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Summary

Weeds tend to aggregate in patches within fields, and

there is evidence that this is partly owing to variation

in soil properties. Because the processes driving soil

heterogeneity operate at various scales, the strength of

the relations between soil properties and weed density

would also be expected to be scale-dependent. Quanti-

fying these effects of scale on weed patch dynamics is

essential to guide the design of discrete sampling pro-

tocols for mapping weed distribution. We developed a

general method that uses novel within-field nested

sampling and residual maximum-likelihood (REML) esti-

mation to explore scale-dependent relations between

weeds and soil properties. We validated the method

using a case study of Alopecurus myosuroides in winter

wheat. Using REML, we partitioned the variance and

covariance into scale-specific components and esti-

mated the correlations between the weed counts and

soil properties at each scale. We used variograms to

quantify the spatial structure in the data and to map

variables by kriging. Our methodology successfully

captured the effect of scale on a number of edaphic

drivers of weed patchiness. The overall Pearson corre-

lations between A. myosuroides and soil organic matter

and clay content were weak and masked the stronger

correlations at >50 m. Knowing how the variance was

partitioned across the spatial scales, we optimised the

sampling design to focus sampling effort at those

scales that contributed most to the total variance. The

methods have the potential to guide patch spraying of

weeds by identifying areas of the field that are vulnera-

ble to weed establishment.

Keywords: weed patches, nested sampling, REML,

geostatistics, black-grass, Alopecurus myosuroides, soil.

METCALFE H, MILNE AE, WEBSTER R, LARK RM, MURDOCH AJ & STORKEY J (2016). Designing a sampling scheme

to reveal correlations between weeds and soil properties at multiple spatial scales. Weed Research 56, 1–13.

Introduction

Many weed species have patchy distributions in arable

fields that can be strongly affected by their environ-

ments, in particular the soil (Radosevich et al., 2007).

The spatial variation in soil results from numerous

processes operating at several spatial scales, so the

variation in some soil properties can also be patchy

though not necessarily on the same scales as the weeds.

As a consequence, the relations between the

Correspondence: Helen Metcalfe, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK. Tel: (+44) 1582 763133; Fax: (+44) 1582

760981; E-mail: helen.metcalfe@rothamsted.ac.uk

© 2015 The Authors Weed Research published by John Wiley & Sons Ltd on behalf of European Weed Research Society. 56, 1–13
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

DOI: 10.1111/wre.12184

http://creativecommons.org/licenses/by/4.0/


abundances of weeds and particular soil properties can

change from one spatial scale to another. This means

that relations between the two variables found at the

one scale might not hold at another (Corstanje et al.,

2007). In these circumstances, a small absolute correla-

tion coefficient between a weed count and a soil prop-

erty calculated from a simple random sample over a

whole field, although statistically sound, could obscure

strong relations at particular scales and be misleading.

Several investigators (e.g. Gaston et al., 2001; Wal-

ter et al., 2002; Nordmeyer & H€ausler, 2004) have used

grids for studying spatial variation in weeds. They have

assumed some prior knowledge of the spatial scales of

variation in the field and that has led them to choose

grid intervals that would capture the necessary spatial

detail; they would not have wished to risk missing such

detail by having too coarse a grid. However, sampling

at fine scales would make sampling the whole of a large

field very expensive and, almost certainly, unnecessarily

so if the aim is to understand the general position of

patches within the field rather than small changes in

the location of patches. These difficulties associated

with the design of discrete sampling protocols for

studying weed patches, as either a tool for understand-

ing weed ecology or mapping weeds to guide patch

spraying, have been thoroughly reviewed by Rew and

Cousens (2001). They highlighted the need to develop

new analytical techniques to capture the effects of scale

on the dynamics of weed patches and to optimise sam-

pling. Partly because of the risk of discrete sampling at

too coarse a resolution, they argued that ground-based

continuous sampling was more appropriate for practi-

cal site-specific weed management applications. Whilst

many mapping procedures can be carried out early in

the season and used for control in the current season,

real-time detection and control is difficult. For many

grass weeds, the current systems can only definitively

identify the species of grass once it is flowering. This

will be too late for the application of selective herbi-

cides (Murdoch et al., 2010). It is therefore also neces-

sary to consider the risk of seedlings establishing

outside the mapped patch when planning site-specific

herbicide sprays in the following season. An under-

standing of the edaphic drivers of weed patch dynamics

and the scales at which they operate is both of theoreti-

cal interest to weed ecologists and could allow these

‘weed vulnerable zones’ to be identified based on maps

of soil properties. Here, we address these issues by

applying sampling methodologies designed in the field

of soil science to optimise sampling effort to the study

of weed patches and how they may relate to environ-

mental properties at multiple spatial scales.

We used the model system of Alopecurus myosur-

oides Huds. in winter wheat (Triticum aestivum L.) to

demonstrate the potential of these methods. The distri-

bution of A. myosuroides is patchy and its density

seems to depend to some degree on the nature of the

soil (Holm, 1997; Lutman et al., 2002). We assumed

no prior knowledge of the spatial scale(s) on which the

weed varied in fields and so we explored its distribu-

tion in one particular field by sampling with a nested

design followed by a hierarchical statistical analysis to

partition the variance and covariances with soil prop-

erties according to spatial scale. In principle, nested

sampling schemes allow the estimation of the compo-

nents of variance for a variable across a wide range of

spatial scales and to quantify the covariation and cor-

relation between variables over that range. As we did

not know beforehand what sizes of patches to expect

or whether to expect variation and causal relations

with the soil at more than one spatial scale, we

designed a nested sampling scheme with a wide range

of sampling intervals that we hoped would reveal the

spatial scale(s) of variation in the weed and of its

covariation with the soil. We used the method pro-

posed by Lark (2011) to optimise our sampling

scheme. The aim of the optimisation was to partition

the sampling across the scales, so that the estimation

errors for the components of variance were as small as

possible with the resources available.

Our primary objective was to develop and validate

a generic method to examine the relations between

weed distributions and environmental properties at

multiple spatial scales. We wanted to demonstrate a

way of identifying the relevant scale at which the pro-

cesses affecting weed patch dynamics operate. This

could be a precursor to the use of data on environmen-

tal heterogeneity to support patch spraying or to guide

the design of optimal sampling strategies for studying

weed spatial dynamics. The case study reported here

demonstrates the use of this methodology in one field

and provides evidence to support the hypothesis that

relations between soil variables and weed patches are

scale-dependent.

Materials and methods

Study site

The field we chose for study is on a commercial farm

in Harpenden, Hertfordshire, UK. It has long been in

arable cultivation and is infested with A. myosuroides.

It comprises two former fields from which the old

boundary was removed some decades ago. The south-

ern part of the field is generally flat, whilst the north-

ern part slopes gently downwards towards the north.

The soil is stony clay loam containing numerous flints

and overlies the clay-with-flints formation. The soil
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grades from Batcombe series in the southern part to

the somewhat more clay-rich Winchester series on the

northern slope (Hodge et al., 1984).

Sampling scheme

To consider how the A. myosuroides patches vary in

space and how that variation relates to soil properties

at multiple spatial scales, we examined the spatial com-

ponents of variance and covariance. This allows us to

express the patchiness of the weed’s distribution in the

field statistically. Estimates of the components of vari-

ance can describe the infestation at several scales, and

from them, one should be able to design better tar-

geted sampling schemes for future surveys.

Youden and Mehlich (1937) first proposed a nested

sampling design to discover the spatial scales of varia-

tion in soil. They sampled the soil at locations that

were organised hierarchically into clusters separated by

fixed distances. The nested sampling design had several

main stations separated across the region. These corre-

spond to the top level of the design (level 1). Within

each main station, they selected two substations (level

2), which were separated by a fixed distance (305 m),

but with the vector joining the substations oriented on

a random bearing. Within each substation at level 2,

they selected a further two substations at level 3, this

time separated by 30.5 m. The final level of replication

within their design, level 4, was with pairs of substa-

tions within each level-3 substation, separated by

3.05 m. Soil samples were collected at each of the eight

level-4 substations within each main station. An analy-

sis of variance allowed them to partition the variance

of each measured soil property into components asso-

ciated with each level of the nested design.

This nested design used by Youden and Mehlich

(1937) is said to be balanced because any two substa-

tions at a given level have identical replication within

them at lower levels of the design (Fig. 1). Such

designs become prohibitively expensive for more than

a few levels, as the number of sample points doubles

for every additional level of the design. Furthermore,

there are many more fine-scale comparisons than ones

at the coarser scales and this is not necessarily an effi-

cient distribution of sampling effort. For example, in

the design shown in Fig. 1, there are four pairs of

points separated at the finest scale (level 4), whereas

there are only two groups of points separated at level

3 and only one pair of groups of points separated at

the coarsest scale within the design, level 2.

Several attempts have been made to economise on

nested sampling without seriously sacrificing precision

(see Webster et al., 2006). Lark (2011) brought

together the various strands of that research and pro-

posed designs that are optimal compromises in the

sense that they maximise the precision across all levels

for given effort, based on the assumption that there is

prior knowledge as to how the variation is partitioned

across the levels. Here, we apply this approach, for the

first time, to the study of weed patches.

The aim of the analysis of a nested sampling design

is to estimate components of variance, or covariance,

for the sampled variables that correspond to each scale

of the hierarchy. As a basis for our study, we adopted

the following model:

zu ¼ xsu þ
Xk
i¼1

Mig
u
i

zv ¼ xsv þ
Xk
i¼1

Mig
v
i

ð1Þ

where zu comprises n random variables by which we

model our n observations of variable u (which is an

Fig. 1 An example of a balanced nested sampling design; (A) the

design as it might appear on the ground with circles indicating

sampling points, (B) the topological tree from which the design is

taken. The design is balanced in that there is equal replication at

each level below the first.

© 2015 The Authors Weed Research published by John Wiley & Sons Ltd on behalf of European Weed Research Society. 56, 1–13
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index, not a power), and similarly for variable v, and k

is the number of random effects in the model. In our

case, variable u is weed counts and v is a measured soil

property. One may develop this model for any number

of variables. The term xsu equates to a vector of mean

values for variable u. In our case, the mean is constant

for any one variable and so comprises the design

matrix x, which is an n 9 1 vector of 1s, and su is the

mean for variable u. The same applies for variable v.

The terms in the summation on the right-hand sides

are random effects in the model. There are k of these

for each variable, each corresponding to one level of

the nested sampling scheme, so k = 4 in the case

shown in Fig. 1. The matrix Mi is a n� ni design

matrix for the ith level of the nested scheme, where ni
is the number of sampling stations at the ith level

across the whole design. If the mth sample location

belongs to the mith substation in the ith level of the

design, then Mi[m, mi] = 1 and all other elements in

the mth row are zero. The term gui is an ni 9 1 random

vector. The mean of its elements is zero and their vari-

ance is r2u;i. This is the variance component for variable

u associated with the ith scale. Similarly, the elements

of gvi have mean zero and variance r2v;i. This multivari-

ate extension of the nested spatial sampling scheme

was proposed by Lark (2005) and has been used since

in soil science (e.g. Corstanje et al., 2007).

One novel aspect of our study was that at the out-

set, we did not know the spatial scale(s) on which

A. myosuroides varied, nor whether the variances dif-

fered substantially from scale to scale. We therefore

assumed the variances to be equal at all scales and

designed a sampling scheme accordingly. Our design is

as follows, with five levels in the hierarchy.

Nine main stations were spaced approximately

50 m apart across the field (Fig. 2); this corresponds

with level 1 of the hierarchy. Sampling sites were

nested in groups at each main station (Fig. 3A). The

distances between sites at level 2 in the design were

20.0 m, at level 3 the sites were spaced 7.3 m apart,

those at level 4 were 2.7 m apart, and those at level 5

were spaced 1.0 m apart. The distances were fixed,

but the directional bearings were randomised indepen-

dently to satisfy the requirements of the model

(Eqn 1). Figure 3B shows the structure as a topologi-

cal tree, which is evidently unbalanced in that the

replication is not equal in all branches of the tree. To

improve our maps of A. myosuroides distribution and

associated soil properties, we added 10 more sampling

points, to give a total of 136 sampling points across

the field. These additional points were added to fill

the larger gaps in the coverage and thereby enable us

to diminish the errors in maps made by kriging

(Fig. 2).

The positions for the main stations at the 1st level of

the design were located in the field by GPS, with sub-

sidiary points located by their distance and orientation

from the main station by tape measure and compass.

Square quadrats (0.5 m2) were placed on the ground

with their south-west vertices at the sampling point. All

locations were subsequently geo-referenced with an

RTK GPS (Topcon Positioning Systems, Livermore,

CA, USA) with a quoted resolution of 5 cm.

Alopecurus myosuroides individuals within each

quadrat were counted in late October 2013, while the

plants were at the one- to two-leaf stage. No pre-emer-

gence herbicide had been used on the field.

Soil analyses

Two cores of soil were taken from each quadrat with a

half-cylindrical auger of diameter 3 cm to a depth of

28 cm on 21 January 2014, while the soil was at field

capacity. The depth at which the clay layer was first visible

was noted in each of the two augers to indicate the depth

of cultivation. If the clay layer was not reached within the

28 cm, then a value of 30 cm was assigned. The average

of the two replicates was then recorded. The gravimetric

water content was measured in layers 0–10 cm and 10–
28 cm by loss on oven-drying at 105°C. Other variables

Fig. 2 Location of sampling points within the field. The field is

marked by grey dots. The locations of the nine main stations are

shown as crosses. The 10 extra sampling points are shown as

closed discs.

© 2015 The Authors Weed Research published by John Wiley & Sons Ltd on behalf of European Weed Research Society. 56, 1–13
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were measured on samples pooled from the two cores

within each quadrat. Organic matter was measured by

loss on ignition. Available phosphorus (P) was measured

in a sodium bicarbonate extract at pH 8.2. The pH was

measured in water, and soil texture (particle-size distribu-

tion) was determined by laser diffraction. Stone content

by both volume and mass was measured on a core of

76 mm diameter taken to depth 97 mm from the south-

west outside corner of each quadrat.

Statistical analyses

A balanced design would lead to a straight-forward

analysis of variance (ANOVA) from which the components

of variance are readily estimated. Analysing data from

an unbalanced design is more complex. Gower (1962)

provided formulae for computing the components from

an ANOVA. The method now favoured on theoretical

grounds is the residual maximum-likelihood (REML) esti-

mator due to Patterson and Thompson (1971) and is the

one we used. Within the REML model (Eqn 1), the terms

gui and gvi , i = 1, 2,. . .., k are the random effects. The

assumption is that the concatenated 2n 9 1 random vec-

tor [[Zu]T[Zv]T]T has a joint multivariate normal distribu-

tion with 2n 9 2n covariance matrix:

V ¼
Xk
i¼1

r2u;iMiM
T
i ; Cu;v

i MiM
T
i

Cu;v
i MiM

T
i ; r2v;iMiM

T
i

" #
ð2Þ

where the superscript T denotes the transpose of a

matrix. The variance and covariance components for

each scale are the random effects parameters which are

estimated by REML.

We calculated Pearson’s correlation coefficients for all

data to show correlations when scale is ignored. Note,

however, that this does not give an unbiased estimate of

the correlation, because it ignores the dependency struc-

ture imposed by the sampling and is therefore a somewhat

arbitrarily weighted combination of the correlations at

different scales. Following partitioning of the components

of variance at the different spatial scales, estimates of the

correlations (q̂) at each scale (i) between A. myosuroides

and the soil properties were calculated as:

q̂i
u;v ¼ Ĉi

u;v

r̂u;ir̂v;i
ð3Þ

where the variables u and v are A. myosuroides counts

and the soil property, respectively, and the terms with

the hats are the REML estimates of their covariances

(C) and standard deviations (r). Where the estimated

components of variance given by REML were non-posi-

tive, no associated correlation coefficient was calcu-

lated. Confidence intervals for the correlations were

calculated by Fisher’s z-transform, with degrees of

freedom appropriate to the number of sampled pairs

at the corresponding level of the design.

Variograms were estimated and modelled from all

data points from both the sampling design and the 10

additional points to quantify the spatial structure in the

variance of the measured variables. We did this using

GenStat (Payne, 2013). Semivariances were calculated

by the method of moments (Webster & Oliver, 2007):

ĉ hð Þ ¼ 1

2mðhÞ
XmðhÞ

j¼1

z xj
� �� z xj þ h

� �� �2 ð4Þ

where z(xj) and z(xj + h) are the observed values at

two locations separated by lag h, and m(h) is the

Fig. 3 Nested sampling design used in case study (A) the design

as one instance might appear on the ground with vertices labelled

as the numbers 1–14. The yellow disc indicates the main station

of the motif. Red lines represent nodes spaced 20 m apart, blue

lines indicate 7.3 m, purple lines link points 2.7 m apart and

black lines link those 1 m apart. (B) Topological tree of nested

sampling design used in case study. The design is unbalanced as

replication is not equal at all branches of the tree.

© 2015 The Authors Weed Research published by John Wiley & Sons Ltd on behalf of European Weed Research Society. 56, 1–13
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number of pairs of points at that lag. By incrementing

h, we obtained an ordered set of values to give the

experimental variogram, which is a function of the

expected mean squared difference between two random

variables, z(x) and z(x + h) at locations x and x + h.

The variation appeared to be isotropic and so we trea-

ted the lag as a scalar in distance only.

In the case of A. myosuroides counts, where the dis-

tribution was skewed, a log transformation was used

before estimation of the variogram. However, the

Table 1 Summary statistics of species counts and environmental variables

Variate Mean Minimum Maximum Standard deviation Skew

Alopecurus myosuroides (individuals per quadrat) 28.80 0 326 51.0 3.02

Cultivation depth (cm) 24.90 17.1 30.0 2.74 0.13

Gravimetric water content in top 10 cm (%) 25.63 21.8 30.0 1.86 0.58

Gravimetric water content 10–28 cm depth (%) 23.83 19.3 31.0 2.19 0.55

Organic matter (% wet weight) 4.53 3.0 6.0 0.65 0.45

Available phosphorus (mg L�1) 24.70 11.0 54.4 8.30 1.27

pH 6.90 6.13 7.79 0.28 0.24

Sand (% wet weight) 32.10 17.0 51.0 4.85 0.41

Silt (% wet weight) 39.51 25.0 50.0 4.27 0.08

Clay (% wet weight) 28.39 23.0 39.0 3.00 0.85

Volume of Stones (%) 19.2 4.44 38.9 6.67 0.52

Mass of stones (g) 172.5 20.3 387.0 75.43 0.13

Fig. 4 Accumulated components of vari-

ance with all negative components of vari-

ance set to zero (closed discs) and method

of moments variograms (open circles) for

(A) Alopecurus myosuroides, (B) gravimet-

ric water content in the top 10 cm of soil,

(C) available phosphorus, (D) pH, (E)

clay content, (F) organic matter. The lags

have been binned over all directions and

incremented in steps of 6 m. The compo-

nents of variance plotted at 50 m are cal-

culated from the top level (1) of the

design and so encompass all distances

>50 m. The solid black lines show the

models fitted.

© 2015 The Authors Weed Research published by John Wiley & Sons Ltd on behalf of European Weed Research Society. 56, 1–13
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distribution still did not conform to the assumption of

normality, and so we used the method of Cressie and

Hawkins (1980) for a more robust estimation of the

variogram for this type of data. The computing for-

mula is a modified version of Eqn 4:

ĉ hð Þ ¼ 1

2

1
mðhÞ

PmðhÞ
j¼1 z xj

� �� z xj þ h
� ��� ��12n o4

0:457þ 0:494
mðhÞ þ 0:045

m2ðhÞ
ð5Þ

Where trend was present in the data, as it was for silt

content, we incorporated it in a mixed model of fixed

and random effects in the REML estimation of the vari-

ogram (Webster & Oliver, 2007).

We mapped the variables across the field by ordi-

nary kriging at points on a 1-m grid and then con-

toured the predictions in ArcMap (ESRI). For the

variables in which we identified trend and used REML

to obtain the variogram, we used universal kriging to

take the trend into account.

Results

Individuals of A. myosuroides were found in 95% of

the 0.5-m2 quadrats. In total, 3917 A. myosuroides

seedlings were counted with a mean density of 28.8 per

quadrat (Table 1). However, the spatial distribution of

A. myosuroides plants varied throughout the field and

had a strongly skewed distribution. A model was fitted

to try and normalise the data. The best fit was

obtained for logarithms of the data with an offset of

0.6 added before logging. This removed the skew from

the data, but revealed a bimodal distribution. When

the field was divided into two at the site of the old

field boundary, both populations then fitted a negative

binomial distribution, a distribution associated with

aggregated populations (Gonzalez-Andujar & Saave-

dra, 2003). The soil properties measured were all

approximately normal in distribution.

The accumulated components of variance show

clear spatial structure in both A. myosuroides counts

and the soil properties measured (Fig. 4). At fine

scales, the variance components estimated by REML

analysis were similar to the expected variance obtained

from the variogram. However, in most cases the vari-

ogram reached a sill at lag distances greater than the

maximum distance in the nested design. The functions

chosen as models for the variograms were those that

best fitted in the least squares sense (Table 2).

The map of A. myosuroides in Fig. 5 was produced

by combination of two separate krigings, one for each

half of the field, thereby taking into account the bimo-

dal distribution of the weed counts. It shows a large

concentration of weeds in the northern part of the

field, with only a few seedlings in the southern part of

Table 2 Variogram models fitted to describe the spatial structure in selected measured variables

Variate Type of model Nugget Range

Distance

parameter Sill Exponent Linear term

Alopecurus myosuroides* Power 0.229 – – – 1.837 0.00101

Gravimetric water

content in top 10 cm

Stable† 1.110 – 20.23 2.367 – –

Available phosphorus Power 13.95 – – – 1.837 0.0266

pH Spherical 0.02890 57.0 – 0.0333 – –
Clay Spherical 2.83 91.0 – 8.42 – –
Organic matter Spherical 0.0492 82.03 – 0.3742 – –

*For Alopecurus myosuroides, logarithms of the data are used with an offset of 0.6 added before logging.

†The stable model uses an exponent of 0.95.

Fig. 5 Kriged map of Alopecurus myosuroides individuals (per

0.5 m2). The model fitted to the experimental variogram of the

data is used to provide the best unbiased predictions at points

that were not sampled.

© 2015 The Authors Weed Research published by John Wiley & Sons Ltd on behalf of European Weed Research Society. 56, 1–13
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Fig. 6 Kriged maps of (A) gravimetric water content in the top 10 cm of soil, (B) available phosphorus (mg L�1), (C) pH, (D) clay con-

tent and (E) organic matter in soil. In all cases, the models fitted to the experimental variograms of the data are used to provide the best

unbiased predictions at unsampled points.

© 2015 The Authors Weed Research published by John Wiley & Sons Ltd on behalf of European Weed Research Society. 56, 1–13
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the field. The kriged maps of the soil properties

(Fig. 6) show each soil property has a unique spatial

distribution. Some of the maps, for example water con-

tent (Fig. 6A) and pH (Fig. 6C), show some accord

with A. myosuroides distribution (Fig. 5).

The statistically significant REML model terms were

generally found at the coarsest scales studied here

(Table 3), where the covariance terms (Cu;v
i ) for each

scale (i = 1, 2,. . ., k) were set to zero in turn in the

REML analysis to test for significance in their contribu-

tion to the model.

Pearson correlation coefficients between

A. myosuroides counts and the soil properties were

generally weak (Table 4). These take all of the data

into account without regard to spatial scale. From

these results, we might conclude that there are only

weak relations between the density of A. myosuroides

and the environmental properties measured. However,

once the correlations are calculated for the nested

design structure, stronger relations are revealed at par-

ticular scales (Fig. 7). Often, significant terms in the

REML model (Table 3) corresponded with strong corre-

lations between the A. myosuroides count and the soil

property (Fig. 7), reiterating the likelihood of there

being a relation between the weed count and the soil

property at that scale.

Optimising the design

At the beginning of our study, we had no prior infor-

mation about the distribution of the variance across

scales. Therefore, the nested design we used was based

on the assumption of equal variances at all scales. As

we now know the components of variance for

Table 3 Estimated variance components for environmental variables at multiple spatial scales together with the covariance component

with Alopecurus myosuroides at those scales

Environmental variable Random term

Estimated variance

component for

environmental property

Estimated variance

component for

A. myosuroides counts

Estimated covariance

component for

environmental property

and A. myosuroides

Gravimetric water

content in top 10 cm

lv1 3.603 1.995 2.480*

lv1.lv2 0.1239 0.4850 0.1401

lv1.lv2.lv3 0.1484 0.1802 �0.1154

lv1.lv2.lv3.lv4 �0.2244 �0.00972 0.1387

Residual variance:

lv1.lv2.lv3.lv4.lv5 1.559 0.2620 �0.01321

Available phosphorus lv1 43.93 1.976 3.150

lv1.lv2 12.88 0.4960 �1.803*

lv1.lv2.lv3 2.008 0.1720 0.2699

lv1.lv2.lv3.lv4 �1.638 �0.01731 �0.1812

Residual variance:

lv1.lv2.lv3.lv4.lv5 13.98 0.2701 0.02844

pH lv1 0.03577 1.981 �0.2368*

lv1.lv2 0.005170 0.4940 �0.005534

lv1.lv2.lv3 0.008005 0.1753 �0.01853

lv1.lv2.lv3.lv4 �0.004391 �0.02287 �0.01073

Residual variance:

lv1.lv2.lv3.lv4.lv5 0.03132 0.2748 0.02055

Clay lv1 3.692 1.952 2.294*

lv1.lv2 1.986 0.4936 0.2752

lv1.lv2.lv3 0.2887 0.1690 0.1531

lv1.lv2.lv3.lv4 �0.5752 �0.02259 0.005526

Residual variance:

lv1.lv2.lv3.lv4.lv5 3.904 0.2765 �0.03997

Organic matter lv1 0.2749 1.963 0.728*

lv1.lv2 0.03782 0.493 0.00194

lv1.lv2.lv3 0.02876 0.1725 0.02713

lv1.lv2.lv3.lv4 �0.01191 �0.01379 0.008752

Residual variance:

lv1.lv2.lv3.lv4.lv5 0.1193 0.2677 �0.00817

Covariances that contributed significantly to the model fitted by REML (P < 0.05) are marked*. Random terms are denoted by lv to

signify the level of the hierarchical design, with lv 1 representing the highest level of the design (separate designs across the field) and so

corresponds to distances of >50 m and lv2-5 correspond to distances of 20 m, 7.3 m, 2.7 m and 1 m respectively. All negative estimates

for variance components were found not to be statistically significantly different from 0.
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A. myosuroides seedling counts at all scales (Table 5),

the sampling design can be optimised as described by

Lark (2011). This allows sampling to be focused on

the scales that contribute most to the total variance.

To achieve this, all components of variance must be

positive and so in this example the component of vari-

ance for the 4th level is set equal to the minimum posi-

tive variance. The optimised design is shown in

Fig. 8A.

Because of the strong relations observed at the

coarse scale between A. myosuroides and most of the

soil properties, we investigated a wider set of scales

increasing exponentially from 1 m at level 5, to 40 m

at level 2. This meant the use of distances of 1 m,

3.5 m, 11.5 m and 40 m within the design at each

main station. Estimates of the components of variance

at each of these distances were taken from the model

fitted to the variogram for A. myosuroides counts. The

component of variance for the top level of the design

was set so that the variances had the same sum as the

original REML estimates for this field. The design was

then optimised for these estimated components of vari-

ance. The optimised design at the coarser scales is

shown in Fig. 8B.

Discussion and conclusions

Both the hierarchical analysis and the estimated vari-

ogram of the A. myosuroides counts revealed clear spa-

tial structure in the data, with observations at short

separations showing greater similarity than observations

separated by larger distances. Each of the soil variables

we measured also had its unique spatial structure that

was visible in both the variograms and the components

of variance (see Fig. 4). This means that we must recog-

nise the importance of variation at several spatial scales.

Within the literature on weed patches, there is a lack of

consistency in observed relations with abiotic variables.

For example, Walter et al. (2002) found a weak negative

relation between Poa annua L. and organic matter con-

tent, whereas Andreasen et al. (1991) found a strong

positive relation between the two. This lack of consis-

tency may be due to their different sampling scales. Wal-

ter et al. (2002) sampled on a 20-m by 20-m grid,

whereas Andreasen et al. (1991) randomly selected sam-

ple locations within a field. This illustrates the need for

more rigorous statistical methods to account for pro-

cesses operating at different scales.

Despite weak Pearson correlations for all the data

(Table 4), covariances and correlations between

A. myosuroides counts and soil properties showed some

strong correlations at various scales. In most instances,

the separations that significantly contributed in the

REML analyses were the largest of those studied here

(>50 m), indicating relations between soil properties

and A. myosuroides counts occur across the whole

field. This is a potentially interesting result in terms of

the practical management implications (as we explain

below) and warrants further investigation into the

scale-dependent relations between A. myosuroides and

soil properties. In terms of experimental and analytical

methodology, it is particularly important to note how

uncorrelated variation between two variables at finer

scales can obscure scientifically interesting and practi-

cally important relations exhibited at coarser scales, if

one were only to examine the overall correlation

between variables. The nested sampling scheme and

associated analysis set out in this paper are necessary

if this problem is to be avoided in experimental studies

of the factors affecting weed distribution.

However, other fine-scale relations not revealed by

significant terms in the REML model did appear in the

correlations between the weed and soil properties. For

example, there were strong positive relations observed

at the two coarsest scales between A. myosuroides and

water content. However, at 7.3 m, there was a negative

relation between these two variables, indicating that a

different process operates over these smaller distances.

So, although A. myosuroides establishes most readily

in the wettest part of the field, within that wet part

establishment was better in the relatively dry parts of

it. Similarly for available phosphorus, despite the negli-

gible Pearson correlation between A. myosuroides and

phosphorus, at 20 m there is a significant negative

covariance in the REML model, yet at the 7.3-m scale,

the correlation is positive. This may be explained by

Table 4 Pearson’s correlation coefficients between

Alopecurus myosuroides counts and soil properties measured taking

all data into account

Variate

Pearson’s correlation

coefficient between

A. myosuroides and the

measured variate

Cultivation depth �0.008

Gravimetric water

content in top 10 cm

0.482*

Gravimetric water

content 10–28 cm depth

0.491*

Organic matter 0.527*
Available phosphorus 0.023

pH �0.475*
Sand 0.135

Silt �0.384*
Clay 0.328*
Volume of stones 0.050

Mass of stones 0.031

Two-sided tests of correlations different from zero are marked *

where significant (P < 0.05).
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depletion of available phosphorus in areas of high

weed density (Webster & Oliver, 2007, pp. 220 and

227–228).
We have shown how by nested sampling and hierar-

chical analysis by REML one can reveal the spatial

scale(s) at which weed infestations vary and correlate

with soil factors in an economical way. We have also

shown how, once one has estimates of components of

variance, one can improve a design for future survey

without adding substantially to the cost.

These estimates of the components of the variance

could be estimated from other more readily available

sources of information. For example, the farmer might

know something, in a qualitative way, of where and on

what spatial scales weeds infest their fields, or the

investigator might have access to aerial photography

or satellite images that show patchiness in crops or soil

that could guide them in designing a sampling scheme.

Our methodology is generic and can be used to look at

relations between any continuous variable assumed to

be related to weed distribution and any weedy vari-

able, whether species distribution or total weed density.

We should expect the spatial dependency of soil and

weed interactions revealed by the analysis to be con-

text specific. However, ongoing work is seeking to vali-

date the robustness of the relations between soil and

A. myosuroides patches that emerged from our case

study.

Fig. 7 Correlations at the various scales

of the nested sampling design between

Alopecurus myosuroides and (A) water

content in the top 10 cm of soil, (B) avail-

able phosphorus, (C) pH, (D) clay con-

tent and (E) organic matter. Correlations

are shown as discs with horizontal bars

indicating 95% confidence intervals. The

correlations plotted at 50 m are calculated

from the top level (1) of the design and so

encompass all distances >50 m.

Table 5 Results of REML analysis for log-transformed Alopecu-

rus myosuroides counts. Random terms are denoted by lv to sig-

nify the level of the hierarchical design, with lv 1 representing the

highest level of the design (separate designs across the field) and

so corresponds to distances of >50 m and lv2-5 correspond to

distances of 20 m, 7.3 m, 2.7 m and 1 m respectively

Random term

Estimated

variance

component

Estimated

standard

error

Effective

degrees of

freedom

lv1 1.9759 1.0951 8

lv1.lv2 0.4916 0.2126 18

lv1.lv2.lv3 0.1759 0.0816 34.22

lv1.lv2.lv3.lv4 �0.0176 0.0609 33.19

Residual variance

lv1.lv2.lv3.lv4.lv5 0.2700 0.0679 31.6
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This paper has demonstrated how scale-dependent

relations between weed density and soil properties can

be examined with appropriate sampling and analysis.

The case study showed that such scale-dependence can

occur. It also showed that the nested method may

allow us to identify relations that occur at certain

scales, but which would be obscured by uncorrelated

variations at other scales, if the variables were exam-

ined using only the overall correlation for data on a

simple random sample. This methodology should be

applied to a range of fields with contrasting soil condi-

tions and management strategies, over several seasons,

in order to identify scale-dependent relations between

soil and weeds in order to form a basis for a robust

strategy for controlling weeds according to the spatial

variation in the soil.

Identifying the soil properties that most consistently

affect the distribution of A. myosuroides in a field

could have practical application, if the scale at which

the soil and weeds are correlated is appropriate for

site-specific management (as is suggested by our

results). Farmers often aim to minimise heterogeneity

within individual fields, so that they can treat each

field as if it were uniform. Nevertheless, they recognise

that there will be some variation within their fields and

often have considerable knowledge of that spatial vari-

ation (Heijting et al., 2011). Now, with modern tech-

nology, they can vary their treatment applications

accordingly (Lutman et al., 2002). Patchy distributions

of weeds are particular examples of such heterogeneity.

In principle, farmers should be able to control the

weeds with herbicide where the weeds occur and avoid

using herbicide where they are absent or too few to be

of consequence. Although research is being pursued

into detection of weed seedlings (e.g. Giselsson et al.,

2013), most current systems, especially for grass weeds,

rely on mapping weeds at maturity to guide spraying

decisions in the following crop. Knowing the relation-

ships between weeds and soil could underpin these

approaches by identifying where the weeds might per-

sist or spread, based on thresholds of soil variables,

for example clay content, in the field. These areas

could be sprayed as buffers around existing patches to

insure against individuals escaping control. Ultimately,

if sufficiently robust models of weed spatial distribu-

tion could be developed (incorporating thresholds of

soil properties), soil maps could be used as the basis

for weed patch spraying decisions. Furthermore, if the

coarse-scale relations observed here are found to be

common across additional fields, it is more likely that

farmers would adopt variable management at these

scales than precision spraying at fine scales.
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