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REFERENCE FALLIBLE ENDGAME PLAY 
 

 G.McC. Haworth1 
 

Reading, UK 
 
 

ABSTRACT 
 

A reference model of fallible endgame play is defined in terms of a spectrum of endgame players 
whose play ranges in competence from the optimal to the anti-optimal choice of move. They 
may be used as suitably skilled practice partners, to assess a player, to differentiate between 
otherwise equi-optimal moves, to promote or expedite a game result, to run Monte-Carlo 
simulations, and to identify the difficulty of a position or a whole endgame.  

 
 
1. INTRODUCTION 
 
When a player is armed with perfect information from endgame tables, EGTs, questions still arise as to how to 
play a fallible opponent. In a drawn position, how best can the attacker pressure the defender or the defender 
resist the attacker (Levy 1987, 1991; Nunn, 2002; Schaeffer 1991, 1997)? How can the opponent be given the 
best opportunity to concede depth in a situation where a draw claim is possible (Haworth, 2000, 2001)? How 
can a player identify and adapt to apparent opponent fallibility? More generally, one might ask how well a fal-
lible player is likely to perform in an endgame, and how ‘difficult’ that endgame or a specific position is. To 
address these questions, a model of fallible endgame play is defined here. It is a spectrum of Reference End-
game Players, REPs, with a linear range of competence ranging from metric-optimal play via the random 
player to anti-optimal play. REPs with greater skill are more likely to play better rather than worse moves.  
 
Section 2 describes an endgame as a finite-state system while Section 3 defines the requirement for a spectrum 
of REPs. Section 4 defines properties of the REP Preference Function which ensure that the set of REPs {Rc} 
is also a spectrum, and then converts preference values to probabilities. Section 5 proves that the properties de-
fined in Section 4 guarantee the spectrum properties of {Rc}. Section 6 defines the Sc function subsequently 
used here. Section 7 examines basic REP use while Section 8 demonstrates, by revisiting the historic Browne-
BELLE KQKR games, how to assess the competence of the opponent. Section 9 surveys ways of exploiting 
REPs and a fallible opponent. The summary mentions some open questions currently being considered. 
 
 
2. FINITE-STATE ENDGAMES 
 
A specific endgame for which an EGT has been computed can be thought of as a system with a finite ns states. 
Western Chess, KQKR, and the DTC metric2 are the exemplar scenario here. Positions P may be regarded as 
mathematically, if not chessically, equivalent if and only if they have the same theoretical value val and depth d 
in some metric. The equivalence classes are the system states: moves effect transition from state to state. The 
side to move, stm, from its perspective, regards s1 ≥ s2, i.e., s1 is no worse than s2, if val(s1) > val(s2) or val(s1) 
= val(s2) and the win is no longer or loss no shorter than in state s2. 
 
In KQKR, there are 1-0 wins of DTC depth 0 to nW = 31, draws and 0-1 wins of DTC depths 0 to nL = 3. A 
‘depth 0’ win is one in which the winner does not need another move to secure the win and these include stm-
mated positions, all decisive subgame positions regardless of DTC depth, and the much rarer ‘stm force-
converts to loss’ positions. The KQKR system therefore has 1+nW+1+nL+1 = 37 states, and these may be num-
bered 0-36 in order of decreasing attractiveness to White or the stm. Thus, e.g., s0-31 are 1-0 wins in 0-31 
moves, s32 is the draw state, and s33-36 are 0-1 wins in 3-0 moves. Depth 0 states 0 and 36 are absorber states. 

                                                           
1 33, Alexandra Rd., Reading, Berkshire, RG1 5PG, UK. Email: guy_haworth@hotmail.com. 
 An earlier version of this paper was presented at the ICCA 7th Computer Olympiad Workshop, Maastricht (2002). 
2 DTC ≡ Depth to Conversion, i.e., (winner’s) moves to change of force and/or mate. DTM(ate) is another metric. 
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3. REFERENCE ENDGAME PLAYERS 
 
An REP Rc in position P and state s chooses its move stochastically with a probability function, based on a 
Preference Function Sc which involves only the competence parameter c and the value and depth of successor 
positions {Pα}. The Rc has mathematical but no other game-specific knowledge and it is worth emphasising 
that each choice of move is independent of previous choices of move. Metaphorically, REP Rc comes to the 
gaming table with its own ‘designer’ roulette wheel – having slots of different sizes for the moves, reflecting a 
preference for better moves. The rolling ball is more likely to lodge in the wider slots representing better 
moves. 
 
We require that the set {Rc} is in fact a linear, ordered spectrum of Rcs with two properties: 

p01: For R0, all moves are equally likely. ‘R∞’ ≡ limc→∞ Rc exists3 and is the infallible player.  
 ‘R-∞’ ≡ limc→-∞ Rc exists and is the anti-infallible player.   
p02: c2 > c1 ⇒ Rc2’s expectations of successor state E[s | P] and value E[val(s) | P] are no worse than Rc1’s. 

 
The Sc properties mandated in Section 4 are shown in Section 5 to imply p01-p02. The infallible player always 
chooses a best move in terms of the metrics chosen:  the anti-infallible player always chooses a worst move. 
 
 
4. PREFERENCE FUNCTIONS AND PROBABILITIES 
 
Let Sc(sj) be the preference of REP Rc for a single move mα to state sj. Sc(mα) ≡ Sc(sj) is a function only of the 
value and depth of sj and this is clearer in the notations Sc(valk, dj) and Sc(val(sj), d(sj)). 
 
We require Sc(sj) to have the following reasonable properties (↑ ≡ ‘increases’, ↓ ≡ ‘decreases’): 

p03: Sc(sj) is finite and positive: no move has zero or infinite preference. 
p04: S0(si) = constant. This is equivalent to p01 on R0, merely restating that requirement in terms of S0. 
p05: For some dW > nW and dL > nL, Sc(draw) = Sc(win, dW) = Sc(loss, dL) 
q06: WFd(c) = Sc(win, d+1)/ Sc(win, d) ↓ as c ↑: limc→∞ WFd(c) = 0 and limc→-∞ 1/WFd(c) = 0. 
q07: LFd(c) = Sc(loss, d)/ Sc(loss, d+1) ↓ as c ↑: limc→∞ LFd(c) = 0 and limc→-∞ 1/LFd(c) = 0. 
q08: For c ≠ 0, sign(c).Sc(sW) ↓ as depth of ‘win’ state d(sW) ↑. 
q09: For c ≠ 0, sign(c).Sc(sL) ↑ as depth of ‘loss’ state d(sL) ↑. 
p08: For c > (<) 0, Wc(d) = Sc(win, d)/ Sc(win, d+1) ↓ (↑) as d ↑ and limd→∞ Wc(d) = 1. 

For c > (<) 0, Lc(d) = Sc(loss, d+1)/ Sc(loss, d) ↓ (↑) as d ↑ and limd→∞ Lc(d) = 1. 
We assume that wins in d and d+1 are more differentiable than wins in d+1 and d+2. 

 
The function Sc generates preference values for all available moves and these must now be scaled to move-
probabilities. We may also assume that some moves have independently been discounted or weighted. 
 
Let Rc in state si, position P, have nj moves mα: P→Pα, si→sj. Pre-weighting, Rc’s preference for sj is nj.Sc(sj). 
Weighting move-choices can reflect presumed search depths or strategies, subjective inclination and/or compe-
tence on the part of the opponent (Jansen, 1992b, 1993), e.g., “favours checking the King”, “tends to play 
moves with high tactical threat value” and so on. Examples of weighting which may be combined are:  

• zero-weight moves conceding the position’s theoretical value 
• if other moves exist, zero-weight any move to a lost position 
• if other moves exist, zero-weight moves conceding theoretical value in d ≤ H(orizon) moves4 
• if there are wins in d ≤ H5, zero-weight moves which are not metric-optimal  
• give weight vα > 1 to an apparently strong move mα; weight 1 > vα > 0 to an apparently weak move  

Therefore, after such weighting, the Rc’s moderated preference for move mα is vα.Sc(sj). Let the weight, rather 
than the number of moves to state sj be wj. The final step is the trivial one of scaling Σα vα.Sc(sj) = Σj wj.Sc(sj) to 
a sum of one to get the actual probabilities, P[mα] and P[sj] respectively, of move mα and state sj being chosen. 

                                                           
3 Rc tends to a limit in the sense that its move-choice probabilities all converge to limits. 
4 e.g., H = 7 would reflect an assumption that the player, or opponent, will find wins or losses up to 14 plies deep. 
5 Draws which must be forced in d moves are not discussed here but can be accommodated in this stochastic model. 
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Let Ωc =  Σj wj.Sc(sj) and let ωc = 1/Ωc so that ωcΣj wj.Sc(sj) = 1. 
Let Tj, c = ωc.wj.Sc(sj), the sum probability of Rc moving to state sj, with TD,c the lowest-indexed Tj,c ≠ 0. Then:  
Rc’s expected state-number and theoretical value are Ec[s | P] ≡ ∑j j.Tj,c and Ec[val(s) | P] ≡ ∑j val(sj).Tj, c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.01

0.10

1.00
0 5 10 15 20 25 30 35

Endgame System State s

SF1(s) with scaling λ = 1/165

0.01

0.10

1.00
0 5 10 15 20 25 30 35

Endgame System State s

SF1(s) with scaling λ = 1/165

Figure 1: KQKR (DTC) wtm Preference Function SF1(s), c = κ = 1, dW = 32, dL = 4.

1.1.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.01

10

00
0 5 10 15 20 25 30 35

SF1(s) with scaling λ = 1/165

Endgame System State s

0.

0.01

10

00
0 5 10 15 20 25 30 35

SF1(s) with scaling λ = 1/165

Endgame System State s

Figure 2: KRKQ (DTC) wtm Preference Function SF1(s), c = κ = 1, dW = 4, dL = 32.

0.

0.01

10

00
0 5 10 15 20 25 30 35

Endgame System State s

SF1(s) with scaling λ = 1/165c

c = 1.0

c = 1.6

0.

1.

0.01

10

00
0 5 10 15 20 25 30 35

Endgame System State s

SF1(s) with scaling λ = 1/165c

c = 1.0

c = 1.6

Figure 3: KQKR (DTC) wtm Preference Function SF1(s), c = 1.0-1.6, κ = 1, dW = 32, dL = 4.

0.

1.

0.01

0.10

1.00
0 5 10 15 20 25 30 35

Endgame System State s

SF1(s) with scaling λ = 1/165

0.01

0.10

1.00
0 5 10 15 20 25 30 35

Endgame System State s

SF1(s) with scaling λ = 1/165

Figure 1: KQKR (DTC) wtm Preference Function SF1(s), c = κ = 1, dW = 32, dL = 4.

1.1.

01

10

00
0 5 10 15 20 25 30 35

SF1(s) with scaling λ = 1/165

Endgame System State s

01

10

00
0 5 10 15 20 25 30 35

SF1(s) with scaling λ = 1/165

Endgame System State s

Figure 2: KRKQ (DTC) wtm Preference Function SF1(s), c = κ = 1, dW = 4, dL = 32.

0.0.

0.0.

1.1.

01

10

00
0 5 10 15 20 25 30 35

Endgame System State s

SF1(s) with scaling λ = 1/165c

c = 1.0

c = 1.6
01

10

00
0 5 10 15 20 25 30 35

Endgame System State s

SF1(s) with scaling λ = 1/165c

c = 1.0

c = 1.6

Figure 3: KQKR (DTC) wtm Preference Function SF1(s), c = 1.0-1.6, κ = 1, dW = 32, dL = 4.

0.0.

0.0.



 ICGA Journal June 2003 84 

5. THEOREMS ON REPs AND PREFERENCE FUNCTIONS 
 
The following theorems are expressed assuming that the states are numbered in order of decreasing attractive-
ness to the side to move, which, without loss of generality is assumed to be White. The win/draw/loss states are 
therefore numbered respectively 0 to nW, nW+1 and nW+2 to ns-1. There is no assumption that White is the 
nominally stronger side, or indeed that White is at least drawing as is conventional in chess studies. However, 
the behaviour of the R-side Rc in the KRKQ of Figure 2 could equally well be represented by renumbering the 
states {0, 1, ... , ns-1} as {ns-1, ns-2, ... , 0}, effectively reflecting the graph of Figure 2 left to right.  

Theorem 1. With the following definitions of properties p06-p07, {p03-p05, q06-q09} ⇔ {p03-p07}: 
p06: Fj(c) = Sc(sj+1)/ Sc(sj) ↓ as c ↑: lim c→∞ Fj(c) = 0 and lim c→-∞ 1/Fj(c) = 0. 
p07: For c ≠ 0, sign(c).Sc(sj) ↓ as j ↑. 

For c > 0, Rc prefers better moves to worse ones; for c < 0, Rc prefers worse moves to better ones. 
 
As the arguments are intuitively straightforward, all theorems’ proofs are deferred to Appendix A. 
 
Theorem 2. For Tj,c ≠ 0 and k > j, let rj,k,c ≡ Tk,c/Tj,c. Then rj,k,c ↓ as c ↑, and limc→∞ rj,k,c = 0. 

In particular, Tk,c = rD,k,c.TD,c and for k > D, Tk,c = 0 or Tk,c ↓ as c ↑ with limc→∞ Tk,c = 0. 
 

Theorem 3. Sc properties p03-p06 ⇒ the spectrum properties p01-p02 of Rc.  

Note that p07 and p08 are not needed to prove the key Theorem 3. However, p07 attributes a consistent degree 
of skill to the Rc, and p08 reasonably considers positions less differentiable as depth increases. 
 
Theorem 4. As c → ∞, Rc’s TD,c → 1, Ec[s | P] → D and Ec[val(s) | P] → val(sD). Thus, lim c→∞ Rc  ≡ R∞ and 
limc→-∞Rc ≡ R-∞ exist, and are respectively the infallible and anti-infallible players. 
 
 
6. AN EXAMPLE PREFERENCE FUNCTION 
 
Let SFc(win, d) = (d + κ)-c, SFc(loss, d,) = λ.(d + κ)c for some κ > 0, dW > nW and dL > nL, with λ determined by: 
 (dW + κ)-c = Sc(win, dW) = Sc(draw) = Sc(loss, dL) = λ.(dL + κ)c, i.e. λ = [(dW + κ).(dL + κ)]-c. 

κ > 0 is not only necessary to ensure property p03 but also appropriate. Wins on the move are missed, and even 
cases of resigning instead are on record (Krabbé, 2002)6. Also, positions where the loser is forced to make a 
capture are possible. In Figures 1 to 3, κ = 1 but in Sections 7 et seq, SFc is used with κ = 0+, i.e., arbitrarily 
small. 
 
Theorem 5. The function SFc satisfies Preference Function Properties p03-p08. 
 
Figure 1 shows the Preference Function SFc for KQKR (DTC) and wtm with c = κ = 1. Parameters dW and dL 
are set to the minimum values possible (32 and 4) for KQKR, wtm. They could however have been arbitrarily 
large, making the likelihood of Rc conceding theoretical value arbitrarily small. Figure 2 shows the Preference 
Function for KRKQ and wtm, and Figure 3 shows the effect on Sc(s0)-Sc(s31) of increasing c. 
 
 
7. BASIC USES OF REPs 
 
The assumption of a fallible opponent enables a player to distinguish between metric-optimal7 moves. In 
Browne-BELLE position BB2-22b, the defender Black has a choice between DTC-optimals Rf7 and Rf6. As-
suming White plays only win-preserving moves, Figure 4 shows that 22. ... Rf7 is preferred regardless of c. 
Similar clear choices are available in positions BB1-09b and BB1-13b, namely Re1 in both cases. 
                                                           
6 Sanguineti-Najdorf (1956) 3K1Q2/8/2p1kpbp/3p2p1/3Pr1P1/8/8/8 b: 1. ... Res. ?? {1. ... Rxg4" 2. Qe7+ Kf5º -+}.  

Ortega-Etcheverry (1963), 8/pp2Q2p/1bp3pk/4Pp1n/1P6/4qN2/P2nB1PP/4BK2 w: 1. Res.?? {1. Bxd2" Qxd2 1-0}. 
Dekhanov-Yusupov (1981), 8/pp6/q5pp/1Q2Np1k/5P2/P5PK/1Pr4P/8 w: 1. Res.?? {1. g4+" fxg4º 2. Nxg4+" g5 1-0}. 
Glek-Lazarev (1997), 5Rk1/5rpp/p3Q3/1p1p4/4qp2/7P/5BP1/7K b: 1. ... Res.?? {1. ... Kxf8º 2. Bc5+ Re7" 0-1}. 

7 The chosen metric is DTC. Figures 4-7 graph expected (DTC) depth after White’s next move against competence c. Black 
seeks to maximise this depth. Table 1 lists all positions referenced here.  
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BB1-01w wKa8Qa5/bKf6Re8 BB1-13b wKd5Qf6/bKg4Re8 BB2-22b wKe4Qe3/bKg4Rf5
BB2-01w wKc8Qd8/bKc3Rc4 BB2-10b wKc5Qg6/bKe3Rf4 BB2-24b wKe4Qg3/bKh5Rf7
BB1-09b wKd6Qd3/bKf4Re4 BB2-12b wKc5Qc3/bKe2Ra4 J1-1b wKe3Qc5/bKf5Ra6

Position Position Position

  
Table 1: KQKR positions. 

 
At position BB2-10b, Black has a similar decision between DTC-optimals Ra4 and Re4. As Figure 5 shows, 
no move dominates across the whole range of c: Ra4 is preferable against poor players but Re4 is significantly 
better for c > 6. A probability distribution for the opponent’s competence would therefore be useful: Game 1, 
move 8b, is a similar scenario. Section 8 below describes how opponent competence can be assessed. 
  
The ranking of Black’s options for c = 0 is determined by the average depth of White’s choices; as c→∞ it is 
determined by the profile of White’s best responses to Black’s moves. Thus, it is not surprising that the two 
scenarios shown in Figures 4 and 5 can arise. 
 
For position BB2-12b, Black has a choice between DTC-optimals Re4, Rf4, Rg4 or Rh4. The moves Rf4, Re4 
and Rg4 are in turn best, respectively, for c ∈ [0, 16), c ∈ [16, 35] and c > 35: Rh4 is never preferred. 
 
For position BB2-24b, Black has a choice between DTC-optimals Rb7, Rf6 and Rf8, q.v. Figure 6. The move 
Rf6 just dominates Rf8 but is only best for the range c ∈ (6, 26.5). Rb7 is best against both the zero-skill ran-
dom mover and the near-infallible player. 
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Finally, we recall Jansen’s (1993) suggestion that DTC-sub-optimal moves should also be considered: he illus-
trated this with another KQKR position, J1-1b. Certainly the move Kf6 which sacrifices one move in depth is 
at some stage better but, as Figure 7 shows, this is only for Rc with c < 2.7. 
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Speculative play has greater potential in the deeper endgames and/or faster playing conditions when fallible 
opponents are likely to have less competence and lower apparent competence factors c. Certainly, there have 
been some remarkable blunders under time-pressure in blitz and rapid-play, and even in games at classical 
time-controls. 
 
 
8. IDENTIFYING COMPETENCE LEVELS 
 
Perhaps the earliest demonstration of an infallible player was in two KQKR games (Fenner, 1979; Jansen, 
1992a; Levy and Newborn, 1991), cf. Appendix B. GM Walter Browne sportingly volunteered to play Ken 
Thompson’s BELLE. The chess engine, defending, had Thompson’s newly calculated KQKR DTC EGT and 
apparently chose at random between equi-DTC-optimal moves. 
 
The two initial positions, BB1-01w and BB2-01w, are maxDTC positions with DTC = 31. BELLE claimed a 50-
move draw in the first game but Browne, after a further bout of exhaustive preparation assisted by the com-
puter’s analysis of the first encounter, won exactly on move 50 in the second game. It is intriguing to speculate 
as to whether BELLE could have squeezed out a second draw. A question worth addressing then is whether 
BELLE could have set bigger problems for Browne by calculating which DTC-optimal move to choose, or even 
by playing DTC-suboptimal moves (Jansen, 1993). 
 
Here we propose a way in which BELLE might have developed a probability distribution for Browne’s compe-
tence c. In the same way, an infallible observer can assess two players in a game when both are fallible. 
 
Let us suppose that BELLE had made a conventional, neutral, ‘know nothing’ initial assumption about Browne’s 
competence level c, for example8 that c was equally likely to be any integer in [0, 50]. Because the move of the 
model’s {Rc} are chosen independently of previous moves, the initial probabilities, 1/51, could then be ad-
justed on the basis of observed moves by the following rule of Bayesian inference: 

 Posterior Prob[c] ∝ Prior Prob[c].Prob[observed move | c]  

and then ΣcProb[c].(Expected depth | c) could be calculated for each move option. 
 
This computation, also reasonably assuming Browne would never choose a drawing or losing move, shows that 
his competence profiles in the two games are remarkably similar. The first fourteen moves elevate expected c, 
E[c] = Σi i.Prob[i] towards the maximum possible in the model before a few sub-optimal moves bring it sharply 
down. The effect of the specific move options is occasionally clear. For example, the apparent competence c is 
unchanged after move 1 as both options are optimal. Note also that after moves 35-39 and 46-50, Browne’s c is 
lower in Game 2 than in the extended Game 1, even though more progress has been made. 

 
On moves 20 to 22 and 32+ of the second game, Browne progressed where he had stalled in game 1. Even so, 
the final E[c] values for each game were similar, q.v. Figure 8. Browne conceded DTC depth as follows: 

game 1: moves 6w (+1/1), 17w (+3/4), 18w (+2/6), 19w (+1/7), 20w (+1/8), 21w (+2/10), 22w (+1/11),  
  26w (+2/13), 31w (+1/14), 32w (+4/18), 33w (+2/20) ... 40w (+3/23), 41w (+2/25), 42w (+2/27) 
game 2: moves 6w (+1/1), 16w (+1/2), 17w (+3/5), 19w (+3/8), 26w (+1/9), 27w (+2/11), 28w (+2/13), 
  30w (+1/14), 32w (+1/15), 33w (+1/16), 35w (+2/18), 44w (+1/19) 
 
BELLE had equi-optimal choices in Game 2 at Table 1’s moves 10b, 12b, 22b and 24b, all before the decisive 
winning cycle of moves 34 to 46, but chose correctly only on move 22b. Assuming that Browne was roughly 
equivalent to player R20, the opponent model shows a further benefit of ~0.26 moves for the best choices9, so 
perhaps BELLE might have got a second draw. With c > 17 throughout, it seems unlikely that speculative play 
choosing sub-optimal moves would have been justified. 
 
In general, a set of fallible players, of which the set {Rc} is one example, may be incorporated into a ‘PrOM’ 
Probabilistic Opponent-Modelling Strategy (Donkers, Uiterwijk, and Van den Herik, 2001). 

                                                           
8 The range, granularity and probability distribution of the initial assumption certainly affect subsequent inferences. 

Results here by Andrist with an initial c = 0(1)50 differ slightly, as expected, from the original data for c = 0(10)50.   
9 For the first game, the further benefit would have been ~0.71 moves. 
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Figure 8: A competency measure c of Walter Browne’s play during the two KQKR games. 

 
 
9. EXPLOITING REPs 
 
Below we provide six variants of how to use Reference Players in practice. 
 
9.1 Endgame Practice Partners 
  
The current time-regimes, e.g., Professional Chess (40/2º, 20/1º, All/15'+30"m), involve faster rates of play to 
a finish. Good endgame technique is therefore increasingly important. The fallible players Rc would make ideal 
practice partners, being available, tireless, house-trained, uncritical and non-deterministic in behaviour. They 
can comment on moves played, be set manually or automatically to a level of difficulty c, and give you even 
more help to win with c set negative. These benefits recommend them as an adjunct to existing chess engines. 
 
Taking the concept of the fallible player beyond the endgame with an EGT, a game-engine may, in general, be 
able to offer a number of comparable options evaluated on the same basis. If so, an Rc player could be defined 
to choose its moves stochastically rather than always choosing the apparently optimal move.   
 
9.2 Assessing Player Competence 
 
The Bayesian inference process may be used to advantage during a game or in later analysis to identify the ap-
parent endgame competence of players. This opportunity also suggests an ‘endgame competition’ in which 
chess-engines play without endgame tables and are scored on their apparent competence.  
 
9.3 Changing the Game Result 
 
The most significant use of the Rc is perhaps to change the game score by differentiating between positions. 
Attacker can pressure fallible defender and equally, defender can resist fallible attacker (Levy 1987, 1991; 
Nunn, 2002; Schaeffer 1991, 1997), a scenario surprisingly obviated by the rules of the Kasparov -v- DEEP 
JUNIOR match. Note that, as usual, the estimated values of positions may be aggregated back to the current po-
sition, in this case factored by the calculated probabilities of them occurring rather than minimaxed. 
Experiments with, e.g., KRBKR will show whether the defender can be effectively backed into ‘hard to de-
fend’ territory.  
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9.4 Avoiding or Promoting Draw Claims 
 
Haworth (2000, 2001) establishes the DTR, Depth by The Rule, metric as necessary and sufficient for best 
avoiding k-move draw claims, whether k = 50 or not. An opponent playing to the DTM or DTC metrics is fal-
lible, and may be induced into conceding depth in DTR terms if identified as DTM/DTC-oriented. Even 
without this information, if the attacker or defender assess the opponent’s apparent competence as in Section 8 
and Subsection 9.2 above, this will inform their choice of equi-optimal or even sub-optimal moves.  
 
9.5 Monte-Carlo Simulation 
 
From a position P, games Rc-R∞ and R∞-Rc may be played out to demonstrate how well Rc can respectively pro-
gress the win or put up a defence, and what apparent competence c the Rc exhibit. The same data can be 
compared with the theoretical ‘aggregate’ results of Theorem 6 below. Matches Rc-Rc may determine whether a 
game is more easily won or lost, and how much an attacker can pressure a defender in a drawn position. 
 
9.6 Assessing Endgame Difficulty 
 
Here, we derive aggregate characteristics of an endgame as a whole rather than examining play from individual 
positions. The finite-state model is extended to a Markov model of endgame play. 
 
After possible weighting of moves, we have seen that Rc moves from position P in state si to state sj with prob-
ability Tj,c. Let Rc’s average si→sj transition probability across the endgame be mi,j,c giving state-transition 
matrix Mc = [mi,j,c]. This Markov model is admittedly somewhat conditioned by the choices of dW and dL, 
move-weighting and parameters such as SF(si)’s κ. There are two matrices MWc and MBc for, White’s and 
Black’s moves respectively, and now we require that White’s wins are represented by states 0 to nW, wtm or 
btm. We may directly prove that, if value-changing moves are excluded, Pr[Rc securing the win] = 1 for any 
finite c. It is not true, as Jansen (1992a, p128, Fig. 12) perhaps suggests, that a low-skill fallible player hits a 
‘no progress’ barrier and cannot win. Even players with low, even negative, c have a long enough run of luck 
eventually, despite expecting to lose ground at most depths. 
 
Theorem 6. With M = MWw.MWb, the state-probability vectors satisfy pn

T = p0
T.Mn, and pn

T converges to a 
steady state solution pT = pT.M. The expected depth after n moves from the initial p0 is ∑i depth(si).pn,i. The 
expected length L of the game Rw-Rb starting at si is li as defined by (M – I).L = -1 with l0 = lns-1 = 0.  
 
Theorem 7. Let Ec[s | p] be the state expected by Rc after a move from a position P with a state-probability 
vector p. Then, if c1 < c2, Ec2[s | p] ≤ Ec1[s | p] and Ec2[val(s) | p] ≥ Ec1[val(s) | p]. 
 
The proof follows directly from Theorem 3. However, it need not be true that Ec2[s] ≤ Ec1[s] after n > 1 moves 
from P. A stronger player can be repulsed sooner than a weaker player, leaving the latter briefly ‘ahead’. 
 
 
10. SUMMARY 
 
A number of questions arise as to how best to attack or defend against a fallible opponent. How best can a re-
sult be created or expedited? How competent is the opponent? This contribution has defined a spectrum of 
REPs Rc whose use enables these and other questions to be addressed. Some reasonably tractable computations 
have been defined which could assess the aggregate difficulty of at least 3 to 5 man endgames. 
 
The REPs are now analysing past play by carbon and silicon players, testing the sensitivity of the results to the 
initial assumptions of competence. Their Monte-Carlo results are being compared with the Markov model the-
ory of the endgame as a whole. REP-model sensitivity to parameters such as dW , dL and κ is being addressed.  
 
My thanks go first to John Tamplin (2001) for providing many Nalimov-compatible 3-5-man pawnless end-
game DTC EGTs, including KQKR used here. Then I would like to thank Billy Stewart for guidance on 
Markov systems and the referees for their positive feedback. Finally, and not least, I acknowledge Rafael An-
drist (2002) who has incorporated the REPs in WILHELM. This has enabled the finer-grain ‘c = 0(1)50’ 
Browne-BELLE analysis and the calculation of some Markov matrices. During his experiments, the original 
REP concept was generalised from its original form as presented at the 7th Computer Olympiad Workshop, 
Maastricht (2002). 
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APPENDIX A: PROOFS OF THEOREMS 
 
Theorem 1. With the following definitions of properties p06-p07, {p03-p05, q06-q09} ⇔ {p03-p07}: 

p06: Fj(c) = Sc(sj+1)/ Sc(sj) ↓ as c ↑: lim c→∞ Fj(c) = 0 and lim c→-∞ 1/Fj(c) = 0. 
p07: For c ≠ 0, sign(c).Sc(sj) ↓ as j ↑. 

Proof. Sc(win, d)/ Sc(win, d+1) = Sc(sd)/ Sc(sd+1): Sc(loss, d+1)/ Sc(loss, d) = Sc(sj)/ Sc(sj+1) for j = nW+2+nL-d. 
p05 ∧ q06 ∧ q07 ⇒ ∀ j, Fj(c) = Sc(sj+1)/ Sc(sj) ↓ as c ↑and lim c→∞(-∞) Fj(c) = 0 (∞) ⇒ p06. 
p05 ∧ q08 ∧ q09 ⇒ for c ≠ 0, sign(c).Sc(sj) ↓ as j ↑ ⇒ p07. 
Further, p06 ⇒ q06 ∧ q07 and p07 ⇒ q08 ∧ q09. ∴{p03-p05, q06-q09} ⇔ {p03-p07}. 

 
Theorem 2. For Tj,c ≠ 0 and k > j, rj,k,c ≡ Tk,c/Tj,c ↓ as c ↑, and limc→∞ rj,k,c = 0. 

 In particular, Tk,c = rD,k,c.TD,c and for k > D, Tk,c = 0 or Tk,c ↓ as c ↑ with limc→∞ Tk,c = 0. 
Proof. rj,k,c = Tk,c /Tj,c = [ωc.wk.Sc(sk)]/[ωc.wj.Sc(sj)] = (wk/wj).∏Fj(c)×...×Fk-1(c). 

p06 ⇒ Fj(c) ↓ as c ↑ and limc→∞ Fj(c) = 0. Therefore, for k > j, rj,k,c has the same properties. 
As Tj,c = 0 for j < D and TD,c ≠ 0, Tk,c = rD,k,c.TD,c and limc→∞ Tk,c = 0.for all k > D. 

 
Theorem 3. Sc properties p03-p06 ⇒ the spectrum properties p01-p02 of Rc. 
Proof. p06 ⇒ limc→∞ Sc(sj+1)/ Sc(sj) ≡ limc→∞ Fj(c) = 0 ⇒ limc→∞ Rc = R∞, the infallible player. 

Similarly, limc→-∞ Sc(sj+1)/ Sc(sj) ≡ limc→-∞ Fj(c) = ∞ ⇒ limc→-∞ Rc = R-∞, the anti-infallible player.   
p04 ⇒ R0 is the random player for which all moves are equally likely.  Thus, p04 ∧ p06 ⇒ p01. 
Let Tj,c = 0 for j < D and TD,c ≠0. 
∑j Tj,c2 = 1 = TD,c2.∑j=D rD,j,c2 = TD,c1.∑j=D rD,j,c1. Further, rD,j,c2 ≤ rD,j,c1 ⇒ TD,c2 ≥ TD,c1. 
If TD,c2 > TD,c1 then there is an E such that Tj,c2 > Tj,c1 for j < E but TE,c2 < TE,c1.  
∴ for j ≥ E, Tj,c = rE,j,c.TE,c and rE,j,c2 ≤ rE,j,c1. Therefore, Tj,c2 = rE,j,c2.TE,c2 < rE,j,c1.TE,c1 = Tj,c1 for j ≥ E. 
∑j Tj,c2 = 1 = ∑j=1...E-1 Tj,c2 + ∑j=E Tj,c2 = ∑j=1...E-1 Tj,c1 + ∑j=E Tj,c1  
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Therefore ∑j=D...E-1 (Tj,c2 - Tj,c1) = ∑j=E (Tj,c1 - Tj,c2)  
But (Tj,c2 - Tj,c1) ≥ 0 for j = D to E-1 and (Tj,c1 - Tj,c2) ≥ 0, for j = E to ns. 
∴∑j=1...E-1 j.(Tj,c2 - Tj,c1) ≤ ∑j=E... j.(Tj,c1 - Tj,c2) and ∑j j.Tj,c2 ≤ ∑j j.Tj,c1 ⇒ Ec2[s | P] ≤ Ec1[s | P]. 
As i < j ⇒ val(si) ≥ val(sj), ∑j=1...E-1 val(j).(Tj,c2 - Tj,c1) ≥ ∑j=E val(j).(Tj,c1 - Tj,c2)  
∴∑j val(sj).Tj,c2 ≥ ∑j val(sj).Tj,c1 ⇒ Ec2[val(s) | P] ≥ Ec1[val(s) | P]. 
Thus, property p02 is ensured. 
 

Theorem 4. As c → ∞, Rc’s TD,c → 1, Ec[s | P] → D and Ec[val(s) | P] → val(sD). Thus, lim c→∞ Rc  ≡ R∞ and 
limc→-∞Rc ≡ R-∞ exist, and are respectively the infallible and anti-infallible players. 
Proof. Tj,c = 0 for j ≤ D and TD,c ≠ 0. Ec[state] = Ec[s] = Σk = 0 k.Tk,c = Σk = D k.Tk,c. 

From Theorem 2, we have Tk,c = rD,k,c.TD,c. ∴ lim c→∞ Tk,c = 0 for k > D and lim c→∞ TD,c = 1. 
Thus, we may define limc→∞ Rc ≡ R∞ with TD,∞ = 1 and Tk,∞ = 0 for k ≠ D. 
∴ Ec[s | P] = .D.TD,c + Σk = D+1 .k.rD,k,c.TD,c ⇒ lim c→∞ Ec[s] = D. 
Similarly, Ec[val(s) | P] = Σk = D val(si).Tk,c = val(sD).TD,c + Σk = D+1 val(sk).Tk,c. 
Therefore, lim c→∞ Ec[val(s) ] = val(sD). 
Similarly, we may show that limc→-∞ Rc ≡ R-∞. 

 
Theorem 5. The function SFc satisfies Preference Function Properties p03-p08. 
Proof. SFc(win, d) = (d + κ)-c and SFc(loss, d,) = λ.(d + κ)c with constants λ, κ > 0. 

p03:: κ > 0 ⇒ d + κ > 0 ⇒ ∀ real c, (d + κ)c > 0 and finite ⇒ SFc(s) > 0 and finite ⇒ p03. 
p04:: SF0(loss, d) = (d + κ)0 = 1, SF0(draw) = SF0(loss, dL) = 1 and SF0(win, d) = (d + κ)-0 = 1 ⇒ p04. 
p05:: true by definition of SFc. 
p06:: For j = 0 to nW, Fj(c) = SFc(sj+1)/ SFc(sj) = (j+κ)c/(j+1+κ)c = [1 - (j+1+κ)-1]c = ac with a ∈ (0, 1). 
 ∴limc→∞ Fj(c) = 0 and dFj/dc = lne[1 - (j+1+κ)-1]. [1 - (j+1+κ)-1]c < 0. 
 For j = nW+1 to ns - 2, Fj(c) = SFc(sj+1)/ SFc(sj) = SFc(loss, ns – j -1)/SFc(loss, ns – j)  
 ∴Fj(c) = λ.(ns-j-1+κ)c/λ.(ns-j+κ)c = [1 - (ns-j+κ)-1]c ∈ (0, 1) 
 ∴limc→∞ Fj(c) = 0 and dFj/dc = lne[1 - (ns-j+κ)-1]. [1 - (ns-j+κ)-1]c < 0. 
 ∴Fj(c) = SFc(sj+1)/ SFc(sj) is a decreasing function of c and limc→∞ Fj(c) = 0. 
p07:: For j = 0 to nW + 1, f(j) ≡ sign(c).Sc(sj) = sign(c).(j+κ)-c and df/dj = -c.sign(c).(j + κ)-c-1 
 For j = nW + 1 to ns, f(j) ≡ Sc(sj) = sign(c).λ.(ns-j+κ)c and df/dj = -c.sign(c).λ.(ns-j+κ)c-1 
 Therefore, for c ≠ 0, sign(c).Sc(sj) is a decreasing function of j: for c = 0, it is a constant. 
p08:: Wc(j) = Sc(win, j)/ Sc(win, j + 1) = (j+1+κ)c/(j+κ)c = [1 + (j+κ)-1]c → 1 as j → ∞. 
 ∴dW/dj = α2 [c. (j+κ)c.c.(j+1+κ)c-1 - (j+1+κ)c.c. (j+κ)c-1] = β2.c.[ (j+κ) - (j+1+κ)] = - β2.c. 
 ∴For c > (<) 0, Wc(j) = Sc(win, j)/Sc(win, j) ↓ (↑) as j ↑ with limj→∞ Wc(j) = 1. 
 Lc(j) = Sc(loss, j + 1)/Sc(loss, j) = λ.(j + 1 + κ)c/λ.(j + κ)c ≡ Wc(j).  

 ∴ For c > (<) 0, Lc(j) = Sc(loss, j + 1)/Sc(loss, j) ↓ (↑) as j ↑ with limj→∞ Wc(j) = 1.  
 

Theorem 6. With M = MWw.MWb, the state-probability vectors satisfy pn
T = p0

T.Mn, and pn
T converges to a 

steady state solution pT = pT.M. The expected depth after n moves from the initial p0 is ∑i depth(si).pn,i. The 
expected length L of the game Rw-Rb starting at si is li as defined by (M – I).L = -1 with l0 = lns-1 = 0.  
Proof. Let pn,j = Prob[system in state j after move n]. Let M = [mi,j]. 

Then pn,j = ∑i pn-1,i.mi,j, i.e. pn
T = pn-1

T.M and therefore pn
T = p0

T.Mn. 
The probability that the system-state is fixed ↑ to a limit which may be proved here to be 1. 
Therefore, pn

T → pT which satisfies pT = pT.M and is a left-eigenvector for the eigenvalue λ = 1.  
Let ls = E[Rw-Rb game-length, starting from state s]. l0 = lns-1 = 0 as states 0 and ns-1 are finished games. 
Then li = 1 + ∑j mi,j.lj ⇒ -1 = ∑j≠i mi,j.lj + (mi,i – 1).li ⇒ (M – I).L = -1. 

 
Theorem 7. Let Ec[s | p] be the state expected by Rc after a move from a position P with a state-probability 
vector p. Then, if c1 < c2, Ec2[s | p] ≤ Ec1[s | p] and Ec2[val(s) | p] ≥ Ec1[val(s) | p]. 
Proof. Let p = ∑j pj.uj where uj indicates that the system is in state sj. 

Let the number of positions P in state sj be NPj. Then Ec[s | uj] = Ec[s | ∑P ∈ state j P]/NPj. 
But Ec[s | p] = Ec[s | ∑j pj.uj] = ∑j pj.Ec[s | uj], i.e. Ec[s | p] is a linear function Rns → R. 
∴ Ec[s | p] = ∑j pj.Ec[s | ∑P ∈ state j P]/ NPj. But Ec2[s | P] ≤ Ec1[s | P] from Theorem 3.  
Therefore ∑j pj.Ec2[s | ∑P ∈ state j P]/ NPj ≤ ∑j pj.Ec1[s | ∑P ∈ state j P]/ NPj, i.e. Ec2[s | p] ≤ Ec1[s | p]. 
Similarly, Ec[val(s) | p] is a linear function Rns → R and Ec2[val(s) | p] ≥ Ec1[val(s) | p].
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APPENDIX B: THE BROWNE-BELLE GAMES 
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Figure 9: The two Browne-BELLE games: depth after move m. 
 
These games have been annotated with respect to the DTC metric as follows:  
 '' ≡ only value-preserving move, ' ≡ only optimal move, º ≡ only legal move,  
 {+i/+j: ...} ≡ move conceding i moves in depth, making a total loss of j moves in depth in the game  
 [Re4, Rg4, Rh4] ≡ DTC-optimal moves for Black 
 ☺ ≡ DTC equi-optimal move preferred by the model of opponent fallibility. 
 
Game 1: {BB1-1w: wKa8Qa5/bKf6Re8+w, 19th Dec., 1978; dc = 31} 1. Kb7 Re7+' 2. Kc6 Re6+' 3. Kd7 
Re7+' 4. Kd8' Re4' 5. Qc5 Re5' 6. Qd4 {+1/+1: Qc3, Qc4, Qf8+ and Qg1 optimal} Kf5' 7. Kd7 Re4' 8. Qd3 
Kf4 ☺ [Ke5] 9. Kd6 Re3 [Re1 ☺] 10. Qd4+ Re4' 11. Qf2+ Kg4' 12. Kd5 Re8 [Re7 ☺] 13. Qf6 Re3 [Re1 ☺] 
14. Kd4 Rf3' 15. Qg6+ Kf4' 16. Qg2 Ra3' 17. Qc6 {+3/+4: Qd2+, Qe4+ optimal} Ra1' 18. Qc7+ {+2/+6: 
Qc2'} Kf5' 19. Qc2+ {+1/+7: Qc8+'} Ke6' 20. Qd2 {+1/+8: Qc4+'} Ra7 ☺ [Ra4+] 21. Qb4 {+2/+10: Qe1+, 
Qe2+, Qe3+, Qh6+ optimal} Re7' 22. Ke4 {+1/+11: Qa5, Qb3+, Qc3, Qc5, Qe1+ optimal} Kf6+' 23. Kf4' 
Ke6' 24. Qd4 Rf7+' 25. Ke4' Rf6' 26. Qd5+ {+2/+13: Qd8'} Ke7º 27. Ke5' Rh6 [Rg6 ☺] 28. Qb7+ Kd8' 29. 
Qf7' Rc6 ☺ [Ra6] 30. Kd5' Rb6' 31. Kc5 {+1/+14: Qf4'} Ra6' 32. Qc4 {+4/+18: Qd5+'} Rf6' 33. Qh4 
{+2/+20: Kd5'. dc = 18 so Black has the draw} Ke7' 34. Kd5' Kf7' 35. Ke5 Re6+' 36. Kf5' Rd6' 37. Qc4+' 
Ke7' 38. Ke5' Rh6 ☺ [Rg6] 39. Qc7+' Kf8' 40. Kf5 {+3/+23: Qd7'} Ke8' 41. Qc1 {+2/+25: Qe5+'} Rd6' 42. 
Qc8+ {+2/+27: Qc7'} Ke7' 43. Qc7+ Rd7' 44. Qc5+' Kd8' 45. Ke6 Rb7' {dc = 13: draw agreed}. ½-½.  

White conceded 27 moves in depth over moves 6, 17-22, 26, 31-33 and 40-42. Black had DTC-optimal choices 
on moves 8, 9, 12, 13, 20, 27, 29 and 38, and made the ‘model’ choice on moves 8, 20, 29 and 38.  
 
Game 2: {BB2-1w: wKc8Qd8/bKc3Rc4+w, 30th Dec., 1978; dc = 31}1. Kb7 Rb4+' 2. Kc6 Rc4+' 3. Kb5 
Rb4+' 4. Ka5' Re4' 5. Qd6 Rd4' 6. Qe5 {+1/+1: Qa3+, Qe6, Qf6 and Qh2 optimal} Kd3' 7. Kb5 Re4' 8. Qf6 
Ke3' 9. Kc5 Rf4' 10. Qg6 Ra4 [Re4 ☺] 11. Qg3+ Ke2' 12. Qc3 Rf4 [Re4, Rg4 ☺, Rh4] 13. Kd5' Rh4' 14. 
Qc2+' Ke3' 15. Qd1' Kf2' 16. Qd2+ {+1/+2: Qd3'} Kf3' 17. Qe1 {+3/+5: Qd3+'} Rg4' 18. Qd1+ Kf4' 19. 
Qe2 {+3/+8: Qc1+} Rg5+' 20. Kd4' Rf5' 21. Qe3+ Kg4º 22. Ke4 Rf7 ☺ [Rf6] 23. Qg1+' Kh5' 24. Qg3' Rf8 
[Rb7☺, Rf6] 25. Ke5' Rf7' 26. Ke6 {+1/+9: Qd3'} Rf8' 27. Qa3 {+2/+11: Qe5+'} Rf4' 28. Qh3+ {+2/+13: 
Qg3'} Kg5' 29. Qg3+ Rg4' 30. Qe5+ {+1/14: Qe3+'} Kh4' 31. Qh2+' Kg5º 32. Ke5 {+1/+15: Qd2+'} Kg6' 
33. Qh8 {+1/+16: Qc2+ and Qh3 optimal} Rg5+' 34. Ke6' {a pattern repeated at moves 37b, 40b, 43b and 
46b} Rg4' 35. Qg8+ {+2/+18: Qe5'} Kh5' 36. Qh7+' Kg5º 37. Ke5' Rg3' 38. Qg7+' Kh4' 39. Qh6+' Kg4º 
40. Ke4' Rg2' 41. Qg6+' Kh3' 42. Qh5+' Kg3º 43. Ke3' Rg1' 44. Qg5+ {+1/+19: Qe5', and now White can-
not slip again} Kh2' 45. Qh4+' Kg2º 46. Ke2' Ra1' 47. Qe4+ Kh3' 48. Qh7+' Kg3 [Kg2, Kg4] 49. Qg7+' 
Kh3 50. Qxa1' {Just in time! Black resigns.} 1-0. 

White ceded 19 moves in depth over moves 6, 16-17, 19, 26-28, 30, 32-33, 35 and 44. Black had DTC-optimal 
choices on moves 10, 12, 22 and 24, and made the ‘model’ choice on move 22 only. 
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