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Summary 21 

Weeds tend to aggregate in patches within fields and there is evidence that this is partly 22 

owing to variation in soil properties. Because the processes driving soil heterogeneity operate 23 

at different scales, the strength of the relationships between soil properties and weed density 24 

would also be expected to be scale-dependent. Quantifying these effects of scale on weed 25 

patch dynamics is essential to guide the design of discrete sampling protocols for mapping 26 

weed distribution. We have developed a general method that uses novel within-field nested 27 

sampling and residual maximum likelihood (REML) estimation to explore scale-dependent 28 

relationships between weeds and soil properties. We have validated the method using a case 29 

study of Alopecurus myosuroides in winter wheat. Using REML, we partitioned the variance 30 

and covariance into scale-specific components and estimated the correlations between the 31 

weed counts and soil properties at each scale. We used variograms to quantify the spatial 32 

structure in the data and to map variables by kriging. Our methodology successfully captured 33 

the effect of scale on a number of edaphic drivers of weed patchiness. The overall Pearson 34 

correlations between A. myosuroides and soil organic matter and clay content were weak and 35 

masked the stronger correlations at >50 m. Knowing how the variance was partitioned across 36 

the spatial scales we optimized the sampling design to focus sampling effort at those scales 37 

that contributed most to the total variance. The methods have the potential to guide patch 38 

spraying of weeds by identifying areas of the field that are vulnerable to weed establishment. 39 

 40 

Keywords: Weed patches, Nested sampling, REML, Geostatistics, Black-grass (Alopecurus 41 

myosuroides), Soil 42 

 43 

44 
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Introduction 45 

 46 

Many weed species have patchy distributions in arable fields that can be strongly affected by 47 

their environments, in particular the soil (Radosevich et al., 2007). The spatial variation of 48 

soil results from numerous processes operating at several spatial scales, and so the variation 49 

in some soil properties can also be patchy though not necessarily on the same scales as the 50 

weeds. As a consequence the relations between the abundances of weeds and particular soil 51 

properties can change from one spatial scale to another. This means that relationships 52 

between the two variables found at the one scale might not hold at another (Corstanje et al., 53 

2007). In these circumstances, a small absolute correlation coefficient between a weed count 54 

and a soil property calculated from a simple random sample over a whole field, though 55 

statistically sound, could obscure strong relations at particular scales and be misleading.   56 

 57 

Several investigators (e.g. Gaston et al., 2001; Walter et al., 2002; Nordmeyer & 58 

Häusler, 2004) have used grids for studying spatial variation in weeds. They have assumed 59 

some prior knowledge of the spatial scales of variation in the field, and that has led them to 60 

choose grid intervals that would capture the necessary spatial detail; they would not have 61 

wished to risk missing such detail by having too coarse a grid. However, sampling at fine 62 

scales would make sampling the whole of a large field very expensive and, almost certainly, 63 

unnecessarily so if the aim is to understand the general position of patches within the field 64 

rather than small changes in the location of patches. These difficulties associated with the 65 

design of discrete sampling protocols for studying weed patches, either as a tool for 66 

understanding weed ecology or mapping weeds to guide patch spraying, have been 67 

thoroughly reviewed by Rew & Cussans (2001). They highlighted the need to develop new 68 

analytical techniques to capture the effects of scale on the dynamics of weed patches and to 69 

optimise sampling. Partly because of the risk of discrete sampling at too coarse a resolution, 70 

they argued that ground-based continuous sampling was more appropriate for practical site 71 

specific weed management applications. Whilst many mapping procedures can be done early 72 

in the season and used for control in the current season, real-time detection and control is 73 

difficult. For many grass weeds the current systems can only definitively identify the species 74 

of grass once it is flowering. This will be too late for the application of selective herbicides 75 

(Murdoch et al., 2010). It is therefore necessary to also consider the risk of seedlings 76 

establishing outside the mapped patch when planning site specific herbicide sprays in the 77 

following season. An understanding of the edaphic drivers of weed patch dynamics and the 78 
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scales at which they operate is both of theoretical interest to weed ecologists and could allow 79 

these ‘weed vulnerable zones’ to be identified based on maps of soil properties. Here we 80 

address these issues by applying sampling methodologies designed in the field of soil science 81 

to optimise sampling effort to the study of weed patches and how they may relate to 82 

environmental properties at multiple spatial scales. 83 

 84 

We used the model system of Alopecurus myosuroides (Huds.) in winter wheat 85 

(Triticum aestivum L.) to demonstrate the potential of these methods. The distribution of 86 

A. myosuroides is patchy, and its density seems to depend to some degree on the nature of the 87 

soil (Holm, 1997; Lutman, 2002). We assumed no prior knowledge of the spatial scale(s) on 88 

which the weed varied in particular fields and so we explored its distribution in one particular 89 

field by sampling with a nested design followed by a hierarchical statistical analysis to 90 

partition the variance and covariances with soil properties according to spatial scale. In 91 

principle, nested sampling schemes allow the estimation of the components of variance for a 92 

variable across a wide range of spatial scales and to quantify the covariation and correlation 93 

between variables over that range. As we did not know beforehand what sizes of patches to 94 

expect or whether to expect variation and causal relations with the soil at more than one 95 

spatial scale, we designed a nested sampling scheme with a wide range of sampling intervals 96 

that we hoped would reveal the spatial scale(s) of variation in the weed and of its covariation 97 

with the soil. We used the method proposed by Lark (2011) to optimize our sampling 98 

scheme. The aim of the optimization was to partition the sampling across the scales so that 99 

the estimation errors for the components of variance were as small as possible with the 100 

resources available.  101 

 102 

Our primary objective was to develop and validate a generic method to examine the 103 

relationship between weed distributions and environmental properties at multiple spatial 104 

scales. We wanted to demonstrate a way of identifying the relevant scale at which the 105 

processes affecting weed patch dynamics operate. This could be a precursor to the use of data 106 

on environmental heterogeneity to support patch spraying or to guide the design of optimal 107 

sampling strategies for studying weed spatial dynamics. The case study reported here 108 

demonstrates the use of this methodology in one field and provides evidence to support the 109 

hypothesis that relationships between soil variables and weed patches are scale-dependent. 110 

 111 
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Materials and Methods 112 

Study site 113 

The field we chose for study is on a commercial farm in Harpenden, Hertfordshire, UK. It has 114 

long been in arable cultivation and is infested with A. myosuroides. It comprises two former 115 

fields from which the old boundary was removed some decades ago. The southern part of the 116 

field is generally flat, whilst the northern part slopes gently downwards towards the north. 117 

The soil is stony clay loam containing numerous flints and overlies the Clay-with-Flints 118 

formation. The soil grades from Batcombe series in the southern part to the somewhat more 119 

clay-rich Winchester series on the northern slope (Hodge et al., 1984). 120 

 121 

Sampling scheme 122 

To consider how the A. myosuroides patches vary in space and how that variation relates to 123 

soil properties at multiple spatial scales we examined the spatial components of variance and 124 

covariance. This allows us to express the patchiness of the weed’s distribution in the field 125 

statistically. Estimates of the components of variance can describe the infestation at several 126 

scales, and from them one should be able to design better targeted sampling schemes for 127 

future surveys.  128 

 129 

Youden & Mehlich (1937) first proposed a nested sampling design to discover the 130 

spatial scales of variation in soil. They sampled the soil at locations that were organized 131 

hierarchically into clusters separated by fixed distances. The nested sampling design had 132 

several main stations separated across the region. These correspond to the top level of the 133 

design (level 1). Within each main station they selected two substations (level 2) which were 134 

separated by a fixed distance (305 m) but with the vector joining the substations oriented on a 135 

random bearing. Within each substation at level 2 they selected a further two substations at 136 

level 3, this time separated by 30.5 m. The final level of replication within their design, level 137 

4, was with pairs of substations within each level-3 substation, separated by 3.05 m. Soil 138 

samples were collected at each of the eight level-4 substations within each main station. An 139 

analysis of variance allowed them to partition the variance of each measured soil property 140 

into components associated with each level of the nested design. 141 

 142 

This nested design used by Youden & Mehlich (1937) is said to be balanced because 143 

any two substations at a given level have identical replication within them at lower levels of 144 

the design (Fig. 1). Such designs become prohibitively expensive for more than a few levels, 145 
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as the number of sample points doubles for every additional level of the design. Furthermore, 146 

there are many more fine-scale comparisons than ones at the coarser scales (Fig. 1a), and this 147 

is not necessarily an efficient distribution of sampling effort. For example, in the design 148 

shown in Fig. 1 there are 4 pairs of points separated at the finest scale (level 4), whereas there 149 

are only two groups of points separated at level 3 and only one pair of groups of points 150 

separated at the coarsest scale within the design, level 2. 151 

 152 

[Figure 1 about here.] 153 

 154 

Several attempts have been made to economize on nested sampling without seriously 155 

sacrificing precision (see Webster et al., 2006). Lark (2011) brought together the various 156 

strands of that research and proposed designs that are optimal compromises in the sense that 157 

they maximize the precision across all levels for given effort, based on the assumption that 158 

there is prior knowledge as to how the variation is partitioned across the levels. Here, we 159 

apply this approach, for the first time, to the study of weed patches. 160 

 161 

The aim of the analysis of a nested sampling design is to estimate components of 162 

variance, or covariance, for the sampled variables that correspond to each scale of the 163 

hierarchy. As a basis for our study we adopted the following model: 164 

z𝑢 = xτ𝑢 + ∑ M𝑖η𝑖
𝑢

𝑘

𝑖=1

 

z𝑣 = xτ𝑣 + ∑ M𝑖η𝑖
𝑣

𝑘

𝑖=1

 

[1] 165 

where z𝑢 comprises 𝑛 random variables by which we model our 𝑛 observations of variable 𝑢 166 

(which is an index, not a power), and similarly for variable 𝑣, and k is the number of random 167 

effects in the model. In our case variable 𝑢 is weed counts, and 𝑣 is a measured soil property. 168 

One may develop this model for any number of variables. The term xτ𝑢 equates to a vector of 169 

mean values for variable 𝑢. In our case the mean is constant for any one variable and so 170 

comprises the design matrix x, which is an 𝑛 ×  1 vector of 1s, and τ𝑢 is the mean for 171 

variable 𝑢. The same applies for variable 𝑣. The terms in the summation on the right-hand 172 

side are random effects in the model. There are 𝑘 of these for each variable, each 173 

corresponding to one level of the nested sampling scheme, so 𝑘 = 4 in the case shown in 174 
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Fig. 1. The matrix M𝑖 is a 𝑛 × 𝑛𝑖 design matrix for the 𝑖th level of the nested scheme; where 175 

𝑛𝑖 is the number of sampling stations at the 𝑖th level across the whole design. If the 𝑚th 176 

sample location belongs to the 𝑚𝑖th substation in the 𝑖th level of the design then 177 

M𝑖[𝑚, 𝑚𝑖]  =  1 and all other elements in the 𝑚th row are zero. The term η𝑖
𝑢is an 𝑛𝑖  ×  1  178 

random vector. The mean of its elements is zero and their variance is 𝜎𝑢,𝑖
2 . This is the variance 179 

component for variable 𝑢 associated with the 𝑖th scale. Similarly the elements of η𝑖
𝑣 have 180 

mean zero and variance 𝜎𝑣,𝑖
2 . This multivariate extension of the nested spatial sampling 181 

scheme was proposed by Lark (2005) and has been used since in soil science (e.g. Corstanje 182 

et al., 2007).  183 

 184 

One novel aspect of our study was that at the outset we did not know the spatial 185 

scale(s) on which A. myosuroides varied nor whether the variances differed substantially 186 

from scale to scale. We therefore assumed the variances to be equal at all scales, and 187 

designed a sampling scheme accordingly. Our design is as follows with five levels in the 188 

hierarchy. 189 

 190 

Nine main stations were spaced approximately 50 m apart across the field (Fig. 2); 191 

this corresponds with level 1 of the hierarchy. Sampling sites were nested in groups at each 192 

main station (Fig. 3a). The distances between sites at level 2 in the design were 20.0 m, at 193 

level 3 the sites were spaced 7.3 m apart, those at level 4 were 2.7 m apart, and those at level 194 

5 were spaced 1.0 m apart. The distances were fixed, but the directional bearings were 195 

randomized independently to satisfy the requirements of the model (Eqn. 1). Fig. 3b shows 196 

the structure as a topological tree, which is evidently unbalanced in that the replication is not 197 

equal in all branches of the tree. To improve our maps of A. myosuroides distribution and 198 

associated soil properties we added ten more sampling points, to give a total of 136 sampling 199 

points across the field. These additional points were added to fill the larger gaps in the 200 

coverage and thereby enable us to diminish the errors in maps made by kriging (Fig. 2). 201 

 202 

[Figure 2 about here.] 203 

 204 

[Figure 3 about here.] 205 

 206 
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The positions for the main stations at the 1st level of the design were located in the 207 

field by GPS with subsidiary points located by their distance and orientation from the main 208 

station by tape measure and compass. Square quadrats (0.5 m
2
) were placed on the ground 209 

with their south-west vertices at the sampling point. All locations were subsequently geo-210 

referenced with an RTK GPS (Topcon Positioning Systems, Inc., 7400 National Drive, 211 

Livermore, CA USA 94550) with a quoted resolution of 5 cm. 212 

 213 

Alopecurus myosuroides individuals within each quadrat were counted in late October 214 

2013 while the plants were at the one- to two-leaf stage. No pre-emergence herbicide had 215 

been used on the field. 216 

 217 

Soil analyses 218 

Two cores of soil were taken from each quadrat with a half-cylindrical auger of diameter 219 

3 cm to a depth of 28 cm on 21 January 2014 while the soil was at field capacity. The depth 220 

at which the clay layer was first visible was noted in each of the two augers to indicate the 221 

depth of cultivation. If the clay layer was not reached within the 28 cm then a value of 30 cm 222 

was assigned. The average of the two replicates was then recorded. The gravimetric water 223 

content was measured in layers 0−10 cm and 10−28 cm by loss on oven-drying at 105°C. 224 

Other variables were measured on samples pooled from the two cores within each quadrat. 225 

Organic matter was measured by loss on ignition. Available phosphorus (P) was measured in 226 

a sodium bicarbonate extract at pH 8.2. The pH was measured in water, and soil texture 227 

(particle-size distribution) was determined by laser diffraction. Stone content by both volume 228 

and mass was measured on a core of 76 mm diameter taken to depth 97 mm from the 229 

south-west outside corner of each quadrat.  230 

 231 

Statistical analyses 232 

A balanced design would lead to a straight-forward analysis of variance (ANOVA) from which 233 

the components of variance are readily estimated. Analysing data from an unbalanced design 234 

is more complex. Gower (1962) provided formulae for computing the components from an 235 

ANOVA. The method now favoured on theoretical grounds is the residual maximum likelihood 236 

(REML) estimator due to Patterson & Thompson (1971) and is the one we used. Within the 237 

REML model (Eqn. 1), the terms η𝑖
𝑢 and η𝑖

𝑣, 𝑖 = 1,2, … , 𝑘 are the random effects. The 238 
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assumption is that the concatenated 2𝑛 × 1 random vector [[Z𝑢]T[Z𝑣]T]T has a joint 239 

multivariate normal distribution with 2𝑛 × 2𝑛 covariance matrix: 240 

V = ∑ [
𝜎𝑢,𝑖

2 M𝑖M𝑖
T, 𝐶𝑖

𝑢,𝑣M𝑖M𝑖
T

𝐶𝑖
𝑢,𝑣M𝑖M𝑖

T, 𝜎𝑣,𝑖
2 M𝑖M𝑖

T ]𝑘
𝑖=1  , 241 

[2] 242 

where the superscript T denotes the transpose of a matrix. The variance and covariance 243 

components for each scale are the random effects parameters which are estimated by REML. 244 

We calculated Pearson's correlation coefficients for all data to show correlations when scale 245 

is ignored. Note, however, that this does not give an unbiased estimate of the correlation 246 

because it ignores the dependency structure imposed by the sampling and is therefore a 247 

somewhat arbitrarily weighted combination of the correlations at different scales. Following 248 

partitioning of the components of variance at the different spatial scales, estimates of the 249 

correlations (�̂�) at each scale (𝑖) between A. myosuroides and the soil properties were 250 

calculated by 251 

 252 

�̂�𝑖
𝑢,𝑣 =

�̂�𝑖
𝑢,𝑣

�̂�𝑢,𝑖�̂�𝑣,𝑖
 

[3] 253 

where the variables 𝑢 and 𝑣 are A. myosuroides counts and the soil property, respectively, 254 

and the terms with the hats are the REML estimates of their covariances (𝐶) and standard 255 

deviations (𝜎). Where the estimated components of variance given by REML were non-256 

positive no associated correlation coefficient was calculated. Confidence intervals for the 257 

correlations were calculated by Fisher's z-transform, with degrees of freedom appropriate to 258 

the number of sampled pairs at the corresponding level of the design. 259 

 260 

Variograms were estimated and modelled from all data points from both the sampling 261 

design and the ten additional points to quantify the spatial structure in the variance of the 262 

measured variables. We did this using GenStat (Payne, 2013). Semivariances were calculated 263 

by the method of moments (Webster & Oliver, 2007): 264 

 265 

𝛾(h) =
1

2𝑚(h)
∑ {𝑧(x𝑗) − 𝑧(x𝑗 + h)}

2

𝑚(𝒉)

𝑗=1

 

[4] 266 
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where 𝑧(x𝑗) and 𝑧(x𝑗 + h) are the observed values at two locations separated by lag h, and 267 

𝑚(h) is the number of pairs of points at that lag. By incrementing h we obtained an ordered 268 

set of values to give the experimental variogram, which is a function of the expected mean 269 

squared difference between two random variables, 𝑧(x) and 𝑧(x + h) at locations x and x +270 

h. The variation appeared to be isotropic and so we treated the lag as a scalar in distance only. 271 

 272 

In the case of A. myosuroides counts, where the distribution was skewed, a log 273 

transformation was used before estimation of the variogram. However, the distribution still 274 

did not conform to the assumption of normality, and so we used the method of Cressie & 275 

Hawkins (1980) for a more robust estimation of the variogram for this type of data. The 276 

computing formula is a modified version of eqn. 4: 277 

𝛾(h) =
1

2

{
1

𝑚(h)
∑ |𝑧(x𝑗) − 𝑧(x𝑗 + 𝒉)|

1
2𝑚(h)

𝑗=1 }

4

0.457 +
0.494
𝑚(h)

+
0.045
𝑚2(h)

 

[5] 278 

Where trend was present in the data, as it was for silt content, we incorporated it in a mixed 279 

model of fixed and random effects in the REML estimation of the variogram (Webster & 280 

Oliver, 2007). 281 

 282 

 We mapped the variables across the field by ordinary kriging at points on a 1 m grid 283 

and then contoured the predictions in ArcMap (ESRI Inc.). For the variables in which we 284 

identified trend and used REML to obtain the variogram we used universal kriging to take the 285 

trend into account. 286 

 287 

Results 288 

Individuals of A. myosuroides were found in 95% of the 0.5 m
2
 quadrats. In total, 3917 289 

A. myosuroides seedlings were counted with a mean density of 28.8 per quadrat
 
(Table 1). 290 

However, the spatial distribution of A. myosuroides plants varied throughout the field and had 291 

a strongly skewed distribution. A model was fitted to try and normalize the data. The best fit 292 

was obtained for logarithms of the data with an offset of 0.6 added before logging. This 293 

removed the skew from the data, but revealed a bimodal distribution. When the field was 294 

divided into two at the site of the old field boundary, both populations then fitted a negative 295 

binomial distribution; a distribution associated with aggregated populations 296 
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(Gonzalez-Andujar & Saavedra, 2003). The soil properties measured were all approximately 297 

normal in distribution. 298 

 299 

[Table 1 about here.] 300 

 301 

The accumulated components of variance show clear spatial structure in both 302 

A. myosuroides counts and the soil properties measured (Fig. 4). At fine scales the variance 303 

components estimated by REML analysis are similar to the expected variance obtained from 304 

the variogram. However, in most cases the variogram reaches a sill at lag distances greater 305 

than the maximum distance in the nested design. The functions chosen as models for the 306 

variograms were those that best fitted in the least squares sense (Table 2).   307 

 308 

[Figure 4 about here.] 309 

 310 

[Table 2 about here.] 311 

 312 

The map of A. myosuroides in Fig. 5 was produced by combination of two separate 313 

krigings, one for each half of the field thereby taking into account the bimodal distribution of 314 

the weed counts. It shows a large concentration of weeds in the northern part of the field with 315 

only a few seedlings in the southern part of the field. The kriged maps of the soil properties 316 

(Fig. 6) show each soil property has a unique spatial distribution. Some of the maps, for 317 

example water content (Fig. 6a) and pH (Fig. 6c), show some accord with A. myosuroides 318 

distribution (Fig. 5). 319 

 320 

[Figure 5 about here.] 321 

 322 

[Figure 6 about here.] 323 

 324 

The statistically significant REML model terms were generally found at the coarsest 325 

scales studied here (Table 3) where the covariance terms (𝐶𝑖
𝑢,𝑣

) for each scale (𝑖 = 1,2, … , 𝑘) 326 

were set to zero in turn in the REML analysis to test for significance in their contribution to the 327 

model.  328 

 329 
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[Table 3 about here.] 330 

 331 

Pearson correlation coefficients between A. myosuroides counts and the soil 332 

properties are generally weak (Table 4). These take all of the data into account without regard 333 

to spatial scale. From these results we might conclude that there are only weak relationships 334 

between the density of A. myosuroides and the environmental properties measured. However, 335 

once the correlations are calculated using the nested design structure stronger relationships 336 

are revealed at particular scales (Fig. 7). Often, significant terms in the REML model (Table 3) 337 

correspond with strong correlations between the A. myosuroides count and the soil property 338 

(Fig. 7), reiterating the likelihood of there being a relationship between the weed count and 339 

the soil property at that scale.  340 

 341 

[Table 4 about here.] 342 

 343 

[Figure 7 about here.] 344 

 345 

Optimizing the design 346 

At the beginning of our study we had no prior information about the distribution of the 347 

variance across scales. Therefore the nested design we used was based on the assumption of 348 

equal variances at all scales. As we now know the components of variance for 349 

A. myosuroides seedling counts at all scales (Table 5), the sampling design can be optimized 350 

as described by Lark (2011). This allows sampling to be focused on the scales that contribute 351 

most to the total variance. To achieve this all components of variance must be positive, and 352 

so in this example the component of variance for the 4th level is set equal to the minimum 353 

positive variance. The optimized design is shown in Fig. 8a. 354 

 355 

[Table 5 about here]. 356 

 357 

Because of the relationships observed at the coarse scale between A. myosuroides and 358 

most of the soil properties we investigated a wider set of scales increasing exponentially from 359 

1 m at level 5 to 40 m at level 2. This meant the use of distances of 1 m, 3.5 m, 11.5 m and 360 

40 m within the design at each main station. Estimates of the components of variance at each 361 

of these distances were taken from the model fitted to the variogram for A. myosuroides 362 

counts. The component of variance for the top level of the design was set so that the 363 
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variances had the same sum as the original REML estimates for this field. The design was then 364 

optimized for these estimated components of variance. The optimized design at the coarser 365 

scales is shown in Fig. 8b. 366 

 367 

[Figure 8 about here.] 368 

 369 

Discussion and conclusions 370 

Both the hierarchical analysis and the estimated variogram of the A. myosuroides counts 371 

revealed clear spatial structure in the data with observations at short separations showing 372 

greater similarity than observations separated by larger distances. Each of the soil variables 373 

we measured also had its unique spatial structure which was visible in both the variograms 374 

and the components of variance (see Fig. 4). This means that we must recognize the 375 

importance of variation at several spatial scales. Within the literature on weed patches, there 376 

is a lack of consistency in observed relationships with abiotic variables. For example Walter 377 

et al. (2002) found a weak negative relationship between Poa annua (L.) and organic matter 378 

content, whereas Andreasen et al. (1991) found a strong positive relationship between the 379 

two. This lack of consistency may be due to their different sampling scales. Walter et al. 380 

(2002) sampled on a 20 m by 20 m grid whereas Andreasen et al. (1991) randomly selected 381 

sample locations within a field. This illustrates the need for more rigorous statistical methods 382 

to account for processes operating at different scales. 383 

 384 

Despite weak Pearson correlations for all the data (Table 4), covariances and 385 

correlations between A. myosuroides counts and soil properties showed some strong 386 

correlations at various scales. In most instances the separations that significantly contributed 387 

in the REML analyses were the largest of those studied here (>50 m) indicating relationships 388 

between soil properties and A. myosuroides counts occur across the whole field. This is a 389 

potentially interesting result in terms of the practical management implications (as we explain 390 

below) and warrants further investigation into the scale dependent relationships between 391 

A. myosuroides and soil properties. In terms of experimental and analytical methodology it is 392 

particularly important to note how uncorrelated variation between two variables at finer 393 

scales can obscure scientifically interesting, and practically important, relationships exhibited 394 

at coarser scales if one were only to examine the overall correlation between variables. The 395 

nested sampling scheme and associated analysis set out in this paper are necessary if this 396 

problem is to be avoided in experimental studies of the factors affecting weed distribution. 397 
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 398 

However, other fine-scale relationships not revealed by significant terms in the REML 399 

model did appear in the correlations between the weed and soil properties. For example, there 400 

are strong positive relations observed at the two coarsest scales between A. myosuroides and 401 

water content. However, at 7.3 m there is a negative relationship between these two variables 402 

indicating that a different process operates over these smaller distances. So, although 403 

A. myosuroides establishes most readily in the wettest part of the field, within that wet part 404 

establishment is better in the relatively dry parts of it. Similarly for available phosphorus, 405 

despite the negligible Pearson correlation between A. myosuroides and phosphorus, at 20 m 406 

there is a significant negative covariance in the REML model, yet at the 7.3 m scale the 407 

correlation is positive. This may be explained by depletion of available phosphorus in areas 408 

of high weed density (Webster & Oliver, 2007, pp. 220 and 227−228). 409 

 410 

We have shown how by nested sampling and hierarchical analysis by REML one can 411 

reveal the spatial scale(s) on which weed infestations vary and correlate with soil factors in 412 

an economical way. We have also shown how, once one has estimates of components of 413 

variance, one can improve a design for future survey without adding substantially to the cost.  414 

These estimates of the components of the variance could be estimated from other more 415 

readily available sources of information. For example the farmer might know something, in a 416 

qualitative way, of where and on what spatial scales weeds infest their fields or the 417 

investigator might have access to aerial photography or satellite images that show patchiness 418 

in crops or soil and which could guide them in designing a sampling scheme. Our 419 

methodology is generic and can be used to look at relationships between any continuous 420 

variable assumed to be related to weed distribution and any weedy variable, whether species 421 

distribution or total weed density. We should expect the spatial dependency of soil and weed 422 

interactions revealed by the analysis to be context specific. However, ongoing work is 423 

seeking to validate the robustness of the relationships between soil and A. myosuroides 424 

patches that emerged from our case study.  425 

 426 

This paper has demonstrated how scale-dependent relationships between weed density 427 

and soil properties can be examined by appropriate sampling and analysis. The case study 428 

shows that such scale-dependence can occur. It also shows that the nested method may allow 429 

us to identify relationships that occur at certain scales but which would be obscured by 430 

uncorrelated variations at other scales if the variables were examined using only the overall 431 
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correlation for data on a simple random sample. This methodology should be applied to a 432 

range of fields with contrasting soil conditions and management strategies, over several 433 

seasons, in order to identify scale-dependent relationships between soil and weeds which 434 

could form a basis for a robust strategy for controlling weeds according to the spatial 435 

variation of the soil. 436 

 437 

Identifying the soil properties that most consistently affect the distribution of 438 

A. myosuroides in a field could have practical application if the scale at which the soil and 439 

weeds are correlated is appropriate for site specific management (as is suggested by our 440 

results). Farmers often aim to minimize heterogeneity within individual fields so that they can 441 

treat each field as if it were uniform. Nevertheless, they recognize that there will be some 442 

variation within their fields and often have considerable knowledge of that spatial variation 443 

(Heijting et al., 2011). Now, with modern technology they can vary their treatment 444 

applications accordingly (Lutman et al., 2002). Patchy distributions of weeds are particular 445 

examples of such heterogeneity. In principle, farmers should be able to control the weeds 446 

with herbicide where the weeds occur and avoid using herbicide where they are absent or too 447 

few to be of consequence. Although research is being pursued into detection of weed 448 

seedlings (e.g. Giselsson et al., 2013), most current systems, especially for grass weeds, rely 449 

on mapping weeds at maturity to guide spraying decisions in the following crop. Knowing 450 

the relationships between weeds and soil could underpin these approaches by identifying 451 

‘weed vulnerable zones’, based on thresholds of soil variables, for example clay content, in 452 

the field where the weeds might persist or spread. These areas could be sprayed as buffers 453 

around existing patches to insure against individuals escaping control. Ultimately, if 454 

sufficiently robust models of weed spatial distribution could be developed (incorporating 455 

thresholds of soil properties) soil maps could be used as the basis for weed patch spraying 456 

decisions. Furthermore, if the coarse scale relationships observed here are found to be 457 

common across additional fields it is more likely that farmers would adopt variable 458 

management at these scales than precision spraying at fine scales.     459 

 460 
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Figure 1: An example of a balanced nested sampling design; (a) the design as it might appear 547 

on the ground with circles indicating sampling points, (b) the topological tree from which the 548 

design is taken. The design is balanced in that there is equal replication at each level below 549 

the first. 550 

 551 

Figure 2: Location of sampling points within the field, Railway Meadow. The field is marked 552 

by grey dots. The locations of the nine main stations are shown as crosses. The ten extra 553 

sampling points are shown as closed discs. 554 

 555 

Figure 3: Nested sampling design used in Railway Meadow (a) the design as one instance 556 

might appear on the ground with vertices labelled as the numbers 1−14. The yellow disc 557 

indicates the main station of the motif. Red lines represent nodes spaced 20 m apart, blue 558 

lines indicate 7.3 m, purple lines link points 2.7 m apart and black lines link those 1 m apart. 559 

(b) Topological tree of nested sampling design used in Railway Meadow. The design is 560 

unbalanced as replication is not equal at all branches of the tree. 561 

 562 

Figure 4: Accumulated components of variance with all negative components of variance set 563 

to zero (closed discs) and method of moments variograms (open circles) for (a) 564 

A. myosuroides, (b) gravimetric water content in the top ten cm of soil, (c) available 565 

phosphorus, (d) pH, (e) clay content, (f) organic matter. The lags have been binned over all 566 

directions and incremented in steps of 6 m. The components of variance plotted at 50 m are 567 

calculated from the top level (1) of the design and so encompass all distances greater than 568 

50 m. The solid black line shows the models fitted. 569 

 570 

Figure 5: Kriged maps for A. myosuroides individuals (per 0.5 m
2
). The model fitted to the 571 

experimental variogram of the data is used to provide the best unbiased predictions at points 572 

that were not sampled. 573 

 574 

Figure 6: Kriged maps of (a) gravimetric water content in the top 10 cm of soil, (b) available 575 

phosphorus (mg l
-1

), (c) pH, (d) clay content and (e) organic matter in soil. In all cases the 576 

models fitted to the experimental variograms of the data are used to provide the best unbiased 577 

predictions at unsampled points 578 

 579 

Figure 7: Graphs of correlations at the various scales of the nested sampling design between 580 

A. myosuroides and (a) water content in the top ten cm of soil, (b) available phosphorus, (c) 581 

pH, (d) clay content, and (e) organic matter. Correlations are shown as discs with horizontal 582 

bars indicating 95% confidence intervals. The correlations plotted at 50 m are calculated from 583 

the top level (1) of the design and so encompass all distances greater than 50 m. 584 

 585 

Figure 8: Optimized nested designs with sampling points at vertices (labelled 1—14) as they 586 

would appear in the field for (a) the original scales as used in Railway Meadow (Red = 20 m, 587 

Blue = 7.3 m, Purple = 2.7 m, Black = 1 m) with optimized topology according to the 588 

estimated components of variance from the REML analysis of A. myosuroides counts, (b) the 589 

new coarser scales (Red = 40 m, Blue = 11.5 m, Purple = 3.4 m, Black = 1 m) with optimized 590 

topology according to the estimated components of variance from the model fitted to the 591 

variogram of A. myosuroides counts. 592 

  593 
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Table 1: Summary statistics of species counts and environmental variables 594 

 595 

Variate Mean Minimum Maximum 
Standard 

deviation 
Skew 

A. myosuroides (individuals per 

quadrat) 
28.80 0 326 51.0 3.02 

Cultivation depth (cm) 24.90 17.1 30.0 2.74 0.13 

Gravimetric water content in top 

10 cm (%) 
25.63 21.8 30.0 1.86 0.58 

Gravimetric water content 10-28 

cm depth (%) 
23.83 19.3 31.0 2.19 0.55 

Organic matter (%wet weight) 4.53 3.0 6.0 0.65 0.45 

Available phosphorus (mg l
-1

) 24.70 11.0 54.4 8.30 1.27 

pH 6.90 6.13 7.79 0.28 0.24 

Sand (% wet weight) 32.10 17.0 51.0 4.85 0.41 

Silt (% wet weight) 39.51 25.0 50.0 4.27 0.08 

Clay (% wet weight) 28.39 23.0 39.0 3.00 0.85 

Volume of Stones (%) 19.2 4.44 38.9 6.67 0.52 

Mass of Stones (g) 172.5 20.3 387.0 75.43 0.13 

 596 

  597 
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Table 2: Variogram models fitted to describe the spatial structure in selected measured 598 

variables. 
*
For A. myosuroides logarithms of the data are used with an offset of 0.6 added 599 

before logging. 
**

The stable model uses an exponent of 0.95. 600 

 601 

Variate 
Type of 

Model 
Nugget Range 

Distance 

Parameter 
Sill Exponent 

Linear 

Term 

A. myosuroides
*
 Power 0.229 — — — 1.837 0.00101 

Gravimetric 

water content in 

top 10 cm  

Stable 
**

 1.110 — 20.23 2.367 — — 

Available 

Phosphorus 
Power 13.95 — — — 1.837 0.0266 

pH Spherical 0.02890 57.0 — 0.0333 — — 

Clay Spherical 2.83 91.0 — 8.42 — — 

Organic Matter Spherical 0.0492 82.03 — 0.3742 — — 

 602 

  603 
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Table 3: Estimated variance components for environmental variables at multiple spatial 604 

scales together with the covariance component with A. myosuroides at those scales. 605 

Covariances that contributed significantly to the model fitted by REML (P<0.05) are marked 
*
. 606 

Random terms are denoted by lv to signify the level of the hierarchical design, with lv 1 607 

representing the highest level of the design (separate designs across the field) and so 608 

corresponds to distances of greater than 50 m and lv2-5 correspond to distances of 20 m, 609 

7.3 m, 2.7 m and 1 m respectively. All negative estimates for variance components were 610 

found not to be statistically significantly different from 0. 611 

 612 

Environmental 

variable 
Random term 

Estimated 

variance 

component for 

environmental 

property 

Estimated 

variance 

component for 

A. myosuroides 

counts 

Estimated 

covariance 

component for 

environmental 

property and 

A. myosuroides 

Gravimetric 

water content 

in top 10 cm  

lv1 3.603 1.995 2.480 * 

lv1.lv2 0.1239 0.4850 0.1401 

lv1.lv2.lv3 0.1484 0.1802 -0.1154 

lv1.lv2.lv3.lv4 -0.2244 -0.00972 0.1387 

Residual variance: 

lv1.lv2.lv3.lv4.lv5 1.559 0.2620 -0.01321 

Available 

phosphorus  

lv1 43.93 1.976 3.150 

lv1.lv2 12.88 0.4960 -1.803 * 

lv1.lv2.lv3 2.008 0.1720 0.2699 

lv1.lv2.lv3.lv4 -1.638 -0.01731 -0.1812 

Residual variance: 

lv1.lv2.lv3.lv4.lv5 13.98 0.2701 0.02844 

pH 

lv1 0.03577 1.981 -0.2368 * 

lv1.lv2 0.005170 0.4940 -0.005534 

lv1.lv2.lv3 0.008005 0.1753 -0.01853 

lv1.lv2.lv3.lv4 -0.004391 -0.02287 -0.01073 

Residual variance: 

lv1.lv2.lv3.lv4.lv5 0.03132 0.2748 0.02055 

Clay 

lv1 3.692 1.952 2.294 * 

lv1.lv2 1.986 0.4936 0.2752 

lv1.lv2.lv3 0.2887 0.1690 0.1531 

lv1.lv2.lv3.lv4 -0.5752 -0.02259 0.005526 

Residual variance: 

lv1.lv2.lv3.lv4.lv5 3.904 0.2765 -0.03997 

Organic matter  

lv1 0.2749 1.963 0.728 * 

lv1.lv2 0.03782 0.493 0.00194 

lv1.lv2.lv3 0.02876 0.1725 0.02713 

lv1.lv2.lv3.lv4 -0.01191 -0.01379 0.008752 

Residual variance: 

lv1.lv2.lv3.lv4.lv5 0.1193 0.2677 -0.00817 
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Table 4: Pearson’s correlation coefficients between A. myosuroides counts and soil properties 613 

measured taking all data into account. Two-sided tests of correlations different from zero are 614 

marked * where significant (P<0.05). 615 

 616 

Variate 

Pearson’s correlation coefficient 

between A. myosuroides and the 

measured variate 

Cultivation depth -0.008 

Gravimetric water content in top 10 cm  0.482* 

Gravimetric water content 10−28 cm depth 0.491* 

Organic matter 0.527* 

Available phosphorus 0.023 

pH -0.475* 

Sand 0.135 

Silt -0.384* 

Clay 0.328* 

Volume of stones 0.050 

Mass of stones 0.031 

 617 

  618 
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Table 5: Results of REML analysis for log transformed A. myosuroides counts. Random 619 

terms are denoted by lv to signify the level of the hierarchical design, with lv 1 representing 620 

the highest level of the design (separate designs across the field) and so corresponds to 621 

distances of greater than 50 m and lv2-5 correspond to distances of 20 m, 7.3 m, 2.7 m and 622 

1 m respectively. 623 

 624 

Random term 
Estimated variance 

component 

Estimated standard 

error 

Effective degrees of 

freedom 

lv1 1.9759 1.0951 8 

lv1.lv2 0.4916 0.2126 18 

lv1.lv2.lv3 0.1759 0.0816 34.22 

lv1.lv2.lv3.lv4 -0.0176 0.0609 33.19 

Residual variance:   

lv1.lv2.lv3.lv4.lv5 0.2700 0.0679 31.6 

 625 

 626 


