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a b s t  r  a c t

Individual-based  models  (IBMs)  can simulate  the  actions  of  individual  animals  as they  interact  with
one  another  and  the  landscape  in  which  they  live.  When  used  in  spatially-explicit  landscapes  IBMs  can
show  how  populations  change  over  time  in  response  to  management  actions.  For instance,  IBMs  are
being  used  to  design  strategies  of  conservation  and  of  the  exploitation  of  “sheries,  and  for  assessing the
effects  on  populations  of  major  construction  projects  and  of  novel  agricultural  chemicals.  In  such  real
world  contexts,  it  becomes  especially  important  to  build  IBMs  in  a principled  fashion,  and  to  approach
calibration  and  evaluation  systematically.  We  argue  that  insights  from  physiological  and  behavioural
ecology  offer  a recipe  for  building  realistic  models,  and  that  Approximate  Bayesian  Computation  (ABC)
is a promising  technique  for  the  calibration  and  evaluation  of  IBMs.

IBMs  are constructed  primarily  from  knowledge  about  individuals.  In  ecological  applications  the  rel-
evant  knowledge  is found  in  physiological  and  behavioural  ecology,  and  we  approach  these  from  an
evolutionary  perspective  by  taking  into  account  how  physiological  and  behavioural  processes contribute
to  life  histories,  and  how  those  life  histories  evolve.  Evolutionary  life  history  theory  shows  that,  other
things  being equal, organisms  should  grow  to  sexual  maturity  as fast  as possible,  and  then  reproduce
as fast  as possible,  while  minimising  per capita  death  rate.  Physiological  and  behavioural  ecology  are
largely  built  on  these  principles  together  with  the  laws  of  conservation  of  matter  and  energy.  To com-
plete  construction  of  an IBM  information  is also  needed  on  the  effects  of  competitors,  conspeci“cs  and
food  scarcity;  the  maximum  rates  of  ingestion,  growth  and  reproduction,  and  life-history  parameters.

Using  this  knowledge  about  physiological  and  behavioural  processes provides  a principled  way  to
build  IBMs,  but  model  parameters  vary  between  species and  are often  dif“cult  to  measure.  A common
solution  is to  manually  compare  model  outputs  with  observations  from  real  landscapes  and  so to  obtain
parameters  which  produce  acceptable  “ts  of  model  to  data.  However,  this  procedure  can be convoluted
and  lead  to  over-calibrated  and  thus  in”exible  models.  Many  formal  statistical  techniques  are unsuitable

for  use with  IBMs,  but  we  argue  that  ABC offers  a potential  way  forward.  It  can be used  to  calibrate
and  compare  complex  stochastic  models  and  to  assess the  uncertainty  in  their  predictions.  We  describe
methods  used  to  implement  ABC in  an accessible  way  and  illustrate  them  with  examples  and  discussion
of  recent  studies.  Although  much  progress  has been  made,  theoretical  issues remain,  and  some  of  these
are outlined  and  discussed.
. Introduction

A major  challenge  in  ecological  modelling  is to  make  reliable
Please cite  this  article  in  press  as: van  der  Vaart,  E., et  al., Predicting
evaluate  individual-based  models.  Ecol. Model.  (2015),  http://dx.doi.org

redictions  about  what  will  happen  to  real  populations  in  real
andscapes.  In  some  ways  this  may  seem  a simple  task„Newton
olved  similar  problems  in  mechanics  over  300  years  ago. But

� Corresponding  author.  Tel.:  +44118378547020.
E-mail  addresses: e.e.vandervaart@reading.ac.uk  (E. van  der  Vaart),

.s.a.johnston@pgr.reading.ac.uk  (A.S.A. Johnston),  r.m.sibly@reading.ac.uk
R.M. Sibly).

ttp://dx.doi.org/10.1016/j.ecolmodel.2015.08.012
304-3800/©  2015  Published  by  Elsevier  B.V.
©  2015  Published  by  Elsevier  B.V.

animals  and  plants  are not  identical  particles  obeying  simple  math-
ematical  laws,  they  make  complex  decisions  based on  their  needs
and  perceived  opportunities  in  their  environments.  Only  with  the
advent  of  computing  power  has it  become  possible  to  simulate
these  processes with  any  degree  of  realism,  and  so to  link  the  lev-
els from  individual  organisms  to  populations  of  individuals.  In  this
approach  what  happens  to  the  population  emerges  from  complex
interactions  between  autonomous  individuals  and  their  environ-
 how  many  animals  will  be where:  How  to  build,  calibrate  and
/10.1016/j.ecolmodel.2015.08.012

ments,  in  the  computer  simulations  as in  life.
Models  are always  simpli“ed  representations  of  the  real  sys-

tem,  and  so a trade-off  is  necessary  between  model  complexity
and  realism  (Evans et  al., 2013 ). The different  degrees  of  this

dx.doi.org/10.1016/j.ecolmodel.2015.08.012
dx.doi.org/10.1016/j.ecolmodel.2015.08.012
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:e.e.vandervaart@reading.ac.uk
mailto:a.s.a.johnston@pgr.reading.ac.uk
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rade-off  are characterised  by  the  different  model  types  available.
ifferential  equation  models  are typically  used  in  simple  assess-
ents  of  unstructured  population  growth,  whilst  matrix  models
re essentially  sets of  linear  difference  equations  which  separate
he  population  into  classes (e.g. life-cycle  stage)  with  class-speci“c
ife-history  parameters  (e.g. juvenile  survival).  Both  approaches
rovide  insight  into  general  patterns  of  population  growth  in
peci“ed  environmental  conditions.  They  have  the  advantage  that
hey  can accept  population-level  data  on  birth  and  death  rates,
nd  they  are often  tractable  using  analytical  methods.  However

hey  cannot  easily  accommodate  autonomously  acting  individ-
als,  and  it  is  dif“cult  to  characterise  the  effects  of  location  and
abitat.

These high  levels  of  detail  can readily  be incorporated  into
ndividual-based  models  (IBMs;  also  called  agent-based  models
ABMs)).  In  IBMs,  the  actions  of  unique  individuals  are simu-
ated  as they  interact  with  one  another  and  the  landscape  in
hich  they  live  (DeAngelis  and  Mooij,  2005 ). Individuals  can
ary  according  to  their  state  variables  (e.g. age, sex, mass)  whilst
atches  of  mapped  landscapes  can be characterised  by  key  eco-

ogical  drivers  (e.g. temperature,  food,  exposure  to  chemicals).  The
ynamics  of  populations  in  different  environmental  conditions
hen  emerge  from  simulations  of  individuals•  behaviours  (Grimm
nd  Railsback,  2005 ). Thus, where  prediction  is required  about  the
ate  of  populations  in  different  landscape  scenarios,  one  way  ahead
s through  IBMs  (Stillman  et  al., 2015 ). Accordingly,  IBMs  are cur-
ently  being  used  to  design  strategies  of  conservation  and  of  the
xploitation  of  “sheries,  and  for  assessing the  effects  on  popu-

ations  of  major  construction  projects  and  of  novel  agricultural
hemicals  (see, e.g., Galic  and  Forbes, 2014;  Hartman  and  Kitchell,
008;  Nabe-Nielsen  et  al., 2014;  Stillman  and  Goss-Custard,
010 ).

Although  IBMs  are powerful  tools  for  ecological  management,
hey  also  face major  challenges.  There  may  not  be suf“cient  data
vailable  to  build  a realistic  model,  running  IBMs  may  be com-
utationally  expensive,  and  run  times  may  be prohibitively  long.
urthermore  attempts  to  represent  multiple  processes and  interac-

ions  in  IBMs  can lead  to  models  being  over-parameterised,  leading
o  reduced  realism  and  an inability  to  extrapolate  to  other  sites
nd/or  time  periods.  Their  predictions  are then  imposed  rather
han  emergent  (Grimm  and  Railsback,  2005;  Martin  et  al., 2013 ).
ecause models  are needed  to  forecast  what  happens  in  novel  con-
itions,  it  is  desirable  that  they  be mechanistic  in  the  sense that  they
ccurately  capture  the  underlying  relationships  between  biological
rocesses and  environmental  conditions.

In  this  paper  we  consider  two  particular  problems:  How  to
uild  ecological  IBMs  from  “rst  principles,  and  how  to  calibrate
nd  evaluate  them.  When  IBMs  are built  to  predict  the  numbers
nd  spatial  distributions  of  animals,  as is often  the  case in  applied
tudies,  we  argue  that  insights  from  physiological  and  behavioural
cology  offer  a sound  recipe  for  building  realistic  models.  We
lso  argue  that  model  calibration  and  evaluation  can be achieved
sing  the  new  technique  of  Approximate  Bayesian  Computation
Beaumont,  2010 ). Thus  the  paper  has two  foci,  which  run  in  par-
llel  but  are not  necessarily  related  to  each other.  Together  they
ive  our  vision  of  •next  generation  ecological  modellingŽ,  which

s the  focus  of  the  special  issue  in  which  this  paper  appears.  We
ry  to  produce  concrete  suggestions,  but  hope  our  readers  will  for-
ive  us for  not  being  able  to  fully  describe  the  pros  and  cons  of
lternative  approaches.  This  is  partly  for  lack  of  space, but  also  in
art  because the  new  techniques  we  envisage  are not  yet  fully
eveloped  or  compared  with  alternatives,  so informed  compar-
Please cite  this  article  in  press  as: van  der  Vaart,  E., et  al., Predicting
evaluate  individual-based  models.  Ecol. Model.  (2015),  http://dx.doi.org

sons  and  discussion  are not  yet  possible.  Our  overarching  aim  is
o  be able  to  link  the  levels  from  individuals  to  populations  in  a
ransparent  and  credible  fashion  that  is  “rmly  rooted  in  biological
nowledge.
 PRESS
odelling  xxx (2015)  xxx…xxx

2. Building  IBMs  from  “rst  principles

In  this  section  we  identify  principles  which  may  be used  to  build
ecological  IBMs  and  consider  how  to  build  such  models  using  avail-
able  biological  knowledge.  Our  approach  is partly  based on  Sibly
et  al. (2013)  and  is similar  to  the  Dynamic  Energy  Budget  approach
(Kooijman,  2010;  Martin  et  al., 2012 ). We  then  consider  how  pop-
ulation  dynamics  emerge  from  the  simultaneous  behaviours  and
interactions  of  individuals.  At  the  end  of  the  section  we  discuss
some  of  the  complications  that  arise  in  linking  the  levels  from  indi-
viduals  to  populations.

IBMs  are based on  knowledge  about  individuals,  and  the  subdis-
ciplines  of  biology  that  deal  with  individuals  are physiological  and
behavioural  ecology.  These consider  how  physiological  processes
within  individuals,  and  decisions  made  by  individuals,  contribute
to  life  histories.  Natural  selection  acts on  life  histories,  favouring
some  at  the  expense  of  others,  and  this  has rami“cations  for  the
evolution  of  physiologies  and  behaviour.  So it  is  sensible  to  start  by
considering  how  life  histories  evolve.

The theory  of  life-history  evolution  is well  established  (see
e.g., Sibly,  2002;  Stearns,  1992 ) and  explains  why  organisms  are
expected  to  maximise  Darwinian  “tness  and  so to  win  out  in  the
struggle  for  existence  in  the  environment  in  which  they  evolved.  In
particular  other  things  being equal organisms  are expected  to:

€ Grow  to  sexual  maturity  as fast  as possible  (Axiom  1)
€ Reproduce  as fast  as possible  (Axiom  2)
€ Minimise  per capita  death  rate  (Axiom  3)

The phrase  •other  things  being  equal•  means  that  growth,  repro-
duction  and  death  rate  are independent,  i.e., they  do  not  trade  off
against  each other.  However  this  is  not  always  the  case, e.g., grow-
ing  faster  may  only  be possible  by  taking  risks,  which  may  mean
the  death  of  the  individual.  In  such  cases organisms  may  trade  off
risk  of  death  to  increase  their  growth  rate.  Much  attention  has
been  given  to  the  evolution  of  life  histories  that  are subject  to
constraints  imposed  by  life-history  trade-offs  (Sibly,  2002;  Stearns,
1992 ). The predicted  outcome  of  the  evolutionary  process  in  a con-
stant  environment  is  referred  to  as an optimal  strategy , meaning  the
strategy  that  maximises  Darwinian  “tness  subject  to  the  imposed
constraints.  Constraints  and  opportunities  differ  among  species,
and  this  is  one  reason  why  species differ  from  each other.  Incor-
porating  trade-offs  into  IBMs  can be straightforward;  for  instance,
the  increased  mortality  that  comes  with  foraging  in  dangerous  but
rewarding  places  may  be a direct  result  of  encountering  predators
more  often.  Provided  the  different  situations  of  different  species
are well-modelled,  their  different  trade-offs  should  emerge  auto-
matically.

One major  constraint  to  increasing  Darwinian  “tness  stems  from
the  availability  of  resources.  The energy  and  nutrients  needed  to
build  animal  bodies  are derived  from  food,  but  food  may  be in
limited  supply.  This  imposes  major  constraints  on  behaviour  and
physiology  as follows:

€ Energy  is conserved  within  individual  bodies  (Axiom  4)

This  means  that  the  only  energy  available  to  power  organisms
is that  which  they  derive  from  food  or  sunlight.  Allocation  of
resources  within  bodies  is similarly  constrained:

€ Matter  is  conserved  within  individual  bodies  (Axiom  5)

This  means  that  the  only  chemicals  available  to  build  organism
 how  many  animals  will  be where:  How  to  build,  calibrate  and
/10.1016/j.ecolmodel.2015.08.012

bodies  are those  they  derive  from  food.
Life-history  theory  is the  foundation  on  which  physiological  and

behavioural  ecology  are built.  We  now  consider  their  relevant  “nd-
ings  at  the  level  of  the  individual.

dx.doi.org/10.1016/j.ecolmodel.2015.08.012
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ig.  1. Structure  of  the  energy  budget  model.  The thickness  of  solid  arrows  indicates
riorities  for  allocation  of  energy  obtained  from  food.  Any  energy  remaining  after

hese  allocations  enters  the  energy  reserves.

.1. Individuals

There  are many  complex  and  unresolved  issues in  ecological
nergetics  that  have  to  be reconciled  with  the  need  for  simple  rep-
esentations  that  can be included  in  an IBM.  The simpli“cations  that
ollow  represent  our  vision  of  how  this  can best  be achieved„but
ear  in  mind  that  ours  is not  the  only  possible  approach  and  that
thers  may  prove  superior  as science  progresses.

The main  contribution  of  physiological  ecology  is understanding
f  the  mechanisms  of  energy  acquisition  and  expenditure  by  indi-
iduals,  generally  termed  energy  budgets.  For modelling  purposes
he  aim  of  energy  budgets  is to  identify  a generic  speci“cation
or  how  individuals  acquire  and  expend  energy  with  suf“cient
ealism  but  without  unnecessary  complexity.  Our  understanding
f  these  processes, as derived  from  Glazier  (2008) , Karasov  and
artinez  del  Rio (2007) , Peters  (1983)  and  Sibly  and  Calow  (1986) ,

s set  out  below,  along  with  suggestions  for  how  to  model  them
athematically.

We  assume  that  an animal  forages  as necessary  to  supply  its
nergy  needs  for  maintenance,  growth  and  reproduction.  Main-

enance  here  refers  to  the  minimum  energy  requirements  for
urvival,  often  taken  as the  basal  metabolic  rate  (BMR).  If  there  is
uf“cient  energy  intake,  the  animal  allocates  the  energy  obtained

n  the  following  order:  maintenance,  growth,  reproduction,  energy
torage,  until  its  energy  stores  reach  an optimal  level,  as in  Fig. 1
Glazier,  2008;  Karasov  and  Martinez  del  Rio, 2007;  Peters, 1983;
ibly  and  Calow,  1986 ). This  is  a diagrammatic  representation  of
xioms  4 and  5, omitting  faecal  and  excretory  waste.  The total  avail-
ble  for  allocation  is limited  by  the  amount  the  animal  eats, so if
ore  is allocated  to  one  function,  less is available  for  others.  This

ollows  from  conservation  of  mass and  energy  (Axioms  4 and  5).
There  is some  but  not  much  information  as to  how  priori-

ies  change  when  there  is not  enough  food  (Glazier,  2008;  Hou,
014 ), but  our  view  is that  the  priorities  for  maintenance  and
rowth/reproduction  remain  the  same until  reserves  fall  to  a crit-

cal  threshold  below  which  all  is  allocated  to  maintenance.  Note
owever  that  one  prominent  theory,  Dynamic  Energy  Budget  (DEB)
heory,  makes  a different  assumption,  that  throughout  life  a con-
tant  fraction  of  input  is  allocated  to  maintenance  and  growth,  with
he  rest  going  in  juveniles  to  maturation  and  in  adults  to  reproduc-
ion,  (the  •kappa  ruleŽ, Kooijman,  2010 ). Calculations  are generally
n  units  of  energy  per  unit  time,  e.g. watts,  even  though  acquisi-
ion  and  allocation  of  many  speci“c  nutrients  subscribe  to  the  same
rinciples  (see e.g., Kaspari,  2012 ).

Food acquisition  and digestion . According  to  the  principles  of
ptimal  foraging,  food  resources  are generally  chosen  from  those
vailable  according  to  the  net  rate  at  which  they  provide  energy
er  unit  time  (Davies  et  al., 2012 , see also  Section  2.3). Thus:

€ When  foods  vary  in  energy  yield  per  unit  time  after  allowing
for  energy  costs  of  foraging,  the  animal  selects  the  most
pro“table

(Axiom  6)
Please cite  this  article  in  press  as: van  der  Vaart,  E., et  al., Predicting
evaluate  individual-based  models.  Ecol. Model.  (2015),  http://dx.doi.org

Food resources  generally  vary  both  temporally  and  spatially.
ariation  in  food  density  affects  the  rate  of  ingestion  of  food  up  to
n asymptote,  the  form  of  this  relationship  being  known  as a •func-
ional  response•, and  generally  this  is  modelled  as a two-parameter
 PRESS
odelling  xxx (2015)  xxx…xxx 3

Holling  type  2 response  (Holling,  1959 ), which  often  approximates
what  is  observed  in  nature  (Begon et  al., 2006;  Krebs,  2009;  Ricklefs
and  Miller,  2000 ). The Holling  type  2 functional  response  may  be
written:

Ingestion  rate  =  IGm ×
(food  density )

(food  density  +  h)
(1)

where  IGm is the  maximum  ingestion  rate  in  g or  J per  unit  time,  and
h is a constant  which  shows  how  quickly  the  response  curve  reaches
its  maximum  as density  increases.  Maximum  ingestion  rates  gen-
erally  scale allometrically  with  body  mass and  temperature  (Clauss
et  al., 2007;  Peters, 1983 ).

After  ingestion  food  is processed  by  the  digestive  system  and  a
proportion  becomes  available  for  allocation  to  the  various  functions
shown  in  Fig. 1. This  proportion  is called  assimilation  ef“ciency,
de“ned  as: (energy  obtained  by  digestion)/(energy  ingested  as
food).  Assimilation  ef“ciency  depends  on  diet  and  averages  around
50…60% (Peters, 1983 ) and  appears  not  to  vary  with  body  mass
(Hendriks,  1999 ). However,  assimilation  ef“ciency  varies  widely
between  diets.  Whereas  ”esh  and  seeds may  be upwards  of  80%
assimilated,  this  falls  to  40…70% for  young  vegetation,  and  lower
for  mature  vegetation  and  wood  (Peters, 1983 ). Hendriks  (1999)
gives  the  assimilation  ef“ciencies  of  detritivores,  herbivores  and
granivores/carnivores  as around  20%, 40% and  80%, respectively.
Assimilated  energy  is available  for  distribution  to  maintenance,
growth,  reproduction  and  energy  reserves  as described  in  the  fol-
lowing  sections.

Maintenance  and survival :  Energy  for  maintenance  is roughly
equivalent  to  BMR, and  the  dependence  of  BMR on  body  mass, M,
and  body  temperature  T, measured  in  Kelvins  (=� C + 273.15),  can be
approximated  as:

Metabolic  rate  =  B0M � eŠE/kT (2)

where  B0 is a constant  of  proportionality,  �  is  a scaling  coef“cient,
� 3/4  (Glazier,  2005;  Moses  et  al., 2008;  Peters, 1983 ), E is  activation
energy  in  eV, � 0.65,  �  is  Boltzmann•s  constant,  and  the  exponential
term  is sometimes  referred  to  as the  Arrhenius  function  (Brown
and  Sibly,  2012;  Peters, 1983 ). Energy  allocated  to  maintenance
fuels  the  basic  processes of  life  essential  for  survival  and  these
have  “rst  call  on  energy  obtained  from  feeding,  and  on  an animal•s
energy  reserves  when  food  is unavailable.  Energy  is allocated  to
maintenance  as long  as energy  is left  in  the  reserves.  For modelling
purposes  the  animal  may  be considered  dead  when  the  reserves
are exhausted.

Growth :  If  energy  is available  after  the  costs  of  maintenance  have
been  paid,  juveniles  allocate  energy  to  somatic  growth.  The energy
costs  of  growth,  per  gram  of  ”esh  synthesised,  are fairly  well  known
(wet  ”esh  contains  7 around  kJ/g, and  the  energy  cost  of  synthesis
is around  7 kJ/g for  homeotherms  and  3.6 kJ/g for  poikilotherms
(Sibly  et  al., 2013 )).  However  there  are limits  to  the  rates  at  which
animals  can grow  and  these  change  as the  animal  grows.  How  these
limits  change  with  body  mass has been  variously  modelled,  but  the
resulting  growth  curves  are very  similar  (Kerkhoff,  2012 ). A widely
used  model  of  growth  rate  under  optimal  conditions  in  relation  to
bodymass  M  at  time  t  is

dm
dt

=  rB

�
Mm

1/ 3M 2/ 3 Š  M
�

(3)

where  Mm denotes  maximum  body  mass and  the  parameter  rB

is the  coef“cient  in  the  von  Bertalanffy  equation,  which  can be
obtained  from  data  recording  increase  of  body  length  or  mass
with  age in  ideal  conditions.  There  has been  controversy  as to  the
mechanistic  underpinnings  of  Eqs. (2)  and  (3)  and  the  exact  values
 how  many  animals  will  be where:  How  to  build,  calibrate  and
/10.1016/j.ecolmodel.2015.08.012

of  their  exponents  (see, e.g., Kerkhoff,  2012;  Price  et  al., 2012 );  we
do  not  endorse  one  model  over  others  but  suggest  these  equations
as commonly  used  ways  of  describing  the  relationships.  Eq. (3)
shows  how  the  maximum  rate  at  which  resources  can be allocated

dx.doi.org/10.1016/j.ecolmodel.2015.08.012
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o  growth  changes  as the  juvenile  increases  in  mass. Another
actor  affecting  growth  rate  in  ectotherms  is body  temperature.
he effect  of  temperature  on  growth  is given  by  the  Arrhenius

unction  referred  to  in  Eq. (2) . The case of  continued  growth  after
rst  reproduction  is more  complicated  and  is discussed  in  Sibly
t  al. (2013) . If  any  energy  remains  after  paying  the  costs  of  main-
enance  and  growth  and  perhaps  reproduction,  it  goes into  energy
eserves.

Reproduction :  Reproduction  does not  occur  until  the  animal  has
ttained  a certain  size and  assembled  the  bodily  structures  nec-
ssary for  reproduction.  These structures  (e.g., gonads,  oviduct,
terus)  themselves  require  resources  and  some  models  account
or  this  explicitly  (e.g., Kooijman,  2010 ) but  this  may  not  be
ecessary  provided  a minimum  size (or  age) of  reproduction  is

ncluded.
Reproduction,  like  growth,  requires  that  molecules  be precisely

ssembled  in  appropriate  order,  and  this  imposes  limits  on  the
ate  at  which  new  ”esh  can be synthesised  in  developing  embryos.
he maximum  rates  of  production  are implicit  in  the  allometric
oef“cients  for  numbers  and  sizes of  offspring,  and  these  are avail-
ble  with  age at  maturity  for  many  species in  the  literature  (Sibly
t  al., 2013 ). The energy  cost  of  synthesising  ”esh  for  reproduction

s the  same as for  growth.
Food supply  and  in  some  species temperature  affect  when  an

nimal  reaches  the  size required  for  reproduction.  For determinate
rowers  that  size would  be adult  size. However,  while  this  approach
ay  suf“ce  for  many  vertebrates,  some  invertebrates  respond  to

ood  shortage/stress  in  more  complex  ways,  by  decreasing  size of
rst  reproduction  and  clutch  size, and  in  some  species by  increas-
ng  neonate  mass. Some of  these  invertebrates  are indeterminate
rowers,  and  these  are discussed  in  Sibly  et  al. (2013) .

Energy reserves:  Energy  reserves  in  terrestrial  vertebrates  are
tored  mainly  as fat  in  adipose  tissue,  containing  39  kJ/g, or  as
arbohydrates  in  the  liver  (18  kJ/g) (Sibly  et  al., 2013 ). These
eserves  allow  the  animal  to  maintain  its  functions  during  tem-
orary  periods  of  starvation.  If  energy  input  from  food  exceeds
he  requirements  of  maintenance,  growth  and  reproduction,  then
ny  excess is stored  in  the  animal•s  energy  reserves.  Conversely
eserves  are used  to  supply  energy  requirements  if  the  supply
rom  feeding  is inadequate.  There  are costs  to  energy  storage  and
he  total  cost  of  synthesising  and  storing  one  gram  of  fat  is  about
4  kJ. Despite  the  attractions  of  fat  some  animals  use other  fuels,
.g., sessile marine  animals,  for  which  carrying  extra  weight  is  not
ostly,  use glycogen,  while  earthworms  and  ”atworms  use protein
nd  degrow  when  starving.

Surplus  energy  from  food  is not  added  to  reserves  inde“nitely.
nstead  animals  stop  eating  once  reserves  reach  a certain  level,  pre-
umably  corresponding  to  an optimum  compromise  between  the
ene“ts  of  being  able  to  survive  a hunger  gap and  the  costs  of  car-
ying  extra  weight,  e.g., reduced  ability  to  escape from  predators
Gosler  et  al., 1995;  Lind  et  al., 2010;  Witter  and  Cuthill,  1993 ). The
ptimum  will  vary  with  time  and  place,  and  prior  to  migration  ani-
als  may  accumulate  a fat  store  of  25…50% of  body  mass (Peters,
983;  Pond, 1978 ). While  optimum  values  of  energy  reserves  can-
ot  be predicted  a priori , information  on  natural  fat  content  exists

or  many  species (see e.g., Pond, 1978 ). Relative  to  energy  expen-
iture  larger  mammals  carry  more  body  fat  than  smaller  ones
fat  = 75  ×  M1.19 , fat  in  g and  M  in  kg, Lindstedt  and  Schaeffer,  2002 ),
nd  so can survive  substantially  longer  periods  of  starvation.

In  this  section  we  have  considered  how  individuals  obtain  and
rocess  food,  and  how  they  use it  to  fuel  maintenance,  growth
nd  reproduction.  In  our  exposition  survivorship  is maximised  and
Please cite  this  article  in  press  as: van  der  Vaart,  E., et  al., Predicting
evaluate  individual-based  models.  Ecol. Model.  (2015),  http://dx.doi.org

rowth  and  reproduction  occur  as fast  as possible  in  the  absence of
rade-offs,  in  accordance  with  Axioms  1…3. However  where  trade-
ffs  exist  the  optimal  strategy  may  not  be predictable,  as with  the
ptimal  level  of  energy  reserves  discussed  above.  The assembly  of
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individuals  in  the  modelled  landscape  constitutes  a population,  and
we  turn  next  to  how  such  populations  can be studied.

2.2. Populations

Here  we  consider  the  ways  in  which  populations  are affected  by
features  of  their  modelled  environments,  and  how  environmental
effects  can be identi“ed.  In  the  “rst  place  we  note  that  individ-
uals  do  not  act  completely  independently  of  each other.  Instead,
the  actions  of  individuals  both  in”uence  and  are in”uenced  by
the  actions  of  other  individuals.  For instance,  classical  ecological
processes such  as habitat  selection,  competition,  predator…prey
interactions  and  dispersal  all  depend  on  the  physiological  and
behavioural  interactions  between  individuals  and  other  individuals
and  the  landscape  (e.g. Sih et  al., 2012 ). It  is  one  of  the  strengths  of
IBMs  that  population  dynamics  emerge  from  explicit  simulations  of
these  processes. However  to  understand  the  causes of  the  patterns
of  emergent  population  dynamics  generally  requires  further  work.

As an example  consider  Dalkvist  et  al.•s (2011)  study  of  vole  pop-
ulation  dynamics  in  Fennoscandia.  Vole  population  dynamics  vary
systematically  from  regular  cycles  in  the  north  to  stable  popula-
tions  in  the  south.  The reasons  are believed  to  include  properties
of  the  voles• predators  and  habitat  fragmentation,  but  these  also
vary  from  north  to  south,  and  their  effects  are hard  to  distinguish
in  “eld  experiments.  However  both  can be manipulated  in  IBMs.
Dalkvist  et  al. (2011)  showed  by  experimentally  manipulation  of
IBM  landscapes  that  both  habitat  fragmentation  and  the  presence
of  specialist  predators  are necessary  for  the  occurrence  of  popu-
lation  cycles,  and  the  properties  of  the  predators  and  the  habitats,
together  with  those  of  the  voles,  jointly  determine  vole  cycle  length
and  amplitude.

The effects  of  habitat  fragmentation  on  the  long-term  persis-
tence  of  wild  animal  populations  are also  important  to  wildlife
managers  and  conservation  biologists,  but  as with  the  voles  it
is rarely  feasible  to  undertake  “eld  experiments  to  establish  the
effects  of  habitat  fragmentation.  In  an attempt  to  obtain  some  gen-
eral  insight  Nabe-Nielsen  et  al. (2010)  used  IBMs  to  look  at  the
effects  on  skylarks,  voles,  and  particular  ground  beetles  and  spiders,
of  progressively  fragmenting  a real  10  ×  10  km  Danish  landscape.
The most  important  result  was  that  the  arrangement  of  habitat
patches  and  the  presence  of  corridors  had  a large  effect  on  the  popu-
lation  dynamics  of  species whose  local  success depends  on  the  sur-
rounding  terrain.  Similarly  Liu  et  al. (2013)  showed  how  the  adverse
effects  of  pesticides  on  wood  mouse  populations  could  be reduced
by  the  addition  of  favourable  hedgerow  habitats.  While  these
results  may  be intuitive,  the  use of  IBMs  allows  predictions  to  be
made  as to  what  will  happen  if  speci“ed  modi“cations  are made  to
the  landscape,  for  instance  by  introducing  corridors  such  as unman-
aged grassland  for  voles,  or  vegetated  “eld  boundaries  for  beetles.

These examples  illustrate  how  IBMs  can be used  to  predict  man-
agement  effects  on  populations  living  in  real  landscapes.  However
to  achieve  realistic  predictions  it  is  not  enough  just  to  build  an
IBM  and  show  the  emergent  population  dynamics.  Further  under-
standing  is generally  needed  to  establish  what  causes particular
population  phenomena,  such  as cycles.  If  the  underlying  causes are
accurately  identi“ed,  the  population  predictions  should  be realis-
tic.  However,  establishing  realism  is always  dif“cult.  We  turn  next
to  some  of  the  problems  that  may  arise  when  using  IBMs  to  make
links  from  individuals  to  populations.

2.3. Complications  in  linking  the levels from  individuals  to
populations
 how  many  animals  will  be where:  How  to  build,  calibrate  and
/10.1016/j.ecolmodel.2015.08.012

Understanding  of  the  causes of  population  dynamics  requires
accurate  models  of  how  individuals  behave  and  allocate  resources.
However,  lack  of  knowledge  and  data  at  both  the  levels  of
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ndividuals  and  populations  may  place  limits  on  what  can be
chieved.  Some of  the  major  complications  are discussed  in  the

ollowing  section.
First,  when  modelling  decision  making  at  the  individual  level,

.g. about  what  to  eat,  it  is  often  assumed  that  animals  opti-
ise  “tness.  Optimal  decision  models  have  been  very  successful

n  understanding  animal  behaviour,  however  problems  remain
Davies  et  al., 2012 ). Since effects  on  Darwinian  “tness  can gener-
lly  not  be measured  directly,  a surrogate  such  as rate  of  obtaining
nergy  is used  instead.  However,  the  surrogate  may  not  accurately
e”ect  effects  on  Darwinian  “tness.  For instance  we  have  until  now
een  assuming  that  the  essential  requirement  of  animals  is for
nergy,  but  other  nutrients  may  sometimes  be limiting.  For exam-
le,  some  ”edgling  birds  require  insects  rather  than  grain  to  grow
nd  develop  properly,  and  the  diet  of  herbivores  may  lack  essential
alts,  forcing  animals  to  seek salt  licks.  In  such  cases the  indepen-
ent  needs  for  nutrients  and  energy  would  need  to  be modelled
eparately,  though  in  principle  this  can still  be achieved  within  a
ramework  of  maximising  Darwinian  “tness  (Simpson  et  al., 2004 ).

Second, our  assumptions  about  what  would  be optimal  decision
aking  may  be wrong  if  we  do  not  correctly  identify  an animal•s
hysiological  limitations,  such  as the  time  required  to  crack  a prey•s
efences  before  it  can be consumed.

Third,  it  may  be necessary  to  incorporate  the  fact  that  individ-
als  do  not  have  perfect  information  about  their  environment,  and

nstead  need  to  rely  on  sampling  and  memory.  Such insights  can be
mplemented  into  IBMs  fairly  easily,  in  contrast  to  other  types  of

odelling  approaches.  In  an IBM  of  woodpigeon  ”ocks,  Kulakowska
t  al. (2014)  showed  that  a model  in  which  individuals  forage  opti-
ally  did  not  adequately  “t  data  from  radio-tracking  studies  and
ther  data  from  a 40-year  study  of  the  distribution  of  birds  between
rops.  To obtain  adequate  “ts  of  the  available  data  it  was  necessary
o  allow  that  individuals  had  imperfect  knowledge  of  their  environ-
ent,  and  had  to  rely  instead  on  memories  of  previous  experiences.

Finally,  complex  social  interactions  may  be a major  source
f  complications  in  modelling.  For instance,  many  animals  live

n  groups  and  within  these  groups  the  distribution  of  resources
etween  individuals  may  be affected  by  a dominance  hierarchy
nd/or  by  nepotism  (helping  relatives).  Moreover,  there  may  be
on”icts  for  resources  between  groups,  indeed  this  is  seemingly

nevitable  given  that  most  populations  are food  limited  (Sinclair,
989 ). In  inter-group  competitions  some  groups  may  prosper  and
row  and  perhaps  eventually  split  into  subgroups  when  some  indi-
iduals  would  fare  better  with  fewer  companions.  Many  IBMs
lready  simulate  social  interactions,  including  dominance  hier-
rchies  (e.g. Puga-Gonzalez  et  al., 2009;  Evers et  al., 2012)  and
roup  movement  (e.g. Petit  et  al., 2009 ), but  these  tend  to  be the-
retical  models  looking  at  fundamental  questions.  Incorporating
ocial  interactions  into  practical,  prediction-based  IBMs  of  real
opulations  in  real  landscapes  remains  an open  challenge.  There
re myriad  potential  complications  and  variations  stemming  from
ocial  interactions,  re”ecting  the  diversity  of  the  natural  world.

We  conclude  from  this  section  that  IBMs  should  incorporate
nsights  from  physiological  and  behavioural  ecology,  since  these
epresent  the  current  state  of  scienti“c  knowledge.  However  com-
lications  such  as those  outlined  above  show  how  important  it  is  to
ealise  that  this  approach  alone  does not  ensure  realism.  Realism  is
valuated  by  assessing how  well  the  models  outputs  match  inde-
endent  data  at  both  the  individual  and  population  level  (Grimm
nd  Railsback,  2012 ). Methods  for  achieving  this  are described  and
iscussed  next.
Please cite  this  article  in  press  as: van  der  Vaart,  E., et  al., Predicting
evaluate  individual-based  models.  Ecol. Model.  (2015),  http://dx.doi.org

. Calibrating  and  evaluating  models

One challenge  that  arises  when  attempting  to  build  realistic
BMs  is the  need  to  estimate  the  values  of  model  parameters.  For
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instance,  even  the  simplest  energy  budget  model  contains  a fair
number  of  parameters.  Although  some  of  these,  like  the  energy  cost
of  synthesis,  Es, are fairly  well-known,  others,  like  the  maximum
ingestion  rate  IGm, are highly  species speci“c  and  can be dif“cult  to
measure.  A related  problem  occurs  when  trying  to  design  an IBM•s
structure . A model  should  be as simple  as possible,  but  no  simpler,
and  it  is  not  always  clear  what  line  divides  the  two.  Is it  necessary
to  simulate  prey  types  individually?  Or seasonal  changes  in  the
weather?  Or the  dynamics  of  social  interaction?  Even taking  the
insights  from  physiological  and  behavioural  ecology  into  account,
deciding  which  mechanisms  to  include  in  any  given  IBM  can be
surprisingly  dif“cult.

Current  best  practice  for  ecological  IBMs,  both  for  parameter
estimation  and  for  model  choice,  is  known  as •pattern-oriented
modelling•  or  POM (Grimm  and  Railsback,  2005,  2012 ). The
basic  idea  behind  POM is to  try  to  simultaneously  “t  multiple,
ecologically-relevant  patterns,  preferably  at  different  levels  of  bio-
logical  organisation.  Essentially,  POM is a protocol,  where  each
•pattern•  serves as a “lter  that  can either  suggest  or  reject  partic-
ular  model  con“gurations.  As an example,  Topping  et  al. (2012)
used  POM to  calibrate  their  existing  “eld  vole  model.  They  de“ned
sets of  patterns  relating  to  population  structure,  habitat  use, dis-
persal  distance  and  predator/prey  cycling,  and  this  prompted
adjustments  of  their  original  model.  Speci“cally  they  found
they  needed  to  explicitly  simulate  live-traps  to  obtain  outputs
comparable  to  the  empirical  data,  and  that  additional  parame-
ters  were  necessary  to  capture  variation  in  vole  density  across
habitats.

Although  POM works  well,  it  is  •experimental  and  largely  based
on  experience•,  as Topping  et  al. (2012)  acknowledge.  Moreover,  for
POM to  be useful  to  decision  makers,  a more  quantitative  approach
is needed  to  evaluate  the  relative  strengths  of  different  models  in
making  predictions  for  speci“c  purposes.  We  believe  that  Approx-
imate  Bayesian  Computation,  or  ABC, can complement  POM in  the
IBM  modelling  cycle:  It  preserves  the  basic  ideas  of  the  method,
while  at  the  same time  making  it  more  transparent  and  statistically
rigorous.

ABC is a method  for  quantifying  the  support  that  a given  set  of
data  lends  to  particular  model  choices.  This  is  achieved  by  comput-
ing  the  probabilities  of  both  parameter  values and  model  alternatives
given  the  data. What  makes  ABC •Bayesian• is  that  it  is  about  updat-
ing  degrees  of  belief.  One starts  with  prior  probabilities  for  all
parameters  and  model  versions  and  ends  up  with  posterior  prob-
abilities . What  makes  ABC •approximate•  is  that  it  does not  require
deriving  these  probabilities  analytically,  which  in  not  generally
possible  for  IBMs;  instead,  they  are approximated  through  simu-
lation . This  makes  ABC one  of  very  few  methods  of  model  analysis
that  will  actually  work  with  IBMs;  however,  the  use of  ABC for  IBMs
is still  in  its  infancy.

The birth  of  ABC is often  traced  to  a series  of  papers  published  at
the  turn  of  the  century  (Beaumont  et  al., 2002;  Pritchard  et  al., 1999;
Tavaré  et  al., 1997 ), all  motivated  by  problems  in  population  genet-
ics. Since then,  the  majority  of  the  ABC literature  has been  written
for  this  audience,  or  for  statisticians.  This  creates  a signi“cant  entry
barrier  for  individual-based  modelers  (though  see Bertorelle  et  al.,
2010;  Csilléry  et  al., 2010;  Hartig  et  al., 2011 , for  accessible  reviews),
who  are often  unfamiliar  with  the  relevant  language  and  exam-
ples.  Despite  this,  several  authors  have  noted  the  potential  that
ABC offers  for  IBMs  (Beaumont,  2010;  Thiele  et  al., 2014;  Topping
et  al., 2012 ) and  there  are now  a few  successful  applications  (Hartig
et  al., 2014;  Martínez  et  al., 2011;  van  der  Vaart  et  al., 2015a ). ABC
has been  developed  in  sophisticated  variants  (see Section  3.4) but
 how  many  animals  will  be where:  How  to  build,  calibrate  and
/10.1016/j.ecolmodel.2015.08.012

here  we  only  describe  the  simplest  approach,  sometimes  termed
•rejection-ABCŽ  (Beaumont,  2010 ). Our  aim  is to  provide  a gentle
introduction  to  ABC with  an example  of  ABC in  practice,  and  some
new  results  and  discussion.

dx.doi.org/10.1016/j.ecolmodel.2015.08.012
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.1. Estimating  parameters  with  rejection-ABC

So, how  does rejection-ABC  actually  work?  The basic  •recipe•
or  doing  parameter  estimation  with  rejection-ABC  is given  by  the
ollowing  procedure:

1)  Select  the  empirical  data  that  the  IBM  should  “t  and  set  up  the
IBM  accordingly.

2)  De“ne  prior  distributions  for  all  of  the  model•s  parameters.
3)  Run the  IBM  e.g. 105 times,  using  random  samples  from  its  prior

distributions.
4)  Accept  the  e.g. 100  runs  which  provide  model  outputs  which

best  “t  the  empirical  data.
5)  Analyse  the  accepted  parameters  to  obtain  approximate  poste-

rior  distributions .
6)  Check the  IBM•s “t  using  the  accepted  parameters„the  posterior

predictive  check.
7)  Check the  accuracy  of  the  estimation  processes using  e.g. cross-

validation  and  coverage plots.

Step 1 is  to  select  the  relevant  empirical  data:  What  patterns
ust  the  IBM  replicate  to  be considered  •“t  for  purpose•?  As in  POM,

hese  patterns  can be at  different  levels  of  organisation  … e.g., some
ay  be at  the  individual  level,  some  at  the  population  level  … but
nlike  POM, they  must  all  be expressed  numerically.  If  the  avail-
ble  empirical  data  is too  detailed  to  be effectively  compared  to
he  model  output,  it  may  be necessary  to  summarise  it.  For exam-
le,  instead  of  using  the  location  data  of  every  individual  at  every

imestep,  it  may  be better  to  use the  average  path  length,  or  the
ercentage  of  time  spent  in  every  habitat,  as summary  statistics .
he IBM  must  then  be set  up  so that  it  replicates  the  conditions

hat  produced  the  empirical  data  and  produces  matching  outputs.
Step 2 is  to  de“ne  prior  distributions  for  all  of  the  model•s  param-

ters.  For example,  within  what  range  of  values  are they  likely  to
ie?  These prior  distributions  can take  on  any  shape  that  accurately
e”ects  what  is  actually  known„for  instance,  wide,  uniform  pri-
rs  when  very  little  information  is available,  and  tight,  normally
istributed  ones around  existing  values  if  these  are likely  to  be
orrect.

In  Step 3, the  IBM  is run  anywhere  from  thousands  to  millions  of
imes,  using  independent,  random  samples  from  its  priors,  result-
ng  in  e.g. 105 sets of  simulated  •summary  statistics•…model  outputs
ummarised  the  same way  as the  empirical  data  was  in  Step 1. To
chieve  Step 4 we  need  a measure  of  distance  between  data  points
nd  the  corresponding  model  outputs.  How  is this  distance  to  be
e“ned?  A straightforward  method  is to  calculate  the  Euclidean
istance  �  between  the  model  output  of  run  i  and  the  empirical
ata  points  Dj  = 1, 2 .  .  .  n using  the  equation:

(mi ,  D) =

��
�
�

�

j

�
mi,j Š  Dj

sd
�

mj

�

	 2

(4)

here  mi,j is run  i•s output  for  summary  statistic  j , Dj is the  empirical
ata  for  summary  statistic  j , and  sd (mj ) is  the  standard  deviation
f  summary  statistic  j  in  all  model  runs  (Beaumont,  2010 ). Here
d (mj ) is  a scaling  factor  used  to  normalise  the  scales of  the  vari-
us summary  statistics;  for  instance,  body  masses may  be in  tens
f  grams  while  eggs laid  per  week  are in  single  “gures.  If  the  dif-
erences  between  the  model  outputs  and  the  empirical  data  were
ot  appropriately  scaled, the  distance  calculations  would  be dom-

nated  by  the  body  masses, because of  the  choice  of  units  used  to
Please cite  this  article  in  press  as: van  der  Vaart,  E., et  al., Predicting
evaluate  individual-based  models.  Ecol. Model.  (2015),  http://dx.doi.org

easure  them.  In  sum,  �  measures  the  discrepancy  between  the
odel  outputs  and  the  corresponding  empirical  data  points

In  Step 4, some  of  the  runs  that  minimise  �  are accepted  as •close
nough•  to  the  empirical  data.  The number  of  runs  to  accept  may  be
 PRESS
odelling  xxx (2015)  xxx…xxx

determined  pragmatically.  At  least  100  or  so are needed  to  generate
reliable  posterior  frequency  distributions  of  the  parameter  values,
though  if  the  model  is  very  stochastic  more  might  be needed.  On
the  other  hand  it  is  attractive  to  use as few  as possible  so that  those
used  give  good  “ts  of  model  outputs  to  the  data.  In  our  experi-
ence accepting  100  achieves  a pragmatic  compromise  between  two
con”icting  desiderata.

In  Step 5, the  distribution  of  parameter  values  in  the  accepted
runs  is analysed,  and  this  yields  an approximate  posterior  distri-
bution  for  each parameter.  In  addition,  a point  estimate  is often
computed,  some  summary  of  the  posterior  distribution  which
re”ects  ABC•s •best guess•„this  may  be the  value  that  gave the  best-
“tting  run,  or  the  median  of  the  accepted  values.  Step 6 is  to  do  a
posterior  predictive  check„to  sample  the  accepted  runs  randomly,
and  to  use their  parameter  values  to  re-run  the  IBM,  in  order  to
investigate  how  well  they  cause the  IBM  to  “t  the  data.

Finally,  Step 7 may  be used  as a form  of  quality  control.  Two
useful  diagnostic  procedures  are cross-validation  (Csillery  et  al.,
2012 ) and  coverage (Prangle  et  al., 2013 ). The ideas  behind  both
are similar.  Both  use model  runs  that  have  already  been  performed
in  Step 3. Some of  these  runs  are set  aside  as •pseudo-dataŽ  and
then  the  remaining  runs  are used  to  check  whether  ABC can cor-
rectly  estimate  the  parameter  values  that  generated  them.  One
difference  between  cross-validation  and  coverage  is that  the  former
looks  at  ABC•s ability  to  produce  correct  point  estimates  of  param-
eter  values,  while  the  latter  looks  at  the  accuracy  of  the  posterior
distributions.  The results  of  both  cross-validation  and  coverage
are plotted  in  diagnostic  plots,  allowing  the  modeller  to  diagnose
potential  problems  in  ABC•s estimation  procedures.

3.2. Model  comparison  with  rejection-ABC

If  instead  of  estimating  a model•s  parameters  the  goal  is  to
compare  structurally  different  models,  it  is  necessary  to  do  model
selection. The procedure  for  this  is  similar  to  parameter  estimation,
except  that  each model  must  be run  e.g. 105 times  using  random
samples  from  its  priors.  In  Step 5, the  ratio  of  accepted  models  gives
their  probability  given  the  data.  If,  for  instance,  80  copies  of  model  A
were  accepted  and  20  copies  of  model  B, the  empirical  data  favours
model  A over  model  B by  a factor  of  80/20  = 4. This  factor  is  known  as
the  Bayes factor  BA,B and  expresses  the  degree  to  which  the  empir-
ical  data  favours  model  A over  model  B. Some suggest  that  a Bayes
factor  of  1…3 counts  as •barely  worth  mentioning•,  3…10 counts  as
•substantial  evidence•,  10  to  100  as •strong  evidence•  and  >100  as
•decisive• (Kass and  Raftery,  1995 ).

What  makes  rejection-ABC  model  selection  especially  attractive
is that  it  automatically  corrects  for  differences  in  model  complexity,
provided  each model  is  run  equally  often  (Beaumont,  2010 ). This  is
because the  more  parameters  a model  has, the  more  sparsely  the
•correct•  parameter  settings  will  be sampled;  the  consequence  is
that  the  more  complex  model  will  be accepted  more  often  only  if
the  additional  parameters  contribute  enough  additional  explana-
tory  power.  This  is  a very  useful  feature  when  it  comes  to  comparing
IBMs,  whose  degrees  of  freedom  can be dif“cult  to  determine.

3.3. A worked  example

To get  a better  sense of  what  rejection-ABC  can do  for  IBMs,
it  is  useful  to  discuss  an example.  Previously,  we  have  used
the  rejection-ABC  procedure  outlined  above  to  calibrate  a 14-
parameter  energy  budget  IBM  of  the  earthworm  Eisenia fetida  (van
der  Vaart  et  al., 2015a ). The energy  budget  broadly  follows  that
 how  many  animals  will  be where:  How  to  build,  calibrate  and
/10.1016/j.ecolmodel.2015.08.012

outlined  in  the  previous  section  of  this  paper,  where  fundamen-
tal  principles  of  physiological  ecology  are modelled  as a set  of
metabolic  equations.  Then,  interactions  between  individuals  and
their  landscape  in  the  IBM  lead  to  emergent  population  patterns.

dx.doi.org/10.1016/j.ecolmodel.2015.08.012
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Fig.  2. Summary  of  an example  ABC analysis.  Step 1 is  to  select  the  relevant  empirical  data.  We  used  mean  body  masses and  cocoon  totals  from  Gunadi  et  al. (2002) , Gunadi
and  Edwards  (2003)  and  Reinecke  and  Viljoen  (1990) ;  mean  body  masses from  Gunadi  et  al. (2002)  are shown.  Step 2 is  to  choose  prior  distributions  for  all  14  parameters;
given  here  is the  lognormal  prior  for  E, the  activation  energy,  centred  around  a value  previously  taken  from  the  literature.  In  Step 3 the  model  is  run  many  times,  using
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andom  samples  from  the  priors;  we  used  one  million  runs  in  total.  Step 4 is  to  acce
uns,  thin  light  grey  lines  show  5 example  rejected  runs.  Step 5 is  to  analyse  the  p
tep 6 is  to  do  a posterior  check,  verifying  how  well  the  model  “ts  when  re-run  with

n  the  following  sections  we  provide  two  examples  using  rejection-
BC to  calibrate  and  evaluate  models.  First,  we  provide  a summary
f  previous  work  (van  der  Vaart  et  al., 2015a ), where  we  used
ejection-ABC  to  calibrate  the  model  according  to  individual-level
atterns  of  growth  and  reproduction.  Second, we  repeat  the  pro-
ess using  population-level  data  to  explore  how  the  individual  and
opulation  levels  can be linked.  All  simulation  results,  the  earth-
orm  IBMs  and  the  ABC code  have  been  deposited  in  a “gshare

epository  (van  der  Vaart  et  al., 2015b,c ), along  with  a brief  guide
o  their  use.

.3.1. Individuals
In  previous  work  we  “tted  an energy-budget  model  to  empiri-

al  data  consisting  of  measurements  of  individual  growth  curves
nd  cocoon  production  of  laboratory-kept  earthworms  (Step  1).
he prior  distributions  were  lognormals,  with  medians  equal  to
alues  previously  calculated  from  the  literature  (Step  2).  One mil-
ion  simulation  runs  were  made  (Step  3),  all  with  unique  parameter
ombinations,  of  which  100  were  accepted  (Step  4).  Interestingly,
e  found  that  only  seven  of  the  model•s  fourteen  parameters  were
igni“cantly  narrowed  (Step  5)  but  that  the  IBM  nevertheless  “tted
he  empirical  data  rather  well  (Step  6).  The whole  process  is brie”y
ummarised  in  Fig. 2.

When  we  investigated  why  only  seven  of  the  model•s  param-
ters  were  narrowed,  we  found  that  in  part  this  was  due

o  correlations  between  parameters:  In  the  accepted  runs,  for
nstance,  the  value  of  rm , the  maximum  energy  allocation  to  repro-
uction,  was  positively  correlated  with  Mc, the  mass of  cocoons.
his  means  that  the  empirical  data  was  not  suf“ciently  detailed  to

ell  the  difference  between  earthworms  spending  a lot  of  energy
Please cite  this  article  in  press  as: van  der  Vaart,  E., et  al., Predicting
evaluate  individual-based  models.  Ecol. Model.  (2015),  http://dx.doi.org

aking  heavy  cocoons,  and  little  energy  making  light  cocoons.  On
he  one  hand,  this  suggests  that  further  development  of  the  earth-
orm  IBM  would  be aided  by  adding  in  a data  set  that  includes
ocoon  masses. On the  other  hand,  it  suggests  that  perhaps  the
 runs  closest  to  the  empirical  data;  thick  dark  grey  lines  show  5 out  of  100  accepted
rs  of  all  parameters;  shown  again  is E, which  was  signi“cantly  narrowed.  Finally,
accepted  parameters.

empirical  data  that  is  already  available  could  be “t  by  a simpler
model.

To illustrate  the  power  of  rejection-ABC  to  compare  models  and
to  see whether  a simpler  model  would  “t  the  data  equally  well,
we  then  built  a simpler  model,  as follows.  We  removed  the  earth-
worms•  movements,  the  effect  of  food  density  on  food  intake,  and
most  of  the  model•s  energy  budget  dynamics.  In  the  resulting  sim-
pler  model  individuals  kept  growing  and  reproducing  maximally
every  day  that  they  had  any  food  to  eat.  When  there  was  no  food
they  shrank  suf“ciently  to  cover  their  maintenance  costs. Using
rejection-ABC  model  selection,  we  contrasted  this  simpler  model
with  the  full  model.  The result  was  that  the  simpler  model  was
much  less successful  in  “tting  the  data.  We  ran  each model  one
million  times  and  accepted  the  200  that  “tted  the  data  best.  Of
these  200,  two  were  produced  by  the  simple  model  and  198  by  the
full  model,  leading  to  a Bayes factor  Bfull , simple of  99  because the
full  model  was  accepted  99  times  as often  as the  simple  model.
This  is  strong  evidence  that  the  full  model  “ts  the  data  better  than
the  simpler  model,  giving  con“dence  in  the  inclusion  of  the  energy
budget  in  the  full  earthworm  IBM.

3.3.2. Populations
In  the  above  approach  we  used  rejection-ABC  to  investigate  the

parameterisation  and  structure  of  the  earthworm  IBM  applied  to
data  on  individuals  maintained  in  the  laboratory.  However  data
are also  available,  albeit  of  lower  quality,  from  a population  “eld
study.  These would  be attractive  to  include  in  the  analysis  since  it
would  allow  us to  truly  link  the  levels  from  individuals  to  popula-
tions,  one  of  the  themes  of  this  paper.  In  a “eld  study  Monroy  et  al.
(2006)  counted  and  weighed  the  earthworms  in  a population  in  a
 how  many  animals  will  be where:  How  to  build,  calibrate  and
/10.1016/j.ecolmodel.2015.08.012

Spanish  manure  heap  every  season for  a year,  and  Johnston  et  al.
(2014)  estimated  the  likely  corresponding  rainfalls  and  tempera-
tures.  As a “rst  step  towards  including  this  new  population  data
set, we  took  the  posterior  parameter  distributions  from  our  earlier

dx.doi.org/10.1016/j.ecolmodel.2015.08.012
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Fig.  3. Distributions  of  parameter  values.  Grey  lines  show  the  distributions  of  the  priors,  which  were  the  result  of  “tting  the  earthworm  IBM  to  laboratory  data  as described
in  Fig. 2;  black  lines  show  the  distributions  of  the  posteriors  after  “tting  to  the  population  study  of  Monroy  et  al. (2006) . Circles  represent  medians,  whiskers  95% credible
intervals.  Asterisks  mark  signi“cant  narrowing.  All  parameter  values  were  scaled  by  dividing  by  the  median  of  the  corresponding  prior.  From  left  to  right,  the  parameters
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isted  are the  taxon-speci“c  normalisation  constant,  activation  energy,  energy  cost  o
ngestion  rate,  mass at  birth,  mass of  cocoon,  maximum  asymptotic  mass, mass at
nd  the  cocoon  hatching  time,  respectively.  See van  der  Vaart  et  al. (2015a)  for  mor

nalysis  and  used  them  as the  prior  distributions  for  a new  analy-
is. The results  of  rejection-ABC  suggested  some  further  narrowing
f  a subset  of  parameter  values  (Fig. 3), and  obtained  good  “ts  in
osterior  checks  (Fig. 4), with  the  exception  of  overestimating  the
umber  of  juveniles  in  summer.

One might  expect  parameter  values  to  differ  noticeably  when
ifferent  datasets  are used  as a basis for  their  estimation.  However,
ejection-ABC  parameter  estimates  when  population  level  data  is
sed  are little  changed  compared  to  those  estimated  from  indi-
idual  level  data  (Fig. 3). This  suggests  that  the  model  structure  is
uf“ciently  mechanistic  to  link  the  levels  from  individuals  to  popu-
ations.  The mechanistic  link  is derived  from  physiological  ecology
s outlined  in  the  “rst  half  of  this  paper.  Our  hope  is that  IBMs  in
hich  individuals  have  their  own  energy  budgets  will  produce  reli-
ble  predictions  where  individual  life  histories  vary  as a result  of
nvironmental  variation  in  e.g. food  availability  or  temperature.
Please cite  this  article  in  press  as: van  der  Vaart,  E., et  al., Predicting
evaluate  individual-based  models.  Ecol. Model.  (2015),  http://dx.doi.org

.4. Discussion

While  rejection-ABC  as outlined  above  is conceptually  straight-
orward,  its  use in  practice  requires  the  availability  of  suitable

ig.  4. Fits  of  the  earthworm  IBM  to  the  empirical  data.  Results  after  calibrating  with  th
mpirical  data,  and  the  semi-transparent  grey  lines  are the  •posterior  predictive  checks•
uns.  Thick  grey  lines  represent  the  mean  of  100  simulations  using  ABC•s best-“tting  param
imulations,  a measure  of  goodness  of  “t.
e,  energy  from  food,  energy  cost  of  synthesis,  half  saturation  coef“cient,  maximum
l  maturity,  growth  constant,  maximum  energy  to  reproduction,  movement  speed
mation.

hardware  and  software.  It  takes  a desktop  PC about  half  a second  to
run  the  earthworm  IBM  through  the  four  laboratory  experiments
of  Fig. 2, but  the  population  “eld  study  takes  a minute.  To do  a
million  runs  sequentially  would  take  over  two  years.  Many  IBMs,
especially  those  incorporating  large-scale,  realistic  geographic  data
will  take  even  longer.  In  these  situations,  having  access to  a large
cluster  or  supercomputer  is  essential.  Fortunately,  because the  sim-
ulations  required  by  rejection-ABC  are completely  independent,  it
is very  easy to  run  them  in  parallel;  it  is  as simple  as starting  as
many  copies  of  the  IBM  as there  are computer  cores  available.  We
run  our  simulations  on  ARCHER, the  UK•s national  supercomputer,
using  up  to  50,000  cores  at  a time,  but  even  on  a desktop  PC with
four  or  six  cores, the  speed  gained  by  parallelisation  is considerable.

The easiest  way  to  run  any  given  IBM  in  parallel  will  depend
on  the  programming  language  in  which  it  is  written.  For NetL-
ogo, a software  platform  designed  speci“cally  for  developing  IBMs
(Wilensky,  1999 ), there  are at  least  two  useful  tools  available.  First,
 how  many  animals  will  be where:  How  to  build,  calibrate  and
/10.1016/j.ecolmodel.2015.08.012

NetLogo  itself  comes  with  BehaviorSpace,  a built-in  functionality
that  allows  the  user  to  run  simulations  in  parallel  from  a drop-
down  menu.  It  can only  be used  for  investigating  uniform  priors,
spaced on  a grid,  but  is  very  easy to  use. A more  powerful  option

e  empirical  data  from  Monroy  et  al.•s (2006)  “eld  study.  The open  circles  are the
, i.e., the  output  of  100  new  simulations  using  random  samples  from  the  accepted

eter  set, and  R2 is the  mean  proportion  of  variance  explained  by  these  best-“tting

dx.doi.org/10.1016/j.ecolmodel.2015.08.012
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s to  use R, statistical  software  that,  like  NetLogo,  is  freely  available
or  all  operating  systems.  R comes  with  many  built-in  distributions
o  draw  priors  from,  and  the  packages  RNetLogo (Thiele  et  al., 2012,
014 ) and  parallel  together  provide  a means  of  performing  NetLogo
uns  in  parallel.

The rejection-ABC  analysis  … Steps 3 and  4 of  our  rejection-ABC
ecipe  above  … can also  be handled  well  by  R. The R package  abc, for
xample,  takes  empirical  data,  a spreadsheet  of  priors  and  a spread-
heet  of  results  as its  inputs,  and  produces  as outputs  the  posterior
istributions  of  Step 5 as well  as the  cross-validation  diagnostics  of
tep 7. Other  relevant  R packages  are listed  by  Thiele  et  al. (2014) . A

uture  objective  of  ours  is to  release  an R package  which  will  auto-
ate  the  rejection-ABC  process  for  NetLogo  models  from  start  to

nish;  a beta  version  is available  upon  request.
There  are two  common  ways  in  which  the  basic  rejection-ABC

lgorithm  introduced  in  this  paper  is sometimes  modi“ed.  First,
t  may  be possible  to  sample  a model•s  priors  more  ef“ciently  in
tep 3, using  either  MCMC-ABC (Marjoram  et  al., 2003 ) or  SMC-
BC (Sisson et  al., 2007;  Toni  et  al., 2009 ). MCMC-ABC bases each
ubsequent  run  of  the  model  on  the  previous  one,  and  gradually
oves  towards  an estimate  of  the  full  posterior  distribution.  SMC-
BC starts  a set  of  simulations  in  parallel,  sampling  randomly  from

 model•s  priors,  but  then  gradually  lowers  the  acceptance  rate,
zooming  in•  towards  the  posterior  distributions  sought.  Both  meth-
ds can potentially  reduce  the  number  of  simulations  required
igni“cantly,  but  they  may  be harder  to  parallelise  than  basic
ejection-ABC.  In  addition,  they  may  require  more  work  to  opti-
ise:  De“ning  how  to  move  towards  the  best-“tting  parameters

an be dif“cult,  and  if  done  incorrectly,  algorithms  may  •get  stuckŽ
n  the  wrong  areas of  the  parameter  space. However,  SMC-ABC is
ess vulnerable  to  these  problems,  and  may  be worth  trying  with
BMs;  Thiele  et  al. (2014)  provide  some  introductory  examples.

Improvements  to  the  estimation  of  the  posterior  parameter
istributions  in  Step 5 may  also  be possible.  Known  as •regres-
ion  methodsŽ  (Beaumont  et  al., 2002;  Blum  and  Franç ois,  2010 ),
hese  techniques  correct  for  the  mismatch  between  the  empirical
ata  and  the  model  outputs  in  the  accepted  runs.  Inevitably,  some
ccepted  runs  are going  to  be closer  to  the  empirical  data  than  oth-
rs, but  in  basic  rejection-ABC,  all  these  runs  contribute  equally

o  the  estimate  of  the  posterior  distributions.  Regression  methods
ttempt  to  correct  for  this  anomaly  by  analysing  the  relationship
etween  the  parameter  values  and  the  summary  statistics  in  the
ccepted  runs,  and  then  correcting  parameter  values  accordingly.
he abc package  implements  various  ways  of  doing  this  correction
Csillery  et  al., 2012 ), but  may  produce  unreliable  results  if  some
f  the  empirical  data  lies  far  outside  the  range  of  model  outputs,  as
an happen  with  IBMs.

Our  hope  in  providing  this  introduction  to  ABC is to  persuade
ore  ecological  modellers  to  try  it.  Although  the  literature  on
BC is large  and  growing,  it  is  still  mainly  applied  to  population
enetics  problems.  This  means  that  it  is  still  uncertain  whether
BC•s existing  conventions  and  innovations  are optimal  for  IBMs.
or instance,  choosing  appropriate  summary  statistics  is a “eld

n  its  own  right„if  the  available  empirical  data  is summarised
ncorrectly,  ABC•s posteriors  may  be biased,  or  require  many  more
imulations  to  get  right  (Blum  et  al., 2013 );  no  general  strategy  can
et  be advocated  for  IBMs.  Other  questions  include  whether  ABC•s
ypical  distance  measure  (Eq. (4) ) is  the  best  choice  for  the  time
eries  data  sometimes  available  in  ecological  applications,  and  how
est  to  handle  stochasticity.  When  we  do  simulation  runs,  we  try
ach parameter  combination  once,  but  for  some  models,  averag-

ng  over  multiple  runs  with  the  same parameter  values  might  be
Please cite  this  article  in  press  as: van  der  Vaart,  E., et  al., Predicting
evaluate  individual-based  models.  Ecol. Model.  (2015),  http://dx.doi.org

etter.  Finally,  whether  advanced  techniques  such  as MCMC-ABC,
MC-ABC and  the  •regression  correctionŽ  will  prove  workable  with

BMs  in  practice  is yet  to  be investigated.  IBMs  often  have  many
ore  parameters  than  typical  population  genetics  models,  and
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different  kinds  of  dependencies  between  them„only  by  trying
things  out,  with  lots  of  different  IBMs,  can general  strategies  be
developed.

4. Conclusion

Science is a method  of  acquiring  knowledge,  and  IBMs  can be
used  to  represent  existing  knowledge  in  ways  that  can be used  to
predict  what  will  happen  to  individuals  and  populations  in  de“ned
landscapes.  Physiological  ecology  contributes  the  knowledge  of
how  individuals  acquire  and  expend  energy,  while  behavioural
ecology  covers  the  factors  that  affect  foraging,  competition  and
social  coexistence.  Integrating  these  insights  into  IBMs  allows  us
to  link  the  levels  from  individuals  to  populations  better  than  has
been  possible  before.  Even so, open  questions  remain.  For example,
at  the  individual  level,  there  are still  controversies  about  how  ani-
mals  distribute  energy  between  physiological  processes, and  what
they  do  when  there  is energy  shortfall.  At  the  population  level,  we
are only  just  beginning  to  integrate  social  structures  like  dominance
hierarchies  into  practical  simulation  models.

Thus, building  realistic  IBMs  still  requires  expert  judgement,
and  extensive  testing  against  empirical  data.  Approximate  Bayesian
Computation,  or  ABC, is one  possible  approach  to  making  this  pro-
cess more  quantitative  and  transparent.  Whereas  the  current  state
of  the  art,  •pattern-oriented  modelling•,  or  POM, is essentially  a ver-
bal  protocol,  ABC offers  a statistically  rigorous  approach  to  model
“tting  and  model  comparison.  However,  ABC is fully  compatible
with  the  basic  philosophy  behind  POM:  That  multiple  empirical
patterns,  at  multiple  levels  of  organisation,  should  be used  to  build
”exible,  mechanistic  models,  that  truly  capture  the  fundamental
aspects  of  the  species and  situations  under  consideration.

Although  there  are some  challenges  in  implementing  ABC for
IBMs  … most  notably,  the  computing  power  required  to  evaluate
models  with  long  running  times  … the  promise  is considerable.  ABC
provides  approximate  posterior  distributions  of  a model•s  param-
eters  given  data.  As illustrated  by  our  example,  these  posteriors
can then  be used  as priors  for  further  studies,  and  they  can reveal
which  parameters  are correlated  or  underconstrained.  They  can
also  be used  to  show  the  uncertainties  that  exist  in  a model•s  future
predictions.  Equally  importantly,  the  power  of  ABC goes beyond
parameter  estimation…it  can also  be used  to  compare  structurally
different  models,  while  automatically  compensating  for  differences
in  model  complexity.

Finally,  we  believe  that  perhaps  one  of  the  greatest  advantages
of  ABC lies  in  its  unifying  language.  Current  efforts  to  parametrise
IBMs,  and  to  quantify  their  uncertainties,  are often  highly  model
dependent,  with  different  types  of  results  and  plots  provided  in
different  studies.  In  contrast,  ABC offers  a set  of  conventional  ways
to  report  priors,  posteriors,  credible  intervals  and  Bayes factors,  and
to  do  posterior  checks  and  cross-validation  and  to  calculate  cover-
age. This  should  make  model-“tting  procedures  more  transparent.
In  addition,  a basic  understanding  of  ABC offers  an entry  point  to
the  more  sophisticated  model-“tting  alternatives  that  are avail-
able  in  the  statistics  literature.  In  sum,  we  believe  ABC has much  to
offer  when  it  comes  to  building,  calibrating  and  evaluating  realistic
IBMs.
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