 298 —0.300 0.924 . .
300 —0.388 0.896 tation rate relative to the value of th.e RCE
302 -0.378 0.903 reference state does not follow the sign of
LEMv2.4 WTG 298 0.650 1.140 the lower tropospheric circulation. An
300 1110 1.240 . . .
302 1560 1270 example is the WTG simulation of LaRC-
DGW 298 0.990 1.240 CRM with an SST of 302 K, in which the
2L DA U0z lower tropospheric descent and drying is
302 1.000 1.230

weak, so that an increase in precipitation

a ; .
These show results for the different CRMs. Results in bold correspond rate occurs due to the strong middle and

to|Q| < 0.4X10 2 Pas ' (or @ = 0) or 0.9 < P/Pges < 1.1; if both col-

umns are bold, the simulation with large-scale parameterization reprodu- upper tropospheric ascent and moisten-
ces the RCE state to a good approximation. ing (large-scale pressure velocity profile is
not shown).

We compared the WTG and DGW results and the CRM and SCM results. Some models show sensitivity of
the mean statistics (e.g., precipitation rates) to the SST which is not always monotonic (e.g., GISS-SCM under
the WTG method, Figure 4). Within the same SCM, a WTG simulation and a corresponding DGW simulation
can produce different signs of the circulation, which suggest different characters of convection-dynamics
feedback. An example is EC-Earthv1 with an SST of 298 K which produces P/Pgs > 1.1 under the WTG
method and P/Pges < 0.9 under the DGW method (EC-Earthv1 in Figure 4a). The WTG method uses the
same adjustment time scale for all the vertical modes and thus, damps the modes with shorter vertical
wavelengths too quickly. In contrast, the DGW method damps the modes with shorter vertical wavelengths
too slowly. Therefore, the couplings between convection and the large-scale circulation on shorter vertical
wavelengths are strengthened under the WTG method and weakened under the DGW method. These dif-
ferent effects on the damping rates of shorter vertical wavelengths produce the difference in smoothness
between the large-scale pressure velocity profiles obtained under the WTG and DGW methods [Romps,
2012b]; DGW simulations produce vertical velocity profiles which are generally smoother than those pro-
duced by WTG simulations (compare Figures 5b and 5d). There is a large spread among pressure velocities
produced by SCMs compared to CRMs. Under the WTG method, for example, the large-scale pressure veloc-
ity differences among SCMs range from —0.08 to 0.17 hPa s~ '; which is much larger than the range of
—0.04 t0 0.01 hPa s~ ' obtained among CRMs (compare Figures 5a and 5b). Finally, CRMs show a fairly linear
relationship between Q and P, with SCMs showing large deviations from this linear relationship particularly
for simulations which produced strong descent and low precipitation (Figure 7). The relationship between
precipitation and large-scale circulation found in this study is qualitatively consistent with observations
over the tropics; see for example Oueslati and Bellon [2013, Figure 11] which shows that over the tropics the
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relationship between large-scale circulation

Table 4. Same as Table 3, but Lists SCM Results o . . .
and precipitation is close to linear in ascend-

Model-SCMs ~ WTG/DGW  SST(K) ~ QX10 2Pas '  P/Pps . - . . ) ;
ing regions and is not as linear in subsidence
tMDzA wiG 298 -0.013 0-998 regions with reduced or zero precipitation
300 -0.015 0.997 9 precip :
302 -0.013 0.990 .
DGW 298 -0.013 0.998 4.2. Budget Analysis
300 —0.065 0.982 Here we analyze the budgets in order to
302 0174 1.054 clarify the differences among RCE, WTG, and
LMDzB WTG 298 —0.021 0.998 ) ) ’ i
300 1.180 1.290 DGW simulations. The heat and moisture
302 —0.780 0.790 budgets for a simulation with parameterized
DGW 298 -0.010 0.997 . . . )
B By o large-scale circulation are, respectively, writ
302 0.040 1.015 ten as
GISS-SCM WTG 298 -0.140 1.020 i
300 —5.700 0.180 H+P+R+C,(IT /Ot),s=0 )
302 2430 1.330 ~ _
and E—P+L,{(0q/0t), =0
DGW 298 1.880 1.195 V(09 /0t) s
300 —2.180 0.820 ith all variabl . . its. Th
302 1390 1310 with all variables written in energy units. The
ARPV6 WTG 298 —7.490 0.000 overbar indicates the domain and time-
Sy 22500 150 average over a period of time when the stat-
302 —5.160 0.000 icticall . h
DGW 508 0970 1.220 istically steady state is reached. E, H, P, and R
300 0.9720 1.260 denote the domain and time-averaged val-
Sz V2 U7z ues of surface evaporation, surface sensible
UMv7.8 WTG 298 —2.100 0.520 h p o call
300 5130 0470 eat flux, precipitation rate, and vertically
302 —3.996 0.530 integrated radiative cooling rate, respec-
REY ;33 ’:;ig g?gg tively. The terms with angle brackets
302 0946 0,889 ((-}zf;’s"’" -dp/g) in the heat and moisture
EC-Earthv1 WTG 298 4.890 240 budget equations represent the mean heat-
Sy WY a2 ing rate and moistening rate due to the
302 —3.980 0.000 di d le circulation. Th
DGW 08 oo 0390 iagnosed large-scale circulation. They are
300 2,990 1.920 hereafter denoted as H;s and M, respec-
Stz 1440 s tively. C, is the heat capacity at constant
EC-Earthv3 WTG 298 -0.075 0.950 . .
300 —0.1350 0.940 pressure and L, is the latent heat of vapori-
302 0.407 1.098 zation. For the RCE simulations, H;s and M;s
ZEl 28 0080 D= are zero by definition.
300 1.146 1.014
302 —0.002 0.975 From the moisture budget equation, the

changes in precipitation relative to the value

of the RCE reference state, AP, must be due
to either changes in surface evaporation, AE, or the moistening rate, M;s. Figure 8 shows scatterplots of AP
against M;s. Both CRMs and SCMs show fairly linear relationships between AP and M;s. However, AP is not
equal to M;s in most of the simulations, which implies changes in evaporation.

Figure 9 shows scatterplots of AP against AE. Recall that this study imposes a mean horizontal wind in the
surface flux calculations. As a result, the sensitivity of surface fluxes (sum of sensible heat and latent heat
fluxes) to changes in near-surface perturbation winds due to changes in convective activity is constrained.
This is readily seen in Figure 9. AE is generally much smaller than AP, such that changes in precipitation are
largely balanced by the moistening rates.

Despite the fact that the changes in surface fluxes have been constrained in this study, convective gusti-
ness is more effective in CRMs than SCMs. For instance, AE increases with AP in a large proportion of CRM
simulations while in SCM simulations, the enhancement of convective activity can be associated with a
reduction in surface evaporation (e.g., the DGW simulation of EC-Earthv1 with an SST of 300 K; black dia-
mond in Figure 9d) or a suppression of convective activity can be associated with an increase in surface
evaporation (e.g., the WTG simulation of ARPv6 with an SST of 302 K; red inverted triangle in Figure 9b)
and there are many SCM simulations which produce zero changes in surface evaporation when convec-
tive activity is enhanced or suppressed (e.g., the WTG simulation of GISS-SCM with an SST of 302 K; red
circle in Figure 9b).
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Figure 6. Scatterplots of Q (the mass-weighted vertical integral of the large-scale pressure velocity) and P/Pger (the ratio of mean precipitation rate of the simulated column to the mean
precipitation rate of the RCE reference state). Results are shown for the (top) WTG and (bottom) DGW simulations over an SST of 298 K (light blue), 300 K (black), and 302 K (red). Results
are shown for (left) CRMs and (right) SCMs. Results are shown for the WTG and DGW simulations which produce |Q] < 0.4X1072 Pas™'and 0.9 < P/Pger < 1.1.

We now examine the relationship between the normalized gross moist stability (I') and changes in precipi-
tation. Raymond et al. [2009] defined T" as the dimensionless number which relates the net lateral outflow
of moist static energy from a convective region to some measure of the strength of convection in that
region. That is

I'=—{(w0oh/dp)/L{®dq/0p) 7)
where h is the moist static energy, g is the specific humidity of water vapor, and L is the latent heat of
vaporization.

However,
(00h |0p)=—H;s—Ms and (®0q/dp)=—M,s (8)
and from equations (6) and (8), a diagnostic equation for P is
P—E=(E+H+R)/T 9)
with
['=—(Mis+Hs)/Mis (10)

Equations similar to equation (9) have been used in previous studies to interpret convective responses to
surface fluxes and radiative cooling [Anber et al., 2014] and external drying [Wang and Sobel, 2011].

We do not calculate T" for WTG and DGW simulations which reproduce the RCE reference state to a good
approximation, since I' is a poor diagnostic when M;s+H;s and M, are both close to zero, consistent with a
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Figure 7. Similar to Figure 6, but results are shown for the WTG and DGW simulations of all the models listed in Tables 1 and 2 and for the SSTs of 298 K (light blue), 300 K (black), and
302 K (red). The grey boxes indicate |Q| < 0.4X107% Pa s 'and 0.9 < P/Pges < 1.1; shown in detail in Figure 6.

weak large-scale circulation. Figure 10 shows scatterplots of AP against I" for the simulations which produce
significant large-scale circulations at equilibrium (P/Pges < 0.9 or P/Pger > 1.1 with |Q| > 0.4X 1072 Pa s7).
All CRMs with significant large-scale circulation have positive values of I' independent of the direction of
the large-scale circulation. Their values of I" are less than 0.6 and the DGW simulation of LaRC-CRM with an
SST of 300 K is the only simulation which has T" ~ 0 (black solid diamond in Figure 10c). In that simulation,
M, is nonzero and positive (see black solid diamond in Figure 8c), while M;s+H;s ~ 0 as the result of the
net balance between the cooling and moistening rates. In contrast to CRMs, SCMs with significant large-
scale circulation can have positive or negative values of I" independent of the direction of the large-scale
circulation (see Figures 10b and 10d).

In the absence of a large-scale circulation P—E=0 and E+H-+R=0. Hence, we can recast equation (9) in
terms of the changes from the RCE values as

T+1,_ AH+AR
AP=-—""AE+
r r

amn

In this study, the sensitivity of radiative cooling to the changes in humidity and cloudiness has been con-
strained by imposing a fixed radiative cooling rate throughout most of the troposphere. As a result, AR is
much smaller than AP for most of these simulations (results not shown). In addition, most of these simula-
tions show that the sum of AH and AR is negligible compared to AE, which means that the factor (1+1I")/T"
largely describes the strength of the relationship between AE and AP (see equation (11)). Figures 9 and 10
show that differences in both the gross moist stability and the changes in evaporation are important in
determining the spread of precipitation changes observed in these models. Negative I" (with |I'| < 1) as
seen in some of the SCMs with significant large-scale circulation means that AE and AP have opposite signs.
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Figure 8. Scatterplots of AP (the changes in precipitation rate relative to the value of the RCE reference state) and M;s (the column-integrated moistening rates due to the large-scale cir-
culation). The results are those obtained in the (top) WTG and (bottom) DGW simulations over an SST of 298 K (light blue), 300 K (black), and 302 K (red). Results are shown for (left)
CRMs and (right) SCMs.

For example, an increase in precipitation requires a reduction in evaporation as seen in the WTG simulation
of EC-Earthv1 with an SST of 300 K (black diamond in Figures 9b and 10b).

4.3. Sensitivity to Initial Moisture Conditions

We now examine the sensitivity of the final equilibrium state to the initial moisture conditions. We compare
the equilibrium states produced with the simulated domain initialized with the relative humidity of the RCE
reference state (i.e.,, the WTG and DGW simulations described above) to the equilibrium states produced in
a set of parallel simulations with the simulated domain initialized with relative humidity equal to 0% at all
model levels.

Figure 11 illustrates the dependence of P on the initial moisture conditions for each CRM and SCM. Initially,
dry simulations are indicated by circles, while solid circles indicate initially moist simulations. DGW simula-
tions always maintain a moist equilibrium state for any initial moisture condition (red circles and red solid
circles in Figure 11 always show P/Pgs # 0). Some DGW simulations produce precipitation rates that are
independent of the initial moisture conditions (e.g., WRF with all SSTs). On the other hand, some DGW simu-
lations produce precipitation rates that vary depending on the initial moisture (e.g., MesoNH with all SSTs),
with some cases of increased precipitation rate from the completely dry initial conditions (e.g., EC-Earthv1
with an SST of 298 K; Figure 11a).

WTG simulations (black circles and black solid circles in Figure 11) exhibit a wider range of outcome com-
pared to DGW simulations. Unsurprisingly, simulations which produce zero precipitation when initialized
with the relative humidity of the RCE reference state do not precipitate from the completely dry initial con-
ditions. These include ARPv6 with SSTs of 298 and 302 K (Figures 11a and 11c), and EC-Earthv1 with an SST
of 302 K (Figure 11¢). Some WTG simulations produce precipitation rates that are independent of the initial
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Figure 9. Scatterplots of AP (the changes in precipitation relative to the value of the RCE reference state) and AE (the changes in evaporation relative to the value of the RCE reference
state). Results are those obtained in the (top) WTG and (bottom) DGW simulations over an SST of 298 K (light blue), 300 K (black), and 302 K (red). Results are shown for (left) CRMs and

(right) SCMs.

moisture conditions (e.g., LMDzA with all SSTs). As with the DGW simulations, some WTG simulations can
sustain two distinct precipitating equilibrium states (e.g., MesoNH with all SSTs) but in contrast to DGW sim-
ulations, some WTG simulations can sustain either a persistent, precipitating convective state or a nonpreci-
pitating state (hereafter called multiple equilibria), depending on the initial moisture conditions (e.g.,
LEMv2.4 with all SSTs). In some models, multiple equilibria under the WTG method are sustained for some
SSTs only. Some examples are WRF with SSTs of 300 K or above (Figures 11b and 11¢), LMDzB with SST of
302 K only (Figure 11c). Multiple equilibria are more obtained in WTG simulations with higher SST, although
GISS-SCM under the WTG method shows a nonmonotonic dependence on SST.

In all WTG simulations that sustain multiple equilibria, an initially moist column will sustain precipitating
convection while an initially dry column will remain dry. The only difference in the simulations is the initial
moisture profiles. In the initially dry state, there is a strong flux of moisture into the boundary layer from the
sea surface. At the same time, a descending circulation is established in the simulated column as this cools
without experiencing convective heating and also because HV—Hﬁef < 0 when setting g, = 0 kg kg~ ". Thus,
to reach a precipitating state requires that sufficient moisture is supplied sufficiently quickly to develop pre-
cipitating convective cells in the presence of a subsidence warming and drying. This is consistent with the
results of Sessions et al. [2010] and Sobel et al. [2007]. In such WTG simulations, a precipitating state is
enabled when surface flux of moisture is sufficient to overcome subsidence drying. A useful further step
would have been to determine the minimum initial relative humidity necessary to move the simulated col-
umn from the nonprecipitating state to the precipitating state [Sessions et al., 2010; Emanuel et al., 2014] or
how much humidity the large-scale circulation has to transport out of the simulated column in order to kill
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Figure 10. Scatterplots of AP (the changes in precipitation relative to the value of the RCE reference state) against I" (the normalized gross moist stability). Results are shown for (left)
CRMs and (right) SCMs. Results are shown for the (top) WTG and (bottom) DGW simulations over an SST of 298 K (light blue), 300 K (black), and 302 K (red) which result in significant
large-scale circulation (P/Pger < 0.9 or P/Pger > 1.1 and |Q| > 0.4X1072 Pa s~ ). Results are shown for (left) CRMs and (right) SCMs.

precipitating convection in the precipitating regime [Sobel and Bellon, 2009]. We do not address this issue
in this study.

Large-domain RCE simulations have shown the existence of both dry and moist regions due to self-
aggregation of convection, and cloud-radiation interactions have been highlighted as one of the critical
processes in the initiation of convective aggregation [Bretherton et al., 2005]. Sessions et al. [2010] and Sobel
et al. [2007] performed small domain simulations with parameterized large-scale circulation and interactive
radiation. They demonstrated that a precipitating or nonprecipitating equilibrium states can be supported
when very different moisture conditions are used. They related these multiple equilibrium states to the dry
and moist regions obtained in large-domain RCE simulations. However, our study uses noninteractive cool-
ing throughout most of the troposphere and multiple equilibrium states similar to those obtained in Ses-
sions et al. [2010] and Sobel et al. [2007] are nonetheless obtained in some of these models under the WTG
method.

4.4. Multiple Equilibria and Sensitivity to WTG Parameters

From the studies of Sessions et al. [2010] and Sobel et al. [2007], multiple equilibria are sensitive to some
parameters used in the implementation of the large-scale parameterization method. In this section, we
explore the ability of some models to sustain multiple equilibria. This is done by comparing the profiles
obtained in the WTG simulations which produce a dry equilibrium state from the dry initial conditions to
those obtained in the WTG simulations which produce a precipitating equilibrium state from the dry initial
conditions. We find that in the simulations which produce a dry equilibrium state, the sign of the large-
scale circulation that is established below the boundary layer top p,, is opposite to the sign of the circulation
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Figure 11. Ratios of mean precipitation rate of the simulated column P to the value of the corresponding RCE reference state Pg,r. Results
are obtained from the WTG (black circles) and DGW (red circles) simulations over an SST of (a) 298 K, (b) 300 K, and (c) 302 K. Results from
the simulations initialized with the relative humidity from the RCE state (solid circles) are superimposed to the results from the simulations
initialized with 0% relative humidity (circles). The CRM and SCM results are shown on the left-hand and right-hand sides of the vertical
line, respectively. The grey area indicates 0.9 < P/Pges < 1.1.

that would have been associated with the sign of (9V—(9Cef there. Figure 12 shows some examples of @ and
?)V—?)Cef profiles obtained at equilibrium in the WTG simulations performed over an SST of 302 K and with
the simulated column initialized as completely dry. Results are shown for the WTG simulations which pro-
duce zero precipitation at equilibrium: NMTCMv3, LEMv2.4, WRF, LMDzB, and UMv7.8. They are compared
to the results from the WTG simulation of MesoNH which produces a precipitating equilibrium state. In the
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Figure 12. (top) Large-scale pressure velocity and (bottom) deviation from the RCE reference profile of virtual potential temperature for
the mean profile at equilibrium in the simulated column. Results are shown for the WTG simulations of MesoNH, NMTCMv3, LEMv2.4, WRF,
LMDzB, and UMv7.8 with an SST of 302 K and with the initial relative humidity equals to 0% at all model levels.

WTG simulations with zero precipitation, the simulated column is drier (compared to the RCE reference
state) throughout the column (results not shown). Hence, positive values of Dv—bfef in the lower tropo-
sphere are the result of the simulated column being warmer than the RCE reference state. In all these simu-
lations, there is a large-scale descent in the middle and upper tropospheres, as would be expected from the
negative sign of Z)VfDCEf. The boundary layer treatment used in the WTG calculations (section 3) implies
that the sign of Z)vff)fef at the first model level above p, determines the sign of the large-scale circulation
below p,. As a result, there is large-scale ascent below p, in the WTG simulation of MesoNH. In contrast,
there is a large-scale descent below p, in the WTG simulations of NMTCMv3, LEMv2.4, WRF, LMDzB, and
UMv7.8. Positive values of DV—DCE’ below p;, would correspond to large-scale ascent without the special

treatment of the boundary layer.

Figure 13 shows these models’ virtual potential temperature RCE profiles at 302 K in the lowest 200 hPa. For
all of these models, the well mixed layer is less than 50 hPa and the value of p, = 850 hPa is clearly within
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Figure 13. Profiles of virtual potential temperature in the lowest 200 hPa. Results are those obtained in the RCE simulations of (left) CRMs and (right) SCMs over an SST of 302 K.

the lower troposphere rather than being at the top of the boundary layer. Given the consequence of the
boundary layer treatment used for the WTG calculations, a further step is to examine the sensitivity of the
final equilibrium state to the nominal boundary layer depth p, (as was done in Herman and Raymond
[2014]). We repeated some of the WTG simulations described above using p, = 800, 880, 900, 920, 930, 940,
and 950 hPa. We discuss the results from the initially dry WTG simulations of LEMv2.4, UMv7.8, WRF,
NMTCMv3, and MesoNH with an SST of 302 K. The mean precipitation rates obtained at equilibrium in the
simulations with these values of p,, and in the simulations with p, = 850 hPa are plotted in Figure 14. The
WTG simulations of NMTCMv3, LEMv2.4, WRF, LMDzB, and UMv7.8 with a deeper nominal boundary layer
(pp < 850 hPa) also produce positive values of 9V—?)fef below p, and negative values from the first model
level above p,, to the tropopause (not shown). As a result, the boundary layer treatment used in the WTG
calculations forces a large-scale descent throughout the column and equilibrium states with zero precipita-
tion are achieved in those simulations. A similar result is obtained in the WTG simulation of MesoNH with
Py = 800 hPa since, Qv—éfd is negative at the first model level above 800 hPa.

A large-scale descent below p,, dries the boundary layer and may kill off precipitating convection. In con-
trast, a large-scale ascent below p, favors precipitating convection as it moistens the boundary layer
through vertical and horizontal advection. Results show that with the exception of the WTG simulation of
NMTCMv3 which produces a nonprecipitating state even with p, =950 hPa (solid squares in Figure 14),
other WTG simulations have a critical nominal boundary layer depth below which the nonprecipitating state
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Figure 14. Mean precipitation rates as a function of the height of the nominal boundary layer used in the WTG calculations. Results are
shown for the initially dry WTG simulations of MesoNH, LEMv2.4, WRF, NMTCMv3, and UMv7.8 with an SST of 302 K.
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is destroyed due to the presence of large-scale ascent in the boundary layer. Hence, a shallow nominal
boundary layer can initiate precipitating convection and force the transition from the nonprecipitating state
to the precipitating state. For instance, a precipitating state from the dry initial conditions is not obtained
unless p,, is increased to at least 850 hPa in the WTG simulation of MesoNH, 900 hPa in the WTG simulations
of LEMv2.4 and UMv7.8 and 920 hPa in the WTG simulation of WRF. Herman and Raymond [2014] also dem-
onstrated parameter sensitivity in multiple equilibrium experiments but they found an opposing trend in
rain rate versus nominal boundary layer using NMTCMv3. The reasons for this discrepancy are as yet
unclear.

These results demonstrate that the existence of multiple equilibria in some of the models under the WTG
method depends on parameters in the implementation of the WTG method. In addition to the dependence
on p,, we have examine the dependence on f(p) defined in section 3. The initially dry WTG simulations of
LEMv2.4, NMTCMv3, and UMv7.8 with f,(p) and =3 h produce precipitating equilibrium (results not
shown) as opposed to the dry equilibrium obtained for f;(p). The half-sine profile gives a short effective
relaxation time scale in the middle troposphere and a long effective relaxation time scale in the lower and
upper tropospheres. As shown in Daleu et al. [2012], the longer the relaxation time scale, the weaker the
large-scale circulation, and consistent with the results of Sessions et al. [2010], initially dry WTG simulations
of LEMv2.4 and UMv7.8 with a long relaxation time scale (e.g., =120 h and f;(p)) produce equilibrium
states with persistent, precipitating convection. This last result is also qualitatively consistent with the result
of Sobel et al. [2007], who found that the nonprecipitating equilibrium state from the dry initial conditions is
destroyed when longer relaxation times for horizontal moisture advection are used. However, in contrast to
this study which considers horizontal moisture advection by the divergent circulation induced by enforcing
WTG or DGW, Sobel et al. [2007] considered horizontal moisture advection by large-scale rotational circula-
tions and parameterized its effect by relaxing the domain-mean moisture toward a reference profile over a
time scale independent of the WTG adjustment time scale.

We have demonstrated the dependence of the existence of multiple equilibria in WTG simulations on both
SST and the prescribed boundary layer depth. However, there are a range of further parameters including
both model physics and experimental setup which may be important, but which have not been examined
in this study.

5. Conclusions

In this international intercomparison project, we systematically compared the interactions between convec-
tion and large-scale circulation in various CRMs and SCMs under two methods of parameterization of the
large-scale dynamics: the WTG method and the DGW method. The WTG method derives the large-scale cir-
culation from buoyancy anomalies with a given relaxation time scale [Raymond and Zeng, 2005; Sobel et al.,
2007; Sessions et al., 2010; Daleu et al., 2012] while the DGW method derives the large-scale circulation from
the momentum equations [Kuang, 2008, 2011; Romps, 2012a, 2012b]. The derived large-scale circulation
couples a model to a reference state defined with profiles generated from previous RCE simulations of the
same model. We conducted WTG and DGW simulations over uniform SSTs and compared the results from
various CRMs and SCMs under each method.

When coupled to their own RCE profiles, some WTG and DGW simulations were able to reproduce their
own reference solutions to a good approximation. Those simulations produce a negligible time-mean large-
scale circulation and a mean precipitation rate which is very close to the value of their reference state. A
similar result was produced in Sobel and Bretherton [2000], although other simulations from this study and
previous studies [e.g., Raymond and Zeng, 2005; Sobel et al., 2007; Sessions et al., 2010] do not reproduce
their reference conditions.

The WTG and DGW simulations which do not reproduce their reference conditions produce mean precipita-
tion rates which differ substantially from the rates of their reference states; this difference is maintained by
a large-scale circulation in the system. In those simulations, the direction of the large-scale circulation varies
from uniform large-scale ascent in the simulated column with a compensating increase in mean precipita-
tion rate, uniform large-scale descent in the simulated column with a compensating reduction in mean pre-
cipitation rate, and large-scale circulation with layers of both ascent and descent in the simulated column.
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In the latter case, the changes in precipitation (relative to the value of the reference state) depend on the
position and strength of the ascending and descending branches.

Some models under the WTG or DGW method produce large-scale circulations of different magnitudes for
different SSTs, and the sensitivity to the SSTs is not always monotonic. Some SCMs under the WTG method
produce zero precipitation even with moist initial moisture conditions. Within the same SCM, a WTG simula-
tion and a corresponding DGW simulation can produce large-scale circulations of different signs. In general,
DGW simulations produce large-scale pressure velocity profiles which are smoother than those produced
by WTG simulations.

When comparing SCMs and CRMs, we found a large spread among pressure velocities produced by SCMs
compared to those produced by CRMs. CRMs show a fairly linear relationship between mean precipitation
rates and the amplitude of the diagnosed large-scale circulation, while SCMs show large deviations from
this linear relationship particularly for simulations which produced strong descent and small precipitation
rate.

An analysis of the heat, moisture, and moist static energy budgets shows that changes in precipitation
are largely balanced by the moistening rates due to the large-scale circulation. This is consistent with the
smaller changes in surface evaporation, as a result of using fixed horizontal wind speed in the surface flux
calculations. The analysis also shows that while all of the CRMs with significant large-scale circulation pro-
duce positive values of normalized gross moist stability, some of the SCMs produce both positive and
negative values of normalized gross moist stability independent of the direction of the large-scale
circulation.

In contrast to simulations using the DGW method, multiple equilibria corresponding to either a dry equilib-
rium state or a precipitating equilibrium state exist in some models under the WTG method. In all models
that support multiple equilibria under the WTG method, an initially dry column remains dry for certain val-
ues of SST and its ability to develop and sustain precipitating convection is sensitive to some parameters in
the WTG calculations. We have demonstrated the sensitivity of multiple equilibria to the nominal boundary
layer depth, below which the large-scale vertical velocities are calculated by linear interpolation from the
value diagnosed at the specified boundary layer top to zero at the surface. A shallow nominal boundary
layer (while nonetheless deeper than the models’ well mixed layer) can permit the development of large-
scale ascent in the lower troposphere and the associated column moistening necessary to initiate precipi-
tating convection in some models. This finding contrasts with results of Herman and Raymond [2014], where
in deeper nominal boundary layer favored a precipitating steady state. In three of the models, we have also
explored the sensitivity of multiple equilibria to the relaxation time scale and the adjustment rate profile. A
longer relaxation time scale throughout the column, or an adjustment rate profile which allows longer
effective relaxation time scale in the lower troposphere, can also destroy the dry equilibrium solution. This
sensitivity of multiple equilibria to the relaxation time scale is consistent with the result of Sessions et al.
[2010]. It is also qualitatively similar to the results of Sobel et al. [2007], which showed the sensitivity of mul-
tiple equilibria to the time scale for moisture relaxation toward a given profile. Noting that multiple equili-
bria are seen in more CRMs and SCMs under the WTG method with a higher SST, we may conclude that SST
(or surface wind speed which would modulate surface fluxes) is one of the factors which may control the
existence of multiple equilibria.

This intercomparison project highlights some weaknesses of the large-scale parameterization methods. Our
results suggest that caution should be used when comparing results between different studies of this
nature because the discrepancies between the published results can be related to differences in the physics
of the convection models or the implementation of the large-scale parameterization methods. For instance,
some results from the WTG simulations are very sensitive to the details of the implementation of the WTG
method.

The results from this intercomparison project are important not only for understanding the interactions
between convection and large-scale tropical dynamics but also for interpreting discrepancies between
results reported in the literature. Models produce reasonable RCE states which are different when compar-
ing models against each other. However, noting that different CRMs under parameterized large-scale circu-
lation behave broadly in the similar way while SCMs produce a much larger variation of behaviors,
comparison between CRMs and SCMs behavior under parameterized large-scale circulation may be a useful
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tool for trying to reduce biases or improve the SCMs or a useful tool when developing and testing parame-
terization schemes. Part 2 of this study will compare models and large-scale parameterization methods over
nonuniform surface conditions.
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