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Abstract

4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations

through the minimisation of a least-squares objective function, which is constrained

by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR)

in this thesis as it assumes the model is perfect. Relaxing this assumption gives

rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation

problem with more degrees of freedom. We consider two wc4DVAR formulations

in this thesis, the model error formulation and state estimation formulation.

The 4DVAR objective function is traditionally solved using gradient-based

iterative methods. The principle method used in Numerical Weather Prediction

today is the Gauss-Newton approach. This method introduces a linearised

‘inner-loop’ objective function, which upon convergence, updates the solution of

the non-linear ‘outer-loop’ objective function. This requires many evaluations of

the objective function and its gradient, which emphasises the importance of the

Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the

degree of convexity of the objective function, while also indicating the difficulty

one may encounter while iterative solving 4DVAR. The condition number of the

Hessian is an appropriate measure for the sensitivity of the problem to input

data. The condition number can also indicate the rate of convergence and solution

accuracy of the minimisation algorithm.

This thesis investigates the sensitivity of the solution process minimising both

wc4DVAR objective functions to the internal assimilation parameters composing

the problem. We gain insight into these sensitivities by bounding the condition

number of the Hessians of both objective functions. We also precondition the

model error objective function and show improved convergence. We show that

both formulations’ sensitivities are related to error variance balance, assimilation

window length and correlation length-scales using the bounds. We further

demonstrate this through numerical experiments on the condition number and

data assimilation experiments using linear and non-linear chaotic toy models.
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Chapter 1

Introduction and Motivation

The aim of data assimilation is to provide a statistically optimal estimate of the

state of a system given a set of observations and a dynamical model. There are

various data assimilation techniques used for a variety of problems in numerical

weather prediction (NWP), earth sciences, oceanography, agriculture, ecology and

the geo-sciences. The complexity of the data assimilation problem is related to

the area of application, since the size and the dynamics of the system or model is

dependent on the application.

Figure 1.1: Classification of popular data assimilation techniques.
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Figure 1.1 is diagrammatic representation of data assimilation techniques

and their classification. Each technique has several sub-categories which

we deliberately omit. For the remainder of the thesis we abbreviate the

optimal interpolation technique as OI, 3-dimensional variational data assimilation

as 3DVAR, 4-dimensional variational data assimilation as 4DVAR and the

Kalman-filter equations as KF.

The standard 4DVAR approach seeks a statistically optimal fit to the observations,

subject to the constraint of the flow, or the model of the physical process for

which we are assimilating data. The statistical uncertainties are represented by

the 4DVAR objective function, which aims to minimise the mismatch between

the model trajectory and the background and observations. The errors in these

two quantities are assumed to be independent of each other and possess Gaussian

statistics with zero mean. The main assumption of 4DVAR is that the model

describing the state contains no errors, which explains the occasional reference

to the standard 4DVAR approach as strong-constraint 4DVAR (sc4DVAR). The

4DVAR objective function is traditionally minimised using gradient-based iterative

techniques. In the context of NWP, the Gauss-Newton approach is used,

introducing a series of linearised ‘inner-loop’ objective functions. Minimising the

objective function is an optimisation problem, which in an NWP context requires

several evaluations of both the objective function and its gradient to converge on

a suitable solution.

The research in this thesis focuses on a more general form of 4DVAR known as

weak-constraint 4DVAR (wc4DVAR). The wc4DVAR problem relaxes the strong

model constraint by allowing for errors in the model. This modifies the objective

function slightly and increases the degrees of freedom of the problem, while also

introducing a more complicated optimisation problem than sc4DVAR. The primary

focus of the thesis is identifying the sensitivities of the minimisation process to the

input data composing the data assimilation problem. We explain this in more

detail as the thesis unfolds.

We begin by briefly introducing the evolution of the data assimilation field up to
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where it is today, followed by current research involving relevant applications of

wc4DVAR. We then state the aims of our research and then give a chapter overview

of the thesis.

1.1 Brief Historical Background

In the 1950s there was significant theoretical research progress around the weather

forecasting problem, which led to a variety of mathematically similar yet differently

formulated ideas, forming the basis of data assimilation. The first marked attempt

was by Gilchrist and Cressman, [33], where they use a least-squares method to

fit a second degree polynomial presented by their interpretation of a simplified

meteorological system. A serially successive correction technique was introduced

by Bergthorsen and Döös, [8], where they added statistically weighted increments

to a prior estimate. Variational data assimilation was theoretically suggested by

Sasaki in the late 1950s in the same era as the OI and KF techniques, [76], [77].

The KF [48] and OI [29] techniques eventually made their way into the weather

forecasting arena by the 1960’s. The variational techniques at this time were not

receiving as much research attention as the OI or KF variants. The strength of

variational techniques was not yet realised.

Sasaki formally defined ‘Variational formalism with weak constraint’ as early as

1970, [78]. The weak-constraint variational formulation of the data assimilation

problem has received increased attention in the last two decades, [38], [39], [72], [5],

[83], [56], [14]. Weak-constraint 4DVAR is most useful when used with observations

of a dynamical system or process that perhaps is not yet well-understood.

Notable distinctions and advantages of the variational techniques is the inclusion

of model dynamics and feasibility for very large problems such as those in

NWP. 4DVAR became feasible for operational NWP centres in 1994, [13], with

the introduction of ‘Incremental 4DVAR’, nearly 30 years after its theoretical

formulation. It was implemented for the first time by the European Center for
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Medium-Range Weather Forecasts (ECMWF) in 1997, documented in [74], [64]

and [50]. The Met Office then followed with their operational implementation of

4DVAR in 2004, [75].

Operational NWP centres in the last 25 years have largely concentrated their

efforts in implementing variational techniques for longer range forecasting due to

their computational feasibility. Variational techniques are difficult to implement

compared to KF or OI because one of the components required to calculate the

gradient is a backward or ‘adjoint’ model. Writing adjoint code is one of the main

sources of difficulty and it can take years for scientists to correctly code these

for very large NWP models, [75], [74]. The KF technique is infeasible for large

problems such as those in NWP because KF requires propagation of background

error covariances, which is too computationally expensive. However, there are

studies beginning to emerge showing that KF variants may be practicable for large

NWP systems. Comparisons between ensemble 4DVAR (4DEnVAR) variants and

NWP-applied ensemble KF (EnKF) variants highlight the ease of implementing

EnKF over hybrid-4DVAR due to the absence of an adjoint, [59], [22] [60].

The most recent developments surrounding the variational techniques is the

implementation of the hybrid 4DVAR technique. These techniques aim to remedy

the weakness in sc4DVAR where the background matrix is unable to capture ‘errors

of the day’. At the Met Office, hybrid 4DVAR utilises a variable transformation

technique to combine the conventional climatological estimates of the background

error covariance matrix with data from the 23-member Met Office ensemble

prediction system (MOGREPS). This has been implemented by the Met Office

in their global model as of July 2012, [10]. The Met Office are also attempting to

develop a hybrid 4DEnVAR technique, which if successful will alleviate the need for

linearised and adjoint models. The difference between hybrid 4DVAR and hybrid

4DEnVAR is that 4DEnVAR uses a localised linear combination of non-linear

forecasts, whereas hybrid 4DVAR uses the linearised model and its adjoint. A

comparison between these two techniques shows that the currently operational

hybrid 4DVAR method is still superior to the proposed hybrid 4DEnVAR, [60].
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We now briefly highlight broader application areas of wc4DVAR related to the

earth system as a whole.

1.2 Applications of Weak-Constraint 4DVAR

In oceanography wc4DVAR has been used to study the tropical ocean circulation

with a simple coupled ocean-atmosphere model, [6] and [7], where the authors

discuss how the implementation of this technique led to the improvement in

part of the model physics describing this process. The authors refer to their

weak-constraint 4DVAR formulation as the ‘iterated indirect representer method’

in these papers.

The US Naval Research Laboratory (NRL) initially trialled a wc4DVAR

formulation using the Burgers’ equation, with the aim of understanding how to

obtain model error covariance statistics, [93]. They later implemented wc4DVAR

both in ‘primal’ and ‘dual’ forms for assimilating ocean observations with the

bigger Navy Coastal Ocean Model. They did this using both using synthetic

observations [70], and real observations [71], and they discuss differences between

the 4DVAR and wc4DVAR systems. They conclude that wc4DVAR has lower

solution errors than sc4DVAR, when compared to the truth. The ‘primal’ form of

4DVAR is the standard approach which solves the problem in what is known

as ‘state space’. Whereas the ‘dual’ form of 4DVAR maps the problem into

‘observation space’, which is much smaller than state space.

The University of California in collaboration with some other universities and the

Institute of Marine and Coastal Sciences have detailed their incremental sc4DVAR

and wc4DVAR systems, both in primal and dual forms applied to their Regional

Ocean Modeling System (ROMS) in a lengthy three-part paper, [68], [66], [67].

A discussion of the implementation of wc4DVAR to the upper stratosphere model

at the ECMWF on their pre-operational Integrated Forecast System (IFS) can
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be found in [84]. The operational application is discussed in [56] and [27].

The ECMWF briefly implemented a bias-only corrective version of wc4DVAR,

but this has been suspended due to numerical conditioning issues, which is

an area we address in this thesis theoretically, [personal communications with

Mike Fisher and Yannick Tremolet, 2013], [Poster by Stephen English, ECMWF

Research Dept: https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/

posters/nwp_3_english.pdf].

Another growing area of research that has begun implementing wc4DVAR is earth

and soil observation. The main problem in this area is that the current models are

not an accurate representation of terrestrial ecosystems. There is also the issue of

models not being coupled with each other. So for example in the event of a forest

fire, abrupt changes in the state would take place in a separate radiative transfer

model which will have an effect on the terrestrial model, however, the terrestrial

model would not be able to detect this, [55].

The wc4DVAR approach has only gained proper research attention in the last

decade. The application of wc4DVAR is suited to problems where the dynamical

model of a given system is known to contain errors. The errors could be biases,

random errors, model parameter errors or errors in the model physics. Realising

the nature of these errors by allowing for their estimation could potentially improve

understanding of the process being assimilated, so aswell as a forecasting tool it

could be used to diagnose errors in the physics of the process being modeled.

We now detail the aims of our research in this thesis.

1.3 Aims of Research

The weak-constraint variational problem introduces many more degrees of freedom

in comparison to sc4DVAR, which only estimates the initial state required to

initialise the model. Wc4DVAR seeks an optimal estimate of the states across the
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assimilation window, given the error statistics in the background, observations and

the model. The problem is fully 4-dimensional since it seeks temporally evolving

information, states or model errors, rather than just the initial conditions.

There are two formulations of the weak-constraint problem at the focus of this

thesis. One formulation aims to estimate the initial state and the model errors

for each time interval within the assimilation window. The alternative formulation

aims to estimate all the states at each time interval within the assimilation window.

More specifically, the aim of the research is to:

• Investigate differences in the characteristics of the solution process between

the wc4DVAR model error and state formulations with identical input data.

• Establish theoretical grounding to identify the data assimilation parameters

that are the most influential on the solution process of both the wc4DVAR

model error formulation and state formulations.

• Determine the scope of our findings by applying both wc4DVAR formulations

to a non-linear chaotic model with similar error growth characteristics to full

NWP models.

In this thesis we examine the theoretical condition numbers of the Hessians of the

wc4DVAR objective functions. The condition number measures the sensitivity of

non-linear functions to small changes in their input data. We use the condition

number of the wc4DVAR objective functions’ first-order Hessians to quantify their

level of sensitivity to changes in the assimilation parameters governing the data

assimilation problem. We use this as insight as to how the gradient-based iterative

solvers will perform when used to solve the wc4DVAR objective functions.

The problem is said to be well-conditioned if the solution is not greatly effected

by the initial input data, otherwise the problem is said to be ill-conditioned

The new main results that we show in the thesis are as follows:
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• The condition number of the sc4DVAR Hessian is bounded above by the

condition number of the wc4DVAR model error formulation Hessian.

• There are clear differences in the number of iterations required for

convergence, solution error and numerical condition numbers of the

wc4DVAR model error and state formulations using a simple 1-dimensional

advection model. These differences are evident when subjecting

both formulations to changes in assimilated error variances, correlation

length-scales, spatial observation densities and assimilation window lengths.

• The condition number of the Hessian of the wc4DVAR model error

formulation and hence the iterative solution process, is sensitive to longer

correlation length-scales, increased observation density and assimilation

window length. It is also sensitive to the balance of the specification of

background, observation and model error variance ratios.

• Preconditioning the wc4DVAR model error formulation using the symmetric

square-root of the background and model error covariance matrix improves

the condition number of the Hessian and the convergence rate of the solution

process of the model error formulation.

• We show that the condition number of the Hessian of the wc4DVAR state

formulation and hence the iterative solution process is very sensitive to the

background and model error covariance matrix, more so than the wc4DVAR

model error formulation. This formulation also exhibits sharp sensitivity to

the decrease in observation density. It also exhibits a sharp sensitivity to

assimilation window length in the event of scarce observations, but as the

observation density approaches full rank the state formulation is no longer

effected by assimilation window length.
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1.4 Thesis Overview

In Chapter 2 we present the variational data assimilation problem. We also discuss

the incremental 4DVAR and control variable transform (CVT) techniques which

are used to enable operational execution of the variational algorithm. We then

introduce the two weak-constraint variational methods and extend the incremental

and CVT techniques to wc4DVAR followed by a short discussion of the Hessian

structures of the two wc4DVAR formulations. Finally, we review the current

literature more closely linked to the wc4DVAR formulations at the focus of the

thesis.

In Chapter 3 we introduce the definition of the condition number used in this thesis

as a measure to quantify the sensitivities of the variational problem to changes in

its input parameters. We then detail the iterative solvers used to solve the 4DVAR

optimisation problem. This is followed by an overview of the particular class of

matrix, which are shared by the two covariance structures in the experiments

conducted in our research. We then discuss the mathematical techniques and

theorems used to obtain the results in the thesis. We then introduce the two

models used in our theory and experiments.

In Chapter 4 we detail the practical implementation considerations of both the

model error and state estimation wc4DVAR problems. We then detail the

experimental design and examine their numerical minimisation characteristics

when applied to the 1-dimensional advection equation model.

In Chapter 5 we examine the condition number of the Hessian of the model error

objective function. We derive new theoretical bounds on the condition number

of the Hessian and derive theoretical insight from the bounds. We explore the

sensitivities of the condition number to input data by demonstrating the bounds

through numerical experiments, both on the condition number and the iterative

solution process. We precondition the problem and derive similar theoretical

results and demonstrate in a similar fashion that the overall conditioning of the
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preconditioned problem is improved as a result.

Chapter 6 is dedicated to examining the condition number of the Hessian of the

state estimation objective function. We derive new theoretical bounds on the

condition number of the Hessian and derive theoretical insight from the bounds.

We examine and highlight certain properties of this Hessian that are uniquely

different from the model error formulation Hessian. We demonstrate all our

findings through numerical experiments on the condition number and the solution

process of the state estimation problem.

In Chapter 7 we implement both weak-constraint formulations on the Lorenz-95

system and show that the sensitivities of both formulations obtained in Chapters

5 and 6 also hold for a non-linear chaotic model.

Chapter 8 concludes our work and discusses avenues for further work.
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Chapter 2

Variational Data Assimilation

We introduce the Gauss-Newton ‘incremental’ and CVT techniques currently used

for sc4DVAR. We then introduce the two wc4DVAR formulations. We then extend

the theory of the Gauss-Newton and CVT concepts to both formulations and

briefly discuss the structures of the two wc4DVAR Hessians. We conclude the

chapter with a literature review of applications of wc4DVAR in NWP and current

understanding of the conditioning of the wc4DVAR problem.

We begin by detailing the style of notation used in this thesis.

2.1 Notation and Assumptions

Matrices and Vectors

Bold upper-case letters denote partitioned matrices, meaning a matrix of matrices.

In this thesis we refer to these partitioned matrices as 4-dimensional (4D) since they

possess spatial and temporal information. Matrices with a normal font represent

a standard N × N matrix as opposed to a partitioned 4D Nn × Nn matrix, for

N, n ∈ N, where N refers to the spatial dimension and n denotes the temporal
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dimension. Similarly, we represent 4D partitioned vectors with bold lower-case

letters and normal vectors of size N are written in normal font.

Operators

This notation also interlinks between operators and matrices. We denote non-linear

operators using calligraphic font whereas a non-linear operator which has been

differentiated and linearised around a point is denoted with normal font, which

can then also be represented as a matrix. This also applies to 4D operators, so

a linearised 4D operator for example would be bold. Letters with standard font

denote linear or linearised operators,which can be represented in matrix form.

Condition Number

The condition number used throughout this chapter is the 2-norm condition

number, composed of the ratio of the largest and smallest eigenvalue of a symmetric

positive-definite matrix. We formally introduce the condition number in Chapter

3 Section 3.1.

We now introduce the sc4DVAR problem.

2.2 Strong-Constraint 4DVAR

The aim of data assimilation is to merge the trajectory of a model with

observational data from the process being modeled. In sc4DVAR the model

is assumed to be perfect meaning each state is described exactly by the

model equations. The errors therefore in the strong-constraint problem are the

background, a previous forecast, and the observations. The objective is to seek the

model initial conditions which minimises the distance between the model trajectory

and the background and observations.
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We begin by writing the model evolution of the states as

xi = Mi,i−1(xi−1), i = 1, ..., n . (2.1)

The model is a discrete non-linear operator Mi,i−1 : R
N → R

N evolving the model

state xi ∈ R
N from time ti−1 to time ti on the closed time interval [t0, tn] where

Mi,i = IN . The model state can have several spatial points and contain additional

parameters or boundary conditions that govern the behaviour of the model. In

this thesis we only consider models initialised by their respective states without

any additional parameters.

The model integrations can be factorised into smaller integrations using the

subscript time-stepping notation as follows

Mn,0(x0) = Mn,n−1...(M2,1(M1,0(x0))). (2.2)

We utilise this notation througout the thesis. Now that we have discussed

the model, we briefly introduce the notion of observations in variational data

assimilation related to NWP.

There is a wide network of observations gathered with the use of various

instruments and methods for obtaining measurements in NWP. For example,

radiosondes are attached to weather balloons, which are sent up through the layers

of the atmosphere collecting data such as pressure, humidity and temperature.

Observations are also obtained through satellite radiances, aircrafts and buoys

in the ocean. The process of translating the observations into data which can be

compared with the model presents its own inverse problem, but this is incorporated

into the variational problem as we will see shortly. An example of such a complex

problem is the translation of Atmospheric InfraRed Sounder (AIRS) radiance

data, which involves characterising the errors in the measured radiances and

the radiative-transfer model, [65]. In practice the number of the observations

is ∼ O(106) whereas the number of variables in the state is significantly larger

∼ O(108), [51].

Let yi ∈ R
p denote the raw observation value at time i and let Hi(xi) denote the

non-linear observation operator, which maps the model equivalent of yi from state
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space to observation space such that Hi : R
N → R

p. Therefore we have

Hi(xi)− yi = ǫoi , i = 0, ..., n , (2.3)

where ǫoi ∈ R
p denotes the observation error at ti. The errors in the observations

are typically assumed to be uncorrelated with all other types of error, and of the

form

ǫoi ∼ N(0, Ri), i = 0, ..., n , (2.4)

where Ri ∈ R
p×p is the observation error covariance matrix and the mean is equal

to zero. The assumption of a normal distribution allows the distributions to be

defined by the mean and covariance, which simplifies the problem. The Gaussian

assumption in (2.4) is still currently used by leading weather centres’ 4DVAR

implementations, such as the Met Office and the ECMWF, [74], [75], [13].

Next, we consider model trajectory errors. Initial conditions x0, produce a model

trajectory by utilising the non-linear model described in (2.1), with states at

each time (x1, ..., xn). The initial conditions that produce the previous forecast

trajectory, is known as the ‘background’, denoted as xb0. The background is the

solution of a previous 4DVAR application, since variational data assimilation is a

cyclic process. We therefore have a background trajectory such that

xbi = Mi,i−1(x
b
i−1), i = 1, ..., n , (2.5)

with initial conditions xb0 producing a trajectory (xb1, ..., x
b
n). The error associated

with the background is such that

x0 − xb0 = ǫb0, (2.6)

where the error is such that

ǫb0 ∼ N(0, B0). (2.7)

The background error ǫb0 ∈ R
N is assumed to be uncorrelated with all other types

of error, have a zero mean and a background error covariance matrix such that

B0 ∈ R
N×N .
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So the aim of the variational problem is to minimise the errors in (2.6) and (2.3)

with respect to the states xi for i = 0, ..., n, subject to the constraint of the perfect

model (2.1).

Figure 2.1: Strong-constraint 4DVAR assimilation window with following forecast trajectory.
Background estimate (blue dotted line) and solution (red line). (Diagram template courtesy of
ECMWF training course presentation by Phillipe Lopez)

Figure 2.1 is a pictorial representation of sc4DVAR. The aim is to find the model

trajectory (red line), which minimises the distances between the background (blue

dotted line) and the temporally distributed observations (green dots), within the

assimilation window. Therefore, sc4DVAR seeks the initial model state x0, which

gives a trajectory that minimises the errors in the background and observations

such that it minimises the following

min
x0

J (x0) =
1

2
(x0 − xb0)

TB−1
0 (x0 − xb0)︸ ︷︷ ︸

Jb

+
1

2

n∑

i=0

(Hi(Mi,0(x0))− yi)
TR−1

i (Hi(Mi,0(x0))− yi)︸ ︷︷ ︸
Jo

, (2.8)

where J : RN → R. Solving the minimisation problem presented by the sc4DVAR
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objective function, (2.8), provides the initial conditions for the non-linear model

M, which minimises the errors in the background Jb and the observations Jo.

The gradient equation is as follows

∇J (x0) = B−1
0 (x0 − xb0) +

n∑

i=0

MT
0,iH

T
i R

−1
i (Hi(Mi,0(x0))− yi), (2.9)

where the Jacobian of M is denoted as M , which is known as the tangent linear

or linearised model and MT is traditionally known as the linearised adjoint model.

The first-order Hessian of (2.8) is

S = B−1
0 +

n∑

i=0

MT
0,iH

T
i R

−1
i HiMi,0. (2.10)

The sc4DVAR problem is typically solved using gradient-based iterative procedures

requiring evaluation of the objective function (2.8) and its gradient (2.9) numerous

times. This fully non-linear form of 4DVAR is not directly practicable for the large

problems in NWP. We now introduce the most prominent solution approach, which

enabled 4DVAR to be practicable on NWP systems.

2.2.1 Incremental 4DVAR

The Gauss-Newton approach to the sc4DVAR problem, which is now known as

incremental 4DVAR to the NWP community, was introduced in 1994 unlocking the

operational practicality of 4DVAR for the first time, [13]. It was then introduced

into the operational systems of leading weather centres around the world between

1997-2005, ECMWF (1997) [74], Japanese Meteorological Agency (2005) [47], Met

Office (2007) [75] and Canadian Met Service (2007) [31].

We begin by introducing iterates, k, such that

x
(k+1)
0 = x

(k)
0 + δx

(k)
0 , (2.11)

where the first guesses for k = 0 are

x
(0)
0 = xb0,

δx
(0)
0 = 0.
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We approximate the non-linear operators in (2.8) to first-order such that

Hi(Mi,0(x
(k)
0 )) = Hi(Mi,0(x

(k)
0 + δx

(k)
0 )),

≈ Hi(Mi,0(x
(k)
0 )) + (Hi(Mi,0(x

(k)
0 )))′δx

(k)
0 ,

= Hi(Mi,0(x
(k)
0 )) + (HiMi,0)x(k)

0
δx

(k)
0 . (2.12)

Thus an ‘incremental objective function’ can be written in terms of the increment

δx
(k)
0 ,

min
δx

(k)
0

J(δx
(k)
0 ) =

1

2
(δx

(k)
0 − (xb0 − x

(k)
0 ))TB−1

0 (δx
(k)
0 − (xb0 − x

(k)
0 ))

+
1

2

n∑

i=0

(HiMi,0δx
(k)
0 − di)

TR−1
i (HiMi,0δx

(k)
0 − di), (2.13)

where

di = yi − (Hi(Mi,0(x
(k)
0 )). (2.14)

Solving problem (2.13) is known as the ‘inner-loop’. The inner-loop objective

function (2.13) can be minimised directly using an iterative method, or by solving

the gradient equation at the minimum (∇J = 0),

(B−1
0 +

n∑

i=0

MT
0,iH

T
i R

−1
i HiMi,0)δx

(k)
0 =

n∑

i=0

MT
0,iH

T
i R

−1
i di +B−1

0 (xb0 − x
(k)
0 ).

(2.15)

We can see that (2.15) is simply the linearised sc4DVAR Hessian applied to

δx0, with the initial input data comprised of the errors in the background and

observations on the right-hand side. The incremental 4DVAR Hessian of (2.13)

is identical to the first-order Hessian of the non-linear objective function (2.10).

Minimising the inner-loop objective function yields a new increment δx0 to update

the current guess for the outer-loop objective function via (2.11).
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Figure 2.2: Illustration of incremental sc4DVAR. (Diagram template: ECMWF presentation
by Sebastien Lafont)

Figure 2.2 illustrates the incremental sc4DVAR algorithm. The initial guess to

start the algorithm is x0 = xb, which is then used to evaluate the non-linear

objective function J . Evaluating the ‘outer-loop’ objective function, J , yields the

non-linear model trajectory and ‘departures’, as seen in Figure 2.2, which allows

the linearised inner-loop to begin. The initial guess for the inner-loop objective

function is δxi = 0, then the iterative minimisation algorithm will solve using the

linearised inner-loop objective function J and its gradient ∇J to provide the new

δxi increment which is added on to the previous guess xi. This process is then

repeated again until the desired convergence criterion is reached.

The Gauss-Newton approach detailed here is equivalent to solving the equations

arising from the gradient equation (2.9), [52]. However, solving the gradient

equation is not practicable operationally since it is deemed too computationally

expensive, so we do not consider it in this thesis. In operational NWP most of

the computational cost is associated with the minimisation of (2.13), [74]. The
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ECMWF has the dominant super-computing capability in the NWP community

and they perform ∼ 50 inner-loop iterations with only ∼ 3 outer-loop iterations.

The sc4DVAR problem is known to be ill-conditioned mainly due to the

correlations in the background error covariance matrix B0, [43], [41]. The matrix

B0 is also known to be very large due to the number of variables in the sc4DVAR

problem, [4]. We now introduce a technique which is operationally used to deal

with the background error covariance matrix.

2.2.2 The Control Variable Transform

The Control Variable Transform (CVT) technique has traditionally been used to

deal with the ill-conditioning of the B0 matrix in variational data assimilation, [58].

More recently the Met Office has utilised this technique to implement their hybrid

4DVAR and hybrid 4DEnVAR techniques, [60]. A change of variables is introduced

which allows for the implicit treatment of B0, therefore alleviating the need to store

an explicit inverse of B0. The two principal reasons for this transform are; the B0

is too large to store or express explicitly, and it is known to be too ill-conditioned

to find and represent its explicit inverse, [4]. We now discuss the CVT technique.

We introduce a change of variables such that

x
(k)
0 = Uz(k), (2.16)

where this change of variables also applies to increments defined in (2.11) and

(2.14). Therefore (2.13) becomes

Ĵ(δz(k)) =
1

2
||δz(k) − (zb − z(k))||2

UTB−1
0 U

+
1

2

n∑

i=0

||HiMi,0Uδz
(k) − di||2R−1

i

. (2.17)

The ideal U -transform to aid in the conditioning of (2.13) is such that

UTB−1
0 U = I. (2.18)

In terms of data assimilation, equation (2.18) implies that in z co-ordinates the

errors in elements of the background state vector are uncorrelated with each other
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and have variance equal to one. Solving (2.17) is equivalent to solving (2.13) as

long as (2.18) holds. From (2.18) we require

B0 = UUT , (2.19)

to hold. In practice U does not necessarily have to be square. The challenge is

to find U and its adjoint UT to be an optimum representation of B0. Obtaining

transforms for B0 is an extensive area of current research, [4], which is not the

focus of this thesis. We assume U is the unique symmetric-square root of B0 in

this thesis and thus U = B
1/2
0 .

Therefore (2.17) becomes

Ĵ(δz(k)) =
1

2

(
δz(k) − (zb − z(k))

)T (
δz(k) − (zb − z(k))

)T
(2.20)

+
1

2

n∑

i=0

(HiMi,0B
1/2
0 δz(k) − di)

TR−1
i (HiMi,0B

1/2
0 δz(k) − di), (2.21)

with Hessian

∇2Ĵ(δz) = I +
n∑

i=0

B
1/2
0 MT

0,iH
T
i R

−1
i HiMi,0B

1/2
0 . (2.22)

A paper by E.Andersson et al. [1] found the conditioning of (2.22) on a 2-grid

point example, with q observations at each grid point to be

κ(∇2Ĵ(δz)) = 2q
σ2
b

σ2
o

+ 1, (2.23)

where κ denotes the condition number of the preconditioned Hessian in the 2-norm.

The two grid points are assumed to be close in proximity and therefore highly

correlated. This suggests that for dense observations the conditioning of the system

is dependent on the ratio of the background to observation errors.

The preconditioned Hessian matrix (2.22) has its smallest eigenvalue equal to one

providedHi is not full rank, which is true for most applications of data assimilation,

especially in NWP. The preconditioned Hessian of sc4DVAR has been investigated

more in-depth for more general cases in [41], [43]. The authors derive bounds

on the condition number of (2.22) and showed that the convergence rate is much

improved using B
1/2
0 as a preconditioner.
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In the next section we introduce the two wc4DVAR formulations at the focus of

the thesis.

2.3 Weak-Constraint 4DVAR

The weak-constraint problem arises from relaxing the perfect model assumption

(2.1) allowing for model error. This implies the model is enforced as a

weak-constraint and the control variable has now increased by an order of

magnitude as we will see shortly. We revisit (2.1) now and find

xi −Mi,i−1(xi−1) = ηi, (2.24)

for i = 1, ..., n, where ηi ∈ R
N , represents the model error. We assume the model

errors are random with zero mean, Gaussian error statistics and a known covariance

such that

ηi ∼ N(0, Qi), (2.25)

for i = 1, ..., n, whereQi ∈ R
N×N represents the model error covariance matrix. We

also assume that model errors are independent of the background and observation

errors.

The additional model error now becomes a quantity for consideration and thus is

incorporated into the objective function. One way of writing the objective function

is in terms of the initial conditions x0 and model errors ηi, such that

min
(x0,η1,...,ηn)

J (x0, η1, ..., ηn) =
1

2
(x0 − xb0)

TB−1
0 (x0 − xb0)

+
1

2

n∑

i=0

(Hi(xi)− yi)
TR−1

i (Hi(xi)− yi)

+
1

2

n∑

i=1

ηTi Q
−1
i ηi, (2.26)

subject to the weak model constraint (2.24) .

The objective is to minimise the errors in the initial state, observations and

the model by selecting the most appropriate initial condition and model error
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estimates. This formulation is more common in the literature than the alternative,

implemented mainly on non-operational models, [94], [83], [84], [93]. An

operational implementation of this formulation was functioning at the ECMWF,

[56], until it was taken offline recently due to numerical conditioning issues.

Another way to consider the problem is in terms of the states xi such that

min
(x0,...,xn)

J (x0, ..., xn) =
1

2
(x0 − xb0)

TB−1
0 (x0 − xb0)

+
1

2

n∑

i=0

(Hi(xi)− yi)
TR−1

i (Hi(xi)− yi)

+
1

2

n∑

i=1

(xi −Mi,i−1(xi−1))
TQ−1

i (xi −Mi,i−1(xi−1)), (2.27)

where the constraint (2.24) is incorporated into the objective function. This

formulation is not as common as (2.26) in the literature although there are some

recent research contributions linking this formulation with particle filter and hybrid

methods. In [2], the author studies the connection of (2.27) with implicit particle

filters and demonstrates this using the Lorenz 63 model [61]. Another more

recent paper shows the connection of (2.27) with 4DEnVAR and even proposes

preconditioning strategies for the problem, [19]. An important feature of (2.27) is

the potential for the resulting algorithm to be parallelised since NWP centres are

constrained by computing power and time needed to produce a forecast, [27], we

show why this is in Section .

In sc4DVAR the initial conditions alone could utilise the non-linear model (2.1)

to produce an entire trajectory. By introducing model error the problem has

become fully 4-dimensional. The forward model now requires initial conditions

and additional forcing terms defined at each time step to obtain the states, as can

be seen from equation (2.24).

We now introduce 4D notation as in [27]. We define the 4D state and model error

vectors (respectively) as follows

p =

( x0
η1
.
.
ηn

)
, x =

( x0
x1
.
.
xn

)
. (2.28)
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Similarly the previous guess for the initial conditions and model errors produces

a similar vector to p, denoted as pb ∈ R
N(n+1), where the ‘b’ superscript denotes

the background. We define the 4D model operator, L : RN(n+1) → R
N(n+1) which

enables us to map from ‘state space’ to ‘model error space’ such that

L(x) = p. (2.29)

We can think of (2.29) as a 4D representation of (2.24), which links the two vectors

p and x via (2.29). The operator L is invertible, since we can determine x from

p using (2.24).

We now define the following 4D spatial-temporal variables,

y =

( y0
y1
.
.
yn

)
, (2.30)

D =

(
B0

Q1
.
.
Qn

)
,R =

(
R0

R1
.
.
Rn

)
. (2.31)

We notice a few subtleties here. We have composed D ∈ R
N(n+1)×N(n+1) such that

there are no temporal correlations between the initial conditions and model errors.

This also applies to the observation error covariance matrix R ∈ R
p(n+1)×p(n+1)

which is also assumed to be temporally uncorrelated.

We can now write the wc4DVAR objective function (2.26) in 4D form

min
p

J (p) =
1

2
||p− pb||2D−1 +

1

2
||H(L−1(p))− y||2R−1 , (2.32)

where H is the 4D non-linear observation operator. The alternative formulation,

(2.27), is as follows

min
x

J (x) =
1

2
||L(x)− pb||2D−1 +

1

2
||H(x)− y||2R−1 . (2.33)

Differentiating (2.32) yields

∇J (p) = D−1(p− pb) + (HxL
−1
x )TR−1(H(L−1(p))− y), (2.34)

where Hx and L−1
x are Jacobians, linearised around the subscripted quantity.

Similarly, by differentiating (2.33) we have

∇J (x) = LT
xD

−1(L(x)− pb) +HT
xR

−1(H(x)− y). (2.35)
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The linearisation points in the subscripts of H and L are omitted herein since this

is not the focus of the thesis. The different gradients (2.34) and (2.35) suggest

that the minimisation characteristics of (2.32) and (2.33) will be different.

To be clear on the definition of each term in the gradients above, we write the

operators L and H in matrix form

H =

(H0
H1

...
Hn

)
, L =




I

−M1,0 I

−M2,1

...

...
−Mn,n−1 I


 . (2.36)

The inverse of L can be obtained from the weak-constraint equation (2.24), thus

taking the following form

L−1 =




I

M1,0 I

M2,0 M2,1 I

M3,0 M3,1 M3,2 I
...

...
. . . . . . . . .

Mn,0 Mn,1 . . . . . . Mn,n−1 I




. (2.37)

The linearised forward model of M is denoted by M , which is embedded in the

operator L. The adjoint operators are LT and L−T , which have the linearised

adjoint model MT within them. We notice that L−1 is a lower triangular matrix

meaning all its eigenvalues lie on its main diagonal, which all equal 1.

The Hessians of (2.32) and (2.33) are as follows,

Sp = ∇2J (p) = D−1 + L−THTR−1HL−1, (2.38)

and

Sx = ∇2J (x) = LTD−1L+HTR−1H. (2.39)

We can already see at this point that the alternate minimimsation problems

(2.32) and (2.33) are quite different, leading to different gradients and Hessians.

Therefore it is natural to expect differences in their respective minimisation

characteristics. Let us now examine the structure of the Hessians of J (p) and

J (x).
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2.3.1 The Weak-Constraint 4DVAR Hessians

The Hessians are important since they provide information on the local curvature

of the objective function. The structure of the Hessians give us insights into how

each wc4DVAR formulation iteratively achieves its solution, as seen in (2.52) and

(2.53).

We now illustrate the structure of the Hessian of J (p),

Sp =




B−1
0

Q−1
1

.
.
Q−1

n


+




n∑
i=0

(HiMi,0)
TR−1

i HiMi,0

n∑
i=1

(HiMi,0)
TR−1

i HiMi,1

n∑
i=2

(HiMi,0)
TR−1

i HiMi,2 ... (HnMn,0)TR−1
n Hn

n∑
i=1

(HiMi,1)
TR−1

i HiMi,0

n∑
i=1

(HiMi,1)
TR−1

i HiMi,1

n∑
i=2

(HiMi,1)
TR−1

i HiMi,2 ... (HnMn,1)TR−1
n Hn

n∑
i=2

(HiMi,2)
TR−1

i HiMi,0

n∑
i=2

(HiMi,2)
TR−1

i HiMi,1

n−2∑
i=0

(HiMi,2)
TR−1

i HiMi,2

...
...

...
... ... ... (HnMn,n−1)TR−1

n Hn

HT
n R−1

n HnMn,0 HT
n R−1

n HnMn,1 ... HT
n R−1

n HnMn,n−1 HT
n R−1

n Hn




.

(2.40)

The Sp structure is full block where each block is quite sparse in practice due to

the observation operator having much lower dimension than the state.

The Hessian of J (x) possesses a block tri-diagonal structure,

Sx =




B−1
0 +MT

1 Q−1
1 M1 −MT

1 Q−1
1

−Q−1
1 M1 Q−1

1 +MT
2 Q−1

2 M2 −MT
2 Q−1

2

... ... ...
...

−Q−1
n−1Mn−1 Q−1

n−1+MT
n Q−1

n Mn −MT
n Q−1

n

−Q−1
n Mn Q−1

n




+




HT
0 R−1

0 H0

HT
1 R−1

1 H1

...
HT

n R−1
n Hn


 . (2.41)

These Hessians are both symmetric positive-definite matrices implying they possess

a unique inverse. It is important to note that the Hessians of the incremental

formulations (2.46) and (2.49) are identical to these first-order Hessians provided

the linearisation state used to obtain these first-order Hessians is close to the

solution of the non-linear objective functions. So our work in this thesis is relevant
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to both problems. We also notice that the Hessian of sc4DVAR, (2.8), is contained

within (2.40), such that S = Sp(1,1).

The parallelism of (2.27) over (2.26) can be seen in the Hessian matrices (2.41) and

(2.40) respectively. The separate blocks of (2.41) can be calculated much quicker

than (2.40) since each block in (2.40) requires sequential model integration. Each

single time-step block seen Sx can be allocated to a single processor, and with

enough processors to cover each block in Sx, the calculation can be obtained much

quicker than Sp. Each block in Sp requires the entire string of model time-step

integrations to be completed, which in operational NWP can take a while.

We have discussed the structural differences in the Hessians of (2.32) and (2.33)

in this section. We now introduce the Gauss-Newton incremental formulation of

the weak-constraint problem.

2.3.2 Incremental Weak-Constraint 4DVAR

In this section we extend the Gauss-Newton incremental 4DVAR approach shown

in Section 2.2.1 to the weak-constraint problem.

We derive the incremental formulation by defining an increment in p such that

p(k+1) = p(k) + δp(k). (2.42)

We seek to re-write (2.32) in terms of the increment, δp(k). Before doing so we

approximate the non-linear operators to first-order

H(L−1(p(k+1))) = H(L−1(p(k) + δp(k))),

≈ H(L−1(p(k))) + (H(L−1(p(k))))′δp(k),

= H(L−1(p(k))) +HxL
−1
x δp(k). (2.43)

We also define

bp = pb − p(k), (2.44)

dp = y −H(L−1(p(k))), (2.45)
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where the superscripts denote the relevant formulation variable. We substitute

(2.43), (2.44) and (2.45) into the non-linear objective function (2.32) giving us the

incremental wc4DVAR inner-loop ‘δp’ function

min
δp(k)

J(δp(k)) =
1

2
||δp(k) − bp||2D−1 +

1

2
||HxL

−1
x δp(k) − dp||2R−1 , (2.46)

which is now a quadratic function in δp(k). Since all the operators have been

linearised as in (2.43), the constraint (2.29) becomes

Lx(k)δx(k) = δp(k). (2.47)

Solving the inner loop problem yields a new δp(k) increment to update the old p(k)

as in (2.42).

We derive the incremental formulation for (2.33) in a similar fashion to (2.46) by

approximating H and L as in (2.43) and defining increment in x such that

x(k+1) = x(k) + δx(k), (2.48)

similar to (2.42). We can now write an incremental δx formulation such that

min
δx(k)

J(δx(k)) =
1

2
||Lxδx

(k) − bx||2D−1 +
1

2
||Hxδx

(k) − dx||2R−1 , (2.49)

where

bx = pb −L(x(k)), (2.50)

dx = y −H(x(k)). (2.51)

Figure 2.3 illustrates the algorithmic schematic of wc4DVAR incremental

formulation (2.46).
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Figure 2.3: Illustration of Weak-Constraint Incremental 4DVAR, δp formulation. (Diagram
template courtesy of ECMWF presentation by Sebastien Lafont)

We notice how this algorithm is very similar to the incremental sc4DVAR algorithm

shown in Figure 2.2. The same concept applies, except now the variables are much

larger and represent both spatial and temporal information.

The algebraic linear system when the gradient is equal to zero is analogous to

the sc4DVAR inner-loop gradient equation (2.15), for each of the incremental

inner-loop objective functions (2.46) and (2.49) is thus

(
D−1 + L−THTR−1HL−1

)
δp(k) = D−1bp + L−THTR−1dp, (2.52)

(
LTD−1L+HTR−1H

)
δx(k) = LTD−1bx +HTR−1dx, (2.53)

respectively. Solving (2.52) and (2.53) is equivalent to minimising (2.32) and (2.33)

respectively. Solving the gradient equations and minimising the objective function
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directly have been shown to be equivalent for sc4DVAR, [52], we believe this is also

true for wc4DVAR but this has yet to be proven. We see that the left hand side of

both equations (2.52), (2.53) are the respective Hessians Sp, Sx, and the right-hand

is the initial guess. The emphasis on the gradients and hence the Hessians Sp and

Sx can be seen from these gradient equations.

In this section we have introduced the incremental wc4DVAR technique for both

wc4DVAR formulations theoretically. We also emphasised the role of the Hessian

in minimising the wc4DVAR problem. In the next section we introduce the CVT

technique in the context of preconditioning wc4DVAR.

2.3.3 Preconditioning Weak-Constraint 4DVAR

The weak-constraint problem is a much larger problem then sc4DVAR since the

matrix D encompasses B0 and Qi (for i = 1, .., n). At the time of writing this

thesis there has been no real progress in preconditioning the J (x) formulation,

but rather an alternative saddle-point formulation has been suggested by Fisher

et al. [27]. The authors suggest preconditioning by finding a suitable low-cost

approximation to L, with some experiments to show minor improvements. We do

not pursue the preconditioning of the J (x) formulation in this thesis. We now

introduce the method we use to precondition the J (p) formulation using the D

matrix.

We introduce a change of variables with the intention of alleviating ill-conditioning

in (2.46) arising from D,

p = Uz, (2.54)

where this change of variables also applies to the background term and the

increment (2.42) such that

pb = Uzb, (2.55)

δp(k) = Uδz(k). (2.56)
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Substituting (2.55) and (2.56) into (2.46) yields the following objective function

min
δz(k)

Ĵ(δz(k)) =
1

2
||δz(k) − (zb − z(k))||2UTD−1U +

1

2
||HL−1Uδz(k) − d||2R−1 , (2.57)

where ideal U-transform is such that

UTD−1U = I. (2.58)

If a poor choice of U was chosen, the preconditioning would be inadequate and the

iterative solver used to treat the wc4DVAR problem will not see an improvement

in convergence rate. In practice the B0 matrix which constitutes part of D, is

obtained using various filtering techniques, [4]. The same methodology can be

applied to the Qi matrices inside D, but this has not had much research attention

as of yet. We assume that U is the unique symmetric square root of D in this

thesis.

So (2.57) becomes

min
δz(k)

Ĵ(δz(k)) =
1

2
||δz(k) − (zb − z(k))||2I +

1

2
||HL−1D1/2δz(k) − dp||2R−1 . (2.59)

Solving (2.59) is equivalent to solving (2.46) as long as (2.58) holds. The first order

preconditioned Hessian of (2.59) is therefore

∇2Ĵ(δz) = Ŝp = I+D1/2L−THTR−1HL−1D1/2, (2.60)

where I is the identity matrix of size N(n+ 1)×N(n+ 1).

We now detail the algorithm for solving (2.59)

Algorithm 2.1 Incremental Preconditioned Weak-Constraint 4DVAR Ĵ(δz(k))

1: Initial guess δp(0) = 0.

2: Calculate innovation dp (2.45) using the full non-linear model.

3: Calculate δz via (2.56) using CVT.

4: Minimise Ĵ via (2.59) to obtain new δz.

5: Update new increment δp(k) via (2.56).

6: Update current outer-loop estimate p(k+1) via (2.42).

7: Repeat steps 2 to 7 until desired iterative termination criterion (tolerance) is

reached.
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In this section we have introduced the method of preconditioning wc4DVAR

(2.32) using the CVT technique, which is essential for wc4DVAR to be considered

practicable operationally. This naturally extends from concepts used to implement

sc4DVAR.

We have introduced the two wc4DVAR formulations at the focus of this thesis

and briefly highlighted differences in the minimisation problems that ensue just by

viewing the different gradients and Hessians. We have also extended the theory

of the incremental and CVT techniques from sc4DVAR to wc4DVAR. We now

discuss the literature around the wc4DVAR problem both in its application and

any relevant research related to the conditioning of the problem.

2.4 Literature Review

This chapter so far has been dedicated to introducing all the background material

relevant to the work in this thesis.

We review the current literature in this section, with the intention of placing the

research in this thesis adequately within the current body of research. This section

is divided into two parts. We summarise the relevant literature with regards to

the application of wc4DVAR, mainly the model error estimation formulation, in

the first part. The second part reviews the literature more relevant to the subject

of the thesis namely the conditioning of the wc4DVAR problem.

2.4.1 Applications Of Weak-Constraint 4DVAR

The sc4DVAR problem has had more time under research focus than wc4DVAR

since it became operationally viable in the early 90’s, [45], [38], [39], [18]. This

can be seen as a necessary stepping stone required to begin to understand the

weak-constraint problem, since the sc4DVAR is just a simplification of wc4DVAR,
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by assuming the model is perfect. There have been numerous suggestions in the

literature that wc4DVAR holds an advantage over the sc4DVAR, [84], [16], [17],

which we will now discuss. It is important to note that the weak-constraint

formulation considered in the majority of the literature refers to the J (p)

formulation.

A study by Zupanski [94] examined the application of the both wc4DVAR and

sc4DVAR on the regional National Centre for Environmental Prediction (NCEP)

model. The author highlights that in the presence of model error, the sc4DVAR

method provides a solution with incorrect initial conditions since it attempts to

correct errors while enforcing the constraint of a perfect model. However wc4DVAR

will average these errors out across the assimilation window yielding state estimates

that are more inline with the truth. This means that the solution increment for the

initial conditions from wc4DVAR is not as severe as sc4DVAR. She concludes that

there is a need for considering wc4DVAR over the sc4DVAR. She also concedes that

wc4DVAR is computationally expensive and ill-conditioned, and proposes looking

at the lower-dimensional observation-space dual formulation of the problem.

A climate application of wc4DVAR in Korea using satellite data for heavy rainfall

simulation was documented in [54]. The authors detail a study where they use

both sc4DVAR and wc4DVAR and they clearly show that wc4DVAR provided

much improved initial conditions for their model compared to sc4DVAR.

In 2004, Vidard et al. showed that wc4DVAR gives a marked improvement over

sc4DVAR when applied to a non-linear one-layer two-dimensional shallow water

model, [86]. The model error in this case was a systematic bias, but nevertheless it

does serve as a good guide for a more complex setting. The authors conclude

that the weak-constraint formulation provides a better solution both over the

assimilation window and in the forecast phase.

An article by Lindskog et al. [56] details the implementation of the weak-constraint

model error formulation to correct for known biases in the upper stratosphere

on the ECMWF operational system. The paper highlights potential issues from
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a more practical perspective, but this often provides well-informed directions

for the requirement of theoretical understanding. They conclude that careful

consideration is required when specifying the model error covariance matrix Q,

and ‘understanding the role of balance descriptions’. By balance descriptions they

are referring to the combination of the model error correlations with the weighting

functions of the satellite radiance measurements in the upper stratosphere. In

other words, the specification of the model error against the observation error

correlations is important. This is a conditioning issue, which we investigate in this

thesis. They also allude to the requirement of considering time-correlated model

error, which is a more complex problem for the future. Even with all the issues they

have highlighted in their paper, they do show that the overall solution provided

by wc4DVAR is less spurious than sc4DVAR, and the solution increments are not

as severe. This is interpreted as an improvement over the current sc4DVAR.

A paper on the equivalence of the Kalman-smoother (KS) to the wc4DVAR

problem, [26], is motivational with regards to developing the weak-constraint

problem. Fisher et al. show that the solution of the Kalman-filter for large time

intervals is equivalent to the solution provided by KS at the end of the interval,

for linear models. They then show that for a sufficiently long enough assimilation

window the solution of KF is identical to the wc4DVAR solution. This suggests

that ‘wc4DVAR may be a viable algorithm for implementing unapproximated KF

equations’. They demonstrate that wc4DVAR gave a similar quality solution to

that of the KS through experiments on the Lorenz 95 model. They explain the

reason it is not exact is due to the linearisation states of the linearised model.

The paper also mentions they have not investigated the numerical conditioning of

wc4DVAR, more specifically with regards to the assimilation window length and

the choice of control variable, ie. the difference between wc4DVAR formulations

(2.26) and (2.27). Another similar paper by Desroziers et al. discusses the link

between the wc4DVAR state estimation formulation (2.27) and hybrid 4DVAR,

[19].

More recently, an article discussing the differences between sc4DVAR and
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wc4DVAR from a more theoretical perspective was presented by Cullen, [14]. The

author compares cycled sc4DVAR to wc4DVAR by simplifying the problem down

to a scalar case. He concludes that wc4DVAR must be interpreted as a smoother

since it allows the control of error growth throughout the assimilation window. It is

shown that where cycled sc4DVAR remains close to the observations, the solution

in the scalar case converges to that of a long-window wc4DVAR equivalent. This

is true if the regularisation of wc4DVAR, through the Q matrix, is identical to the

regularisation of the cycled sc4DVAR method’s B matrix at the beginning of each

assimilation window cycle.

A. Moore et al. at the University of California discuss their Regional Ocean

Modeling System (ROMS) implementation in a lengthy three-part paper, [68], [66]

and [67]. The detailed implementation of both the original state-space primal

form and lower dimensional observation-space dual form are detailed in [66]. The

authors state that wc4DVAR is too large and computationally infeasible when

considering the full primal problem. It is suggested that the dual formulation is a

sensible step towards an operationally feasible implementation of wc4DVAR. They

also discuss methods on error-covariance modeling and suggest preconditioners

that have not been fully trialled yet. They conclude that the forecast skill of

wc4DVAR is improved over sc4DVAR.

The collective flavour of the literature indicates that wc4DVAR is superior to

sc4DVAR. The minimisation problem that ensues from the wc4DVAR approach

requires further study, since more degrees of freedom and a larger problem needs

careful consideration. Some pieces of literature point in the direction of the dual

formulation as a remedy for the size of the problem, [12]. However, we are not

concerned with dual problem in this thesis.

A few pieces of literature produced by the ECMWF suggest they are actively

developing their implementation of wc4DVAR, [27], [83], [84], [26]. Their

intention is to tackle the more practical issues since their operational wc4DVAR

implementation detailed in [56] has been put off-line (https://cimss.ssec.

wisc.edu/itwg/itsc/itsc19/program/posters/nwp_3_english.pdf) due to
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numerical conditioning issues (conversation with Mike Fisher, ECMWF training

course, 2013).

We now review the literature that is more closely related to the conditioning and

preconditioning of the wc4DVAR problem.

2.4.2 Conditioning and Preconditioning of

Weak-Constraint 4DVAR

At this moment, there are only a few select articles that are directly related to the

conditioning or preconditioning of the wc4DVAR problem. They are not related to

the study of the condition number, but the areas of research seem to be pointing

in the direction of trying to understanding the minimisation process that arises

from the wc4DVAR problem.

In [83], the author broadly summarises the variational approaches to the data

assimilation problem in the presence of model error. An illustrative example in

this paper alludes to the ‘Laplacian-like’ nature of the first term of Sx under

simplistic assumptions (M = I and B = Q = I) and using Q = diag{Q, ..., Q} =

diag{I, ..., I} to precondition.

Sprecond
x = A+Q1/2HTR−1HQ1/2, (2.61)

where

A =




2I −I
−I 2I −I

... ... ...
−I 2I −I

−I I


 , (2.62)

where the other bold-faced matrices are block-diagonal partitions of their own

respective matrices similar to Q. If M 6= I, then the preconditioner would need

to be composed in such a way as to remove the influence of M from the first part

of the Hessian Sprecond
x . This leads into the next part of the research efforts by the

ECMWF to find a preconditioner which approximates L well, since L contains the

model M .
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An internal ECMWF report, [27], suggests that the Hessian Sx is sensitive to

the choice of preconditioner. Fisher et al. introduce an alternative saddle-point

formulation of the problem. A disadvantage of the saddle-point system to be solved

is that it will be at least double the size of the weak-constraint problem, which

is already considerably larger than the strong-constraint problem. In addition to

this the Hessian matrix proposed in the saddle-point formulation is symmetric

indefinite. S. Gürol presented encouraging results at the University of Reading

DARC series and NASA on the saddle-point wc4DVAR system, which has the

advantage of avoiding the inversion of D, [25]. However, the preconditioner is

dependent on a good approximation of L, which the authors state is a remaining

challenge.

The iterative methods for the primal and dual formulations of the weak-constraint

problem have been studied by A. El Akkraoui in her PhD thesis, [20]. She

discusses the convergence characteristics of the dual formulation in observation

space and finds it is sensitive to the iterative procedure used. She uses a minimum

residual approach over the conventional conjugate gradient technique widely used

for 4DVAR problems, and shows some improvement. She also investigates the

effects of using singular vectors of the Hessian from a previous assimilation window

to precondition the Hessian of the following assimilation window, [21].

Previous work on the conditioning of sc4DVAR by Haben et al. [43], [42], [41]

increased understanding of the sensitivity of the Hessian condition number to

certain aspects of the assimilation. The authors investigated the effects of varying

the observation configuration and specifying the accuracy of the observations via

the observation variance parameter. The authors also explored the effect of

observation thinning on the condition number and the overall solution of the

problem on the Met Office operational system. The authors also show that

observation thinning and preconditioning indeed provide accelerated convergence

rates.

This concludes the literature review. We now summarise this chapter.
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2.5 Summary

In this chapter we have introduced the strong-constraint and weak-constraint

variational data assimilation problems. We introduced concepts such as the

Gauss-Newton incremental approach and the CVT technique for both sc4DVAR

and wc4DVAR. We also discussed the structures of the weak-constraint Hessians.

This was then followed by a review of the current literature detailing the

applications and conditioning of the weak-constraint problem.

We now introduce the mathematical framework required to understand and solve

the 4DVAR problem and the necessary tools used to obtain the results in this

thesis.
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Chapter 3

Mathematical Theory

The variational data assimilation problem is statistical in its formulation but

obtaining a solution from the non-linear objective function is an optimisation

problem. In this chapter we introduce the necessary material and mathematical

tools required to understand and solve the wc4DVAR problems. We remind the

reader of the model error formulation,

min
p

J (p) =
1

2
||p− pb||2D−1 +

1

2
||H(L−1(p))− y||2R−1 , (3.1)

and the state estimation formulation,

min
x

J (x) =
1

2
||L(x)− pb||2D−1 +

1

2
||H(x)− y||2R−1 . (3.2)

We begin by introducing the condition number, followed by the numerical

optimisation techniques used to solve wc4DVAR problems (3.1), (3.2). We then

detail matrix norm properties required to analyse the condition number of the

Hessians of (3.1), (3.2). Finally we introduce the models we use in our data

assimilation experiments to put into context the sensitivities of the bounds and

their effect on the performance of the optimisation problem.
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3.1 Condition Number

The condition number measures sensitivities of the solution to perturbations in

the input data. The input data for the data assimilation problem in this thesis

is governed by the wc4DVAR objective functionals (3.1), (3.2). We examine the

effect of perturbing input data on the wc4DVAR problem in this section to show

the importance of the condition number, using a similar argument to that used

in [34], (pages 302-304).

We assume the wc4DVAR objective functional has a solution, which we denote as

x∗. We then perturb the input data by perturbing J and denote the perturbed

objective function as J̃ . The perturbed objective function has the solution

x̂ = x∗ + hδx, (3.3)

where h = ||x̂ − x∗|| and ||δx|| = 1. We assume that the perturbation in the

objective function is small enough to satisfy the following

|J̃ (x∗)− J (x∗)| ≤ |J (x̂)− J (x∗)| ≤ ǫ. (3.4)

The difference in the perturbed and original objective functions at x∗ is assumed to

be bounded above by the difference in the original objective functions evaluated at

the original solution x∗ and the perturbed solution x̂. We make this assumption

to understand some of the factors influencing solution accuracy. We expand J
using the Taylor series

J (x̂) = J (x∗ + hδx) = J (x∗) +
1

2
h2δxT∇2J (x∗)δx+O(h3) + . . . , (3.5)

and approximate to second order. Therefore

2|J (x̂)− J (x∗)| ≈ ||x̂− x∗||2δxT∇2J (x∗)δx. (3.6)

Using 1
|δxTAδx|

≤ ||A−1||
|δxT δx|

, we have

||x̂− x∗||2 ≈ 2ǫκ

||∇2J (x∗)|| , (3.7)
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where we define the condition number as

κ = ||(∇2J )−1||.||∇2J ||. (3.8)

We see from the expression (3.7) that the growth of the squared difference of the

original and perturbed solutions is proportional to the condition number of the

Hessian and the objective function differences. The relationship in (3.7) shows that

the condition number of the Hessian is an appropriate measure of the sensitivity

of the solution to small perturbations in the input data, and hence the objective

function. However, the limitation of this assumption is that the perturbation in the

objective function J must be small enough for (3.4) to hold and for the condition

number κ seen in (3.7) to be considered a good measure. Another limitation is

that the condition number of the Hessian here is linearised at the solution, which

is not known in practice.

The specific condition number we use in this thesis is using the 2-norm. Therefore

κ =

∣∣∣∣
λmax(∇2J )

λmin(∇2J )

∣∣∣∣ , (3.9)

since the first-order Hessians of both wc4DVAR objective functions are symmetric

and hence normal.

In this section we have shown and justified our reasoning for using the condition

number of the Hessian of the wc4DVAR objective functions as the measure which

quantifies the sensitivities of the wc4DVAR objective functions to changes in the

input data. We now introduce the numerical optimisation techniques used to solve

wc4DVAR in this thesis.

3.2 Numerical Optimisation

This section is dedicated to introducing the iterative gradient techniques used to

solve the full non-linear problems (3.1), (3.2) and linearised problems (2.46), (2.49).

We begin this section by introducing the popular conjugate gradient method.
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3.2.1 The Linear Conjugate Gradient Method

Conjugate gradient methods first appeared in 1952 when Hestenes and Stiefel

proposed the idea as an iterative method for solving large linear systems with

positive definite coefficient matrices, [44]. Conjugate gradient can be adapted to

solve non-linear optimisation problems which we introduce later in Section 3.2.3.

The conjugate gradient method can be used both as an algorithm for solving linear

systems or an iterative technique for minimising convex quadratic functions such as

(2.13), (2.46) and (2.49). We use it in this thesis to solve the inner-loop quadratic

problem.

Consider the quadratic problem

min
x
J(x) =

1

2
xTAx− xT b+ c, (3.10)

which is identical to the linear incremental problems (2.13), (2.46), (2.49) with x

being the control vector and appropriate choices of A, b and c. We set the residual

to be the gradient of (3.10) and introduce iterates such that

r(k) = Ax(k) − b. (3.11)

The linear conjugate gradient (LCG) code used in the work in this thesis is the

pre-coded Matlab CG procedure. The LCG algorithm, which we use to solve the

incremental formulations (2.46) and (2.49), is as follows
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Algorithm 3.1 Linear Conjugate Gradient

1: Counter k = 0.

2: Initial guess x(0) = 0, if initial data does not exist,

3: Set residual r(0) = Ax(0) − b(0),

4: Set search direction p(0) = −r(0),
5: While ||r(k)|| > τ , where τ denotes tolerance;

α(k) =
(r(k))T r(k)

(p(k))TAp(k)
; (3.12)

x(k+1) = x(k) + α(k)p(k); (3.13)

r(k+1) = r(k) + α(k)Ap(k); (3.14)

β(k) =
(r(k+1))T r(k+1)

(r(k))T r(k)
; (3.15)

p(k+1) = −r(k+1) + β(k)p(k); (3.16)

k = k + 1;

6: End while.

In theory if there are no numerical errors of any kind the CG method will converge

in at most N iterations for the sc4DVAR problem, or N(n + 1) iterations for the

wc4DVAR problem. We state a useful upper bound for the convergence rate of

CG,

||x(k) − x∗||A ≤ 2||x(0) − x∗||A
(√

κ(A)− 1√
κ(A) + 1

)k

, (3.17)

where k = 0 denotes the initial data and ∗ denotes the solution. The bound shows

the dependance of the convergence rate of CG on the condition number of the

system of equations being solved, [35].

We now briefly introduce the preconditioned version of CG.
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3.2.2 Preconditioned Conjugate Gradient

Preconditioned Conjugate Gradient (PCG) is used to speed up the convergence

rate of CG by lowering the condition number of the system being solved. The

cost of preconditioning must be cheap and reduce the condition number enough

to achieve a considerable reduction in iterates. Let P denote the symmetric

positive-definite. The algorithm is as follows

Algorithm 3.2 Preconditioned Conjugate Gradient

1: Counter k = 0.

2: Initial guess x(0) = 0, if initial data does not exist,

3: Set residual r(0) = Ax(0) − b(0),

4: For the first iteration compute z(0) = Pr(0)

5: Set p(0) = z(0),

6: While ||r(k)|| > τ ;

α(k) =
(r(k))T z(k)

(p(k))TAp(k)
; (3.18)

x(k+1) = x(k) + α(k)p(k); (3.19)

r(k+1) = r(k) + α(k)Ap(k); (3.20)

z(k+1) = Pr(k+1) (3.21)

β(k) =
(r(k+1))T z(k+1)

(r(k))T z(k)
; (3.22)

p(k+1) = −z(k+1) + β(k)p(k); (3.23)

Counter k = k + 1;

7: End while.

A full discussion of this method can be found in [35]. The preconditioned conjugate

gradient technique used in our work is the pre-coded Matlab procedure.

We now introduce a non-linear conjugate gradient technique for iteratively solving

the non-linear problem directly.
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3.2.3 The Polak-Ribiere Conjugate Gradient Method

We use the Polak-Ribiere CG (PRCG) method as an alternative to the linear CG

method in later chapters to demonstrate links between iteratively solving the full

non-linear problem and the iterative treatment of the Gauss-Newton approach to

the 4DVAR problem.

Fletcher and Reeves extended the linear CG method to non-linear functions by

making two simple changes, [28]. Firstly, in the LCG algorithm, line (3.12)

requires the replacement of the step length α(k), which minimises J along the

search direction p(k). We require a line search that identifies an approximate

minimum of the non-linear function along p(k). Secondly, the residual r(k) must be

replaced by the gradient of the non-linear objective function.

There are many variants of the Fletcher-Reeves CG method, mainly differing in

the choice of the parameter β(k). The PRCG variant defines this parameter as

β(k) =
(∇J (k+1))T (∇J (k+1) −∇J (k))

||∇J (k)||2 . (3.24)

In addition to this, the PRCG method imposes conditions on the step length α(k)

to ensure that every step direction p(k) is indeed a descent direction for the function

J . These conditions are known as the strong Wolfe conditions, [91]. The Wolfe

conditions are a set of inequalities that ensure an inexact line search is performed.

If these conditions are enforced ‘strongly’ then the step length, α(k) is forced close

to a critical point. These conditions are as follows

J (x(k) + α(k)p(k)) ≤ J (x(k)) + c1α
(k)(∇J (x(k)))Tp(k), (3.25)

∇J (x(k) + α(k)p(k))Tp(k) ≤ −c2(∇J (x(k)))Tp(k), (3.26)

where 0 < c1 < c2 <
1
2
. These techniques are discussed in more depth in [73]. We

use this method to solve the wc4DVAR non-linear objective functions (3.1) and

(3.2) directly, without the need for inner or outer loops. The PRCG code used

in this thesis was obtained from http://learning.eng.cam.ac.uk/carl/code/

minimize/minimize.m, written by C.E Rasmussen (University of Cambridge).
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In an operational NWP setting there is not enough time or computing power

to execute the amount of iterations required to solve the problem completely.

Therefore an iterative stopping criterion is required. In the next section we briefly

discuss the iterative stopping criterion used in our work.

3.2.4 Iterative Stopping Criterion

The purpose of iterative stopping criteria is to enable the user to stop the iterative

solver when certain criterion are met, for example when it reaches a certain

tolerance or a certain number of iterations. We use an iterative tolerance criterion

derived by Lawless et al. in [53] which uses the gradient norm such that

||∇J (m)||2
||∇J (0)||2

< τ, (3.27)

where m is the final iterate. Ideally, if the iterations are making progress the norm

of the gradient as the iterates progress should decrease until the final iteration,

which should be smaller than the initial gradient-norm. Decreasing the tolerance

demands more accurate convergence with respect to the gradient norm.

The authors specified this criterion specifically for the inner-loop incremental

4DVAR objective function to guarantee convergence of the outer-loops. In

this thesis we use this iterative stopping criterion for the convergence of both

formulations of the inner-loop wc4DVAR functions. In chapter 7 we deviate from

the authors intended use of the criterion slightly by using it with the PRCG

technique presented in Section 3.2.3.

We now introduce matrix properties, norms and special matrix systems used in

the thesis.
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3.3 Matrices

We begin by defining ‘positive-definiteness’.

Definition 3.3.1 A matrix A ∈ R
N×N is positive-definite if and only if

xTAx > 0, (3.28)

for non-zero x ∈ R
N .

Furthermore if the matrix A is positive-definite then all the eigenvalues of A are

real and if symmetric then the eigenvalues are positive.

Definition 3.3.2 The eigenvalues of symmetric positive-definite matrix A are

solutions of the eigenvalue equation

Avi = λivi, (3.29)

where λi ∈ R is the eigenvalue of A and vi ∈ R
N is the corresponding eigenvector.

We write the eigenvalues in order on the interval λ(A) ∈ [λ1(A), λN(A)] such that

λN(A) > ... > λk > ... > λ1(A), (3.30)

where λN = λmax and λ1 = λmin.

3.3.1 Norms

Norms permit the concept of a distance or more formally a metric space to be

applied to vectors and matrices. We use ||.|| to denote a vector or matrix norm.

Definition 3.3.3 (See [35], Sec 2.3) The family of vector p-norms on R
N is

such that

||x||p =
(

N∑

i=1

|x|p
) 1

p

, (3.31)

for x ∈ R
N , p ≥ 1.
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Definition 3.3.4 (See [35], Sec 2.3) The family of matrix p-norms on R
N×M

is such that

||C||p = sup
x 6=0

||Cx||p
||x||p

, (3.32)

for C ∈ R
N×M and x ∈ R

M .

In this thesis we use the 1-norm, 2-norm and ∞-norm. For explicit definitions of

these norms please refer to [35], Section 2.3.

We now state some useful norm relations which are used in cases where the norms

may be difficult to calculate explicitly.

Theorem 3.3.5 (See [3], Sec A.1) For matrices A,B ∈ R
N×N the following

statements hold:

||AB|| ≤ ||A|| ||B||, (3.33)

||A+B|| ≤ ||A||+ ||B||. (3.34)

The first statement is also known as the Cauchy-Schwarz inequality while the

second statement can be derived using the triangle inequality.

Another useful norm equivalence is the one which involves the 1-norm, 2-norm and

∞-norm

Theorem 3.3.6 (See [3], Sec A.1) For A ∈ R
N×N the following inequality

holds:

||A||2 ≤
√

||A||1||A||∞. (3.35)

We now introduce a particular family of matrices with some interesting properties

used in our research.
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3.3.2 Toeplitz Matrices

We use covariance matrices with a special structure in our research, which fall

under a class of matrices known as Toeplitz matrices. So we begin this section

by introducing the Toeplitz matrix, which gets its name from the German

mathematician Otto Toeplitz. He was the first person to work with Toeplitz

operators in 1911, [82]. A Toeplitz matrix is such that

T =




t0 t−1 t−2 . . . . . . t−(N−1)

t1 t0 t−1
. . .

...

t2 t1
. . . . . . . . .

...
...

. . . . . . . . . t−1 t−2

...
. . . t1 t0 t−1

tN−1 . . . . . . t2 t1 t0




where T ∈ R
N×N and the entries ai,j follow the rule ai,j = ai+1,j+1 = ai−j. Toeplitz

matrices are a special case of an even larger family matrices called persymmetric

matrices.

We are interested in a special type of Toeplitz matrix known as the circulant

matrix. Circulant matrices are composed of a single row of elements which is

permuted periodicly from one row to the next.

Definition 3.3.7 (See [37], Chapter 3) A circulant matrix C ∈ R
N×N takes

the following form

C =




c0 c1 c2 . . . . . . cN−1

cN−1 c0 c1 . . . . . . cN−2

cN−2 cN−1
. . . . . . . . .

...
...

. . . . . . . . . c1 c2
...

. . . cN−1 c0 c1

c1 . . . . . . cN−2 cN−1 c0




.
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The matrix is composed of cyclic permutations of the first row. A useful property

of a circulant matrix is that the eigenvalues and eigenvectors can be written as

Fourier transforms of the top row explicitly. The eigenvalues and eigenvectors of

circulant matrices are explicitly known.

Theorem 3.3.8 (See [37], Section 3.1) The eigenvalues of C denoted λm(C) ∈
C are such that

λm(C) =
N−1∑

k=0

cke
−2πimk

N , (3.36)

with corresponding eigenvectors

vm =
1√
N
(1, e

−2πim
N , ..., e

−2πim(N−1)
N )T , (3.37)

for m = 0, ..., N − 1 and i =
√
−1.

Another useful property of circulant matrices is they have a convenient

eigendecomposition using Fourier matrices. We formally define the Fourier matrix

first.

Definition 3.3.9 A Fourier matrix F ∈ C
N×N is such that

F =
1√
N




1 1 . . . . . . 1

1 ω ω2 . . . ωN−1

... ω2 ω4 . . . ω2(N−1)

... . . .
. . . . . .

...

1 ωN−1 ω2(N−1) . . . ω(N−1)2




where ω = e
−2πi
N .

A convenient property of Fourier matrices is that they are unitary. Therefore the

inverse of a Fourier matrix is equal to its Hermitian matrix,

FFH = I. (3.38)

We now state the eigendecomposition of circulant matrices.
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Theorem 3.3.10 (See [37]) Circulant matrices have the following

eigendecomposition:

C = FΛCF
H (3.39)

where ΛC = diag(λ1(C), ..., λn(C)) and F is a Fourier matrix as in Definition

3.3.9.

We conclude this section by highlighting the ease of matrix operations on circulant

matrices. Powers and matrix multiplications are conveniently simple due to their

eigendecomposition.

Theorem 3.3.11 (See [37]) The inverse, square root and product of circulant

matrices are obtained by taking the inverse, square root or product of ΛC such that

C−1 = FΛ−1
C FH , (3.40)

C1/2 = FΛ
1/2
C FH , (3.41)

C1C2 = FΛC1ΛC2F
H . (3.42)

In this section we have introduced a particular class of matrix used on numerous

occasions throughout the thesis. We now introduce the fundamental theory of

covariance matrices since these are very commonly used in NWP data assimilation

applications.

3.3.3 Covariance Matrices

The covariance matrix arises from covariances functions. Covariance functions

describe the measure of how one variable’s statistics effect another. A function

f(x, y) of 2 random variables x,y, is the covariance function of a random field

X : RN → R
N if

f(x, y) =< X(x)− < X(x) >,X(y)− < X(y) >>, (3.43)
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for x, y ∈ R
N . The expected value of a random field is denoted as <>. A direct

consequence of (3.43) is the function is symmetric f(x, y) = f(y, x). Uncorrelated

variables will have covariance equal to zero, which also comes as a consequence of

(3.43). Using the same notation, we also understand that f(x, x) is the variance

of the random variable x and the square root of this is the standard deviation.

Normalising the covariance with the standard deviations gives us a correlation

function

ρ(x, y) =
f(x, y)√

f(x, x)f(y, y)
, (3.44)

where the diagonal of the correlation function has unit variances. The variances of

the variables are assumed to be non-zero so that ρ is well-defined. If there are no

correlations between different parameters f is an auto-covariance function and ρ

an auto-correlation function. We assume the errors of the parameter in this thesis

are homogeneous. This means that the correlations only depend on the distance

between the errors and not their position [4],

ρ(x, y) = ρ̂(|x− y|), (3.45)

where the distance between x and y is characterised by ρ̂. We can verify the

validity of a correlation function with the following Theorem.

Theorem 3.3.12 (See [30]) Let ρ̂ be an even continuous function on R with

ρ̂(0) = 1 and

∫

R

|ρ̂|dx <∞, (3.46)

then ρ(x, y) = ρ̂(|x − y|) is a homogeneous correlation function on R if and only

if the Fourier transform of ρ̂ is everywhere non-negative.

Now let us consider a set of correlated points p1, p2, ..., pN ∈ R with an

auto-correlation function ρ(x, y). We define a positive-definite symmetric

auto-correlation matrix C ∈ R
N×N such that

Ci,j = ρ(pi, pj), (3.47)
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for i, j = 1, ..., N .

We now discuss the background and model error covariances more specific to the

work in this thesis.

3.3.4 Background and Model Error Covariance Matrices

We define the background error covariance matrix such that

B = ΣbCBΣb, (3.48)

where CB is the background error correlation matrix as in (3.47). The diagonal

matrix Σb contains the positive background error standard deviations along its

diagonal [49], Section 5.4. In this thesis we assume the background variance is

equal to σ2
b for all variables, from which it follows,

B = σ2
bCB. (3.49)

We also assume the application of this methodology to compose the model error

covariance matrix, Q = σ2
qCQ.

We now introduce two valid correlation functions on the real line. We also discuss

details of extending these to a periodic domain.

3.3.4.1 The SOAR Covariance Matrix

The Second-Order Auto-Regressive (SOAR) correlation function [15], for points on

the real line, separated by a distance |r| is defined by

ρS(r) =

(
1 +

|r|
L

)
exp

(
−|r|
L

)
, (3.50)

where r ∈ R and L > 0 denotes the correlation length scale. The SOAR function

has been used by the Met Office to model the horizontal correlation of errors in

the atmosphere [57], [46]. To enable this function to be a valid correlation function
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on the real line and on the periodic domain we replace the great circle distance r

in (3.50) by the chordal distance

d = 2a sin

(
θ

2

)
, (3.51)

where θ is the angle between the two points on the circle and a is the radius. This

substitution is necessary to allow any valid correlation model on the real line to also

be a valid correlation model on the circle, [88], [92]. The SOAR error correlation

matrix CSOAR is such that

(CSOAR)i,j =


1 +

|2a sin
(

θi,j
2

)
|

L


 exp


−

|2a sin
(

θi,j
2

)
|

L


 , (3.52)

for i, j = 1, ..., N , where θi,j is the angle between the points pi and pj on the

circle. It has been previously shown that increasing the correlation length-scale L

increases the condition number of the SOAR auto-covariance matrix, [41].

3.3.4.2 The Laplacian Covariance Matrix

The Laplacian correlation matrix is obtained from the explicit expression

C−1
LAP = γ−1

(
I +

L4

2∆x4
D2

L

)
, (3.53)

where the great circle distance between grid points is denoted by ∆x and γ > 0 is

a constant that ensures that the maximum element of CLAP is equal to one. The

identity matrix I is size N×N and the second order derivative matrix is such that

D2
L =




−2 1 0 0 . . . 0 1

1 −2 1 0 . . . 0 0
. . . . . .

...
. . . . . . 0

0 1

1 0 . . . 1 −2




. (3.54)

The Laplacian covariance matrix is a valid correlation function on the periodic

domain (for proof see [41]).
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Figure 3.1: 250th row of the Laplacian (red line) and SOAR (blue line) correlation matrices.
Model grid points N = 500, L = 0.9 for both Laplacian and SOAR.

The correlation structures of the SOAR and Laplcian covariance matrices are

shown in Figure 3.1. The Laplacian covariance matrix has negative correlations

whereas the SOAR matrix does not. We also notice that the SOAR correlations

have a larger spread across the grid points in comparison to the Laplacian

correlation structure.

We now introduce the apparatus we have employed in the thesis to bound the

condition number of the Hessian of the wc4DVAR objective functions.

3.4 Mathematical Theorems

We aim to examine the condition number of Hessians (2.38) and (2.39), which

are very large matrices. Therefore we need to introduce theory which will aid in

bounding the eigenvalues of these large matrices, since the extreme eigenvalues

compose the definition of the condition number we have chosen in this thesis.
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3.4.1 Eigenvalue Bounds and Mathematical Results

We begin with the following determinant theorem.

Theorem 3.4.1 For any given square matrices A,B ∈ R
N×N of equal size we

have

Det(AB) = Det(A)Det(B). (3.55)

One of the most useful eigenvalue bounds used on more than one occasion in our

work is the following.

Theorem 3.4.2 Courant-Fischer Theorem [See [35], Section 8.1].

For any given symmetric matrices A,B ∈ R
N×N the kth eigenvalue of the matrix

sum A+B satisfies

λk(A) + λmin(B) ≤ λk(A+B) ≤ λk(A) + λmax(B). (3.56)

We also have

Theorem 3.4.3 (See [35], Sec 8.6) Let E ∈ R
N×M such that M < N . Then

the non-zero eigenvalues of EET and ETE are equal and EET has N - M additional

eigenvalues equal to zero.

Another simple yet effective upper bound using norms is as follows:

Theorem 3.4.4 (See [3], Section A.1) For a matrix A ∈ R
N×N then the

following is true:

|λk(A)| ≤ ||A||p (3.57)

for p ≥ 1 .
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Finally,

Theorem 3.4.5 (See [11], Section 2.4 (p13-14)) For finite m,n ∈ Z>0 and

p ∈ R, we have:

n∑

p=m

p =
(n+ 1−m)(n+m)

2
(3.58)

n∑

p=1

p2 =
n(n+ 1)(2n+ 1)

6
. (3.59)

We now introduce the Rayleigh Quotient.

3.4.2 Rayleigh Quotient

The Rayleigh Quotient is historically named after Baron Rayleigh (John William

Strutt), an English physicist who received a Nobel prize in physics in 1904. This

function is also known as the ‘Rayleigh-Ritz ratio’ in engineering, where it was also

named after Walther Ritz, a Swiss theoretical physicist. The Rayleigh Quotient is

a function which we use for the purpose of eigenvalue estimation in this thesis.

Definition 3.4.6 (See [3], Section 4.4) The Rayleigh quotient of a symmetric

matrix A ∈ R
N×N is as follows:

RA(x) =
xHAx

xHx
(3.60)

for x ∈ C
N , where xH is the Hermitian of x.

To find the smallest eigenvalue one would simply substitute the eigenvector that

corresponds to the smallest eigenvalue,

RA(xmin) =
xH
minAxmin

xH
minxmin

= λmin(A). (3.61)

The Rayleigh quotient is also bounded by the eigenvalue spectrum of the matrix.
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Theorem 3.4.7 (See [81], Section 5.9) Let A ∈ R
N×N be a symmetric matrix.

Then the Rayleigh quotient (3.4.6) is bounded such that:

λmin(A) ≤ RA(x) ≤ λmax(A). (3.62)

3.4.3 The Block Analogue of Geršgorin’s Circle Theorem

Semyon Aranovich Geršgorin introduced his theorem as early as the 1930’s, [32],

now known as the scalar Geršgorin’s circle theorem. He introduced the notion

of bounding the eigenvalues of a matrix by the sum of the row and/or column

constituents in the following theorem.

Theorem 3.4.8 (See [85]) Let A ∈ C
N×N . Then all eigenvalues λ of A satisfy

|λ− ai,i| ≤
N∑

j 6=i

|ai,j|, (3.63)

where ai,j denotes the entries of A on the ith row and jth column.

It is a well-known theorem with many applications in linear algebra and numerical

analysis for estimating eigenvalue spectrums. Varga and Feingold extended this to

encompass block matrices some 30 years later, [23].

Theorem 3.4.9 (See [23], Theorem 2) Let A ∈ C
N(n+1)×N(n+1) be a

partitioned matrix such that

A =




A1,1 A1,2 ... A1,n

A2,1 A2,2

...
...

An,1 ... An,n−1 An,n


 , (3.64)

where each Ai,i ∈ C
N×N . Then each eigenvalue λ of A satisfies

||(Ai,i − λIi)
−1||−1 ≤

n∑

i 6=j
j=1

||Ai,j||, (3.65)

for at least one i, 1 ≤ i ≤ n. Remark: If the partitioning of (3.64) is such that

all the diagonal submatrices are 1× 1 matrices and ||x|| = |x| (since they are now

scalar), then Theorem 3.4.9 reduces to the Gershgorin Circle Theorem 3.4.8.
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This constitutes all the mathematical apparatus used in the rest of the thesis. We

now introduce the models used in our experiments to demonstrate the sensitivities

obtained from the theoretical bounds on the condition number of the Hessian.

3.5 Models

In this section we introduce the models used in this thesis to illustrate the theory

we have derived.

The first model is a linear advection equation. This is a simplified model describing

the transportation of a passive tracer through the atmosphere. In the atmosphere

if we consider very small intervals of space and time, the movement of a passive

tracer will be approximately linear, similar to that of the advection equation.

The second model is the non-linear chaotic Lorenz 95 system. The variables in this

system simulate values of some atmospheric quantity in sectors of a latitude circle.

The physics of the model possess useful weather-model-like characteristics such as

external forcing, internal dissipation and advective terms. The error growth of this

model is also similar to that of full NWP models.

The numerical discretisation of these models presents a set of calculations required

to propagate the model from one time step to the next. These are represented in

matrix form in the following sections. We now introduce the models used in this

thesis.

3.5.1 The Advection Equation

The advection equation is a partial differential equation describing the flow of a

scalar quantity, u(x, t), through space, x with respect to time, t:

∂u

∂t
+ a

∂u

∂x
= 0 (3.66)
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where the scalar quantity is moved through a vector field at a velocity of a(x, t).

We only consider the case where the speed is constant. Solutions of (3.66) are then

of the form u(x, t) = u(x − at). We also specify periodic boundary conditions so

that the problem is well-posed and the unique solution depends continuously on

the boundary [49]. The initial conditions we use throughout the thesis are of a

Gaussian profile such that

u(x, 0) = be−
(x−c)2

2d2 , (3.67)

where b, c and d are constants denoting height, peak centre and ‘bell’ width

respectively.

We discretise (3.66) using the upwind numerical scheme, [69], Chapter 4. We have

a uniform 1-dimensional domain which is divided into N equally spaced grid points

of length ∆x = 1
N
. We discretise time by dividing it into n equally spaced time

steps of length ∆t = 1
n
. Let uij = u(j∆x, i∆t) be the numerical approximation of

u(x, t) at the point (j∆x, i∆t) for j = 1, ..., N , i = 0, ..., n. The upwind scheme

uses a finite difference approximation which adapts according to the direction of

velocity, a:

ui+1
j =





uij − a∆t
∆x

(uij − uij−1) if a > 0

uij − a∆t
∆x

(uij+1 − uij) if a < 0
, (3.68)

with periodic boundary conditions,

ui1 = uiN if a > 0 (3.69)

uiN = ui1 if a < 0 (3.70)

for all i = 0, ..., n. In this thesis we restrict ourselves to negative velocities a < 0

using the upwind scheme. Now let µ = a∆t
∆x

denote the Courant number. We can

write the model equations for a < 0 in matrix form as



u1
...

uj
...

uN




i+1

=




1 + µ −µ 0 0 0

0 1 + µ −µ 0 0

0 0
. . . . . . 0

0 0 0
. . . −µ

−µ 0 0 0 1 + µ







u1
...

uj
...

uN




i

. (3.71)
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For −1 ≤ µ ≤ 0 the finite difference system (3.71) is consistent, stable and

convergent, [69], Section 5.4.

We have introduced all the necessary properties of the advection model that we

use in the thesis. We now discuss the non-linear chaotic Lorenz 95 model.

3.5.2 The Lorenz 95 Model

The Lorenz 95 model was pioneered by Edward Lorenz, making its first appearance

in the article [62], in 1996. This later made its way into published format

accompanied with a few more complex versions of the same model, with the aim

of designing suitable models for weather prediction, [63]. The Lorenz 95 model

has been used as a suitable experimental model in the data assimilation research

community, [24], [9], [22], as well as the operational research community, [26].

To understand the relevance of using the Lorenz 95 system we must understand

the essence of predictability. The rate of error growth in a system as the

range of prediction increases is a highly influential factor in determining system

predictability. Prediction error is simply the difference between the estimated

state and the true state. This is hypothetical as it is not a quantity we can

explicitly state, but it can be quantified. The long-term average factor by which

an infinitesimal error will amplify per unit time is known as the leading Lyapunov

number, named after Russian mathematician Aleksandr Mikhailovich Lyapunov.

The logarithm of this quantity is known as the leading Lyapunov exponent. A

common indication of a chaotic system is a positive leading Lyapunov exponent.

A more common term used within the meteorological community is the ‘doubling

time’ of a system, which is inversely proportional to the Lyapunov exponent.

The Lorenz 95 system variables can be thought of as values of some atmospheric

quantity in N sectors of a latitude circle. The physics included in this model

are external forcing, internal dissipation and advection. The quadratic advective

terms are also designed to conserve energy. The growth of errors of the Lorenz
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95 system are similar to that of full weather models, with a doubling time of 2.1

days, making it a suitable model to use for weather prediction purposes.

The Lorenz 95 ODE equations take the form

dXj

dt
= −Xj−2Xj−1 +Xj−1Xj+1 −Xj + F, (3.72)

for j = 1, 2, ..., N . In this thesis we work with N = 40 variables, so that each

sector of the latitude circle covers 9 degrees of longitude. We set the forcing term

F = 8 to produce the chaotic behaviour desired. The scaling of the variables in

the model dictates that one time unit is equivalent to 5 days. We use the 4th

order Runge-Kutta method (RK4) with a time interval of ∆t = 0.025, which is

equivalent to a 3 hour time-step.

We have introduced both models used in the research in this thesis. We now

summarise this chapter.

3.6 Summary

The aim of this chapter was to introduce the necessary mathematical framework

required to obtain and demonstrate the theoretical results in this thesis.

In Section 3.1 we showed the direct relationship between the condition number

of the first-order Hessian and solution error in the 4DVAR problem. In Section

3.2 we discussed the three CG-based methods: LCG, PCG and PRCG and we

also discussed our rationale for using a relative-gradient norm iterative stopping

criterion. We then discussed matrix properties and norms relevant to our work,

along with the specific class of matrices and covariance structures used in our

research in Section 3.3. Section 3.4 details the more specialist mathematical

theorems required to analyse and bound the condition number of the Hessians

of the wc4DVAR objective functions (3.1) and (3.2). Finally we introduce the

models used in the thesis in Section 3.5.
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In the next chapter we discuss the design considerations for the application of both

formulations J (p) and J (x) on the 1D advection model. We then compare the

performance of both formulations of wc4DVAR when subjected to changes in the

data assimilation parameters composing the problem.
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Chapter 4

Weak-Constraint 4DVAR: 1D

Advection Model

In the previous chapter we discussed all the relevant mathematics to enable us to

deduce the results in this thesis. In this chapter we highlight the key differences

between the model error estimation (2.32) and state estimation (2.33) problems

via numerical experiments using the 1D advection equation model.

4.1 Experimental Design

In this section we detail the specifics of setting up the two resulting algorithms

of the weak-constraint formulations (2.32) and (2.33) to carry out numerical

experiments. We state the wc4DVAR design considerations such as the model

parameters, wc4DVAR component tests and observation configuration in this

section. Before doing so we clarify the difference between the model and the

weather process for which we assimilate data.
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4.1.1 The Imperfect Model

To carry out any credible experiments to test hypotheses and new theory in data

assimilation, we require a model Mi,i−1 as described in Section 2.2. We consider

the weather process in its entirety as the perfect model and the imperfect model

is the human approximation of this weather process.

The weather process is such that,

xti = Mt
i,i−1(x

t
i−1), (4.1)

where Mt describes the true non-linear weather process and xt is the true state.

One way of gauging assimilation performance is measuring how closely the chosen

wc4DVAR algorithm can quantify the true model error. In our experiments, we

create this model error using a specified covariance matrix with zero mean and a

specified variance.

The approximation, which attempts to match the perfect model, is the imperfect

model,

xti = Mi,i−1(xi−1) + ηi, (4.2)

which we use in the wc4DVAR algorithms. The model error/shortfall is assumed

to be additive Gaussian noise as in (2.24).

The true model error is created using a known mean, variance and covariance

matrix. We gauge the performance of the assimilation algorithms by comparing

how closely each algorithm was able to estimate the true model error.

We now discuss the model parameter settings used in the experiments in this

chapter.
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4.1.2 1D Advection Equation: Model Properties

The model is the 1-dimensional advection equation discretised using the upwind

scheme, yielding the matrix as in (3.71), which we denote as M . In this chapter

we use the following model settings unless otherwise stated. The spatial domain

is size N = 50 with a spatial resolution of ∆x = 0.02. We use time-intervals

of ∆t = 0.02 and a wave speed of a = −1, thus giving us a Courant number of

µ = −1.

For testing the wc4DVAR systems we set the total assimilation window time n =

50. We also make sure that the assimilation time period in these tests and each

experiment is enough for at least one complete spatial-domain revolution of the

Gaussian curve.

We now discuss testing the wc4DVAR systems.

4.1.3 The Weak-Constraint 4DVAR System

The sc4DVAR system has a forward model, (2.1), linearised model and adjoint

model, which arise from calculating the gradient (2.9). Once all of the constituents

of the gradient and objective function are validated, it follows that one must ensure

that the coded gradient is in fact, the gradient of the objective function (2.8). It is

therefore good practice to include the following tests in the design of the sc4DVAR

assimilation system:

1. tangent linear test;

2. adjoint test;

3. objective function gradient test.

The wc4DVAR the model operator and its inverse come from (2.29), since it maps

between model errors and model states. The wc4DVAR equivalent to the adjoint
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and tangent linear arise from linearising L. The input and output of the wc4DVAR

operators are ‘4-dimensional’, since they require inputs defined at several temporal

points. The wc4DVAR model operator also has linearised inverses, L−1 and L−T ,

which constitute part of the wc4DVAR gradient calculations. So the additional

tests required for wc4DVAR are to ensure that the mapping between model states

and model errors is correct for non-linear L and linearised L operators and their

inverses.

We carry out four principal tests in the preceeding sections to ensure the that

the wc4DVAR assimilation system is correctly coded. The first test is checking

that the numerical mapping of; the L operator, the linearised L operator and

the linearised adjoint operator LT are all correct. The second test ensures that

the gradient of the L operator and its inverse, are indeed correct. The third test

checks that the adjoint of both L and its inverse are correct representations of the

adjoint. Finally, the fourth test ensures that the coded objective function gradient

is infact the gradient of J .

We generate the test states in all these tests using pseudo-random values drawn

from the normal distribution with arbitrary mean and variance values. The chosen

state remains unchanged throughout the test. We now detail each of the model

operator tests with numerical results to verify each test.

4.1.3.1 The Weak-Constraint Model Operator: Mapping Tests

The main purpose of this test is to ensure the numerical validity of the following:

1. non-linear model operator and inverse;

(a) ||L(x)− p|| ≈ 0 ;

(b) ||L−1(p)− x|| ≈ 0 .

2. Linearised model operator and inverse;
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(a) ||Lδx− δp|| ≈ 0 ;

(b) ||L−1δp− δx|| ≈ 0 .

3. Linearised adjoint model operator and inverse;

(a) ||LT δx− δp|| ≈ 0 ;

(b) ||L−T δp− δx|| ≈ 0 .

The quantities in tests 1, 2 and 3 must equal exactly zero or be very close to

machine precision ∼ O(10−15). We choose the 2-norm for each test detailed above

and ensure it is in the vicinity of machine precision.

Test Norm of the Difference

1(a) 1.70E-014

1(b) 3.72E-015

2(a) 1.43E-015

2(b) 1.37E-015

3(a) 1.32E-015

3(b) 1.43E-015

Table 4.1: Mapping test results.

Table 4.1 shows that the results are all in the region of machine precision, therefore

the numerical mapping tests are all numerically valid.

We now discuss the wc4DVAR equivalent of the tangent linear test.

4.1.3.2 The Linearised Weak-Constraint Model

Operator: Correctness Tests

Taylor expansion of our non-linear operator to first-order yields the following

approximated identities:

||L(x+ αiδx)−L(x)||
||Lαiδx||

= 1 +O(αiδx), (4.3)

||L(x+ αiδx)−L(x)− Lαiδx|| ≈ 0, (4.4)
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which should hold for small values of αiδx. We vary αi such that

αi = 101−i, (4.5)

for i = 1, ..., 16. Since the advection model is linear, there should be no higher

order terms in the expansions above. The purpose of these tests is to ensure the

numerical validity correctness of the gradients of these two operators. We also test

the inverse, L in a similar manner.
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Figure 4.1: Correctness test plots for the L operator.

In Figure 4.1 we see (a) adheres to identity (4.3) since it equals one for all sizes

of α up to machine precision. Figure 4.1(b) shows that identity (4.4) is equal to

approximately O(10−15).
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Figure 4.2: Correctness test plots for the L−1 operator.
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Figure 4.2 shows that the correctness tests also hold for inverse operator, L−1.

We now discuss the final test with regards to the L operator. This is required for

the calculation of the gradients of J (p) and J (x).

4.1.3.3 The Linearised Weak-Constraint Adjoint Model Operator:

Validity Tests

This test is equivalent to the sc4DVAR adjoint test. The aim is to test the validity

of the inner products

< δy,Lδx > =< LT δy, δx >, (4.6)

< δy,L−1δx > =< L−T δy, δx > . (4.7)

These tests are done by executing each side of the respective equations numerically

and comparing the results. We call the left-hand side of each equation (4.6) and

(4.7) the ‘forward product’ and the right-hand side is called the ‘adjoint product’.

Forward Product Adjoint Product Difference

Test (4.6) -45.484273829763183 -45.484273829763133 4.9738e-014

Test (4.7) -216.363507105409070 -216.363507105409130 5.6843e-014

The difference of both products is in the range of machine precision, which

concludes that the numerical adjoint operator is accurate to machine precision.

This concludes all the tests for the L operator. The L operator is required for both

calculating the objective functions (2.32), (2.33) and the gradients of the objective

functions (2.34) and (2.35). We now discuss the final test in the assimilation

system, which tests the numerical validity of the coded objective function gradient.

4.1.3.4 Objective Function Gradient: Validity Tests

This test is similar to the tests in Section 4.1.3.2, but instead we check the

numerical validity of the objective functions (2.32) and (2.33) and their respective
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gradient calculations (2.34) and (2.35). We verify that

Φ(α) =
J (x+ αδx)− J (x)

αδxT∇J (x)
= 1 +O(α), (4.8)

is accurate for sufficiently small perturbations αδx.

The gradient test for the objective function is different to the gradient test in

Section 4.1.3.2 because the operators are different. The operator in Section 4.1.3.2

is such that L : R
N(n+1) → R

N(n+1), which is why norms were used. The

weak-constraint objective functions (2.32) and (2.33) are such that J : RN(n+1) →
R, so no norms are required.

For perturbations that are too large the identity (4.8) will not hold since the higher

order terms will increase and the approximation made in (4.8) is to first-order. If

the perturbations are too close to machine precision the identity (4.8) will not hold

because the denominator of (4.8) will approach zero.
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Figure 4.3: Objective function gradient test. The red line shows the gradient test (4.8) for
J (p). The blue line shows the gradient test (4.8) for J (x).

Figure 4.3 shows that for sufficiently small perturbations the identity (4.8) holds

for both J (p) and J (x).

This concludes all the tests to ensure mathematical and numerical accuracy of

both wc4DVAR assimilation systems for solving J (p) and J (x). The second
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consideration to discuss is the nature of the observations we use to observe the

truth.

4.1.4 Observations

The observations y are generated using the truth trajectory plus additive Gaussian

noise such that

y = yt + ye, (4.9)

where yt is the unchanged true state at the appropriate spatio-temporal

grid-points, and ye ∼ N(0, σ2
oI). The observation error variance is stated before

each experiment.

We take the observations directly at the grid points with regular intervals in space,

where the first spatial point is always observed. We also observe at regular intervals

in time, where the first temporal point is always observed. We let the temporal

observation interval (also referred to in this thesis as an ‘assimilation step’) be

every ∆q model steps. We observe the same grid-points at every assimilation step,

thus the observation operator Hi is linear and time invariant. So for example if

we observe 5 out of 10 spatial points, then grid-points 1,3,5,7,9 are observed. This

means every 2nd gridpoint is observed. This also applies temporally.

We also note that it is possible to take combinations of observations in space and

time such that the observations can miss some of the characteristic lines due to

our chosen regular spatial-temporal observational spacing regime.
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Figure 4.4: Advection Equation characteristic curves. The black lines are the advection
equation characteristic lines, and the red circles are observation points.

In Figure 4.4 we see that if we were to observe every other temporal and spatial

point, some of the characteristic lines will be missed. Even with a periodic domain,

the same characteristic lines will remain unobserved for an indefinite time period.

We ensure that the temporal and spatial spacing of the observations is such that

none of the characteristic lines are missed.

In this section we have discussed our choice of observation configuration. We now

state how our background trajectory is created.

4.1.5 Background Trajectory

The background trajectory, pb, is created using the truth trajectory plus additive

Gaussian noise such that

pb = pt + pe, (4.10)

where pe ∼ N(0,De), where De is the covariance of the ‘true’ background and

model errors added to the truth. The background and model error covariance

matrices, B0 and Q are stated before each experiment.

We now detail the method we use to calculate the solution accuracy.
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4.1.6 Solution Error

The relative solution errors are calculated at each time ti such that

rei =
||xti − xi||2

||xti||2
, (4.11)

where xi ∈ R
N is the solution vector resulting from the assimilation, which

describes the state at time ti and the superscript denotes ‘truth’. The total relative

error is simply the L2 norm calculation of the vector containing the values of rei

for i = 1, ..., n+ 1.

We now state our choice of iterative solver.

4.1.7 Iterative Solver and Stopping Criterion

We use the LCG method detailed in Section 3.2.1 for both (2.32) and (2.33). Both

objective functions are linear because the 1D advection model is linear. We also

use the relative reduction in the gradient norm as in Section 3.2.4 and specify a

tolerance, τ , in each experiment.

This concludes the experimental design for our experiments in this chapter. We

now show results on the comparison between (2.32) and (2.33) when applied to

the 1D advection equation.

4.2 Results

In this section we compare the performance of the minimisation of (2.32) and

(2.33) applied to the 1D advection model. We aim to demonstrate the different

minimisation characteristics exhibited by both weak-constraint formulations when

subjected to a change in the following assimilation parameters:
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1. number of observations;

2. length of the assimilation window;

3. correlation length-scales;

4. background, model and observation error variances.

We gauge the performance of the weak-constraint minimisation problems by

examining:

1. the relative error within the assimilation window between the truth and the

solution. We compare the generated truth to the state estimates obtained

using the J (x) formulation. We also compare the generated ‘true’ model

errors to the model error estimates obtained from the J (p) formulation;

2. the number of iterations required to achieve the desired tolerance;

3. the numerical condition number.

The covariances and error variances used to generated the truth are identical to

those used in the assimilation experiments. We now present our experimental

results.

4.2.1 Experiment 1: Observation Density

The aim of this experiment is to highlight the effect of number of observations

on the solution process of both wc4DVAR formulations. We choose all other

parameters in this experiment such that the only possible contribution to any

rise in condition number must be the number of observations. So we choose

low correlation length-scales, short assimilation windows and error variance ratios

which are close to 1.
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4.2.1.1 Experiment 1a: Half Spatial Domain Observed

The experiment settings are as follows. We choose the the background error, B0 =

σ2
bCSOAR, such that the correlation length-scale L = 2∆x = 0.04 and σb = 0.1. The

model error, Qi = σ2
qCLAP is such that the correlation length-scale L = ∆x = 0.02

and σq = 0.05. The observation error is such that Ri = σ2
oI, where σo = 0.05. We

take observations every ∆q = 5 model time-steps, n = 10 in total, with 25 equally

spaced observed grid-points out of the N = 50 grid-points per assimilation step.

The iterative tolerance is set to τ = 10−4.
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Figure 4.5: Assimilation window time series left to right, t = 0, t = n/2 and t = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

In Figure 4.5 we see the time series plot of the truth and the solutions of both

wc4DVAR algorithms. We can see that visually the solutions are in close agreement

with the truth.
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Figure 4.6: Model error time series left to right, t = 0, t = n/2 and t = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

In Figure 4.6 we see the time series plot of the true model error vs the estimated

model error at the end of the minimisation using J (p). The variance of the

estimated model error is of the same order of magnitude as the true model error for
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all times, but variance of the estimated model error is consistently under-estimated.

We also see that the estimated model error at final time is considerably worse than

other times.

Matrix Numerical Condition No. No. of iterations

Sp 278 25

Sx 766 93

D 837 -

Table 4.2: Numerical condition numbers and iteration count of respective objective function
minimisations.

In Table 4.2 we see that the number of iterations required for the minimisation of

J (x) to converge is over 3 times more than J (p). We also see that the numerical

condition number of Sx is approximately 3 times as much as the numerical

condition number of Sp. It is expected to find an increase in iterations with the

increase in condition number but the similar proportional increase in condition

number and iterations in Table 4.2 is coincidental.
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Figure 4.7: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

In Figure 4.7 we see that the relative errors are of the same order of magnitude

throughout the assimilation window, with the largest errors being at initial time.

The total relative errors are identical, 0.096 for both J (x) and J (p). The low

solution errors are to be expected since both Hessians are not ill-conditioned.

76



4.2.1.2 Experiment 1b: Sparse Spatial Observations

The experiment settings are identical to those in Experiment 1a, except that there

are 7 out of 50 spatial points observed per assimilation time step. We also use the

same background trajectory generated in Experiment 1a.
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Figure 4.8: Assimilation window time series left to right, t = 0, t = n/2 and t = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

In Figure 4.8 we see the time series plot of the truth and the solutions of both

wc4DVAR algorithms. The solutions are now noticeably missing the truth due to

the greatly reduced number of observations, from 250 in Experiment 1a to 70 in

this experiment. The final time-step state estimations of both algorithms is also

quite poor, since most small-scale features of the truth are missed.
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Figure 4.9: Model error time series left to right, t = 0, t = n/2 and t = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

In Figure 4.9 we see the time series plot of the true model error vs the estimated

model error at the end of the minimisation using J (p). The variance of the

estimated model errors remains within the same order of magnitude as the true

model errors. We also see that the mean of the estimated model errors is good for
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t = 0 and t = n/2 with a noticeable under-estimation of the variance. We also see

evidence of poor model error estimation at the final time step in Figure 4.9. The

final time step estimated model error mean is incorrect, however the variance has

been well estimated.

Matrix Numerical Condition No. No. of iterations

Sp 575 43

Sx 1663 412

D 837 -

Table 4.3: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table 4.3 shows that minimisation of J (x) takes 10 times more iterations than

J (p), as well as an increase in Hessian condition number. These condition numbers

are still not particularly indicative of any serious ill-conditioning. We believe

the condition number of D is not the main contributor of ill-conditioning in this

experiment since it remains the same as Experiment 1a, while the only change we

have introduced is a decrease in the number of observations. The observations are

associated with the second term of both Hessians Sp and Sx, where D is the first

term.

We also see that the condition numbers of Sp and Sx have both roughly

doubled, compared to Experiment 1a, while the condition number of Sx remains

approximately 3 times higher than the numerical condition number of Sp. It

is possible that the J (x) formulation is sensitive to the decrease in spatial

observations, due to the increase in condition number and iterations exhibited

in this experiment.
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Figure 4.10: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

In Figure 4.10 we see that the errors look the same throughout the assimilation

window, with total relative errors of 0.356 for J (x) and 0.357 for J (p). We also

see that the errors are distributed at the beginning and mostly the end of the

assimilation window, showing that both solutions failed to correctly specify the

initial conditions and the model errors at the end of the assimilation window.

4.2.1.3 Summary

The number of observations affects the assimilation problem in that there is less

information to fit. In this experiment we see two pieces of evidence, which

show the sensitivities of J (x) to the number of observations: the increase in

numerical condition number and the number of iterations required for convergence.

The errors in the solution remain the same as they should, since we solve both

wc4DVAR problems to the same accuracy.

We conclude that the J (x) formulation has increased sensitivity to fewer spatial

observations than J (p) in this experiment. Both formulations exhibit an increase

in iterations and condition numbers when there are less observations, but J (x) is

more pronounced. This is based on changes seen in the iterations and condition

numbers in Tables 4.2 and 4.3.
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4.2.2 Experiment 2: Error Variance Ratios

The aim of this experiment is to highlight the effect of changing the error variances

(σ2
b , σ

2
q , σ

2
o) on the minimisation of J (p) and J (x). We choose all other parameters

to ensure that any change in condition number or iterations comes solely from the

error variances. The iterative tolerance is changed to τ = 10−10 to ensure high

solution accuracy. The iterative solver will reach the solution before the tolerance

is reached, but we are ensuring that each algorithm yields its respective optimal

solution. The iterations after reaching the solution are not important and the

algorithm that reaches its solution in the least number of iterations will still take

fewer iterations than the other algorithm.

We begin by investigating the effect of changing the background error variance.

4.2.2.1 Experiment 2a (i): Large Background Error Variance

The experiment settings here are exactly the same as Experiment 1a, except we

change the background standard deviation from σb = 0.1 to σb = 10.
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Figure 4.11: Assimilation window time series left to right, t = 0, t = n/2 and t = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

In Figure 4.11 we see the time series plot of the truth and the solutions of both

wc4DVAR algorithms. The error graph will perhaps be more telling of the shortfall

in data matching between both formulations and the truth, but at this scale they

look relatively accurate.
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Figure 4.12: Model error time series left to right, t = 0, t = n/2 and t = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

In Figure 4.12 we see the variance of the estimated model error is approximately

0.02 smaller than the variance of the true model error. The estimated model errors

are still of the same order of magnitude as the true model errors, which is why the

estimated trajectories in Figure 4.11 are closely resembling the truth trajectory.

It is interesting that the variance of the estimated model errors is not as large as

for the true model errors, even though identical model error statistics were used in

the assimilation and to generate the truth. This under-estimation of model errors

has also been seen in previous experiments.

Matrix Numerical Condition No. No. of iterations

Sp 462 121

Sx 742 217

D 1.41× 106 -

Table 4.4: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table 4.4 shows the minimisation of J (x) requiring just under twice as many

iterations as J (p) to achieve the same gradient tolerance respective to each

objective function. The numerical condition number of Sx is approximately 2

times higher than that of Sp. We see that the numerical condition number of D

is of order O(106), which is about 4 orders of magnitude larger than the Hessians.

It is interesting how this does not effect the condition number of the wc4DVAR

Hessians, since we can see just from the structures of both Hessians (2.40) and

(2.41) that D should be influential on the spread of eigenvalues in both Hessians.
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Ratio Value

σb/σq 200

σb/σo 200

σq/σo 1

Table 4.5: Assimilation error variance ratios.

The σb/σq ratio in Table 4.5 explains the large condition number of D since this

ratio increases the difference between the largest and smallest eigenvalue of the

matrix D. The ratio between the background and observation error variances are

of the same magnitude, both O(102) bigger than the σq/σo ratio.
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Figure 4.13: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

In Figure 4.13 we see that the errors are identical, with the largest errors

distributed at the beginning of the assimilation window. The total relative errors

have identical values for both formulations, 0.116. the solution error at initial

time is still the greatest for both algorithms. We see here that even with the

large σb chosen for the assimilation and truth, the solution obtained from both

algorithms has large errors at the beginning of the window. This is similar to the

under-specified variance of model errors in Experiment 1b, Figures 4.9 and 4.10.

We now decrease the value of the background error and study its effects on the

solution process of both wc4DVAR algorithms.
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4.2.2.2 Experiment 2a (ii): Small Background Error Variance

In this experiment we use the same parameters as the previous experiment except

we change the background standard deviation from σb = 10 to σb = 2.5 × 10−4

so that it is now 200 times smaller than σq, as opposed to being 200 times bigger

as in Experiment 2a (i). We only show results related to the performance of the

minimisation of both J (p) and J (x).

Matrix Numerical Condition No. No. of iterations

Sp 8.53× 106 635

Sx 1.00× 108 1756

D 8.53× 106 -

Table 4.6: Numerical condition numbers and iteration count of respective objective function
minimisations.

In Table 4.6 we see that the minimisation of J (x) requires just under 3 times as

many iterations as J (p) to achieve the same gradient tolerance respective to each

objective function. The numerical condition number of Sx is O(102) higher than

Sp. This complements the higher number of iterations seen for J (x) over J (p).

We also see that the numerical condition number of Sp is of the same order of

magnitude as D.

Ratio Value

σb/σq 5× 10−3

σb/σo 5× 10−3

σq/σo 1

Table 4.7: Assimilation error variance ratios.

The small σb/σq is the reason for the large condition number of D. The large

condition numbers of Sp and Sx follow the large condition number of D in this

experiment, with Sx exhibiting more sensitivity.
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Figure 4.14: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

In Figure 4.14 we see that the errors are identical again. The total relative errors

have identical values for both formulations, 0.089. In this experiment we see the

errors in the beginning of the assimilation window are at their lowest, while the rest

of the errors are spread across the rest of the assimilation window. The low value

of σb and high values of σq, both in the assimilation and the truth, are responsible

for this. We observed this behaviour in Experiment 2a, Figure 4.13, where the

high value of σb and low value of σq caused the errors to be spread inversely to

what is shown in Figure 4.14 here.

4.2.2.3 Experiment 2b (i): Large Model Error Variance

The experiment settings are identical to the previous experiment except that we set

σb = 0.1 and σq = 10. The model error variance in comparison to the background

error variance in this experiment is large, which is not a likely situation that would

arise in NWP. The purpose is to highlight the sensitivities of the minimisation

problems (2.52) (2.53) to these parameter settings.
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Figure 4.15: Assimilation window time series left to right, t = 0, t = n/2 and t = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

Figure 4.15 shows that the solutions are of similar quality. The problem is more

demanding since the variance of the model errors are much larger now. Even with

the power of wc4DVAR to closely match the trajectory inside the assimilation

window, both solutions are noticeably missing the truth because the true model

errors are considerably large.
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Figure 4.16: Model error time series left to right, t = 0, t = n/2 and t = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

In Figure 4.16 we see the variance of the estimated model error is again not quite

as large as the true model error. On the final time step the variance of the true

model error is more than twice as large as the range of the estimated model error.

Matrix Numerical Condition No. No. of iterations

Sp 1.09× 107 341

Sx 1.88× 107 972

D 2.13× 106 -

Table 4.8: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table 4.8 shows the numerical condition number of Sx to be nearly double that of
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Sp. Similarly, the minimisation of J (x) requires more than double the number of

iterations compared to J (p).

Ratio Value

σb/σq 10−2

σb/σo 2

σq/σo 200

Table 4.9: Assimilation error variance ratios.

The numerical condition number of D is of order O(106) as in Experiment 2a,

which is expected since the ratio σb/σq is the same as the inverse of the ratio used

in Experiment 2a. The effect of this ratio on the largest and smallest eigenvalues

of D is identical. We note however that the condition numbers of both Hessians

and the ratio σq/σo are large. Although the numerical condition number of both

Hessians are large, the number of iterations of J (p) is not as heavily affected as

J (x).
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Figure 4.17: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

Figure 4.17 shows that the errors in both algorithms are identical, with total

relative errors of 0.457. We also observe a noticeable spike in the errors near the

beginning of the window. The errors here are quite large in comparison to previous

experiments so far.
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We now reduce the model error variance and examine its effect on the minimisation

of both wc4DVAR problems.

4.2.2.4 Experiment 2b (ii): Small Model Error Variance

In this experiment we use the same parameters as the previous experiment except

we change the model standard devation from σq = 10 to σq = 5 × 10−4. We now

discuss the effect this has on the assimilation.

Matrix Numerical Condition No. No. of iterations

Sp 7.85× 103 182

Sx 1.57× 106 2693

D 1.41× 106 -

Table 4.10: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table 4.10 shows the minimisation of J (x) requiring over 15 times as many

iterations as J (p). The numerical condition number of Sx and D are 3 orders

of magnitude higher than Sp, which complements the difference in the number of

iterations. We also see that the numerical condition number of Sx is of the same

order of magnitude as D.

Ratio Value

σb/σq 200

σb/σo 2

σq/σo 0.01

Table 4.11: Assimilation error variance ratios.

The high σb/σq value is the reason for the high condition number of D, since they

increase the distance between the extrema eigenvalues of D.
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Figure 4.18: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

In Figure 4.18 we see that the errors are identical again with total relative error

values for both formulations at 0.095, while the distribution of errors is linear and

differs from the previous experiment, Figure 4.17. The bulk of the errors are in

the beginning of the assimilation window, which linearly decrease until final time.

The errors are largest at the beginning of the window because the size of the

background error variance σb is large relative to σq.

We now examine the effects of the observation error variance.

4.2.2.5 Experiment 2c (i): Large Observation Error Variance

The experiment settings identical to the previous experiment with the exception of,

the background standard deviation, σb = 0.1, model standard deviation, σq = 0.05

and increased observation standard deviation σo = 10, thus yielding the following

error variance ratios:
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Ratio Value

σb/σq 2

σb/σo 0.01

σq/σo 5× 10−3

Table 4.12: Assimilation error variance ratios.

We now present the time series plots of the solution with the truth
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Figure 4.19: Assimilation window time series left to right, t = 0, t = n/2 and t = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

Figure 4.19 shows that both solutions are showing visually noticeable shortfalls

at this scale, even with the truth and assimilation error settings being identical.

This is mainly due to the σq parameter being too restrictive and not allowing for

manoeuvrability of solution choice for each algorithm to fit the observation data.
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Figure 4.20: Model error time series left to right, t = 0, t = n/2 and t = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

Figure 4.20 shows that the J (p) formulation was unable to quantify reasonable

ηi’s because the model error variance was too restrictive, even though it reflected

the model error variance selected to generate the truth.
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Matrix Numerical Condition No. No. of iterations

Sp 834 87

Sx 1.11× 105 2821

D 838 -

Table 4.13: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table 4.13 shows that the minimisation of J (x) requires nearly 25 as many

iterations as J (p) to converge on a solution of similar quality. The increases

in condition numbers are similar to the increase in iterations, with the condition

number of Sx being 3 orders of magnitude higher.
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Figure 4.21: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

Figure 4.21 shows that the errors in both algorithms are identical and also very

large in comparison to all previous experiments thus far, with total relative errors

of 2.067. This is mainly due to the very large observation error variance σ2
o = 100.

We can see from this experiment that if σo is large relative to σb and σq, then the

wc4DVAR algorithms cannot yield solutions which fit the observations well.
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4.2.2.6 Experiment 2c (ii): Small Observation Error Variance

In this experiment we use the same parameters except we change the observation

standard devation from σo = 10 to σo = 5 × 10−4, yielding the following error

variance ratios

Ratio Value

σb/σq 2

σb/σo 200

σq/σo 100

Table 4.14: Assimilation error variance ratios.

We now discuss the effect this has on the assimilation.

Matrix Numerical Condition No. No. of iterations

Sp 2.71× 106 191

Sx 1.84× 105 176

D 838 -

Table 4.15: Numerical condition numbers. The size of all square matrices in table: 2550.

In Table 4.15 we see that the number of iterations of both algorithms is similar,

with the minimisation of J (x) requiring less iterations for the first time in our

experiments. The condition numbers of both Sp and Sx are high and it is clear

that D is not the contributor. We would have expected the difference in iterations

between both algorithms to be higher since there is an order of magnitude of

difference in their condition numbers. This is an example of the condition number

not being an exact indication of the iterative performance of an algorithm.
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Figure 4.22: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

In Figure 4.22 we see that both algorithms have the same error distribution with

total relative solution errors of 0.052. The relative errors are low and within

the range of O(10−3) consistently in contrast to Experiment 2c(i), Figure 4.21,

which has much higher errors due to the larger observation model error variance

chosen. So even though the decrease in observation error variance has increased

the condition number and number of iterations, the relative errors of both solutions

have dropped.

We now summarise the error variance balance experiments.

4.2.2.7 Summary

A large background error does not affect the minimisation problem of the

assimilation as much as a small one, which can be seen in Experiment 2a. We

also see clear evidence that the minimisation of both J (x) and J (p) are sensitive

to smaller background error, since the condition number is higher and the iterations

dramatically increase. We also see evidence of J (x) being more sensitive to this

change, exhibiting larger condition number by two orders of magnitude and taking

almost 3 times as many iterations as J (p) to converge.
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The experiments we have considered with model errors show that even with model

errors larger than the background error, both algorithms can still solve the problem

relatively well, as seen in Figure 4.18. However this comes at the cost of increased

condition numbers and iterations for both J (x) and J (p), where J (x) exhibits

the most sensitivity in terms of iterations to convergence. When the model error is

small the problem becomes less demanding in general, and both algorithms solve

to much improved accuracy as seen from Figure 4.18. But it is clearly evident that

J (x) is far more sensitive to changes in σq, more so when σq is very small, which

can be seen from the number of iterations required for convergence and condition

number, Table 4.10 in Experiment 2b.

Inaccurate observations (large σo) results in an ill-conditioned Sx matrix and

a well-conditioned Sp matrix. We also see this in the high iteration number

for J (x) over J (p). The quality of the solutions are almost identical, albeit

a more strenuous task for J (x), as shown by the number of iterations and

condition number in Table 4.13. Although there is a clear difference in the

minimisation iterations and condition numbers, as well as an obvious shortfall

between the truth and the solutions provided by both algorithms, especially at the

end of the assimilation window, as seen in Experiment 2c (i). For more accurate

observations however, Sp has a condition number larger than that of Sx by an

order of magnitude, as seen in Experiment 2c (ii), while J (x) requires slightly less

iterations.

We now perform the final experiment which examines the effect of longer

assimilation windows.

4.2.3 Experiment 3: Assimilation Window Length

Longer assimilation windows mean incorporating more observations and increasing

the difficulty of the data assimilation problem. It is believed that longer

assimilation windows are beneficial for longer-validity of weather forecasts, [84],

[27], [26]. With this in mind we compose an appropriate experiment and examine
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the effect of a longer assimilation window.

In previous experiments in this chapter we had an assimilation window which

allowed the advection model to propagate the Gaussian curve far enough through

the domain so it passes by its original percevied position, we denote this as one

period. In the following experiment we lengthen the assimilation window to allow

for the Gaussian curve to pass its original starting position 5 times. We reduce

the spatial resolution so that the Hessian matrix remains a reasonable size for an

accurate numerical condition number calculation. The model settings are such

that the spatial domain is size N = 25 with a spatial resolution of ∆x = 0.04. The

time-intervals are ∆t = 0.04 and the wave speed is a = −1, yielding a Courant

number of µ = −1.

We choose the the background error, B0 = σ2
bCSOAR, such that the correlation

length-scale L = 2∆x = 0.08 and σb = 0.5. The model error, Qi = σ2
qCLAP is such

that the correlation length-scale L = ∆x = 0.04 and σq = 0.3. The observation

error is such that Ri = σ2
oI, where σo = 0.1. We take observations every ∆q = 5

model time-steps and the domain is fully observed. We take a longer assimilation

window of n = 100 here, meaning we go through 500 model time-steps, since we

observe every 5’th model time-step starting with the first time-step. The iterative

tolerance is reduced to τ = 10−5.

We now present the time series plots.
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Figure 4.23: Assimilation window time series left to right, t = 0, t = n/2 and t = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

Figure 4.23 shows that both solutions are very closely matching the truth. We
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notice the Gaussian curve has moved upwards and deformed considerably over

time, since the assimilation window is now much longer and the model has more

time to evolve the initial state. We can also see that some finer details of the

Gaussian curve structure have been missed by both solutions.
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Figure 4.24: Model error time series left to right, t = 0, t = n/2 and t = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

Figure 4.24 agrees with Figure 4.23 in that the J (p) formulation has mimicked the

truth. The estimated model errors have a much improved error variance than in

previous experiments. It is likely that the longer assimilation window has improved

the estimates of the model error.

Matrix Numerical Condition No. No. of iterations

Sp 6.13× 104 71

Sx 1.66× 103 42

D 878 -

Table 4.16: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table 4.16 shows that J (p) requires nearly twice as many iterations as J (x) to

converge on an equivalent solution. The condition number of Sp is an order of

magnitude higher than Sx. This is not proportional to the increase in iterations,

but we see a simultaneous increase in condition number and iteration count of

J (p) over J (x), further reinforcing the possibility of J (p) being more sensitive

to assimilation window length than J (x).
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Figure 4.25: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

Figure 4.25 shows that the errors in J (p) are slightly higher, with a total relative

error of 0.196, whereas J (x) has a total relative error of 0.153. The relative errors

are low with the exception of the beginning of the assimilation window.

Summary

This experiment shows that the length of the assimilation window, while it affects

both algorithms, has a more profound effect on the minimisation of J (p), through

an increased Hessian condition number and iterations. The J (x) formulation

performs better in this experiment in terms of condition number, number of

iterations and relative solution error, with a fully observed domain.

4.3 Conclusions

In this chapter we detailed the design of the weak-constraint variational system

along with the tests to ensure its numerical validity. We then explained our

reasoning behind the choice of observation configuration and model setup to carry

out the experiments. The experiments were carried out on a simple 1-dimensional
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linear system using correlated background and model error covariances and regular

observation spacing to enable us to study the effects of different parameter settings

on the minimisation process. The experiment results showed the following:

1. The J (x) formulation is more sensitive to lower observation density than

J (p). The J (x) formulation takes longer to converge onto an identical

quality solution to J (p) with the same settings. The Hessian condition

number of J (x) is also higher than that of J (p). This is shown in

Experiments 1a and 1b.

2. The J (x) formulation is more sensitive than J (p) to the balance of model

errors with background errors. This can be seen from findings in Experiments

2a and 2b.

(a) Experiment 2a shows that J (x) is sensitive to changes in the

background error, more so when the background error is small. This is

seen in the number of iterations only.

(b) Experiment 2b shows the increased sensitivity of J (x) over J (p) for

small model error variances σq. This is seen in the condition number and the

number of iterations required for convergence.

(c) Experiment 2c shows that a large observation error variance

dramatically increases the number of iterations required by J (x) to converge.

The condition number is also very large, of order 5 times larger than the

condition number of Sp. We see that for a small observation error variance,

the J (x) formulation takes less iterations to converge than J (p) for the first

time, albeit not by a significant amount.

3. The J (p) formulation is more sensitive than J (x) to assimilation window

length where the spatial domain is fully observed, shown in Experiment 3.

4. Another more general conclusion about wc4DVAR is that the variance of the

estimated model errors provided by the solutions of both J (p) and J (x) were

consistently under-estimated in comparison to the true model errors. This

can be seen from Experiments 1a, 1b, 2a and 2b. However, the estimation
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of the model error variance by both algorithms was noticeably improved in

Experiment 3, with a longer assimilation window.

The aim is to gain a deeper theoretical understanding into the behaviour of both

the minimisation problems presented by J (p) and J (x). In the next chapter

we bound the condition number of the Hessian of J (p) and analyse it more

rigorously.
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Chapter 5

Conditioning and Preconditioning

of the Model Error Formulation:

J (p)

In the previous chapter we examined the effect that various assimilation parameters

had on the iterative solution process of the wc4DVAR problem when applied to

the 1D advection equation.

The results in this chapter extend the results in [41], where the author bounded

the condition number of the 3DVAR Hessian and then the Hessian of the

strong-constraint 4DVAR objective function, denoted as S. We have derived a

general result linking the condition numbers of the sc4DVAR Hessian S and the

wc4DVAR Hessian Sp such that,

κ(S) ≤ κ(Sp), (5.1)

with no assumptions. This result shows that the condition number of the Hessian of

sc4DVAR can never exceed the condition number of the Hessian of the wc4DVAR

J (p) formulation for identical assimilation problems. Assuming that the condition

number is a good measure for iterative performance, this result indicates that the

iterative solution process of the wc4DVAR problem will only be as good as the
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solution process of the sc4DVAR. The proof of this result is contained in Appendix

A.

In this chapter we present new theoretical bounds on the condition number of

Sp =
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(5.2)

and its preconditioned counter-part

Ŝp = I+D1/2L−THTR−1HL−1D1/2. (5.3)

The eigenvalue spectrum of these matrices are not explicitly known and in practice

they are too computationally expensive to calculate explicitly. So we take the route

of estimating the condition number of the Hessian by bounding it in order to obtain

information from the expressions yielded by the bounds. We utilise the bounds

to gain insight into the Hessian condition number sensitivities of the objective

function J (p) and its preconditioned counter-part.

We first derive bounds on the condition number of the Hessian Sp with some

simple assumptions on the observations. The assumptions become more specific

with each theorem. The first theorem assumes general correlation structures for

the background, observation and model errors while assuming there are fewer

observations than the dimension of state space. The second theorem derives

bounds that are more specific to a particular class of covariance and model

matrices, whereas the final theorem is specific to the advection equation. We then

take the preconditioned Hessian of objective function J (p) and bound its condition

number. We then show the improvement in overall conditioning and minimisation

iteration rates of the preconditioned problem compared to the original problem.
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The insight gained from the bounds are demonstrated through numerical

experiments on the condition number. We also further demonstrate the condition

number sensitivities obtained from the bounds by examining their effect on the

convergence rate of the model error estimation an preconditioned model error

estimation minimisation problems.

We now present the theoretical bounds.

5.1 Theoretical Results: Bounding the

Condition Number of Sp

The following result bounds the spectral condition number of Sp

Theorem 5.1.1 Let B0 ∈ R
N×N and Qi ∈ R

N×N for i = 1, .., n be the background

and model error covariance matrices respectively, so D ∈ R
N(n+1)×N(n+1). Suppose

we take q < N observations at each time interval ti for i = 0, ..., n with observation

error covariance matrix Ri ∈ R
q×q, so R ∈ R

q(n+1)×q(n+1). Let Hi ∈ R
q×N

for i = 0, .., n, be the observation operator, so H ∈ R
q(n+1)×N(n+1). Finally, let

Mi,i−1 ∈ R
N×N for i = 1, .., n, represent the model operator and L ∈ R

q(n+1)×N(n+1)

represent the 4D weak-constraint model propagator. Then the following bounds are

satisfied by the spectral condition number of Sp:

κ(D)

(1 + λmax(L−THTR−1HL−1)λmax(D))
≤ κ(Sp)

≤ κ(D)
(
1 + λmax(L

−THTR−1HL−1)λmin(D)
)
.

Proof: We use Theorem 3.4.2 to bound λmin(Sp) and λmax(Sp), yielding

λmin(D
−1) + λmin(L

−THTR−1HL−1) ≤ λmin(Sp)

≤ λmin(D
−1) + λmax(L

−THTR−1HL−1) (5.4)
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and

λmax(D
−1) + λmin(L

−THTR−1HL−1) ≤ λmax(Sp)

≤ λmax(D
−1) + λmax(L

−THTR−1HL−1). (5.5)

We then take the upper bound of λmax(Sp) and lower bound of λmin(Sp) giving us

the following upper bound on the condition number,

κ(Sp) ≤
λmax(D

−1) + λmax(L
−THTR−1HL−1)

λmin(D−1) + λmin(L−THTR−1HL−1)
. (5.6)

Similarly for the lower bound we take the lower bound of λmax(Sp) and upper bound

of λmin(Sp), which yields the following lower bound on the condition number,

κ(Sp) ≥
λmax(D

−1) + λmin(L
−THTR−1HL−1)

λmin(D−1) + λmax(L−THTR−1HL−1)
. (5.7)

Since we assumed fewer observations than the number of states, ie q < N ,

implying L−THTR−1HL−1 is a singular matrix with zero eigenvalues, since it is

rank deficient. We also know that (λmax(D
−1))−1 = λmin(D). Now if we combine

(5.6) and (5.7), we arrive at

κ(D)

(1 + λmax(L−THTR−1HL−1)λmax(D))
≤ κ(Sp)

≤ κ(D)
(
1 + λmax(L

−THTR−1HL−1)λmin(D)
)
, (5.8)

as required. �

We observe the presence of the condition number of the background and model

error covariance matrix D in both the upper and lower bounds. This is an early

strong indication that the condition number of Sp will be heavily influenced by

κ(D). We cannot interpret anything further from the bounds in this theorem. So

we now make our assumptions more specific in a bid to uncover more definitive

expressions from the later bounds.

Theorem 5.1.2 Let B0 = σ2
bCB ∈ R

N×N be the background error covariance

matrix, where CB is a symmetric, positive-definite circulant correlation matrix

and σ2
b > 0 is the background error variance. Let Qi = Q = σ2

qCQ ∈ R
N×N be
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the time invariant model error covariance matrix, for i = 1, ..., n, where CQ is a

symmetric, positive-definite circulant correlation matrix and σ2
q > 0 is the model

error variance. Assume q < N observations are taken with the same error variance

σ2
o > 0 at each time interval such that Ri = R = σ2

oIq for i = 0, ..., n, where Iq is

a q × q identity matrix. Assume that observations of the parameter are made at

the same grid points at each time interval such that HT
i Hi = HTH ∈ R

N×N , so

HTH is a diagonal matrix with unit entries at observed points and zeros otherwise.

Finally, we assume that Mi,i−1 =M ∈ R
N×N for i = 1, .., n is a circulant matrix,

and Mi,i = IN . The following bounds are satisfied by the condition number of Sp:


 1 + q

N

min{σ2
b
λmin(CB),σ2

qλmin(CQ)}
σ2
o

ψmin

1 + q
N

max{σ2
b
λmax(CB),σ2

qλmax(CQ)}
σ2
o

ψmax


κ(D) ≤ κ(Sp)

≤ κ(D)

(
1 +

min
{
σ2
bλmin(CB), σ

2
qλmin(CQ)

}

σ2
o

λmax(L
−THTHL−1)

)
, (5.9)

where

ψl =





n∑
k=0

|λl|2k if λl(D) = λl(B0)

1
n

n−1∑
i=1

i∑
j=0

n−i∑
k=0

(
2Re(λjl )− 1

)
· |λl|2k if λl(D) = λl(Q)

. (5.10)

The eigenvalue of M is denoted by λ in (5.10) and the subscript l denotes the

largest or smallest eigenvalue (max/min) respectively.

Proof: We begin by noticing that as a direct consequence of the assumptions, we

have

κ(D) =
λmax(D)

λmin(D)
=
max

{
σ2
bλmax(CB), σ

2
qλmax(CQ)

}

min
{
σ2
bλmin(CB), σ2

qλmin(CQ)
} . (5.11)

Furthermore, we recognise that D has N(n + 1) eigenvalues and eigenvectors

where exactly Nn of the eigenvalues are repeated since Q is time invariant.

The eigenvectors of Q constitute the non-zero components of the Nn repeated

eigenvectors of D. We also know that since the constituent matrices of D are

circulant, and M is also circulant, they possess the same orthogonal eigenvectors

as in Chapter 3, Theorem 3.37 equation (3.37).
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With this in mind we choose a vector, Vk ∈ R
N(n+1) such that

Vk =

( vk
vk
...
vk

)
, (5.12)

where vk ∈ R
N is an arbitrary eigenvector of a circulant matrix. We apply the

Rayleigh quotient using (5.12) to obtain the lower bound of Sp. We begin by

considering the second term of Sp

1

σ2
o

V H
k [L−THTHL−1]Vk

V H
k Vk

, (5.13)

while deliberately omitting D for now.

The denominator of (5.13) yields

V H
k Vk = n+ 1, (5.14)

since the eigenvectors of a circulant matrix are orthogonal, Theorem 3.37. The

computation in (5.13) requires vk and vHk to multiply every matrix block inside

L−THTHL−1. Each block multiplication yields the following:

vHk (M j)T = vHk λ̄
j
α(M), (5.15)

(M j)vk = λjα(M)vk, (5.16)

where λjα(M) is some eigenvalue of M and λ̄jα(M) is the corresponding complex

conjugate eigenvalue of M . We write λα(M) = λα for convenience.

Substituting (5.14), (5.15) and (5.16) into (5.13), we obtain the following series:

1

n+ 1




n∑

i=0

n−i∑

j=0

(λ̄α)
j(λα)

jvHk H
THvk +

n∑

i=1

n−i∑

j=0

(λ̄α)(λ̄α)
j(λα)

jvHk H
THvk

+

n∑

i=1

n−i∑

j=0

(λα)(λ̄α)
j(λα)

jvHk H
THvk + · · ·+ · · ·+ (λ̄α)

nvHk H
THvk + (λα)

nvHk H
THvk


 ,

(5.17)

where the first term in the geometric series (5.17) comes from the main diagonal

of (5.13). The second term of (5.17) is from the upper off-diagonal block entries of

(5.13) and the third term is from the lower off-diagonal block entries. This pattern
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continues until the final term in the bottom right hand corner of (5.13), which

coincides with the final term in (5.17).

We now compute each of the terms in the series above. We have

vHk H
THvk =

q

N
, (5.18)

since circulant matrices have orthogonal eigenvectors and HTH is a square matrix

with q unit entries on the main diagonal at positions of observation and 0 elsewhere.

We also know the following to be true:

(λ̄α)(λα) = |λα|2. (5.19)

Substituting (5.18) and (5.19) into (5.17) we arrive at

q

N

1

n+ 1

n∑

i=0

n−i∑

k=0

i∑

j=0

(
λjα + λ̄jα − 1

)
· |λα|2k. (5.20)

We define a new parameter such that

ψα =
1

n+ 1

n∑

i=0

n−i∑

k=0

i∑

j=0

(
2Re(λjα)− 1

)
· |λα|2k. (5.21)

Now that (5.21) represents the general expression for the computation of (5.13),

we reselect vector (5.12) to yield the largest possible value. Estimating the largest

possible lower bound yields the most optimum estimate and therefore the tightest

bound.

The extreme eigenvalues of D are related to B0 and Q as in (5.11). Now let us

consider a vector utilising the eigenvectors associated with λmax/min(D) such that

Vmax/min =





[βT
max/min, 0, . . . , 0]

T if λmax/min(D) = λmax/min(B0)

[0, ξTmax/min, . . . , ξ
T
max/min]

T if λmax/min(D) = λmax/min(Q).
,

(5.22)

where βmax/min and ξmax/min denote the eigenvector associated with the maximum

or minimum eigenvalue of the respective matrix.
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We consider the Rayleigh quotient as in (5.13) but for the vector Vmax/min, since

the Rayleigh quotient of D yields the respective extreme eigenvalues for Vmax/min.

The denominator of the Rayleigh quotient as in (5.13) will yield

V H
max/minVmax/min =





1 if λmax/min(D) = λmax/min(B0)

n if λmax/min(D) = λmax/min(Q)
. (5.23)

It also follows that series (5.21) will have a reduced number of terms since the

vector Vmax/min now has some zero entries, whereas the general vector chosen in

(5.12) did not. We compute the two possible cases of series (5.21) below:

1. If λmax/min(D) = λmax/min(B0) then vector-matrix multiplication in (5.13) will

only yield the uppermost left corner block of L−THTHL−1, which by no coincidence

is identical to the sc4DVAR Hessian term ĤT Ĥ as in [41] (Chapter 7, Theorem

7.1.2). Therefore (5.21) becomes

ψl/m =
n∑

k=0

|λl/m|2k, (5.24)

where the l and m are separate subscripts denoting the lth and mth eigenvalues of

M .

2. If λmax/min(D) = λmax/min(Q) then we would obtain all the terms of L−THTHL−1

excluding the first row and first column blocks. So (5.21) yields

ψg/h =
1

n

n−1∑

i=1

n−i∑

k=0

i∑

j=0

(
2Re(λjg/h)− 1

)
· |λg/h|2k, (5.25)

where again, the g and h are separate subscripts denoting the gth and hth

eigenvalues of M .

We utilise the eigenvalue range of the Rayleigh Quotient from Theorem 3.4.7 to

bound the condition number

λmax(Sp) ≥
V H
maxSpVmax

V H
maxVmax

=
V H
maxD

−1Vmax + σ−2
o V H

maxL
−THTHL−1Vmax

V H
maxVmax

= λmax(D
−1) +

q

N

1

σ2
o

ψα

≥ λmax(D
−1) +

q

N

1

σ2
o

ψmin, (5.26)
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which bounds the largest eigenvalue. Similarly for the smallest eigenvalue,

λmin(Sp) ≤
V H
minSpVmin

V H
minVmin

≤ λmin(D
−1) +

q

N

1

σ2
o

ψmax (5.27)

where ψmax/min is as computed in (5.24) and (5.25)

ψl =





n∑
k=0

|λl|2k if λl(D) = λl(B0)

1
n

n−1∑
i=1

i∑
j=0

n−i∑
k=0

(
2Re(λjl )− 1

)
· |λl|2k if λl(D) = λl(Q)

, (5.28)

where the l subscript denotes the largest or smallest eigenvalue (min/max)

respectively.

Combining these eigenvalue bounds yields,

κ(Sp) ≥
λmax(D

−1) + q
N

1
σ2
o
ψmin

λmin(D−1) + q
N

1
σ2
o
ψmax

. (5.29)

For the next step we recall λmax(A
−1)−1 = λmin(A) for A ∈ R

n×n, then take a

factor of κ(D) out and substitute (5.11) into (5.29), arriving at

κ(Sp) ≥ κ(D)


 1 + q

N

min{σ2
b
λmin(CB),σ2

qλmin(CQ)}
σ2
o

ψmin

1 + q
N

max{σ2
b
λmax(CB),σ2

qλmax(CQ)}
σ2
o

ψmax


 , (5.30)

which establishes the lower bound. For the upper bound, we substitute R−1 =

σ−2
o Iq(n+1) and λmin(D) from (5.11) and thus

κ(Sp) ≤ κ(D)

(
1 +

min
{
σ2
bλmin(CB), σ

2
qλmin(CQ)

}

σ2
o

λmax(L
−THTHL−1)

)
,

(5.31)

as required. �

The upper and lower bounds in Theorem 5.1.2 clearly show that the condition

number of Sp is dependent on the condition number of D. The components

governing the condition number of D, shown in (5.11), are as follows:

1. The background and model error variance ratio σb/σq.

2. The background and the model error covariance matrices.
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As the ratio σb/σq approaches zero, or diverges away from 1, the condition number

of D and hence the condition number of Sp will grow. This means if the model

error variance were to be too small, or too large, in comparison to the background

error variance, the condition number of Sp will be large. This argument also applies

to the background error variance. Secondly, as the correlation length-scales in the

background and the model error covariance matrices grows, the condition number

of D and hence the condition number of Sp will also grow. The upper bound

in Theorem 5.1.2 also shows that as the observation accuracy (decreasing σo)

increases, then the upper bound will increase. The lower bound will also increase

as σo decreases, provided ψmin << ψmax is true. So both bounds suggest that the

condition number of Sp may grow as σo decreases.

We now use the 1D advection equation as described in Section 3.5.1 to derive more

specific bounds to investigate κ(Sp) further.

5.1.1 The 1D Advection Equation

Theorem 5.1.3 In addition to the assumptions in Theorem 5.1.2, letM be matrix

(3.71), which is the advection equation discretised using the upwind scheme. Then

for Courant number µ ∈ [−1, 0] we have the following bounds on κ(Sp):

κ(D)


 1 + q

N

min{σ2
b
λmin(CB),σ2

qλmin(CQ)}
σ2
o

ψadv
min

1 + q
N

max{σ2
b
λmax(CB),σ2

qλmax(CQ)}
σ2
o

ψadv
max


 ≤ κ(Sp)

≤ κ(D)

(
1 +

min
{
σ2
bλmin(CB), σ

2
qλmin(CQ)

}

σ2
o

(n+ 1)2

)
, (5.32)

where

ψadv
min





= 1
n

n−1∑
i=1

[
2
(

1−(1+2µ)(i+1)

1−(1+2µ)

)
− 1
]
·
[
1−|1+2µ|2(n+1−i)

1−|1+2µ|2

]
if λmin(D) = λmin(Q)

≥ 1−|1+2µ|2(n+1)

1−|1+2µ|2 if λmin(D) = λmin(B0)

(5.33)

and

ψadv
max =





n2

3
+ 3

2
n− 5

6
− 1

n
if λmax(D) = λmax(Q)

(n+ 1) if λmax(D) = λmax(B0)
. (5.34)
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Proof: We require results on the minimum and maximum eigenvalues of M to

obtain bounds for κ(Sp). We use similar methodology as in [41], where the author

obtained the extreme eigenvalues of a matrix similar to (3.71). SinceM is circulant

with entries as shown in (3.71), by Theorem 3.3.8 the eigenvalues take the following

form,

λm = 1 + µ− µe−
2πim
N (5.35)

for m = 0, ..., N − 1 where i =
√
−1. We also have

|λm|2 = (λm)(λ̄m) = (1 + µ)2 − 2µ(1 + µ) cos(
2πm

N
) + µ2. (5.36)

Let f(m) = |λm|2 be a continuous function of m ∈ [0, N). We can find the

minimum and maximum of this function by differentiation:

f ′(m) =2µ(1 + µ)(
2π

N
) sin(

2πm

N
), (5.37)

f ′′(m) =2µ(1 + µ)(
2π

N
)2 cos(

2πm

N
). (5.38)

Now we see that f ′(m) = 0 implies the extrema occur at m = 0, N
2
. It follows that

f ′′(0) < 0 and f ′′(N
2
) > 0 for all permissible values of µ ∈ (−1, 0). Therefore, for

N even, it is trivial to see that

λmax(M) = λ0(M) = 1 + µ− µ(e0) = 1, (5.39)

λmin(M) = λN
2
(M) = 1 + µ− µ(e−πi) = 1 + 2µ (N even), (5.40)

λmin(M) = λ (N−1)
2

(M) = 1 + µ− µ(e−
(N−1)πi

N ) ≥ 1 + 2µ (N odd). (5.41)

Therefore, for values µ ∈ (−1, 0), M has the following minimum and maximum

eigenvalues

|λmax(M)|2 = 1, (5.42)

|λmin(M)|2 ≥ (1 + 2µ)2, (5.43)

where we have equality in (5.43) if N is even.

Now that we have computed the minimum and maximum eigenvalues of M ,

we compute ψmin/max, which we will denote as ψadv
min and ψadv

max respectively.
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Substituting the minimum and maximum eigenvalues of M , we find:

ψadv
max =





1
n

n−1∑
i=1

i∑
j=0

n−i∑
k=0

((1)j + (1)j − 1) · |1|2k if λmax(D) = λmax(Q)

n∑
k=0

|1|2k if λmax(D) = λmax(B0),

(5.44)

and

ψadv
min =





1
n

n−1∑
i=1

i∑
j=0

n−i∑
k=0

(2(1 + 2µ)j − 1) · |1 + 2µ|2k if λmin(D) = λmin(Q)

n∑
k=0

|λmin|2k ≥
n∑

k=0

|1 + 2µ|2k if λmin(D) = λmin(B0).

(5.45)

We now compute ψadv
max. We utilise Theorem 3.4.5 to simplify the arising summative

expressions in the proceeding computations. For the case λmax(D) = λmax(B0),

n∑

k=0

|1|2k = (n+ 1). (5.46)

For the case λmax(D) = λmax(Q), we compute an expression by first recognising

that these are arithmetic sums governed by an outer sum. We begin with the

inner-most sum:

n−i∑

k=0

|1|2k = (n+ 1− i) (5.47)

and the second inner sum yields:

i∑

j=0

(1j + 1j − 1) = (2i+ 1). (5.48)

Since both sums are dependent on the index i, which is governed by the first sum,

it follows that i remains in these expressions. Combining (5.47) and (5.48) we now

have:

ψadv
max =

1

n

n−1∑

i=1

(2i+ 1).(n+ 1− i). (5.49)
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Computing (5.49) we find:

ψadv
max =

1

n

(
n−1∑

i=1

2i(n+ 1− i) +
n−1∑

i=1

(n+ 1− i)

)

=
1

n

(
2

[
n−1∑

i=1

i(n+ 1)− i2

]
+

[
(n+ 1)(n− 1)−

n−1∑

i=1

i

])

=
1

n

(
2

[
(n+ 1)(n− 1)(n)

2
− (n− 1)(n)(2n− 1)

6

]
+

[
(n+ 1)(n− 1)− (n− 1)(n)

2

])

=
n− 1

n

[
(n+ 1)(n)− n(2n− 1)

3
+ (

n

2
+ 1)

]

=
n− 1

n
(
n

6
(2n+ 11) + 1)

=
n2

3
+

3

2
n− 5

6
− 1

n
. (5.50)

Therefore,

ψadv
max =





n2

3
+ 3

2
n− 5

6
− 1

n
if λmax(D) = λmax(Q)

(n+ 1) if λmax(D) = λmax(B0)
. (5.51)

It remains to find ψadv
min. For the case λmin(D) = λmin(B0) in (5.45), we recognise

that this is a geometric sum:

n∑

k=0

|1 + 2µ|2k = 1− |1 + 2µ|2(n+1)

1− |1 + 2µ|2 . (5.52)

For the case λmin(D) = λmin(Q) in (5.45) we have:

ψadv
min =

n−1∑

i=1

i∑

j=0

(
2(1 + 2µ)j − 1

)
·
[
1− |1 + 2µ|2(n+1−i)

1− |1 + 2µ|2
]

=
n−1∑

i=1

[
2

(
1− (1 + 2µ)(i+1)

1− (1 + 2µ)

)
− 1

]
·
[
1− |1 + 2µ|2(n+1−i)

1− |1 + 2µ|2
]
. (5.53)

Therefore,

ψadv
min





=
n−1∑
i=1

[
2
(
1−(1+2µ)(i+1)

1−(1+2µ)

)
− 1
]
·
[
1−|1+2µ|2(n+1−i)

1−|1+2µ|2

]
if λmin(D) = λmin(Q)

≥ 1−|1+2µ|2(n+1)

1−|1+2µ|2
if λmin(D) = λmin(B0)

(5.54)

as required.

For the upper bound in Theorem 5.1.2, we begin by recognising that

λmax(L
−THTHL−1) = ||HL−1||22 ≤ ||H||22||L−1||22, (5.55)
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by using the definition of the 2-norm and norm relationship in Theorem 3.3.6.

We now briefly discuss the 2-norm of the observation operator H ∈ R
p(n+1)×N(n+1).

The main assumption states that there are fewer observations than state space, so

from Definition 3.3.4, we have

||H||2 = sup
x 6=0

( |x1|2 + |x3|2 + ...+ |xq(n+1)|2
|x1|2 + |x2|2 + ...+ |xN(n+1)|2

)
, (5.56)

where x ∈ R
N(n+1), such that

x =

( x1
x2

...
xN(n+1)

)
. (5.57)

It is obvious that the numerator can never exceed the denominator because q < N .

To illustrate this, let us assume every other point in the state is observed, therefore

it is obvious that

|x1|2 + |x3|2 + ...+ |xq(n+1)|2
|x1|2 + |x2|2 + ...+ |xN(n+1)|2

≤ 1. (5.58)

We have assumed a particular instance, which adheres to the original assumption of

q < N . In general, the number of observations being less than the state means the

denominator in (5.58) can never exceed the numerator. Therefore the supremum

of (5.58) is

||H||2 = 1. (5.59)

To calculate ||L−1||2 we use the inequality

||L−1||2 ≤ ||L−1||1||L−1||∞, (5.60)

while also noting that the infinity-norm and 1-norm of L−1 are equal, which can

be seen by quick inspection of L−1, (2.37). The matrix L−1 can be written as a

power series such that,

L−1 = I+M+M2 + ...+Mn, (5.61)

L−1 =




I
I
...

I


+




0
M1 0

M2 0

... ...
Mn 0


+




0
0 0

M2M1 0 0
M3M2 0 0

... ... ...
MnMn−1 0 0


+

...+

(
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Mn...M1 0 0 0 0

)
. (5.62)
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The ECMWF write the L−1 operator as a Neumann series to approximate L,

[27]. The authors hope to approximate L to precondition the state estimation

formulation (2.33). We write it as a series here with the intent of approximating it

to have a more comprehensive expression for the bounds on the condition number.

It follows that

||L−1||1 = ||I+M+ ...+Mn||1,

≤ ||I||1 + ||M||1 + ...+ ||Mn||1,

= 1 + ||M ||1 + ...+ ||Mn||1,

≤ 1 + ||M ||1 + ...+ ||M ||n1 =
n∑

k=0

||M ||k1. (5.63)

Since M is linear, then Mi,i−1 = M for i = 1, ..., n is true, and therefore the

following statement holds ||M||1 = ||M ||1. We also know that the absolute row

and column sums of a circulant matrix are equal. Computing the norm for the

advection equation we have

||M ||1 = (1 + µ) + (−µ) = 1, (5.64)

and since ||L−1||∞ = 1 by the same argument, therefore

λmax(L
−THTHL−1) ≤ (n+ 1)2. (5.65)

By substituting the ψ expressions, (5.51), (5.54) and (5.65) into the bounds in

Theorem 5.1.2, we arrive at the bounds in Theorem 5.1.3, which completes the

proof. �

We can now see the following new elements in the bounds in Theorem 5.1.3:

1. the parameters ψadv
min/max, which are specific to the advection equation;

2. the presence of the assimilation window length, n, in the upper bound.

In the lower bound of Theorem 5.1.3 we can see that ψadv
max will increase as

the assimilation window length increases, whereas ψadv
min divulges no definitive

113



information. We can see that the assimilation window length, n, has a quadratic

influence from the ψadv
max expression in (5.34). The upper bound of Theorem 5.1.3

shows the quadratic influence of the assimilation window length n. Both the

upper and lower bounds suggest that the assimilation window length will have an

influence on the condition number of Sp.

This concludes the derivation of our bounds on Sp. We now briefly compare the

bounds on the condition number of Sp to the bounds on the condition number of

the sc4DVAR Hessian, before demonstrating the bounds numerically.

5.1.2 Comparison to Strong-Constraint 4DVAR

The bounds in Theorem 5.1.2 bear some similarities to the bounds derived on the

condition number of the Hessians of the sc4DVAR and 3DVAR problems as shown

in [41] (Theorem 6.1.2 and Theorem 7.1.2). The influence of the condition number

of B0 on the condition number of the sc4DVAR Hessian is similar to the influence

of the condition number of D on the condition number of Sp. The B0 matrix

was influenced only by the condition number of the background error covariance

matrix CB, whereas D is influenced by CB, CQ and the ratio of σb/σq. We further

illustrate this by taking a simplified scenario as an example.

Assume the background and model errors are uncorrelated in space such that

D =




σ2
bI

σ2
qI

σ2
qI

. . .

σ2
qI




. (5.66)

We also assume that the background error variance is larger than the model error

variance, σb > σq. The background error variance is representative of the errors in

the previous assimilation window in its entirety, which normally consists of several

model time steps. The model error variance represents the errors in one model
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time step. It is intuitive to believe the error variance in one time step is less than

multiple model time steps. Allowing for more model time steps between error

corrections implies that the model error variance will grow such that σq → σb.

The condition number of D becomes

κ(D) =

(
σb
σq

)2

. (5.67)

We now briefly analyse the wc4DVAR bounds from Theorem 5.1.2 in light of these

additional arguments. We have

(
σb

σq

)2
+ q

N

(
σb

σo

)2
ψmin

1 + q
N

(
σb

σo

)2
ψmax

≤ κ(Sp) ≤
(
σb
σq

)2

+

(
σb
σo

)2

λmax(L
−THTHL−1), (5.68)

which can be compared directly to the sc4DVAR bounds in [41] (Theorem 7.1.2),

with the same assumptions:

1 + q
N

(
σb

σo

)2
γmin

1 + q
N

(
σb

σo

)2
γmax

≤ κ(S) ≤ 1 +

(
σb
σo

)2

λmax(Ĥ
T Ĥ), (5.69)

where S is the sc4DVAR first order Hessian and γ is the sc4DVAR equivalent

to ψ, (5.21). We see the added dimension of the background and model error

variance covariance matrix represented by the ratio σb

σq
playing a significant role in

the conditioning of Sp. We also see the contribution of the maximum eigenvalue of

the terms L−THTHL−1 and ĤT Ĥ, which is linked to the length of the assimilation

window and observation operator.

We showed in Theorem (5.1.3) that λmax(L
−THTHL−1) can be approximated to

(n + 1)2, where the author in [41] showed that λmax(Ĥ
T Ĥ) for sc4DVAR reduces

to (n+1). So the effect of the assimilation window on the bounds from sc4DVAR

to wc4DVAR is greater by an order of magnitude.

In this section we have demonstrated the inherent similarities between the

condition numbers of Sp and S. In the next section we demonstrate the sensitivities

shown by the bounds in the Theorems on the condition number of Sp.
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5.1.3 Numerical Results

We now demonstrate the bounds through numerical experiments. We also

highlight sensitivities of the condition number of Sp with respect to assimilation

parameters, which have been revealed by the theorems in Section 5.1.

We letM be the linear advection model as in (3.71), with a one-dimensional domain

of size N = 500 grid points and spatial intervals of ∆x = 0.1. We use temporal

intervals of ∆t = 0.1 and wave speed a = −0.3. We let n = 2, so we have a total

of three model time levels including initial time, all of which are observed. We let

q = 20 spatial observations at the grid points with equal spacing, so q(n+1) = 60.

The temporal observations are made every 3 model time steps, so at t0 = 0,

t1 = 3∆t and t2 = 6∆t. We assume no spatial correlations for the observation

errors whereas the background and model errors are spatially correlated (as in

Sections 3.3.4.1 and 3.3.4.2), B0 = σ2
bCSOAR, Qi = Q = σ2

qCLAP , R = σ2
oIq where

σb = σq = σo = 1 unless otherwise stated. We denote the correlation length-scale

of a covariance matrix C as L(C) (Section 3.3.3).

5.1.3.1 Experiment 1: Correlation Length-Scales

We first examine the effects of increasing the background correlation length-scale

on the condition number of Sp.
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Figure 5.1: κ(Sp) (blue line), κ(D) (green line) and theoretical bounds (red-dotted line) as a
function of L(CB). Model error correlation length-scale L(CQ) = ∆x/5.

Figure 5.1 shows the bounds from Theorem 5.1.2 with the condition numbers of

Sp and D. We see the dependence of κ(Sp) on κ(D), which rises as a result of the

correlation length-scale increasing in the background error covariance matrix, [41].

The bounds prove to be a good estimate of the overall behaviour of the condition

number when varying length-scales in B0 and hence D.

117



Figure 5.2: κ(Sp) (blue-surface) and bounds (red-mesh surface) as a function of L(CB) and
L(CQ).

In Figure 5.2 we show that the increasing the model error correlation length-scale

does not affect the condition number as much as the increase in length-scale in the

B matrix. This is due to the Laplacian covariance matrix being better conditioned

than the SOAR covariance matrix in general, [41], Chapter 5. We see evidence of

this in this experiment: with correlation length-scales of L(CB) = L(CQ) = 2.5∆x,

the condition numbers of the SOAR and Laplacian matrices are κ(CSOAR) = 1973

and κ(CLAP ) = 359.

Figures 5.1 and 5.2 demonstrate the following:

1. The sensitivity of the condition number of the Hessian Sp to the condition

number of the background and model error covariance matrix D, as

shown initially in Theorem 5.1.1. We specifically showed the sensitivity of

κ(Sp) to the increase in both the background and model error correlation

length-scales.

2. The sensitivity of the condition number of Sp to the condition number

of D from Theorem 5.1.2. The condition number of D is sensitive to
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the correlation length-scales in the covariance matrices CB and CQ, which

influences the condition number of Sp.

3. The bounds accurately and closely estimate the true condition number when

varying the correlation length-scales of CB and CQ in these experiments.

We now demonstrate the bounds and Hessian condition number sensitivities to the

error variance ratios.

5.1.3.2 Experiment 2: Error Variance Ratios
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Figure 5.3: κ(Sp) (blue line) and theoretical bounds (red-dotted line) as a function of ratio
σb/σq. L(CB) = L(CQ) = 1∆x.

We now examine the effect of the background and model error variance ratio on

the condition number of Sp. In Figure 5.3, we see that as the ratio σb/σq tends to

0 and increases from 1, the condition number of Sp also increases. This is due to
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the condition number of D increasing as the ratio of σb/σq tends to 0 and increases

from 1.
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Figure 5.4: κ(Sp) (blue line) and theoretical bounds (red-dotted line) as a function of ratio
σq/σo. L(CB) = L(CQ) = 1∆x. Green dotted line at the point σq = σb

Figure 5.4 shows similar behaviour of the σq/σo to the ratio σb/σq shown in Figure

5.3. We show the point at which σq = σb, where σb = 1 on this graph to emphasise

the importance of the actual ratio max/min
{
σ2
bλmin(CB), σ

2
qλmin(CQ)

}
/σo, from

both bounds in Theorem 5.1.2. As soon as one of the extreme eigenvalues of B0 or

Q takes precedence over the other and grows further away from σo, the condition

number of Sp increases.

Figures 5.3 and 5.4 demonstrate the sensitivities of the condition number Sp to

the ratio in error variances within the wc4DVAR problem. More specifically we

have shown:

1. As the the ratio σb/σq → 0,∞ from 1, the condition number of the Hessian
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Sp increases.

2. As the ratio max/min
{
σ2
bλmin(CB), σ

2
qλmin(CQ)

}
/σ2

o → 0,∞ the condition

number of Sp increases.

3. The bounds estimate the true condition number well when varying the

background and model σb/σq error variance ratios in these experiments. The

upper bound is also tight for the model and observation error variance ratio

whereas the lower bound is a poor estimate of the σq/σo ratio.

We now demonstrate the bounds and Hessian condition number sensitivities to the

length of the assimilation window.

5.1.3.3 Experiment 3: Assimilation Window Length

We now examine the effects of assimilation window length on the condition number

of Sp.
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Figure 5.5: κ(Sp) as a function of assimilation window length, n. L(CB) = L(CQ) = ∆x.
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Figure 5.5 demonstrates the bounds in Theorem 5.1.3. The upper bound has the

term (n + 1)2, which shows that the bound is quadratically influenced by the

assimilation window length. We see that the actual condition number of Sp does

increase quadratically as the assimilation window length increases, for example

doubling the window from 50 to 100 sees approximately 4 times the increase in

the condition number of Sp from ∼ 500 to ∼ 2000. The upper bound has similar

behaviour which can be seen from the shape of the graph but it is not exactly

quadratic, doubling the window from 50 to 100 increases the upper bound from

∼ 1000 to ∼ 3500. The lower bound is uninformative.

5.1.4 Summary

We have obtained new general bounds on the condition number of the wc4DVAR

J (p) formulation. We then developed the bounds by making simple assumptions

about the observations, the nature of the model and the covariance matrices. This

was then extended to the specific case where the model is a 1D advection equation,

which is of relevance in NWP since advection is a physical process occurring in

numerous models describing atmospheric systems.

The theorems in this section extend the work of Haben et al. [41] on the condition

number of the standard 3DVAR and 4DVAR systems. We briefly discussed and

compared J (p) to the conventional sc4DVAR approach (2.8) in Section 5.1.2 using

the lower and upper bounds derived in [41] and the bounds we have derived in

Theorem 5.1.2. In sc4DVAR, σb

σo
is the only error variance ratio, which means if

the observations are accurate and/or the background error variance is large then

the condition number of the of Hessian of the sc4DVAR problem would rise. We

showed that for wc4DVAR there is an intricate balance to be considered for the

combination of the three ratios, σb

σq
, σb

σo
and σq

σo
. We showed that the magnitude

(whether small or large) of the difference between the error variances in wc4DVAR

directly effects the condition number of Sp.

The bounds in Theorem 5.1.2 also indicated the sensitivity of κ(Sp) to correlation
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length-scales of the background and model error covariance matrices since these

have a direct influence on κ(D) and hence κ(Sp). We have also shown for the

advection equation in Theorem 5.1.3, that the assimilation window length, n,

influences the condition number of Sp.

We now examine the preconditioned problem.

5.2 Theoretical Results: Bounding the

Condition Number of Ŝp

We recall the preconditioned Sp Hessian as in Chapter 4, Section 2.3.3 equation

(2.60),

Ŝp = I+D1/2L−THTR−1HL−1D1/2. (5.70)

The following result bounds the condition number of Ŝp,

Theorem 5.2.1 Let B0 ∈ R
N×N and Qi ∈ R

N×N for i = 1, .., n be our background

and static model error covariance matrices respectively. We assume q observations

are taken such that q < N with covariance Ri ∈ R
q×q thus R ∈ R

q(n+1)×q(n+1).

Let Hi = H ∈ R
q×N for i = 0, .., n, be the time invariant observation operator.

Finally, let Mi,i−1 =M ∈ R
N×N for i = 1, .., n, represent the time invariant model

equations. Then the following bounds are satisfied by the condition number of the

Hessian Ŝp:

1 +
1

q(n+ 1)

q(n+1)∑

i,j=1

(
R−1/2HL−1DL−THTR−1/2

)
i,j

≤ κ(Ŝp)

≤ 1 +
λmax(D)

λmin(R)
λmax(L

−TL−1) (5.71)

where R−1/2 is the symmetric square root of R−1.

Proof: Let E = R−1/2HL−1D1/2. We remember that since H is not full rank,
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λmin(E
TE) = 0. Therefore

κ(Ŝp) =
λmax(Ŝp)

λmin(Ŝp)
=

1 + λmax(E
TE)

1 + λmin(ETE)
= 1 + λmax(E

TE) = λmax(Ŝp), (5.72)

meaning the condition number of Ŝp is equal to its largest eigenvalue. Following

on from (5.72) and by Theorem 3.3.5 we deduce that

κ(Ŝp) = 1 + ||E||22
≤ 1 + ||R−1/2||22||H||22||L−1||22||D1/2||22. (5.73)

We know by the same argument in Section 5.1, equation (5.59) that

||H||2 = 1, (5.74)

and

||D1/2||22 = λmax(D), (5.75)

||R−1/2||22 = λmax(R
−1) =

1

λmin(R)
, (5.76)

since D and R are both symmetric. The upper bound is therefore

κ(Ŝp) ≤ 1 +
λmax(D)

λmin(R)
λmax(L

−TL−1), (5.77)

as required.

To obtain the lower bound we define

S̃p = I+ EET , (5.78)

which is also known as the preconditioned Hessian for the wc4DVAR dual space

formulation. This preconditioned Hessian is related to the lower-dimensional

alternative formulation for solving J (p). The wc4DVAR dual space formulation

has had recent research attention with respect to the iterative solvers and

preconditioners, [36].

By Theorem 3.4.3 we know that Ŝp ∈ R
N(n+1)×N(n+1) possesses the same non-unit

eigenvalues as S̃p ∈ R
q(n+1)×q(n+1), therefore κ(Ŝp) = λmax(S̃p). Additionally, E

TE

will have (N − q)(n+ 1) eigenvalues equal to zero. We obtain the lower bound on
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the condition number by applying the Rayleigh quotient to S̃p using a unit vector

y ∈ R
q(n+1), such that,

y =
1√

q(n+ 1)
(1, 1, . . . , 1). (5.79)

The Rayleigh Quotient is bounded by Theorem 3.4.7, so it follows that

κ(Ŝp) = λmax(S̃) ≥ R
S̃p
(y), (5.80)

where R
S̃p
(y) denotes the Rayleigh Quotient of S̃p using the vector y. Therefore

κ(Ŝp) ≥ R
S̃p
(y) = yT S̃py, (5.81)

= 1 +
1

q(n+ 1)

q(n+1)∑

i,j=1

(
R−1/2HL−1DL−THTR−1/2

)
i,j
, (5.82)

which completes the proof. �

The aim of preconditioning with D1/2 is to remedy the ill-conditioning that arises

from D. We see in the upper bound that preconditioning using D has alleviated

the dominating effect of κ(D) on the condition number of Ŝp. A new dependance

has been introduced, λmax(D)
λmin(R)

, which can be seen this by comparing the bounds

in Theorem 5.2.1 to Theorem 5.1.1. The ratio λmax(D)
λmin(R)

shown in the upper bound

indicates that if the observation errors are small with respect to the background

and model errors or vice versa, then the bound will also increase. We also see

there is a contribution of the eigenvalues of L although it is not yet clear how it

influences the condition number exactly.

We now make our assumptions more specific to obtain more informative bounds

on the condition number of Ŝp.

Theorem 5.2.2 Let B0 = σ2
bCB ∈ R

N×N and Q = σ2
qCQ ∈ R

N×N be

the background and model error covariance matrices where C is a valid error

correlation matrix on the unit circle and σ2
b , σ

2
q > 0 denote the respective error

variances. We assume q < N direct observations are taken with the same error

variance at each time step ti so Ri = σ2
oI ∈ R

q×q. Let Hi ∈ R
q×N such that

125



HiH
T
i = Iq and Mi,i−1 ∈ R

N×N denote the observation and model operators

respectively and Mi,i = IN . We then have the following bounds on the condition

number of Ŝp:

1 +
1

q(n+ 1)


σ

2
b

σ2
o

q(n+1)∑

i,j=1

(HC̃BH
T )i,j +

σ2
q

σ2
o

q(n+1)∑

i,j=1

(HC̃QH
T )i,j


 ≤ κ(Ŝp)

≤ 1 +
max

{
σ2
bλmax(CB), σ

2
qλmax(CQ)

}

σ2
o

(
n∑

k=0

||M ||k∞

)(
n∑

k=0

||M ||k1

)
(5.83)

where

C̃B =




CB CBMT
1,0 ... CBMT

n,0

M1,0CB M1,0CBMT
1,0 ... M1,0CBMT

n,0

M2CBMT
2

...
...

...
...

Mn,0CB Mn,0CBMT
1,0 ... Mn,0CBMT

n,0


 , (5.84)

C̃Q =




0 0 ... 0
0 CQ ... CQMT

n−1,0

... M1,0CQMT
1,0+CQ

...
...

...
...

0 Mn−1,0CQ ...
n−1∑
i=0

Mi,0CQMT
i,0



, (5.85)

and 0 is a zero matrix of appropriate size.

Proof: We let L−1DL−T = σ2
b C̃B + σ2

qC̃Q, thus allowing us to write the dual

formulation preconditioned Hessian as

S̃p = I+
1

σ2
o

H(σ2
b C̃B + σ2

qC̃Q)H
T . (5.86)

As in the previous proof, we apply the Rayleigh Quotient to S̃p using the unit

vector (5.79) to obtain the following expression

κ(Ŝp) ≥ R
S̃p
(y) = 1 +

1

q(n+ 1)

1

σ2
o

q(n+1)∑

i,j=1

(H(σ2
b C̃B + σ2

qC̃Q)H
T )i,j,

= 1 +
1

q(n+ 1)


σ

2
b

σ2
o

q(n+1)∑

i,j=1

(HC̃BH
T )i,j +

σ2
q

σ2
o

q(n+1)∑

i,j=1

(HC̃QH
T )i,j


 ,

(5.87)

which by the bounds of the Rayleigh Quotient as in (5.81), establishes the lower

bound.
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For the upper bound we know

λmax(D) = max
{
σ2
bλmax(CB), σ

2
qλmax(CQ)

}
, (5.88)

and

λmin(R) = σ2
o , (5.89)

which leaves us with

λmax(L
−TL−1) = ||L−1||22 ≤ ||L−1||1||L−1||∞. (5.90)

Using the argument in Section 5.1 equation (5.63) it follows that

||L−1||1||L−1||∞ ≤
(

n∑

k=0

||M ||k∞

)(
n∑

k=0

||M ||k1

)
, (5.91)

which completes the proof. �

The upper bound shows that if M is a contraction with respect to the 1-norm and

∞-norm, ||M || < 1, then for long assimilation windows the geometric series in the

upper bound of Theorem 5.2.2 will tend to 1−Mn+1

1−M
. However if ||M || ≥ 1 then

the series will increase, which will increase the upper bound as the assimilation

windows get longer. We also see that the lower and upper bounds are no longer

influenced by the condition number of D. The lower bound shows that the

constituents of the evolved error covariance matrices C̃B and C̃Q may contribute

to the magnitude of the lower bound. We can therefore see that

1. Increasing the number of observations q increases the number of summation

terms. With the increase in observations the H operator will change and

incorporate more terms from the evolved error covariance matrices which

could increase the lower bound, depending on the entries of the evolved

error covariance matrices.

2. The lower bound will increase if the ratios σb

σo
and σq

σo
increase. We notice

in comparison to the bounds of the unpreconditioned Hessian in Theorem

5.1.1, the ratio σq

σb
is no longer present.
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3. If the size of the entries in both the background and model error evolved

covariance matrices are large and positive, this will also increase the lower

bound.

4. Longer assimilation windows will increase the summation terms in the upper

bound. This increase will be more noticeable if the one and infinity norms

of M are larger than one.

We now derive bounds in the case where the model is a circulant matrix to obtain

more informative bounds.

Theorem 5.2.3 In addition to the assumptions in Theorem 5.2.2, we assume the

model operator Mi,i−1 ∈ R
N×N is a circulant matrix with Mi,i = I. The following

bounds on the condition number of Ŝp then hold:

1 + q
N(n+1)

1
σ2
o

(
σ2
bλmax(CB)γmin + σ2

qλmax(CQ)ωmin + σbσq
√
λmax(CB)λmax(CQ)φmin

)

≤ κ(Ŝp) ≤ 1 +
max

{
σ2
bλmax(CB), σ

2
qλmax(CQ)

}

σ2
o

(
n∑

k=0

||M ||k∞

)2

,

(5.92)

where

γmin =
n∑

i=0

|λmin(M)|2i, (5.93)

φmin =
n∑

i=1

n−i∑

j=0

|λmin(M)|2j.(2Re((λmin(M))i)), (5.94)

ωmin =
2∑

l=1

n∑

i=l

n−i∑

j=0

|λmin(M)|2j.(2Re((λmin(M))(l−1)i − 1). (5.95)

Proof: We begin by computing the Rayleigh Quotient of the preconditioned

Hessian

RŜp
(Vmax) =

V T
maxŜpVmax

V T
maxVmax

, (5.96)

128



where Vmax ∈ R
N(n+1) is a vector of eigenvectors which correspond to the largest

eigenvalues of B and Q such that

Vmax =




βmax

ξmax

...
ξmax


 , (5.97)

where βmax and ξmax refer to the eigenvector corresponding to the largest

eigenvalue of B and Q respectively. We now compute

V T
max[

1

σ2
o

D−1/2L−THTHL−1D−1/2]Vmax, (5.98)

in segments. We refer to the blocks of D−1/2L−THTHL−1D−1/2 as Ai,j, where i

refers to the block row and j refers to the block column. We recall the structure

of L−THTHL−1,




n∑
i=0

(HM i)THM i
n−1∑
i=0

(HM i+1)THM i
n−2∑
i=0

(HM i+2)THM i ... (HMn)TH

n−1∑
i=0

(HM i)THM i+1
n−1∑
i=0

(HM i)THM i
n−2∑
i=0

(HM i+2)THM i+1
...

...

n−2∑
i=0

(HM i)THM i+2
n−2∑
i=0

(HM i+1)THM i+2
n−2∑
i=0

(HM i)THM i
... (HM2)TH

...
... ... ... (HM)TH

HTHMn ... HTHM2 HTHM HTH




. (5.99)

Block A1,1 yields

βT
max[B

1/2

n∑

i=0

(HM i)THM iB1/2]βmax =
q

N
λmax(B)

n∑

i=0

|λk|2i, (5.100)

=
q

N
σ2
bλmax(CB)γk, (5.101)

where λk in this proof explicitly refers to the kth eigenvalue of the matrix M . We

denote eigenvalues of other matrices as λk(A), where A is the relevant matrix. The

calculation (5.100) is similar to calculations in the proof for Theorem 5.1.2, seen

in equations (5.15) and (5.16).

Since B and Q are symmetric, positive-definite and circulant we know,

βT
maxB

1/2 = σbβ
T
max

√
λmax(CB), (5.102)

B1/2βmax = σb
√
λmax(CB)βmax, (5.103)

by the circulant matrix eigendecomposition in Theorem 3.3.10. The other blocks

of (5.98) will yield expressions similar to (5.101) with mixed B1/2 and Q1/2 terms
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on either side of the observation and model operator matrices. We collate the

terms emerging from the computation of (5.98) by computing the first block row

and first block column together while omitting A1,1 computed in (5.101). The first

block row and column computation is as follows

ξTmax[Q
1/2

n−1∑

i=0

(HM i)THM i+1B1/2]βmax = λk
q

N

√
λmax(B)λmax(Q)

n−1∑

i=0

|λk|2i,

(5.104)

βT
max[B

1/2

n−1∑

i=0

(HM i+1)THM iQ1/2]ξmax = λ̄k
q

N

√
λmax(B)λmax(Q)

n−1∑

i=0

|λk|2i,

(5.105)

where (5.104) refers to block A1,2 and (5.105) refers to block A2,1. To represent

the emerging summation arising from the first row and column blocks,
n+1∑
i=1

Ai,2 and

n+1∑
j=1

A2,j, we write

q

N

√
λmax(B)λmax(Q)

(
n∑

i=1

n−i∑

j=0

|λk|2j.((λ̄k)i + (λk)
i)

)

=
q

N
σbσq

√
λmax(CB)λmax(CQ)

(
n∑

i=1

n−i∑

j=0

|λk|2j.(2Re(λk)i)
)

=
q

N
σbσq

√
λmax(CB)λmax(CQ)φk. (5.106)

Now we compute the remaining blocks
n+1∑
i,j=2

Ai,j. Block A2,2 yields

ξTmax[Q
1/2

n−1∑

i=0

(HM i)THM iQ1/2]ξmax =
q

N
σ2
qλmax(CQ)

n−1∑

i=0

|λk|2i, (5.107)

while block A2,3 yields

ξTmax[Q
1/2

n−2∑

i=0

(HM i+2)THM i+1Q1/2]ξmax = λ̄k
q

N
σ2
qλmax(CQ)

n−2∑

i=0

|λk|2i. (5.108)

Finally we have block A3,2,

ξTmax[Q
1/2

n−2∑

i=0

(HM i+1)THM i+2Q1/2]ξmax = λk
q

N
σ2
qλmax(CQ)

n−2∑

i=0

|λk|2i. (5.109)
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We write the summation that encompasses the main block diagonal,
n+1∑
i,j=2

Ai,j for i=j while excluding the first block, as

q

N
σ2
qλmax(CQ)

n∑

i=1

n−i∑

j=0

|λk|2j. (5.110)

For the remaining blocks, we examine the sub and super diagonals that sequentially

emanate from the main diagonal, which exclude the first block row and column

since they have been computed above,

A1,1 A1,2 A1,3 . . . A1,n+1

A2,1 A2,2 A3,2 . . . A2,n+1

A3,1 A3,2 A3,3 . . . A3,n+1

...
. . . . . . . . .

...

An+1,1 . . . . . . . . . An+1,n+1







.

A geometric progression in M and MT manifests itself, which when computing

the Rayleigh quotient presents a geometric progression in the eigenvalues of M ,

similar to that in Section 5.1 equation (5.17). This can be seen in the first terms

of the super and sub diagonals (5.108), (5.109) respectively. Summing together

the sums that arise from the super and sub-diagonals emanating from the main

diagonal consecutively, we arrive at the following expression:

q

N
σ2
qλmax(CQ)

n∑

i=2

n−i∑

j=0

|λk|2j.
(
2Re((λk)

i)
)
. (5.111)

We now combine (5.110) and (5.111) since they have the same coeffecients which

yields

ωk =
2∑

l=1

n∑

i=k

n−i∑

j=0

|λk|2j.
(
2Re((λk)

(l−1)i)− 1
)
. (5.112)

Combining (5.101), (5.106), (5.112) and knowing the denominator of the
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computation (5.98) is equal to (n+ 1), we have

R
S̃p
(Vmax) =

q

N(n+ 1)

1

σ2
o

(
σ2
bλmax(CB)γk + σ2

qλmax(CQ)ωk + σbσq

√
λmax(CB)λmax(CQ)φk

)
,

(5.113)

which by the bounds of the Rayleigh quotient, Theorem 3.4.7 gives,

R
S̃p
(Vmax) ≥ 1 +

q

N(n+ 1)

1

σ2
o

(σ2
bλmax(CB)γmin + σ2

qλmax(CQ)ωmin

+ σbσq

√
λmax(CB)λmax(CQ)φmin), (5.114)

establishing the lower bound.

For the upper bound we recognise that for a circulant matrix C ∈ R
N×N as in

Definition (3.3.7), the following is always true:

||C||∞ = ||C||1. (5.115)

The upper bound in Theorem (5.2.2) becomes

κ(Ŝp) ≤ 1 +
max

{
σ2
bλmax(CB), σ

2
qλmax(CQ)

}

σ2
o

(
n∑

k=0

||M ||k∞

)2

, (5.116)

which completes the proof, as required. �

In both the upper and lower bounds the contribution of the eigenvalues and norm

ofM are influential. Thus the effect of the assimilation window length still exists in

both bounds, and the lower bound has a further dependency on the eigenvalues of

M . The lower bound operators γ, ω and ψ all depend on the assimilation window

length and the size of the smallest eigenvalue of M , all multiplied by either the

largest eigenvalue of the background or model error covariance matrices. The

upper bound is much clearer in that it quadratically depends on the infinity-norm

of M . Therefore the only definitive message we can deduce here is that bounds

suggest that the assimilation window length will increase the condition number.

The bounds also suggest that the condition number of D no longer affects κ(Sp).

We instead have the ratio
max{σ2

b
λmax(CB),σ2

qλmax(CQ)}
σ2
o

now influencing both bounds.
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In a bid to extract more meaningful information we now deduce bounds using the

1D advection model.

Theorem 5.2.4 In addition to the assumptions in Theorem 5.2.2, we assume the

model operatorMi,i−1 ∈ R
N×N represents the matrix presented by the discretisation

of the advection equation using the upwind scheme, (3.71) with Mi,i = I. Then

for Courant number µ ∈ (−1, 0) the following bounds on the condition number of

Ŝp therefore hold:

1 +
q

N(n+ 1)

1

σ2
o

(
σ2
bλmax(CB)γ

adv
min + σ2

qλmax(CQ)ω
adv
min + σbσq

√
λmax(CB)λmax(CQ)φ

adv
min

)

≤ κ(Ŝp) ≤ 1 +
max

{
σ2
bλmax(CB), σ

2
qλmax(CQ)

}

σ2
o

(n+ 1)2 (5.117)

where

γadvmin =
1− |1 + 2µ|2(n+1)

1− |1 + 2µ|2 , (5.118)

φadv
min =

n∑

i=1

(2(1 + 2µ)i).

(
1− |1 + 2µ|2(n−i+1)

1− |1 + 2µ|2
)
, (5.119)

ωadv
min =

(
1− |1 + 2µ|2n
1− |1 + 2µ|2

)
+

n∑

i=2

(2(1 + 2µ)i).

(
1− |1 + 2µ|2(n−i+1)

1− |1 + 2µ|2
)
. (5.120)

Proof: The absolute row and column sums of a circulant matrix are all equal. For

the advection equation we know

||M ||∞ = (1 + µ) + (−µ) = 1. (5.121)

We compute the geometric series in Theorem (5.2.3) for the advection equation,

n∑

i=0

||M ||i∞ =
n∑

i=0

(1)i = n+ 1, (5.122)

substituting this into Theorem (5.2.3), we establish the upper bound

κ(Ŝp) ≤ 1 +
max

{
σ2
bλmax(CB), σ

2
qλmax(CQ)

}

σ2
o

(n+ 1)2. (5.123)

For the lower bound we have

λmin(M)





= 1 + 2µ (for N even)

≥ 1 + 2µ1−|1+2µ|2(n+1)

1−|1+2µ|2
(for N odd)

(5.124)
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We substitute λmin(M) = 1 + 2µ, into the lower bound expression presented in

Theorem 5.2.3 and compute the values of γmin, φmin and ωmin:

γadvmin =
n∑

i=0

|1 + 2µ|2i = 1− |1 + 2µ|2(n+1)

1− |1 + 2µ|2 , (5.125)

and

φadv
min =

n∑

i=1

n−i∑

j=0

|1 + 2µ|2j.(2(1 + 2µ)i) =
n∑

i=1

(2(1 + 2µ)i).

(
1− |1 + 2µ|2(n−i+1)

1− |1 + 2µ|2
)
,

(5.126)

and

ωadv
min =

2∑

l=1

n∑

i=k

n−i∑

j=0

|1 + 2µ|2j.(2Re(1 + 2µ)(l−1)i − 1), (5.127)

=
n∑

i=1

n−i∑

j=0

|1 + 2µ|2j +
n∑

i=2

n−i∑

j=0

|1 + 2µ|2j.(2(1 + 2µ)i − 1), (5.128)

=
n∑

i=1

(
1− |1 + 2µ|2(n−i+1)

1− |1 + 2µ|2
)
+

n∑

i=2

(
1− |1 + 2µ|2(n−i+1)

1− |1 + 2µ|2
)
.(2(1 + 2µ)i − 1),

(5.129)

=

(
1− |1 + 2µ|2n
1− |1 + 2µ|2

)
+

n∑

i=2

(
1− |1 + 2µ|2(n−i+1)

1− |1 + 2µ|2
)
.(2(1 + 2µ)i), (5.130)

which completes the proof. �

We see here that the lower bound is similar to that of the unpreconditioned Hessian

in Theorem 5.1.3, in that the parameters γ, ω and ψ all involve the Courant number

and the length of the assimilation window governs the number of terms in the sum.

These parameters can be amplified or otherwise by the largest eigenvalue of B and

Q.

The upper bound is also similar to the upper bound in Theorem 5.1.3, showing

the quadratic influence of the assimilation window length which can be amplified

or otherwise by the size of the ratio
max{σ2

b
λmax(CB),σ2

qλmax(CQ)}
σ2
o

. We also see that

κ(D) is absent from both bounds as expected.

We now demonstrate the bounds through numerical experiments on the condition

number of Ŝp.
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5.2.1 Numerical Results

The parameter settings for the experiments in this section are identical to the

settings in Section 5.1.3 unless stated otherwise. We show the alleviation of the

sensitivities previously exhibited by Sp in the preconditioned Hessian Ŝp, while

also demonstrating the quality of the theoretical bounds obtained in the previous

section.

5.2.1.1 Experiment 1: Correlation Length-Scales

We begin by showing the sensitivity of the condition number of Ŝp to increasing

the correlation length-scales of the matrices composing D.
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(a) L(CQ) = ∆x/2, while L(CB) varies. (b) L(CB) = ∆x/2, while L(CQ) varies.

(c) L(CB) and L(CQ) varying.

Figure 5.6: Graph (a) and (b) κ(Ŝp) (black line) and theoretical bounds (red dotted lines)

plotted against L(CB) (a) and L(CQ) (b). Graph (c) is a 3D representation of (a) and (b), κ(Ŝp)
(blue surface) with theoretical bounds (red-mesh surfaces), against L(CB) and L(CQ).

We state the correlation length-scales in terms of the grid spacing of the model, so

for example ∆x = 0.1. In Figure 5.6(a) the condition number rises more rapidly

in comparison to 5.6(b) since CB = CSOAR is known to be more ill-conditioned

than CQ = CLAP , [41]. The main message from Figures 5.6(a) and 5.6(b) is that

the rise in correlation length-scale of the correlation matrices composing D now

has a greatly reduced effect on κ(Ŝp) compared to κ(Sp) as shown in Section 5.1.3,
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Figure 5.1. We also see that the bounds for κ(Ŝp) are a good estimate of the

condition number.

5.2.1.2 Experiment 2: Assimilation Window Length and Observation

Density

We now examine the effects of varying observation density and assimilation window

length on the condition number of Ŝp.

(a)

Figure 5.7: κ(Ŝp) (blue surface) and theoretical bounds (red-mesh surfaces) with assimilation
window length, n, and number of spatial observations, q.

Figure 5.7 shows that the condition number of Ŝp grows as the assimilation window

length increases and as the number of spatial observations at every assimilation

step is increased. This is not dissimilar from the unpreconditioned problem

as shown in Section 5.1.3, Figure 5.5. The bounds in Theorem 5.2.3, show a
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dependence on the assimilation window length, the upper bound shows a potential

quadratic influence on the assimilation window length, which becomes much clearer

in the upper bound of Theorem 5.2.4. Examining Figure 5.7 further, we see a

quadratic increase of the actual condition number of κ(Ŝp) for example with 500

observed points at n = 50, κ(Ŝp) = 2026, and at n = 100 κ(Ŝp) = 8056.

In this section we have demonstrated the bounds derived in Section 5.2 of the

preconditioned Hessian Ŝp.

5.2.2 Summary

We have shown through numerical experiments that the original exhibited

sensitivity of the unconditioned Hessian Sp to D has been greatly reduced. The

absence of κ(D) can be seen in Theorems 5.2.1, 5.2.2 and 5.2.3 when compared to

the bounds derived for the unconditioned Hessian in Section 5.1. The numerical

experiments in Figure 5.6 compared to Figure 5.1 also confirm the alleviation of

the sensitivity of κ(Sp) to κ(D), since the rise in correlation length-scale increases

κ(D) (shown in Figure 5.1).

The preconditioner chosen in this thesis does not address any ill-conditioning

which could arise from the second term of Sp. We see that Sp and Ŝp both

exhibit sensitivities to the length of the assimilation window and the spatial

observation density through the theory (Theorems 5.2.2 and 5.1.2) and in Figures

5.7 and Figure 5.5 in Section 5.1.3. This is an inherent trait of Sp as well as the

preconditioned Hessian Ŝp.

We also notice in the experiments that the lower bound is usually poorer than the

upper bound. The Rayleigh quotient was used to obtain the lower bound, while

the Courant Fischer theorem (Theorem 3.4.2) was used to obtain the upper bound.

Although the Rayleigh quotient yields expressions that have aided in our analysis,

it has proven to be a poorer estimator than the Courant Fisher theorem.
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We now show results of the effect of the condition number sensitivities found in

this chapter on the minimisation of J (p) and its preconditioned counter-part.

5.3 Convergence Results: Model Error

Formulation vs Preconditioned Model Error

formulation

We begin by designing numerical experiments for both the unpreconditioned

problem J (p) and the preconditioned problem Ĵ(δz). We perform data

assimilation experiments which focus on the minimisation problems J (p) and

Ĵ(δz), rather than experiments on the Hessian themselves. We now discuss the

experimental design for our experiments.

5.3.1 Experimental Design

The model is the 1-dimensional linear advection equation discretised using the

upwind scheme, yielding a matrix M as in (3.71). The spatial domain is size

N = 50 with a spatial resolution of ∆x = 0.01. We use time-intervals of ∆t = 0.01

and a wave speed of a = −1, thus giving us a Courant number of µ = −1.

We choose the the background error, B0 = σ2
bCSOAR, such that the correlation

length-scale L = ∆x = 0.01 and σb = 1. The model error, Qi = σ2
qCLAP is such

that the correlation length-scale L = ∆x = 0.01 and σq = 1. The observation

error is such that Ri = σ2
oI, where σo = 1. We take observations every ∆q = 3

model time-steps, n = 60 in total, with 5 equally spaced observed grid-points out

of N = 50 grid-points per assimilation step.

We use the linear CG method as described in Section 3.2.1 to minimise J (x),

with a iterative minimisation tolerance (as described in Chapter 3, Section 3.2.4)
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of τ = 10−10 throughout this section. The solution relative errors is calculated in

the same way as shown in Chapter 4 Section 4.1.6.

5.3.2 Experimental Results 1: Correlation Length-Scales

We now examine the effect of varying correlation length-scales of the background

and model error covariance matrices composing D on minimisation problems J (p)

and Ĵ(δz).

The model error length-scale remains at L(CQ) = ∆x/2, while we vary the

background correlation length-scale L(CB) to understand the impact it has on

the minimisation process. From the insight gained through the bounds in Sections

5.1 and 5.2, we expect the rise in correlation length-scale to increase the condition

number and increase the number of iterations required for convergence of the

unpreconditioned problem but not for the preconditioned problem.

Correlation length-scale No. of iterations Solution relative error Condition number

L(CB) J (p) Ĵ(δz) J (p) Ĵ(δz) Sp Ŝp D

0.01 47 22 0.12 0.12 294 18 58

0.02 85 24 0.13 0.13 2047 32 837

0.03 116 26 0.13 0.13 6967 102 4323

0.04 138 26 0.14 0.14 17558 236 13889

0.05 155 27 0.13 0.13 37483 455 33665

0.06 189 28 0.14 0.14 70892 783 67961

0.07 204 29 0.14 0.14 121743 1239 121022

0.08 214 29 0.14 0.14 193774 1846 196977

0.09 231 29 0.13 0.13 290579 2626 299839

0.10 246 29 0.14 0.14 415651 3598 433526

Table 5.1: Convergence Figures: Varying correlation length-scales

We see in Table 5.1 that as the correlation length-scale of the background matrix

increases to L(CB) = 10∆x, the condition numbers of the unconditioned Hessian,

the preconditioned Hessian and D all increase. The condition number of Ŝp is

O(103) smaller than the other condition numbers as early as L(CB) = 4∆x. The

number of iterations for Ĵ(δz) are of order O(10) less than J (p). We also see
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the solution accuracies are not effected since we are solving to the same solution

accuracy.

We can conclude that as the condition number of D increases, the condition

numbers of Sp and Ŝp and the number of iterations to minimise J (p) and Ĵ(δz)

also increase respectively. The preconditioned Hessian condition number increases

at a much reduced rate and the number of iterations of the preconditioned problem

barely increase at all.

5.3.3 Experimental Results 2: Assimilation Window

Length

We now show the effect of the length of the assimilation window on the

minimisation problem. From our results on the condition number both

theoretically and numerically, we know that the length of the assimilation window

increases the condition number of Sp and Ŝp. We also expect that this will increase

the number of iterations required for convergence.

The experiment parameters are identical to the previous experiment with L(CB) =

L(CQ) = ∆x.

Assimilation window length No. of iterations Solution relative error Condition number

n J (p) Ĵ(δz) J (p) Ĵ(δz) Sp Ŝp

1 43 7 0.35 0.35 58 6

10 46 18 0.20 0.20 135 8

20 48 23 0.11 0.11 317 19

30 54 27 0.07 0.07 611 37

40 57 30 0.05 0.05 1016 63

50 59 32 0.04 0.04 1529 96

60 63 35 0.03 0.03 2150 135

70 66 39 0.03 0.03 2879 182

80 71 42 0.02 0.02 3717 236

90 70 43 0.02 0.02 4663 296

Table 5.2: Convergence figures: Varying assimilation window length
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We see from Table 5.2 that as the assimilation window length increases so do

the number of iterations to minimise J (p) and Ĵ(δz). We also see that the

numerical condition numbers of both Sp and Ŝp increase. The rate of increases in

the condition numbers of Sp and Ŝp differ in that Sp increases much more rapidly,

as we expected. However, the rate of increase in the number of iterations required

for convergence of J (p) and Ĵ(δz) are very similar. We also see a decrease in the

overall relative solution error as the length of the assimilation window increases,

by an order of magnitude for both quantities.

We conclude that as the assimilation window is lengthened the condition numbers

of both the unconditioned and preconditioned problems both increase, as do the

number of iterations to solve both problems to the same iterative tolerance. We

also conclude that as the assimilation window increases then the relative solution

error decreases, as observed in Chapter 4, Experiment 3. The reason for the

decrease in relative solution error however, is because the algorithms are permitted

to iterate until the tolerance is reached without stopping it prematurely.

We now summarise this chapter.

5.4 Summary

The aim of this chapter was to explore the sensitivities of the problem J (p) by

bounding the condition number of the Hessian matrix (2.38). Since the eigenvalues

and eigenvectors of the Hessian matrices of these large non-linear least squares

problems are not explicitly known, we bounded the condition number as an

estimator.

We derived bounds for the unconditioned Hessian Sp. We then chose a

route of preconditioning that alleviates the evidently strong dependance of Sp

on the matrix D. We also derived bounds on the resultant preconditioned

Hessian Ŝp. The sensitivities exposed by the bounds were demonstrated through
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numerical experiments using the 1D advection equation. Through the bounds, we

demonstrated the following sensitivities both theoretically and numerically:

1. Error variance ratios.

2. Correlation length-scales.

3. Assimilation window length.

More specifically we showed:

1. As the error variance ratio of the background and model error σb/σq increases,

so does the condition number of Sp.

2. As the observation error variance σo decreases, the condition number of Sp

increases. This is because decreasing σo increases the size of the ratio

max /min
{
σ2
bλmin(CB), σ

2
qλmin(CQ)

}

σo
.

This sensitivity also holds for the Hessian of the preconditioned problem Ŝp.

3. Increasing the correlation length-scale of the background error covariance

matrix increases the condition number of D and hence Sp.

4. Increasing the correlation length-scale of the model error covariance matrix

increases the condition number of D and hence Sp.

5. Increasing the length of the assimilation window increases the condition

number of Sp.

6. Preconditioning with D improves condition number sensitivity to an

ill-conditioned D matrix. The condition number of Ŝp was shown to have

greatly reduced sensitivity to increasing correlation length-scales in the

background and model error covariance matrices compared with Sp.

In addition to analysing the condition number of the unconditioned and

preconditioned Hessians, we showed that the convergence of the preconditioned
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problem Ĵ(δz) is no longer sensitive to the increase in correlation length-scale of

the matrices insideD, and hence the condition number ofD. The convergence rate

is much improved for the preconditioned problem Ĵ(δz) over the original problem

J (p). We also showed that the condition number of the preconditioned problem

is still sensitive to the length of the assimilation window and spatial observation

density, which in turn was shown to affect the number of iterations required to

converge.

This concludes the analysis of the Hessian condition number and convergence

rates of the wc4DVAR J (p) formulation and its preconditioned counter-part

complement. It is important to realise that these results are illustrative examples

of the behaviour we expected to see from the theory we have derived. We now

consider the alternative formulation J (x), (2.33).
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Chapter 6

Conditioning of the State

Formulation: J (x)

The previous chapter was dedicated to the conditioning of the Hessian Sp. We

bounded the condition number of Sp and uncovered the parameters exhibiting

the largest sensitivities with respect to the Hessian condition number. We found

the Hessian Sp to be sensitive to the D matrix, containing the background and

model error correlations. We then preconditioned the Hessian using the symmetric

square root of D which improved the condition number sensitivity characteristics

with respect to the condition number of D. We then demonstrated the sensitivities

obtained from the bounds through numerical experiments on the condition number.

We further demonstrated the effect of some of these sensitivities on the number of

iterations required for convergence.
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In this chapter we bound the condition number of

Sx =




B−1
0 +MT

1 Q−1
1 M1 −MT

1 Q−1
1

−Q−1
1 M1 Q−1

1 +MT
2 Q−1

2 M2 −MT
2 Q−1

2

... ... ...
...

−Q−1
n−1Mn−1 Q−1

n−1+MT
n Q−1

n Mn −MT
n Q−1

n

−Q−1
n Mn Q−1

n




+




HT
0 R−1

0 H0

HT
1 R−1

1 H1

...
HT

n R−1
n Hn


 . (6.1)

Through bounding the condition number of Sx we uncover the parameter

sensitivities and demonstrate these through numerical experiments on the

condition number. We then show that these sensitivities can also effect the

minimisation of J (x) by examining their effect on the number of iterations required

for convergence and solution accuracy.

We begin by deriving new bounds on the condition number of Sx.

6.1 Theoretical Results: Bounding the

Condition Number of Sx

The following theorem bounds the spectral condition number of Sx,

Theorem 6.1.1 Let D ∈ R
N(n+1)×N(n+1) be our background and model error

covariance matrix. Suppose we take q < N observations at each time interval

ti for i = 0, ..., n, with observation error covariance Ri ∈ R
q×q. Let Hi ∈ R

q×N for

i = 0, .., n, be the observation operator. Finally, let Mi ∈ R
N×N for each time step

i = 1, .., n represent the model equations. Then the following bounds are satisfied

by the spectral condition number of Sx:

λmax(L
TD−1L)

λmin(LTD−1L) + λmax(HTR−1H)
≤ κ(Sx) ≤

λmax(L
TD−1L) + λmax(H

TR−1H)

λmin(LTD−1L)
,

(6.2)
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Proof: We begin by bounding λmin(Sx) and λmax(Sx) using Theorem 3.4.2,

yielding

λmin(L
TD−1L) + λmin(H

TR−1H) ≤λmin(Sx)

≤ λmin(L
TD−1L) + λmax(H

TR−1H−1),

(6.3)

and

λmax(L
TD−1L) + λmin(H

TR−1H) ≤λmax(Sx)

≤ λmax(L
TD−1L) + λmax(H

TR−1H). (6.4)

We take the upper bound of λmax(Sx) and lower bound of λmin(Sx) to give us an

upper bound on the condition number of Sx

κ(Sx) ≤
λmax(L

TD−1L) + λmax(H
TR−1H)

λmin(LTD−1L) + λmin(HTR−1H)
, (6.5)

similarly for the lower bound on κ(Sx), we take the lower bound of λmax(Sx) and

upper bound of λmin(Sx) yielding

κ(Sx) ≥
λmax(L

TD−1L) + λmin(H
TR−1H)

λmin(LTD−1L) + λmax(HTR−1H)
. (6.6)

Our assumption on the observation operator was that we take less observations

than the state vector, q < N . So HTR−1H will be rank deficient, a singular matrix

with possibly more than one zero eigenvalue, thus λmin(H
TR−1H) = 0. Therefore,

λmax(L
TD−1L)

λmin(LTD−1L) + λmax(HTR−1H)
≤ κ(Sx) ≤

λmax(L
TD−1L) + λmax(H

TR−1H)

λmin(LTD−1L)
,

(6.7)

as required. �

Comparing these bounds to the bounds in Theorem 5.1.1, we notice the emphasis

here is on the extreme eigenvalues of the term LTD−1L, where in the Sp bounds

the emphasis was clearly on κ(D). The bounds in Theorem 6.1.1 can be expressed

such that

κ(LTD−1L)

1 + λmax(HTR−1H)
λmin(LTD−1L)

≤ κ(Sx) ≤ κ(LTD−1L)

(
1 +

λmax(H
TR−1H)

λmax(LTD−1L)

)
, (6.8)
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which shows the influence of κ(LTD−1L), instead of just κ(D) when compared to

Theorem 5.1.1. We also see that as λmax(H
TR−1H) → 0 both bounds tend to the

condition number of LTD−1L. Therefore the bounds in Theorem 5.1.1 show that

the condition number of Sx depends heavily on κ(LTD−1L).

We now make more specific assumptions to obtain a more meaningful estimate on

the condition number of Sx

Theorem 6.1.2 Let B0 ∈ R
N×N be the background error covariance matrix such

that B0 = σ2
bCB, where CB is a symmetric, positive-definite circulant matrix and

σ2
b > 0 is the background error variance. Let Qi ∈ R

N×N be the model error

covariance matrix such that Qi = σ2
qCQ, for i = 1, ..., n, where CQ is a symmetric,

positive-definite circulant matrix and σ2
q > 0 is the model error variance. Assume

q < N observations are taken with the same uncorrelated error variance at each

time interval such that Ri ∈ R
q×q, Ri = σ2

oIq for i = 0, ..., n, where Iq is a q × q

identity matrix and q < N . Assume that observations of the parameter are made

at the same grid points at each time interval such that HT
i Hi = HTH ∈ R

N×N , so

HTH is a diagonal matrix with unit entries at observed points and zeros otherwise.

Finally, we assume that Mi = M ∈ R
N×N for i = 1, .., n and M0 = IN where M

is a circulant matrix. Then the following bounds hold on the spectral condition

number of Sx

σ2
q

σ2
o

q(n+1)
N

+n
(
λmax(C

−1
Q

)+λmin(M
TC−1

Q
M)−2λmax(C

−1
Q

)Re(λmin(M))
)
+2λmax(C

−1
Q

)Re(λmin(M))+
σ2
q

σ2
b

λmax(C
−1
B

)

σ2
q

σ2
o

q(n+1)
N

+n
(
λmin(C

−1
Q

)+λmax(MTC−1
Q

M)−2λmin(C
−1
Q

)Re(λmax(M))
)
+2λmin(C

−1
Q

)Re(λmax(M))+
σ2
q

σ2
b

λmin(C
−1
B

)
≤

κ(Sx) ≤
λmax

(
Sx(i,i)

)
+ 2σ−2

q λmax(C
−1
Q )λmax(M)

λmin(LTD−1L)
(6.9)

where Sx(i,i) for i = 1, ..., n+ 1 refers to the main block diagonal entries of Sx.

Proof: We begin by applying Theorem 3.4.9 with the intent of improving the

upper bound on the spectral condition number of Sx. Let Gi be the set of

Gershgorin circles such that

Gi : ||(Sx(i,i) − λI)−1||−1 ≤
n∑

i 6=j
j=1

||Sx(i,j)||, (6.10)
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where λ ∈ [λmin(Sx), λmax(Sx)] and Sx(i,j) refers to the block matrix on the ith

block row and jth block column. The left hand side of (6.10) for Sx yields

||(Sx(i,i) − λI)−1||−1
2 =

√
λmin

(
(Sx(i,i) − λI)H(Sx(i,i) − λI)

)
. (6.11)

To obtain an expression for the minimum eigenvalue we define eigenvectors xik with

corresponding eigenvalues µ
(i,i)
k of Sx(i,i) for i = 1, ..., n + 1 and k = 1, ..., N . It

follows that

(
Sx(i,i) − λI

)
xik = (µ

(i,i)
k − λ)xik, (6.12)

(xik)
H
(
Sx(i,i) − λI

)H
= (µ̄

(i,i)
k − λ̄)(xik)

H , (6.13)

and therefore

λmin

(
(Sx(i,i) − λI)H(Sx(i,i) − λI)

)
= min

i,k

√
(µ

(i,i)
k − λ)(µ̄

(i,i)
k − λ̄)(xik)

Hxik
(xik)

Hxik
, (6.14)

= min
i,k

|µ(i,i)
k − λ|. (6.15)

To further illustrate the meaning of (6.15), we list the constituents of the set of

Geršgorin circles Gi,

Gi : min
{
|µ(1,1)

1 − λ|, ..., |µ(1,1)
N − λ|, |µ(2,2)

1 − λ|, ..., |µ(2,2)
N − λ|, ...,

..., |µ(n+1,n+1)
1 − λ|, ..., |µ(n+1,n+1)

N − λ|
}
≤

n∑

i 6=j
j=1

||Sx(i,j)||2 (6.16)

where µ
(i,i)
1,...,N ∈ [λmin(Sx(i,i)), λmax(Sx(i,i))].

The eigenvalues of Sx will always satisfy the inequality (6.16) above. This

expression forms the set Gi which composes the well-known ‘Geršgorin circles’

in the complex plane. It is understood from the conventional scalar Geršgorin

circle theorem that the eigenvalues will lie in the union of these regions Gi. The

block analogue of the Geršgorin theorem as used here is no different. There will

be N(n+1) Geršgorin circles for Sx in total with centres µ
(i,i)
1,...,N and corresponding

radiuses such that

rj =
n+1∑

i 6=j
j=1

||Sx(i,j)||2. (6.17)
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We know the eigenvalues of Sx will lie on the positive real line since it is positive

definite. Using (6.16) and recalling that Sx is block tri-diagonal, we have the

following Geršgorin circles:

|µ(1,1)
1,...,N − λ| ≤ ||Sx(1,2)||2, (6.18)

|µ(2,2)
1,...,N − λ| ≤ ||Sx(2,1)||2 + ||Sx(2,3)||2, (6.19)

...

|µ(n,n)
1,...,N − λ| ≤ ||Sx(n,n−1)||2 + ||Sx(n,n+1)||2, (6.20)

|µ(n+1,n+1)
1,...,N − λ| ≤ ||Sx(n+1,n)||2, (6.21)

all or some of which could contain a certain number of eigenvalues of Sx, but the

union of which will definitely contain all the eigenvalues of Sx.

We now turn our attention to the radii. We know that for any A ∈ R
m×m,

AT shares the same determinant and the same eigenvalues albeit with different

eigenvectors. It follows that the eigenvalues of ATA are the same as the eigenvalues

of AAT . Therefore the 2-norm of all the terms not on the main block diagonal are

equal since,

|| −MTQ−1||2 = || −Q−1M ||2. (6.22)

The two terms in (6.22) are the only two possible off-diagonal block terms in Sx.

The two possible radii for the main block diagonal terms are

||Sx(1,2)||2 = ||Sx(n+1,n)||2, (6.23)

||Sx(i,i−1)||2 + ||Sx(i,i+1)||2 (for i = 2, ..., n). (6.24)

The expression (6.23) refers to the smaller radii associated with blocks Sx(1,1) and

Sx(n+1,n+1). The larger radius is associated with the remaining blocks Sx(i,i), for

(i = 2, ..., n).

To compute an explicit expression for the radii, we utilise the fact that

our covariance and model matrices are circulant and have the Fourier
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eigendecomposition structure as in Theorem 3.3.10,

||Sx(1,2)||2 = || −MTQ−1||2 = | − σ−2
q |.||MTC−1

Q ||2,

= σ−2
q ||FΛH

MΛ−1
CQ
FH ||2,

= σ−2
q

√
λmax

(
(FΛH

MΛ−1
CQ
FH)H(FΛH

MΛ−1
CQ
FH)

)
,

= σ−2
q

√
|λmax(C

−1
Q )|2|λmax(M)|2,

= σ−2
q |λmax(C

−1
Q )||λmax(M)|, (6.25)

where ΛM denotes the diagonal matrix containing the eigenvalues of M . We

observe that the blocks Sx(1,1) and Sx(n+1,n+1) will yield the same term on the

right-hand side of the block Geršgorin theorem. The blocks Sx(i,i) for i = 2, ..., n

will yield a term that is exactly twice as large.

The eigenvalue λmax(Sx) is bounded above by the edge of the Geršgorin circle

furthest from the origin on the positive real line. So the quantity we are interested

in for the upper bound is

λmax(Sx) ≤ max




||(Sx(i,i) − λI)−1||−1

2 +
n∑

i 6=j
j=1

||Sx(i,j)||2




, (6.26)

≤ max
{
||(Sx(i,i) − λI)−1||−1

2

}
+max





n∑

i 6=j
j=1

||Sx(i,j)||2




. (6.27)

The Geršgorin circle furthest from the origin on the positive real line will be the

largest eigenvalue of the main diagonal blocks of Sx, denoted λmax

(
Sx(i,i)

)
, plus

its radius. Therefore,

λmax(Sx) ≤ λmax

(
Sx(i,i)

)
+ 2|| −MTQ−1||2, (6.28)

≤ λmax

(
Sx(i,i)

)
+ 2σ−2

q |λmax(C
−1
Q )||λmax(M)|. (6.29)

where

λmax

(
Sx(i,i)

)
= max

{
λmax(B

−1 +MTQ−1M +HTR−1H),

λmax(Q
−1 +MTQ−1M +HTR−1H),

λmax(Q
−1 +HTR−1H)

}
. (6.30)
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We now have a bound on the largest eigenvalue of Sx. We combine this with the

bound on λmin(Sx) in (6.3) to obtain

κ(Sx) ≤
λmax

(
Sx(i,i)

)
+ 2σ−2

q |λmax(C
−1
Q )||λmax(M)|

λmin(LTD−1L)
, (6.31)

which establishes the upper bound.

For the lower bound we apply the Rayleigh quotient to Sx. We choose a vector

ỹ ∈ R
N(n+1) such that

ỹ =

( y1

...
yn+1

)
. (6.32)

The constituent vectors yi ∈ R
N are chosen such that y1 is the orthonormal

eigenvector corresponding to λmax(B
−1) and yi for i = 2, ..., n + 1 is the

orthonormal eigenvector corresponding to λmax(Q
−1). So we have

RSx
(ỹ) =

ỹH
(
LTD−1L+HTR−1H

)
ỹ

ỹH ỹ
, (6.33)

yielding

ỹH
(
LTD−1L+HTR−1H

)
ỹ = (6.34)

yH
1

(
B−1 +MTQ−1M +HTR−1H

)
y1

+
∑n

i=2 y
H
i

(
Q−1 +MTQ−1M +HTR−1H

)
yi

+ yH
n+1

(
Q−1 +HTR−1H

)
yn+1





f1

+
∑n

i=1 y
H
i+1(−Q−1M)yi

}
f2

+
∑n

i=1 y
H
i (−MTQ−1)yi+1

}
f3 , (6.35)

which we have segmented for clarity of calculation. The terms forming f1 come

from the main block diagonal, whereas f2 and f3 come from the sub-diagonal and

super-diagonal terms of Sx, respectively.

Taking each term in f1, we have

yH
1

(
B−1 +MTQ−1M +HTR−1H

)
y1

= λmax(B
−1) + λa(M

TQ−1M) + σ−2
o

q

N
, (6.36)
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and
n∑

i=2

yH
i

(
Q−1 +MTQ−1M +HTR−1H

)
yi

= (n− 1)
(
λmax(Q

−1) + λb(M
TQ−1M) + σ−2

o

q

N

)
, (6.37)

and finally

yH
n+1

(
Q−1 +HTR−1H

)
yn+1 = λmax(Q

−1) + σ−2
o

q

N
, (6.38)

where λa, λb ∈ R are some arbitrary eigenvalues of MTQ−1M . Therefore,

f1 = λmax(B
−1) + λa(M

TQ−1M) + λmax(Q
−1) + 2σ−2

o

q

N

+ (n− 1)
(
λmax(Q

−1) + λb(M
TQ−1M) + σ−2

o

q

N

)
. (6.39)

We now compute f2. Notice that due to our choice of ỹ, the first constituent of y,

namely y1 is the only vector that is different to the other yi for i = 2, ..., n+ 1, so

the first term in the sum f2 is

yH
2 (−Q−1M)y1 = 0, (6.40)

since we chose the vectors in y to be orthonormal. The remaining constituent

vectors of y are all identical, and will therefore yield non-zero terms,

f2 =
n∑

i=2

yH
i+1(−Q−1M)yi = −

n∑

i=2

(
λ̄max(Q

−1)λc(M)
)
yH
i+1yi,

= −(n− 1)(λmax(Q
−1)λc(M)), (6.41)

where λc(M) ∈ C is some arbitrary eigenvalue of M and λ̄max(Q
−1) = λmax(Q

−1)

since Q is a symmetric positive-definite matrix. Similarly for f3, we have

f3 =
n∑

i=2

yH
i+1(−MTQ−1)yi = −(n− 1)(λmax(Q

−1)λ̄c(M)), (6.42)

which when combined with f2 gives us

f2 + f3 = −2(n− 1)λmax(Q
−1)Re(λc(M)), (6.43)

where Re(λc(M)) denotes the real part of λc(M) ∈ C. Combining f1, f2 and f3,

we have the following expression for the Rayleigh quotient (6.33),

RSx
(ỹ) =

1

n+ 1

[
(n− 1)

(
λmax(Q

−1)(1− 2Re(λc(M))) + λb(M
TQ−1M) + σ−2

o

q

N

)

+ λmax(Q
−1) + λmax(B

−1) + λa(M
TQ−1M) + 2σ−2

o

q

N

]
. (6.44)
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To obtain a bound on λmax(Sx) we recall the bounds of the Rayleigh quotient from

Theorem 3.4.7,

λmax(Sx) ≥ 1
n+1

[
(n− 1)

(
λmax(Q

−1)(1− 2Re(λc(M))) + λb(M
TQ−1M) + σ−2

o
q
N

)

+ λmax(Q
−1) + λmax(B

−1) + λa(M
TQ−1M) + 2σ−2

o

q

N

]
,

≥ 1

σ2
o

q

N
+

1

σ2
q

1

n+ 1

[
n
(
λmax(C

−1
Q ) + λmin(M

TC−1
Q M)− 2λmax(C

−1
Q )Re(λmin(M))

)

+ 2λmax(C
−1
Q )Re(λmin(M)) +

σ2
q

σ2
b

λmax(C
−1
B )

]
. (6.45)

We also do a similar calculation for λmin(Sx) by choosing ỹ in a similar fashion

to (6.32). So yi ∈ R
N for each i = 1, ..., n + 1 is chosen such that y1 is the

orthonormal eigenvector corresponding to λmin(B
−1) and yi for i = 2, ..., n + 1 is

the orthonormal eigenvector corresponding to λmin(Q
−1). This gives us

λmin(Sx) ≤
1

σ2
o

q

N
+

1

σ2
q

1

n+ 1

[
n
(
λmin(C

−1
Q ) + λmax(M

TC−1
Q M)− 2λmin(C

−1
Q )Re(λmax(M))

)

+ 2λmin(C
−1
Q )Re(λmax(M)) +

σ2
q

σ2
b

λmin(C
−1
B )

]
. (6.46)

Combining the bounds on the lowest and largest eigenvalues of Sx, we divide (6.45)

by (6.46) to obtain the lower bound on the spectral condition number of Sx

κ(Sx) ≥
σ2
q

σ2
o

q(n+1)
N

+n
(
λmax(C

−1
Q

)+λmin(M
TC−1

Q
M)−2λmax(C

−1
Q

)Re(λmin(M))
)
+2λmax(C

−1
Q

)Re(λmin(M))+
σ2
q

σ2
b

λmax(C
−1
B

)

σ2
q

σ2
o

q(n+1)
N

+n
(
λmin(C

−1
Q

)+λmax(MTC−1
Q

M)−2λmin(C
−1
Q

)Re(λmax(M))
)
+2λmin(C

−1
Q

)Re(λmax(M))+
σ2
q

σ2
b

λmin(C
−1
B

)
,

(6.47)

which completes the proof. �

The bounds obtained here are quite complex and require analysis before any

definitive conclusions can be drawn about the nature of the sensitivities of the

condition number of Sx. We now analyse the Sx matrix and condition number

bounds further and discuss interpretations of the bounds.

6.2 Discussion

We begin by highlighting some simple points by inspecting Sx under simplified

assumptions. We make simplistic assumptions in addition to the assumptions
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made in Theorem 6.1.2: M = IN , B = σ2
bIN , Q = σ2

qIN , R = σ2
oIN and HHT = Iq,

thus

Sx =
1

σ2
q




((
σq

σb
)2+1)I −I

−I 2I −I

... ... ...
−I 2I −I

−I I


+

1

σ2
o




HTH
HTH

...
HTH

HTH


 . (6.48)

Examining (6.48) we can clearly see the parameters governing both the first and

second term of the Hessian. The first term depends on the ratio of σb/σq, arising

from D. This is different from Sp since the first term of Sp is D
−1 and the bounds

in the previous chapter emphasise the dependence of the condition number of Sp on

the condition number of D. It is likely that LTD−1L will be more ill-conditioned

than D−1, hence the condition number of Sx may be more vulnerable to the

condition number of D−1 than Sp.

The constituents of the second term of Sx depend on:

1. the number of spatial observations per assimilation step;

2. the observation error variance σ2
o .

Increasing the observation density means that σ−2
o HTH → σ−2

o I, whereas

decreasing it will increase the number of zero rows in σ−2
o HTH. We notice

that decreasing observation accuracy (increasing σ2
o) decreases the contribution of

HTR−1H, which increases emphasis on LTD−1L. We can show this more clearly

using (6.8) from Theorem 6.1.1 with the simplistic assumptions we have made

here:

κ(LTD−1L)

1 + 1
σ2
oλmin(LTD−1L)

≤ κ(Sx) ≤ κ(LTD−1L)

(
1 +

1

σ2
oλmax(LTD−1L)

)
. (6.49)

We can see that as σ2
o → ∞, both bounds tend to κ(LTD−1L). This shows that

as we decrease the observation accuracy (increase σ2
o), the condition number of Sx

depends on κ(LTD−1L), thus the presence of the second term of Sx is diminished.

We also see that as σ2
o → 0 the lower bound tends to zero, and the upper bound

diverges, yielding no definitive information.
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The lower bound in Theorem 6.1.2 shows that σ2
o is tied to the ratios σq/σo and

σb/σo. We also see that changes in
σ2
q

σ2
o
will not affect the overall size of the lower

bound, since it is present in both the numerator and denominator of the lower

bound with identical coefficients. Whereas if
σ2
q

σ2
b

changes then the bound could

increase if CB is ill-conditioned, which is highly likely in an operational NWP

context.

We now turn our attention to the upper bound of Theorem 6.1.2, where we have

used a novel approach in an attempt to uncover the condition number sensitivities

of Sx. We see three separate things here:

1. the model error variance σ2
q ;

2. the largest eigenvalue of the main diagonal blocks of Sx;

3. the denominator of the upper bound, the minimum eigenvalue of LTD−1L.

We see that as σq → ∞ the upper bound will increase since λmax

(
Sx(i,i)

)
will

increase. We also see that as σq → 0, the upper bound will increase because

of the term 2σ−2
q λmax(C

−1
Q )λmax(M). Therefore the upper bound shows that the

condition number of Sx will increase as σq → 0,∞.

The largest eigenvalues of the main diagonal blocks depend on

λmax

(
Sx(i,i)

)
= max

{
λmax(B

−1 +MTQ−1M +HTR−1H),

λmax(Q
−1 +MTQ−1M +HTR−1H),

λmax(Q
−1 +HTR−1H)

}
. (6.50)

The parameters that will cause this term to increase in size are: σb, σq, which we

have discussed, and σo. The largest eigenvalues of CB and CQ will also contribute,

but we focus on the error variances in this discussion. As the background error

variance σb → 0,∞, the ratio σb/σq will grow, thus causing the term (6.50) to

increase. As the observation error variance σo decreases, it will cause (6.50) to

increase but because σo is linked to the second term of the Sx matrix, we cannot

determine anything definitive.
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We now examine the eigenvalue spectrum of LTD−1L to understand the impact

of λmin(L
TD−1L) on the upper-bound. Note that

LTD−1L =




B0+MT
0,1Q1M1,0 −MT

0,1Q1

−Q1M1,0 Q1+MT
1,2Q2M2,1 −MT

1,0Q1

−Q2M2,1 Q2+MT
2,3Q3M3,2

...
... ... −MT

n−1,nQn

−QnMn,n−1 Qn



.

(6.51)

In addition to the assumptions at the beginning of this section, we assume σo = 1

and let σb > σq since it is intuitive that the variance of the errors in the previous

forecast will be larger than the variance of the model errors in a single time step.

Therefore,

LTD−1L = σ−2
q




((
σq

σb
)2+1)I −I

−I 2I −I

... ... ...
−I 2I −I

−I I


 , (6.52)

which is similar to the discretised 2nd derivative matrix, which arises quite often

in finite difference schemes solving the heat equation (See [40], page 50). If we

further assume σq = σb = 1 and assume a one variable linear model N = 1, then

matrix (6.52) becomes

P =




2 −1
−1 2 −1

... ... ...
−1 2 −1

−1 1


 . (6.53)

We now analyse the matrix P to extract information about its condition number

sensitivities in this simplified scenario. We now require a result on the eigenvalues

of P to get an understanding of the sensitivities of the ratio of its extreme

eigenvalues.

Theorem 6.2.1 The eigenvalues of P ∈ R
n+1×n+1 are

λk(P ) = 4 sin2

(
π
k − 1

2

2n+ 1

)
, (6.54)

for k = 1, ..., n+ 1.

Proof: We solve the eigenvalue equation

Pv = λv, (6.55)
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where v ∈ R
n is an eigenvector such that

v =

( v1
v2
...

vn+1

)
, (6.56)

with corresponding eigenvalue λ. We can rewrite the eigenvalue equation as a

recurrence relation

−vk−1 + 2vk − vk+1 = λvk, (6.57)

where

v0 = 0, (6.58)

vn+2 = vn+1. (6.59)

We introduce the appropriate auxiliary equation

x2 − (2− λ)x+ 1 = 0, (6.60)

which has 2 distinct roots

x1,2 =
(2− λ)±

√
λ2 − 4λ

2
. (6.61)

Since the roots x1 and x2 are distinct we can write the auxiliary equation such

that

(x− x1)(x− x2) = x2 − (x1 + x2) + x1x2, (6.62)

which implies

x2 =
1

x1
, (6.63)

x1 + x2 = 2− λ. (6.64)

The solution to the original recurrence relation (6.57) is a linear combination of

the distinct roots,

vk = Axk1 +Bxk2, (6.65)

for some constants A,B yet to be determined. Boundary condition (6.58) dictates

that A = −B. Therefore we have

vk = A(xk1 − xk2). (6.66)
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Using boundary condition (6.59) on (6.66) yields

(xn+1
1 − xn+1

2 )A = (xn+2
1 − xn+2

2 )A, (6.67)

which, with some manipulation becomes,

(1− x1)x
n+1
1 = xn+1

2 (1− x2), (6.68)

we then substitute (6.63) into the right hand side of (6.68) obtaining,

(1− x1)x
n+1
1 = xn+1

2 (1− 1

x1
). (6.69)

Since 1− 1
x1

= x1−1
x1

, we now have

xn+1
1 = −x

n+1
2

x1
, (6.70)

which, upon using 6.63 again, yields the following solutions

x2n+2
1 = −1, (6.71)

x1 = 1. (6.72)

We now solve for the non-trivial root (6.71),

eiθ(2n+2) = eiπ(2k−1), (6.73)

which implies,

θ = π
2k − 1

2n+ 2
, (6.74)

for k = 1, ..., n+ 1. Using (6.64) we deduce

2− λk = x1 + x2 = x1 + x̄1 = 2Re(x1) (6.75)

and since x1 = eiθ, and eix = cos(x) + i sin(x), we obtain

λk = 2− 2 cos

(
π
2k − 1

2n+ 2

)
. (6.76)

Therefore

λk(P ) = 4 sin2

(
π
k − 1

2

2n+ 2

)
, (6.77)

for k = 1, ..., n+ 1, as required. �
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Since the squared sine function is bounded between 0 and 1, the eigenvalues λk(P )

are bounded between 0 and 4 as the assimilation window length, n, grows. The

extreme eigenvalues tend to their limits (0 and 4) at a rate of 4/n2. The possibility

of a 0 eigenvalue as the assimilation window grows implies that κ(P ) → ∞ as

n grows. The analysis in this simplified scenario shows that a major source of

ill-conditioning of Sx can arise from the smallest eigenvalue of the LTD−1L term

as the assimilation window length, n, grows.

We now make the link between the sensitivity of λmin(L
TD−1L) and the previous

analysis in (6.49). If the number of observations were to equal the number of

states, the dependence of the condition number of Sx on κ(LTD−1L) term will

no longer be an issue. This is because the second term of Sx, H
TR−1H, will be

full rank and the condition number of Sx will not be vulnerable to the minimum

eigenvalue of LTD−1L, since the lowest eigenvalue of Sx will be bounded by σ−2
o .

This also implies that if there were a full set of observations, long assimilation

windows will not affect the conditioning of Sx, since the minimum eigenvalue of

LTD−1L is no longer an issue.

We now demonstrate the bounds and verify sensitivities of the condition number

of Sx discussed here.

6.3 Numerical Results

The aim of this section is to numerically demonstrate the sensitivities of the

condition number of Sx. We organise this section as follows.

In the first part of this section we demonstrate the uses of the Geršgorin circle

theorem both in scalar and block forms for estimating the condition number of Sx,

since this was used to obtain the upper bound in Theorem 6.1.2.

The second part is solely dedicated to the demonstration of the bounds on the

condition number of Sx, and the sensitivities obtained from the theoretical analysis
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in the previous sections. We demonstrate the following sensitivities of the condition

number of Sx, which were obtained from the theory in this chapter:

1. the model error variance σ2
q ;

2. correlation length-scales;

3. the length of the assimilation window with the number of spatial observations

per assimilation step.

The third part further enforces the effect of these sensitivities on the problem of

minimising J (x) in terms of the number of iterations required for convergence,

again using the linear CG method.

6.3.1 Experimental Design

The model is the 1-dimensional advection equation discretised using the upwind

scheme, yielding a matrix M as in (3.71). The spatial domain is size N = 50 with

a spatial resolution of ∆x = 0.01. We use time-intervals of ∆t = 0.01 and a wave

speed of a = −0.3, thus giving us a Courant number of µ = −0.3.

The experiment settings are as follows unless otherwise stated. We choose the

background error, B0 = σ2
bCSOAR, such that the correlation length-scale L(CB) =

∆x = 0.01 and σb = 1. The model error, Qi = σ2
qCLAP is such that the correlation

length-scale L(CQ) = 5∆x = 0.05 and σq = 1. The observation error is such that

Ri = σ2
oI, where σo = 1. We take observations every ∆q = 3 model time-steps,

n = 60 in total, with q = 25 equally spaced observed grid-points out of the N = 50

grid-points per assimilation step.
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6.3.2 Experiment 1: Geršgorin’s Circles

Firstly we illustrate some of the advantages of using the block Geršgorin circle

theorem by applying it to Sx.

Figure 6.1: Block Geršgorin theorem applied to Sx where κ(Sx) = 3.912 × 106. Eigenvalues
of Sx (small red circles). Eigenvalues of Sx(i,i) (green dots). Geršgorin discs (large blue circles)
and estimated upper and lower bounds of the block Geršgorin Theorem (red vertical lines).

Figure 6.2: Scalar Geršgorin theorem applied to Sx where κ(Sx) = 3.912× 106. Eigenvalues of
Sx (small red circles). Geršgorin discs (large blue circles) and estimated upper and lower bounds
of the scalar Geršgorin Theorem (red vertical lines).
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We note that we could not utilise either of the Geršgorin circle theorems for the

lower bound, since Sx is positive definite, and the lower bounds shown in Figures

6.1 and 6.2 are negative. The condition number is relatively high due to the high

correlation length-scale for the model error covariance matrix. This does not hinder

the Geršgorin theorem from estimating the whereabouts of the eigenvalues. We

can see from Figures 6.1 and 6.2 that the block Geršgorin circle theorem is at least

as good as the Geršgorin circle theorem and that it gives a far better indication

as to the whereabouts of the eigenvalues of Sx in this particular case. The same is

also observed in [23], where the authors showed the block analogue of Geršgorin’s

theorem to be at least as good as the scalar Geršgorin circle theorem in general.

We also observe λmax(Sx) = 1.956 × 106 and that the upper bound estimated by

the block Geršgorin circle theorem is 1.976× 106 compared with the upper bound

scalar Geršgorin estimate of 2.218× 106. We conclude that both bounds are good

and the block Geršgorin circle theorem provides a tighter upper bound in this

particular situation.

We now demonstrate the effects of the model error variance σ2
q on the condition

number of Sx

6.3.3 Experiment 2: Model Error Variance

The experiment parameters remain as stated in Section 6.3.1 with the exception

of the following. The model error covariance matrix correlation length-scale is

reduced to L(CQ) = ∆x = 0.01 and the observation standard deviation σo = 0.5.

We also reduce the number of equally spaced spatial grid-points observed to 10

out of the N = 50 grid-points per assimilation step. These settings are arbitrarily

chosen to ensure that the only source of ill-conditioning will be from σq.
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(a) σq varying. (b) σq/σo ratio.

(c) σb/σq ratio.

Figure 6.3: Log-scale graphs of κ(Sx) (black line) with bounds from Theorem 6.1.1 (green
dotted lines) and Theorem 6.1.2 (red dotted lines) as a function of σq (a), σq/σo (b) and σb/σq
(c).

As the parameter σq varies, so do the ratios σb/σq and σq/σo, prompting us to

study the behaviour of the condition number of Sx with respect to these ratios

as well as σq. Figure 6.3 demonstrates that the upper bounds of both Theorems

6.1.1 and 6.1.2 resemble the behaviour of the condition number of Sx, whereas the

lower bounds are uninformative. We also see that the quality of the bounds from

Theorem 6.1.1 to Theorem 6.1.2 have deteriorated in accuracy. We were able to

infer slightly more information from the bounds in Theorem 6.1.2 in comparison to

Theorem 6.1.1, at the cost of being a worse estimator for the condition number of
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Sx. We see a minimum condition number value for σb/σq = σq/σo = 2 or σq = 0.5,

but the condition number of Sx continues to rise as σq → 0,∞. This confirms the

sensitivity of the condition number of Sx to the model error variance, which we

obtained from the bounds in Theorem 6.1.1.

We have demonstrated the bounds and confirmed the sensitivity of Sx to σq.

6.3.4 Experiment 3: Correlation Length-Scales

In this section we discuss the effect of correlation length-scales on the condition

number of Sx. The parameters remain exactly the same as the experiment run in

Section 5.1.3, Figure 5.2, to enable a comparison between the condition numbers

of Sx and Sp.

Figure 6.4: Surface plot of κ(Sx) (blue surface) and bounds (red mesh). Horizontal axes
measure background error correlation length-scale L(CB) and model error correlation length-scale
L(CQ). Vertical axis measures condition number.
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Figure 6.5: Log-scale surface plot of κ(Sx) (blue surface) and lower bound (red mesh).
Horizontal axes are the background error correlation length-scale L(CB) and model error
correlation length-scale L(CQ). Vertical axis measures condition number on a log scale.

Figures 6.4 and 6.5 demonstrate the sensitivity of the condition number of Sx to

correlation length-scales in the background and model error covariance matrices.

We see the upper bound is a good estimate of the condition number of Sx in Figure

6.4, while the lower bound is uninformative. However, Figure 6.5 shows that the

behaviour of the lower bound is similar to the behaviour of the condition number

of Sx on a log-scale.

Comparing this to the behaviour shown in the previous chapter [Section 5.1.3,

Figure 5.2], the condition number of Sx is far more sensitive than κ(Sp) to changes

in the correlation length-scales of CB and CQ and hence κ(D), rising to a condition

number range of 5000−7000 for L(CB) = 0.25 = 2.5∆x compared to the maximum

condition number of κ(Sp) = 1800 in the same scenario. We also should keep in

mind that correlation matrix CB is a SOAR matrix which is more sensitive to

correlation length-scale then CQ which is a Laplacian. We see in Figure 6.4, when

the value of L(CQ) = 0.25, that κ(Sx) rises to 1400, compared to Section 5.1.3,

Figure 5.2, where κ(Sp) rises to only 400 for the same value of L(CQ) = 0.25.
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We have demonstrated the sensitivity of the condition number of Sx to correlation

length-scales in the background and model error covariance matrices, along with

the bounds. We now investigate the sensitivity of the condition number of Sx to

observation density and assimilation window length.

6.3.5 Experiment 4: Assimilation Window Length and

Spatial Observation Density

The length of the assimilation window and the distribution of observations are

important aspects of the data assimilation problem. In the previous chapter

we found that the condition number of Sp and even the preconditioned Hessian

suffered from ill-conditioning as the number of observations and assimilation

window length both increased. In this experiment the parameters are identical

to those used in Experiment 2 (Section 6.3.3) and Section 5.1.3, to enable a

comparison between Sp and Sx.

We investigate the dependence of the condition number of Sx on the condition

number of LTD−1L, which is ill-conditioned due to its minimum eigenvalue. If

the second term of the Hessian, HTR−1H, were to be full rank, then this would

remedy the issue with the minimum eigenvalue, as we see below
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Figure 6.6: Surface plot of κ(Sx). Vertical axis measures condition number. The non-vertical
axes measure spatial observation density q and assimilation window length, n.

Figure 6.6 demonstrates the sensitivity of the condition number of Sx to increasing

assimilation window length as the number of spatial observations per assimilation

step decreases below q = N/5. Interestingly, we see that the rise in assimilation

window length has no effect on the condition number of Sx if there are a good

number of spatial observations, more than q = N/2. This confirms our findings

in the discussion in Section 6.2, that as the term HTR−1H approaches full rank,

the condition number of Sx becomes less dependent on the condition number of

LTD−1L.
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Figure 6.7: Condition numbers of Sp (blue line) and Sx (red line) as a function of assimmilation
window length, n.

Figure 6.7 shows the condition numbers of Sx and Sp in the case where the domain

is fully observed. Although this is unrealistic in an operational setting, it does show

an inherent difference between both Hessians. This experiment shows that with

a fully observed domain, the condition number of Sx is immune to increasing

assimilation window length, whereas Sp is affected by increasing assimilation

window length regardless of the number of observations.

This concludes our numerical demonstration of the theoretical findings from the

bounds in this chapter. We now investigate the effect of the sensitivities discussed

in this chapter on the rate of convergence using the linear CG method to minimise

J (x) using the linear advection model.
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6.4 Convergence Results

In this section we complement the findings in this chapter on the sensitivities

of the condition number of Sx. We investigate the effect of the sensitivities

numerically demonstrated in the previous section on the minimisation convergence

characteristics of J (x).

The data assimilation parameters are identical to those in described in Section

6.3.1, with the exception of L(CQ) = ∆x = 0.01 and the number of spatial

observations is q = 10 out of the N = 50 grid-points per assimilation step. The

parameters used to generate the truth are identical to the parameters used in the

assimilation.

We use the linear CG method as described in Section 3.2.1 to minimise J (x),

with a iterative minimisation tolerance of τ = 10−5, as described in Chapter 3,

Section 3.2.4. The solution relative error is calculated in the same way as shown

in Chapter 4, Section 4.1.6.

6.4.1 Experiment 1: Model Error Variance

The first sensitivity we investigate is the model error variance σ2
q . Varying this

parameter alters the values of the ratios σb/σq and σq/σo simultaneously. We use

settings identical to those in Section 6.3.3, Experiment 2, since these settings were

used arbitrarily to illustrate this sensitivity. The table below shows the effect

that changes in this parameter have on the numerical condition number, solution

accuracy and number of iterations to convergence.
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σq σq/σo σb/σq No. of iterations Condition number Solution relative error

0.11 0.11 9.09 220 4824 0.29

0.21 0.21 4.76 139 1351 0.30

0.31 0.31 3.23 115 641 0.29

0.41 0.41 2.44 98 385 0.28

1.81 1.81 0.55 101 367 0.23

2.81 2.81 0.36 126 882 0.25

3.81 3.81 0.26 151 1619 0.25

5.81 5.81 0.17 183 3762 0.29

7.81 7.81 0.13 208 6796 0.28

Table 6.1: Standard deviation ratios, number of iterations to convergence and the solution
relative error of J (x), and the condition number of Sx. Standard deviations σb = σo = 1.

We see here that when σq tends to zero or increases from 2, the condition number

of Sx, the number of iterations to convergence and the solution relative error all

increase. The other ratios involving σq are the underlying reason for the changes

seen in the minimisation characteristics in Table (6.1). As the ratios move away

from ∼ 2, the condition number of Sx, number of iterations and relative solution

error all increase.

6.4.2 Experiment 2: Correlation Length-Scales

We now investigate to the sensitivity of the minimisation problem to correlation

length-scales. We preserve the settings from the previous experiment, Section

6.4.1 and we vary the correlation length-scales of CB and CQ, remembering that

κ(CLAP ) is less sensitive than κ(CSOAR) to identical changes in the correlation

length-scales.
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L(CB) No. of iterations Condition number

0.01 86 134

0.05 608 43,637

0.10 978 492,394

0.15 1301 2,203,292

0.20 1687 6,537,759

L(CQ) No. of iterations Condition number

0.01 86 134

0.05 361 65,670

0.10 491 560,326

0.15 572 1,924,374

0.20 596 4,563,487

Table 6.2: Tables of convergence and condition number values with varying correlation
length-scales. Table on the left L(CB) = ∆x, while L(CQ) varies. Similarly the right table
L(CQ) = ∆x, while L(CB) varies.

Table 6.2 shows the effects of correlation length-scale on the minimisation problem

presented by J (x). Both tables confirm the sensitivity of the condition number

of Sx to the correlation length-scales of CB and CQ, also shown in Section 6.3.4

Experiment 3. We have also shown the adverse affect this has on the number of

iterates.

We now examine the effect of observation density and assimilation window length.

6.4.3 Experiment 3: Assimilation Window Length and

Observation Density

In this experiment we examine the sensitivity of the minimisation problem

presented by J (x) to the length of the assimilation window and the observation

density simultaneously. We will discuss three tables in this section; number of

iterates, solution accuracy and condition numbers.

We aim to show that increasing assimilation window length renders Sx

ill-conditioned, as discussed in Section 6.2 for low observation densities. We also

show that as we increase the number of spatial observations per assimilation step

the condition number of Sx becomes less effected by the rise in assimilation window

length. This due to the second term of the Hessian HTR−1H approaching full rank

as the observation density increases.
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No. of spatial observations

50 25 10 5 2 1

1 19 24 32 38 48 50

11 20 26 49 83 165 193

21 19 26 51 93 215 271

31 19 25 51 97 230 349

41 18 25 50 97 230 420

51 18 24 49 98 241 460

61 17 24 49 98 240 429

71 17 24 49 97 241 459

81 17 23 49 96 239 460

A
ss
im

il
a
ti
o
n

w
in
d
o
w

le
n
g
th

91 16 23 49 94 241 465

Table 6.3: No. of iterations

No. of spatial observations

50 25 10 5 2 1

1 0.26 0.27 0.30 0.30 0.27 0.35

11 0.09 0.09 0.12 0.22 0.51 0.58

21 0.05 0.05 0.06 0.11 0.40 0.64

31 0.04 0.04 0.04 0.07 0.26 0.57

41 0.03 0.03 0.03 0.05 0.17 0.48

51 0.02 0.02 0.02 0.03 0.12 0.37

61 0.02 0.02 0.02 0.03 0.09 0.28

71 0.02 0.02 0.02 0.02 0.08 0.24

81 0.01 0.01 0.02 0.02 0.07 0.19

A
ss
im

il
a
ti
o
n

w
in
d
o
w

le
n
g
th

91 0.01 0.01 0.01 0.02 0.05 0.16

Table 6.4: Solution relative error

Table 6.3 shows that the main contributor to the rise in the number of iterates is the

lack of spatial observations per assimilation time step. In comparison to minimising

the preconditioned version of J (p), Section 5.2.1 Figure 5.7, the increased number

of observations and assimilation window length both decrease the number of

iterations required for the minimisation problem of J (x) to converge. We also

see a sharp rise in iterates in the cases where there are not many observations,

q = 5, 2, 1, settling quickly at n = 41.

Table 6.4 shows the error in the solution increases as the number of observations

decreases for all lengths of assimilation window. We also see as the length of the

assimilation window increases the solution errors generally decrease, allowing the

algorithm more freedom to fit the data, which is a known feature of wc4DVAR.

The solution relative error falls as the assimilation window length grows when

more than half of the state is observed.
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No. of spatial observations

50 25 10 5 2 1

1 8 20 78 97 103 103

11 9 78 100 147 221 232

21 9 90 133 233 608 762

31 9 94 144 268 816 1541

41 9 95 148 284 892 2402

51 9 96 150 292 950 2989

61 9 96 151 297 974 3177

71 9 96 152 300 986 3246

81 9 97 153 302 996 3291

A
ss
im

il
a
ti
o
n
w
in
d
o
w

le
n
g
th

91 9 97 153 303 1000 3332

Table 6.5: Condition number values of Sx.

Table 6.5 shows the condition number values for varying assimilation window

lengths and observation densities. The condition number behaviour complements

the trends shown in Tables 6.3 and 6.4, which was expected.

This concludes our analysis and investigations into the effects of the sensitivities

on the minimisation characteristics of the J (x) formulation minimised using the

linear CG method with the linear advection equation as the model.

We now summarise this chapter.

6.5 Summary

The aim of this chapter was to explore the sensitivities of the problem J (x) by

bounding the condition number of Sx in a similar fashion to the exercise carried

out in Chapter 5. We used the block analogue of the Geršgorin circle theorem as

shown in [23] to demonstrate the theoretical result in the paper, where the block

Geršgorin theorem is at least as good as the scalar Geršgorin circle theorem. This

was shown on the Hessian matrix Sx through a simple example.

The bounds derived for the Hessian Sx were demonstrated through numerical
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experiments using the 1D advection equation. Through the bounds, we showed

the sensitivities of the condition number of Sx to the following:

1. the model error variance σ2
q ;

2. correlation length-scales in the background and model error covariance

matrices;

3. assimilation window length and observation density.

More specifically we showed

1. The condition number of LTD−1L heavily influences the condition number of

Sx, shown in Theorem 6.1.1. We highlight this sensitivity further through the

condition number of the background and model error covariance matrix, D,

which is sensitive to correlation length-scales and the σb/σq ratio. The theory

suggests that Sx is potentially more vulnerable to the condition number of D

than Sp. This was shown theoretically in Section 6.2 and also demonstrated

numerically in Section 6.3.4, Experiment 3.

2. The sensitivity of the condition number of Sx to assimilation window length.

This is different to Sp, which sees an increase in its condition number

(as shown in Chapter 5) as the observation density increases and as the

assimilation window increases.

(a) The minimum eigenvalue of the first term of the Sx Hessian has the

potential to converge to 0 as the assimilation window grows. The upper

bound in Theorem 6.1.2 shows that as the assimilation window increases,

λmin(L
TD−1L) decreases and therefore increasing κ(Sx). We showed this

through examination of the first term of Sx when reduced to the P matrix

(as discussed in Section 6.2).

(b) As the observation density decreases the condition number of Sx

grows at a faster rate as the length of the assimilation window increases.

While if we have a full rank observation term, the condition number of Sx
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becomes immune to increasing assimilation window length (as discussed in

Section 6.2).

(c) Decreasing observation accuracy (increasing σo) reduces the

contribution of the second term of Sx and puts greater emphasis on the

first term of Sx, which is sensitive to assimilation window length and the

condition number of D. This is shown through the analysis of the bounds in

Theorem 6.1.1 in the discussion in Section 6.2, equation (6.49).

These sensitivities were shown through theoretical analysis of the bounds and

numerical demonstrations of the theory on the condition number of Sx. We showed

further that these sensitivities also reflect in the minimisation characteristics,

which we characterised by the number of iterations to converge to a required

tolerance and the solution accuracy post-convergence.

This concludes the analysis of the condition number of the first-order Hessian Sx.
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Chapter 7

Weak-Constraint 4DVAR:

Lorenz95 Model

In this chapter, we show an example where it is possible for the theory established

in the previous chapters to provide valuable insight for applications in a wider

context. We explore the application of the wc4DVAR algorithms discussed in this

thesis on the non-linear chaotic model known as Lorenz 95, described in Chapter

3, Section 3.5.2. This model possesses error growth characteristics similar to that

of weather prediction models. It is also one of the models used by the ECMWF

in OOPS (Object-Oriented Programming System), which they use as a testing

ground before operational implementation.

The theory derived in this thesis assumes linear time invariant models or models

that present a circulant matrix, with periodic domain and appropriate covariance

structures. The aim of this chapter is to demonstrate the potential scope of the

condition number sensitivities found in Chapters 5 and 6 on the non-linear chaotic

Lorenz 95 model.
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7.1 Lorenz 95 Model Example

The purpose of this chapter is to put the theory in the previous chapters into

wider context. We do this by testing if the parameters, which were found to be

responsible for ill-conditioning in the theory on linear models, also have the same

effect the solution process of wc4DVAR when applied to a non-linear model. The

specific sensitivities we investigate are:

1. the observation density and assimilation window length;

2. the correlation length-scales in the background and model error covariance

matrices.

The theory showed that as the observation density and assimilation window length

increase, the condition number of Sp and hence the number of iterations for

the model error formulation also increase. The theory also showed that as the

number of observations decreases and the assimilation window length increases

the condition number of Sx and the number of iterations of the state formulation

to converge, also increase. We also found a particular special case where if the

state domain was fully observed, the increase in assimilation window length no

longer affected the condition number of Sx or the number of iterations required

for convergence. We also saw that as the correlation length-scales grow Sp and Sx

become more ill-conditioned, where Sx showed potential of being more sensitive

to this than Sp.

Both wc4DVAR algorithms implemented on the Lorenz 95 model have been tested

and verified in the same manner as for the implementation of the wc4DVAR

algorithms for the advection equation in Chapter 4. The adjoints and objective

function gradients were all successfully coded and tested. We do not discuss the

implementation details of the Lorenz 95 system in this chapter as it has already

been done in Chapter 4. We now discuss the experimental design before discussing

our experimental results.
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7.1.1 Experimental Design

The model parameters used for the Lorenz 95 are explained in Chapter 3, Section

3.5.2, but we restate the parameter settings here for clarity. The variables are

treated as points on a latitude circle, therefore the spacing between each of the

N = 40 variables is ∆x = 1/N = 0.025. Throughout this chapter we use a

time-step of ∆t = 0.025, which is equivalent to 3 hours. We use the Polak-Ribiere

non-linear conjugate gradient technique as described in Chapter 3, Section 3.2.3,

to minimise the objective functions. The iterative minimisation stopping criterion

used is described in Chapter 3, Section 3.2.4, where we set the tolerance to τ = 10−3

for all experiments unless otherwise stated. The solution errors and relative errors

are all calculated as in previous chapters, as shown in Chapter 4, Section 4.1.6.

The model parameters chosen here remain unchanged throughout our experiments.

The assimilation parameters are as follows. The background covariance matrix

is such that B = σ2
bCSOAR with σb = 0.1 and L(CB) = 0.005 = ∆x/5. The

model error covariance matrix is such that Q = σ2
qCLAP with σq = 0.05 and

L(CQ) = 0.005 = ∆x/5. The observation error covariance matrix is R = σ2
oI

with σo = 0.05. It is important to note that for all our experiments, the data

assimilation parameters used to generate the truth are identical to the assimilation

parameters.

We use the Polak-Ribiere code used is as described in Secion 3.2.3, written by

C.E. Rasmussen, to minimise the objective functionals. The Polak-Ribiere code is

written such that it requires the code for the procedure which evaluates J (p) and

J (x) and their respective gradients.

We now present our experimental results.
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7.1.2 Experiment 1 (i): Assimilation Window Length and

Observation Density

In this section we examine the sensitivity of the model error and state

formulations to the length of the assimilation window and the observation density

simultaneously. We now present the number of iterations needed for both

formulations to achieve the minimisation tolerance τ .

No. of spatial observations

40 20 10 8 5 4 2 1

1 6 7 6 7 7 7 6 5

6 19 34 24 18 23 17 12 11

12 50 48 62 46 41 27 46 16

18 84 93 99 63 66 44 34 37

24 122 78 58 58 71 47 66 17

30 189 90 89 50 50 123 32 21

36 158 106 191 70 118 68 23 23

42 213 188 80 73 68 44 42 36

A
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48 224 179 102 58 61 292 107 17

Table 7.1: Number of iterations to minimise J (p).

No. of spatial observations

40 20 10 8 5 4 2 1

1 5 12 13 11 10 11 13 13

6 8 37 46 54 54 58 61 57

12 8 39 71 85 111 123 135 168

18 8 42 85 110 166 213 252 229

24 8 66 99 121 191 245 336 352

30 8 69 176 262 207 345 261 286

36 8 59 175 282 235 379 258 303

42 8 67 109 210 213 290 220 416
A
ss
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48 8 57 129 185 239 237 278 540

Table 7.2: Number of iterations to minimise J (x).

n = 48 is equivalent to 6 days.

Table 7.1 shows the iteration counts for the model error formulation with

assimilation window length and observation density. This table shows that as

the number of observations and assimilation window length increase, the number

of iterations for convergence also increases. The results in Table 7.1 are in line

with our initial findings in Chapter 4, Section 4.2.3, Experiment 3, where we

observed an increase in the number of iterations for the model error formulation

as assimilation window length increased. These results also agree with theoretical

evidence derived from the upper bound of Theorem 5.1.3, Section 5.1.1 for the

advection equation, which was demonstrated on the condition number of Sp in

Experiment 3, Section 5.1.3.3 and on the number of iterates of the model error

formulation in Chapter 5, Section 5.3.3.

Table 7.2 shows that as the number of observations decreases, the number of

iterations required for J (x) to converge increases, where this effect is amplified by
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the increasing length of the assimilation window. The results in Table 7.2 agree

with findings in Chapter 6, Section 6.3.5, Experiment 4. We can also see the

special case in Table 7.2, where the state is fully observed (first column, where

observations q = 40), agreeing with Chapter 6, Section 6.3.5, Experiment 4.

Comparing the number of iterations of the two formulations, we see that the model

error formulation generally performs better than the state formulation, unless the

state is half (q = 20) or fully (q = 40) observed. The assimilation runs in Tables 7.1

and 7.2 show that with enough observations, the state formulation out-performs

the model error formulation and has the unique property of not being affected

by the assimilation window length with a fully observed state. This agrees with

findings in Chapter 6.

No. of spatial observations

40 20 10 8 5 4 2 1

1 0.004 0.008 0.008 0.009 0.008 0.009 0.008 0.008

6 0.005 0.009 0.011 0.009 0.011 0.011 0.012 0.012

12 0.006 0.013 0.019 0.021 0.022 0.028 0.028 0.029

18 0.006 0.013 0.028 0.037 0.041 0.046 0.061 0.052

24 0.007 0.015 0.032 0.032 0.049 0.051 0.065 0.081

30 0.007 0.022 0.033 0.040 0.099 0.090 0.082 0.106

36 0.007 0.020 0.048 0.034 0.415 0.066 0.172 0.110

42 0.009 0.023 0.041 0.058 0.079 0.093 0.109 0.146
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48 0.009 0.026 0.052 0.077 0.058 0.135 0.121 0.241

Table 7.3: Total solution relative error, J (p).

No. of spatial observations

40 20 10 8 5 4 2 1

1 0.004 0.009 0.008 0.009 0.009 0.01 0.008 0.009

6 0.004 0.008 0.012 0.013 0.023 0.016 0.017 0.020

12 0.006 0.025 0.035 0.041 0.054 0.046 0.046 0.075

18 0.006 0.013 0.054 0.664 0.824 0.078 0.171 0.169

24 0.007 0.025 0.048 0.415 0.722 0.146 0.619 0.272

30 0.007 0.028 0.598 1.094 1.031 0.638 0.553 0.725

36 0.007 0.022 0.828 0.772 0.616 0.699 0.817 1.235

42 0.008 0.036 0.753 0.935 1.071 0.487 0.902 0.737

A
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48 0.009 0.047 0.974 0.936 0.583 0.897 1.335 1.245

Table 7.4: Total solution relative error, J (x).

Table 7.3 shows that the accuracy of the model error formulation solution increases

as the number of observations increase at the cost of more iterations, which was to

be expected. The solution relative errors also increase as the assimilation window

length increases and requires more iterations to solve. While the increase in the

number of iterations agrees with findings in Chapter 5, Section 5.2.1.2, Experiment

2, the increase in relative errors does not agree with previous findings. The reason

for the increase in solution relative errors as the assimilation window increases is

that the objective functions J (p) and J (x) become increasingly non-linear and

thus the higher order terms in the Taylor expansion of these functions become

larger. We showed in Section 3.1, equation 3.7, that the condition number acts

only as an indicator of solution accuracy, with a second order approximation of

181



the Taylor series of the non-linear objective functionals. Therefore the condition

number alone may not be responsible for the increase in iterations and solution

relative error.

In Table 7.4 we see a clear trend of increased relative errors in the solution with

the increase of assimilation window length. We also see that as the observation

density decreases, the relative errors in the solution increase, which is consistent

with the increase in iterations shown in Table 7.2. The increase of relative errors

with assimilation window length is evident for all numbers of observations except

when the state is fully observed, N = 40. We also see many cases of divergence of

the solution, where the solution relative error of the state formulation is ∼ 1. This

emphasises the sensitivity of the state formulation to observation density, where

if there are not enough observations, the solution relative error can be ∼ O(102)

larger than errors in the model error formulation solution.

Tables 7.3 and 7.4 show that the accuracy of the model error formulation is clearly

superior to the state formulation. The increased non-linearity of J (x) over J (p)

could be the reason for the difference in solution relative errors. In Table 7.4 for

n = 48 and q ≤ 10, we see an example where the state formulation solution has

diverged. This may be due to the increase in non-linearity of the state formulation

objective function or the inadequacy of the stopping criterion.

We now examine the condition numbers.

No. of spatial observations

40 20 10 8 5 4 2 1

1 1.49E+05 5.44E+07 4.96E+07 4.36E+07 3.56E+07 4.45E+07 1.26E+07 2.73E+07

6 1.07E+16 2.47E+19 4.04E+20 3.52E+20 2.24E+19 1.12E+20 4.23E+19 2.38E+15

12 8.30E+30 1.16E+34 9.20E+33 4.41E+32 1.23E+34 2.93E+31 1.34E+32 6.30E+33

18 4.37E+44 8.37E+47 1.10E+47 1.05E+47 2.06E+46 1.29E+48 1.10E+46 2.42E+43

24 7.46E+55 2.54E+61 3.28E+61 1.48E+59 2.90E+57 3.45E+58 2.48E+54 1.57E+51

30 2.16E+71 5.08E+73 6.02E+73 1.74E+71 1.10E+74 1.02E+71 1.58E+71 9.80E+63

36 1.54E+79 1.40E+81 2.86E+82 2.76E+84 2.40E+80 1.33E+82 2.22E+77 4.27E+72

42 6.35E+91 5.87E+91 3.42E+91 4.11E+91 6.61E+87 1.32E+89 9.99E+91 6.81E+77
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48 8.22E+101 9.31E+105 5.83E+105 1.74E+106 1.80E+101 6.29E+106 2.82E+101 1.53E+88

Table 7.5: Condition number values of Sp. n = 48 is equivalent to 6 days.
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The condition numbers in Table 7.5 are incredibly high, however we do see

the general trend that the condition number of Sp increases with the length of

the assimilation window for any number of observations. We also see that the

condition number of Sp increases as the number of observations increase, which

is in agreement with the iterations in Table 7.1 and the trend of solution relative

errors in Table 7.3. This also agrees with our findings in Chapter 5.

No. of spatial observations

40 20 10 8 5 4 2 1

1 1.00 2.83E+06 1.13E+07 1.22E+07 1.52E+07 1.43E+07 1.42E+07 1.57E+07

6 1.00 3.36E+07 1.50E+14 4.20E+16 2.40E+17 5.23E+17 7.14E+17 4.08E+18

12 1.00 8.04E+07 4.33E+14 2.31E+16 2.31E+21 3.25E+21 3.45E+21 1.06E+28

18 1.00 1.28E+09 7.68E+12 2.65E+17 7.92E+20 2.14E+21 5.08E+21 2.76E+26

24 1.00 9.44E+07 2.25E+14 2.22E+15 5.70E+20 1.46E+21 3.00E+21 5.33E+21

30 1.00 6.27E+07 7.19E+11 5.83E+13 8.73E+20 1.52E+21 2.77E+21 1.44E+22

36 1.00 2.86E+07 1.29E+13 9.88E+15 3.80E+21 3.65E+21 1.31E+22 1.99E+22

42 1.00 4.90E+07 1.44E+13 2.20E+16 7.21E+21 1.28E+22 6.27E+21 4.27E+21
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48 1.00 2.68E+07 1.36E+12 2.46E+15 2.97E+22 7.96E+20 1.91E+21 7.70E+21

Table 7.6: Condition number values of Sx. n = 48 is equivalent to 6 days.

The condition numbers for Sx in Table 7.6 show that if the state is fully observed,

the condition number of Sx is consistently 1, which agrees with the lower number

of iterations in the same column in Table 7.2 and also the low relative error in

Table 7.4. We also see the as the number of observations decreases, the condition

numbers of Sx rise very rapidly, reaching a plateau at around 5 observations.

As mentioned previously, the condition number is not the only influential factor

for the poor solution accuracy of the state formulation as seen in Table 7.4, the

increasing non-linearity of J (x) may also be a contributor. Evidences of increasing

non-linearity of J (x) can be seen in the large number of iterations, poor solution

relative errors (to the extent that it looks to have diverged in some cases) and

very low condition numbers in comparison to the condition number of the Hessian

of J (p). Another possibility is that the iterative minimisation stopping criterion

used (as described in Section 3.2.4) is not suitable for this particular application.

We now show a further experiment to emphasise the strength of the model state
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formulation when the state is fully observed.

7.1.3 Experiment 1 (ii): Assimilation Window Length

Special Case

In this experiment we aim to show the special case where if the state is fully

observed, then the number of iterations of J (x) does not increase for a long

assimilation window. The experiment settings are as in Section 7.1.1 with the

exception of the following. We set the background related parameters σb = 0.1

and L(CB) = 0.025 = ∆x, the model error related parameters σq = 0.05 and

L(CQ) = 0.01 = ∆x/5 and the observation error variance σo = 0.01. We set a long

assimilation window, equivalent to 6 days n = 48, and the state is fully observed

q = N = 40 at every assimilation step.

Figure 7.1: Contour plot of the time evolution (vertical axis) of the N = 40 variables (horizontal
axis). Colour bar represents atmospheric quantity value.

Figure 7.1 shows a truth run of the Lorenz 95 model. The position of N sectors

on a latitude circle at a given time are represented by the Xi variables on the

horizontal axis. So imagine the latitude circle has been put onto a straight line.
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The values of the variables Xi are represented by their colour. These variables

can be any atmospheric quantity, for example, temperature [62]. The vertical axis

represents time, thus the plot shows us the temporal evolution of these atmospheric

quantities with respect to their position.

(a) J (p) (top) and ||∇J (p)|| (bottom). (b) J (x) (top) and ||∇J (x)|| (bottom).

Figure 7.2: Respective objective function and gradient norm values with the number of
minimisation iterations.

We see here in Figures 7.2(a) and (b) that the model error formulation requires

O(103) more iterations than the state formulation to converge to the same

tolerance. We now examine the relative errors in the solutions.

Figure 7.3: Solution relative errors throughout the assimilation window, J (p) (blue line) and
J (x) (red line).

Figure 7.3 shows the errors are spread in a similar manner, with the range of errors
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exhibited by the solution to the J (p) problem being slightly larger than J (x).

This is confirmed by the total solution relative error of both the model error and

state formulations, which are 0.017 and 0.012 respectively.

The results in this experiment show that for long assimilation windows with

plentiful observations, the model error formulation requires many iterations to

converge, which agrees with findings in Chapter 5 Section 5.3.3. This experiment

also demonstrates the special case for the state formulation, where if the state is

fully observed, increasing the length of the assimilation window has no effect on

the number of iterations or condition number of Sx. This is consistent with our

findings on the Hessian condition numbers in Chapter 6, Section 6.3.5, Experiment

4, Figure 6.7 and convergence iterates in Chapter 6, Section 6.4.3, Experiment 3.

7.1.4 Experiment 2: Background and Model Error

Correlation Length-Scales

In this experiment we examine the sensitivity of the iterations, solution relative

errors and Hessian condition numbers of the model error and state formulations to

correlation length-scales of the matrices composing the D matrix. It is important

to remember that the condition number of the background error covariance matrix

will be more sensitive to its correlation length-scale in comparison to the condition

number of the model error covariance matrix, since the SOAR covariance matrix

is more sensitive to correlation length-scale than the Laplacian covariance matrix,

(discussed in Chapter 4). We expect that increase in correlation length-scale of

CB and CQ to increase the number of iterations, the solution relative errors and

the Hessian condition numbers of both formulations, with the state formulation

exhibiting an increased sensitivity over the model error formulation.

The experiment settings are the same as Section 7.1.2 except for the following.

We reduce the assimilation window length to the equivalent of one day n = 8. We

observe every 10th variable such that q = N/10 = 4. The error variances are all
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equal σ2
b = σ2

q = σ2
o = 1 to ensure that the only source of ill-conditioning will arise

from the correlation length-scales being varied.

L(CB)

0.01 0.03 0.05 0.07 0.09 0.11

0.01 18 31 47 89 155 239

0.03 25 46 76 79 146 214

0.05 42 45 57 102 140 201

0.07 49 56 60 100 170 202

0.09 77 79 83 123 212 221

L
(C

Q
)

0.11 102 110 100 135 162 277

Table 7.7: Number of iterations for J (p).

L(CB)

0.01 0.03 0.05 0.07 0.09 0.11

0.01 61 176 370 685 891 1128

0.03 174 191 420 695 967 1497

0.05 348 508 385 742 1343 1108

0.07 617 519 584 663 933 1182

0.09 497 781 632 826 1739 933

L
(C

Q
)

0.11 709 680 593 604 545 813

Table 7.8: Number of iterations for J (x).

L(C) = 0.025 is equivalent to ∆x.

Tables 7.7 and 7.8 show the sensitivity of the iteration numbers of both

formulations to the condition number of D, which rises with correlation

length-scales L(CB) and L(CQ). The number of iterations required for the state

formulation to converge consistently exceeds the model error formulation. We also

observe that the state formulation is much more sensitive to identical increases

in the condition number of D than model error formulation. Taking the specific

example where L(CB) == L(CQ) = 0.09, we see that the number of iterations

for the state formulation exceeds the number of iterations for the model error

formulation by nearly one order of magnitude. This agrees with findings in Chapter

5 and Chapter 6, where the state formulation is more sensitive to identical increases

in the correlation length-scales of CB and CQ than the model error formulation.

L(CB)

0.01 0.03 0.05 0.07 0.09 0.11

0.01 0.260 0.271 0.236 0.227 0.268 0.237

0.03 0.372 0.441 0.353 0.293 0.314 0.351

0.05 0.449 0.332 0.416 0.358 0.283 0.314

0.07 0.346 0.486 0.220 0.284 0.347 0.246

0.09 0.167 0.176 0.401 0.306 0.239 0.219

L
(C

Q
)

0.11 0.184 0.274 0.098 0.277 0.187 0.274

Table 7.9: Total solution relative error, J (p).

L(CB)

0.01 0.03 0.05 0.07 0.09 0.11

0.01 0.264 0.273 0.238 0.228 0.268 0.238

0.03 0.383 0.447 0.376 0.296 0.316 0.355

0.05 0.628 0.335 0.593 0.363 0.291 0.335

0.07 0.365 0.511 0.413 0.309 0.417 0.254

0.09 0.295 0.183 0.461 0.324 0.390 0.261

L
(C

Q
)

0.11 0.274 0.428 0.190 0.397 0.237 0.513

Table 7.10: Total solution relative error, J (x).

Tables 7.9 and 7.10 show that the solution relative errors of the state formulation
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are consistently larger than the model error formulation. In a specific example

where L(CB) = 0.05 and L(CQ) = 0.11, the solution relative error of the

state formulation is almost one order of magnitude higher than the model error

formulation. So it is clear that the model error formulation is less sensitive

to correlation length-scale and provides consistently more accurate solution in

comparison to the state formulation.

L(CB)

0.01 0.03 0.05 0.07 0.09 0.11

0.01 6.11E+18 5.02E+18 7.16E+18 1.90E+19 3.74E+19 2.45E+20

0.03 5.70E+18 9.42E+19 3.46E+19 5.70E+20 5.01E+20 6.41E+19

0.05 3.39E+20 1.12E+19 1.15E+20 1.44E+20 5.55E+19 1.26E+20

0.07 1.21E+19 2.53E+20 1.48E+20 8.32E+21 9.83E+20 8.40E+20

0.09 2.73E+21 3.44E+21 2.86E+19 1.57E+20 2.48E+20 2.72E+20

L
(C

Q
)

0.11 9.35E+18 1.56E+20 5.22E+20 3.53E+21 4.42E+20 2.34E+21

Table 7.11: Condition number values for Sp.

L(CB)

0.01 0.03 0.05 0.07 0.09 0.11

0.01 2.18E+19 1.81E+19 6.50E+19 2.42E+19 7.28E+21 1.18E+19

0.03 4.18E+20 1.41E+19 7.30E+18 8.48E+20 2.72E+18 1.72E+19

0.05 8.08E+19 1.17E+19 9.92E+18 6.99E+18 1.95E+19 1.13E+19

0.07 1.51E+19 5.39E+19 6.06E+19 1.67E+19 3.58E+20 6.93E+19

0.09 3.08E+19 5.45E+19 1.17E+20 8.44E+20 1.38E+20 1.38E+19

L
(C

Q
)

0.11 1.17E+20 7.82E+19 2.92E+20 1.44E+21 4.03E+22 2.28E+20

Table 7.12: Condition number values for Sx.

The condition numbers in Tables 7.11 and 7.12 for both formulations are very

similar which was not expected based on the results obtained in Chapters 5 and 6.

However, Tables 7.11 and 7.12 show that as the correlation length-scales of B and

Q increase, then so do the condition numbers of Sp and Sx, which is compatible

with the iteration results in Tables 7.7 and 7.8. These results do not complement

the iteration number figures in Tables 7.7 and 7.8, which indicates that the higher

order terms of the Taylor expansion of both objective functions may be large.

To summarise, we see that the results related to the number of iterations in
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Tables 7.7 and 7.8 strongly agrees with our findings in Chapter 5, Section 5.2.1.1

and Section 5.1 and Chapter 6, Section 6.3.4 and Section 6.4.2. The number

of iterations of both the model error and state formulations both rise as both

correlation length-scales increase, with an increased sensitivity to L(CB) as we

expected. The state formulation also exhibits a much more visible increase in

iterations in comparison to the model error formulation, which was also to be

expected. The relative solution errors in Tables 7.9 and 7.10 were also to be

expected, since the experiments in Chapter 5 and Chapter 6 showed that the

solution errors of both formulations did not rise with correlation length-scale.

Finally, we would have expected to see differences in the condition numbers of

both formulations, but Tables 7.11 and 7.12 do not reflect this.

We now summarise this chapter.

7.2 Summary

To summarise, we showed in Experiment 1 that the number of iterations, solution

relative error and Hessian condition numbers of both formulations are sensitive to

assimilation window length and observation density with the Lorenz 95 system as

the model. More specifically, we showed that:

1. As the assimilation window increases, the condition number of Sp and

the number of iterations for convergence of the model error formulation

also increase. We also see that as the number of observations increase,

the condition number of Sp and number of iterations of the model error

formulation also increase. This agrees with findings in Chapter 5.

2. The state formulation solution errors and iteration count increase as the

assimilation window length increases, for any number of observations. The

exception to this is shown in Experiment 1(ii) where the state formulation

out-performs the model error formulation when the state is fully observed.

This coincides with findings in Chapter 6.
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In Experiment 2 we showed that both formulations exhibit an increase in the

number of iterations (Tables 7.7 and 7.8) and Hessian condition numbers (Tables

7.11 and 7.12) as the condition number of the background and model error matrix

D increases. We increased the condition number of the background and model

error matrix by increasing the correlation length-scales of the background and

model errors. Additionally, the increased sensitivity of the state formulation

over the model error formulation to the background and model error correlation

length-scales was also seen in Table 7.7 and Table 7.8.

We now conclude the thesis.
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Chapter 8

Conclusions

The weak-constraint 4DVAR problem is a variational data assimilation technique,

which unlike the conventional sc4DVAR method, accounts for model error, [83].

The wc4DVAR technique has two known formulations, both of which have been

employed in various applications in the literature, [84], [56], [19], [68], [66] and

[67]. Obtaining a solution to the wc4DVAR problem requires the minimisation

of the objective function and its gradient. The widely used method of choice for

solving the variational problem is the gradient-based Gauss-Newton ‘incremental’

technique. As we showed in Section 3.1, the condition number of the Hessian is an

appropriate measure of understanding the sensitivities of the solution to changes

in the input data composing the data assimilation problem.

We now draw conclusions from the work in this thesis followed by our ideas for

further research.

8.1 Conclusions

We intended to understand the differences between the model error and state

formulations of the wc4DVAR problem. In Chapter 4 we showed that by changing

a few data assimilation parameters, the iterative minimisation characteristics of

191



both problems can change dramatically. We found that the formulations were both

sensitive to observation density, error variances and the length of the assimilation

window. We also found that even when using identical settings for the generated

truth and assimilation, both wc4DVAR solutions consistently under-estimated the

true model error variance slightly.

We then examined the model error formulation more closely in Chapter 5,

by bounding the condition number of the first-order Hessian under simplified

assumptions and examining the bound expressions for sensitivities of the solution

to specific input parameters. We found that the model error formulation Hessian

condition number was sensitive to the background and model error covariance

matrix. This implied that the Hessian condition number is sensitive to both

the correlation length-scales of the background and model errors, and the ratio

of the background and model error variances. We also found that the Hessian

condition number of the model error formulation to be sensitive to the observation

accuracy, observation density and assimilation window length. We then examined

the preconditioned model error formulation showing that the condition number

and convergence rates are much improved.

An examination of the condition number of the first-order Hessian of the state

formulation followed in Chapter 6. We found that, under simplified assumptions,

the state formulation shared certain sensitivities with model error formulation.

One of these was the sensitivity to the background and model error error covariance

matrix, however this was more pronounced for the state formulation than for the

model error formulation. We also found the state formulation to be sensitive

to the observation density and assimilation window length, although there were

some unique differences. The state formulation Hessian condition number becomes

ill-conditioned as the observation density decreases, which also amplifies its

sensitivity to the assimilation window length. If the state is fully observed, then

the state formulation is no longer sensitive to the assimilation window length.

This is an interesting advantage, however, a fully observed state is unrealistic in

operational applications.
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We finally explored the wider-scope application of the theoretical results on a

non-linear, chaotic Lorenz 95 model in Chapter 7. We found that the sensitivities

of both formulations also show in specific experiments for the observation density,

assimilation window length and correlation length-scales.

The following points were covered in the thesis:

• In Chapter 4 we detailed the practical implementation of the wc4DVAR

formulations on the 1-dimensional linear advection model, which highlighted

clear differences in the minimisation characteristics of both formulations

based on changes in experimental parameters. We also observed in several

experiments that a general trait of both wc4DVAR formulations is that the

model errors are under-estimated.

• The condition number of the Hessian of the sc4DVAR problem is bounded

above by the condition number of the Hessian of the model error formulation,

Sp, shown in Appendix A.

• We identified and demonstrated the following sources of ill-conditioning of

the Hessian of the model error formulation. We did this both theoretically

and complemented it with numerical experiments to show similar effects on

the rate of convergence in Chapter 5:

• The condition number of the background and model error covariance

matrix, D.

- As the ratio of the background and model error variance increases

or decreases away from 1, D becomes ill-conditioned and therefore

so does Sp.

- As the correlation length-scales of the background and model error

covariance matrix increases, Sp becomes more ill-conditioned.

• Increasing the assimilation window length increases the condition

number of Sp at a potentially quadratic rate.
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• The ratio of the largest of the background and model error variance

to the observation error variance also renders Sp ill-conditioned if

it increases or decreases from 1. This means increasing observation

accuracy (lower observation variance), background accuracy or even

model accuracy can harm the conditioning of Sp, if the ratios of these

three error variances diverges away from 1.

• We also preconditioned the model error formulation with the symmetric

square root ofD and showed that the condition number of the preconditioned

Hessian was much improved in comparison to that of Sp, both theoretically

and numerically. We also showed the convergence rate of the iterative solver

used on the preconditioned objective function to be much improved as a

result of preconditioning.

• We identified the following sources of ill-conditioning of the condition number

of the Hessian of the state formulation, Sx. We also demonstrated that these

sources of ill-conditioning subsequently have an adverse effect on the iterative

convergence rate of the state formulation in Chapter 6:

• Assimilation window length and observation density. If we have a fully

observed state then the condition number of Sx is no longer affected

by the length of the assimilation window. We also see that as the

observation density decreases the condition number of Sx becomes

ill-conditioned. This was discussed in Section 6.2 and demonstrated

numerically in Sections 6.3.5 and 6.4.3.

• The sensitivity to the condition number of D. As the correlation

length-scales of the covariances matrices of the background and

model errors increase, Sx becomes ill-conditioned and the iterative

convergence rate suffers as a result. We also showed that the sensitivity

of the condition number of Sx to the condition number of D is greater

than Sp.

• We examined the effect of assimilation window length, observation density

and condition number of D, via the correlation length-scales, on the
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minimisation characteristics of both the model error and state formulations

applied to the non-linear chaotic Lorenz 95 model. We showed:

• Increasing the correlation length-scales of the matrices composing D

increases the number of iterations required for the model error and

state algorithms to converge, where the state formulation exhibits a

larger increase in iterations than the model error formulation.

• An increase in the number of observations and assimilation window

length increases the number of iterations for the model error algorithm

to converge.

• Decreasing the number of observations for any length of assimilation

window increases the number of iterations required for the state

algorithm to converge.

• For a fully observed state, increasing the assimilation window length

does not affect the number of iterates required for the state algorithm

to converge.

From the research shown in this thesis we can draw a few general conclusions.

The sensitivities shared by both formulations are: background and model error

covariance matrix correlation length-scales, error variance ratios, observation

density and assimilation window length. These sensitivities are shared but they

have different effects on each wc4DVAR formulation, as we have discussed in this

chapter. It is interesting and worth noting however that the state formulation is not

affected by assimilation window length if the state is fully observed. Although a

fully observed state is unrealistic, this suggests that there is a way of enabling

the state formulation to be more stable. We also see throughout the thesis

that the state formulation exhibits increased sensitivity in comparison to the

parameters which influence its condition number. We conclude that the model

error formulation is not as ‘fragile’ as the state formulation to its own sensitivities

and therefore the model error formulation is the more stable of the two wc4DVAR

algorithms to use until a suitable preconditioner for the state formulation is found.
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We now discuss avenues for further work before bringing the thesis to a close.

8.2 Further Work

The work in this thesis establishes a theoretical basis for the conditioning of

the model error and state estimation wc4DVAR problems. However, the theory

established in this thesis is limited to the simple assumptions made to derive the

theorems. We assumed that observations were taken of the state directly, which

allows for a simple observation operator. In reality however, observations may be

obtained from satellite radiances for example, which means that the observation

operator would be some form of the radiative transfer equation. The radiative

transfer equation has the potential of being highly non-linear and quite difficult to

deal with, [65].

We could also relax the assumption of uncorrelated observation errors. Observation

error spatial correlations are typically ignored in data assimilation while the

error variances are over-inflated to compensate for the lack of information on

correlations. While this assumption is not realistic, observation correlations

are ignored because it makes the implementation of 4DVAR easier in general.

Studies into the known sources of observation error have narrowed it down to four

sources; measurement error, observation operator errors, quality control errors

and representativity errors, [87]. The latter three sources of error are believed

to be correlated in space, while it has been suggested that observation errors are

potentially temporally correlated, [79]. Incorporating correlated observation errors

has only begun to be operationally implemented by the Met Office, [90], while there

are still problems with the conditioning of 4DVAR, [89].

Another assumption we made to obtain the theory was that the background, model

and observation errors were not time-correlated. It is common practice in NWP to

ignore time correlations because it is simply too computationally expensive to deal

with. However, there have been studies to show that, for example, model error
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can be correlated with time, [26], and also observation errors in remote sensing for

example, are correlated in time, [80].

The work in Chapter 7 could have been complemented with using the

Gauss-Newton ‘incremental’ wc4DVAR technique. We could also employ the

preconditioned model error algorithm using both the incremental technique

and the non-linear Polak-Ribiere conjugate gradient technique, to see if the

preconditioning has similar effects to those shown in Chapter 5 on the linear

advection equation. Comparing the differences in convergence rates and solution

errors of the Polak-Ribiere and incremental approach would be interesting. We

would expect the incremental approach to at least as good as the iterative

minimisation performance of the Polak-Ribiere technique, if not better.

Another practical aspect worth considering would be to investigate the validity

of the conditioning theory in this thesis on larger systems such as the ECMWF

Object-Orientated Programming System (OOPS), or even the University of

California’s operational Regional Ocean Modeling System (ROMS). Testing the

theory on bigger systems to investigate the sensitivity of both minimisation

algorithms to the input parameters discovered to be sensitive in this thesis would

be the next logical step.

In this thesis we preconditioned the model error formulation using the symmetric

square root of D, which we showed to improve the conditioning and minimisation

properties considerably. We could also consider the preconditioning of the state

formulation, which was shown to be very sensitive to the condition number of D.

As a first step we could precondition the state formulation using the symmetric

square root of D to understand if it improves its stability. M. Fisher and S. Gürol

have established an alternative saddle point formulation of the state formulation,

which has the advantage of avoiding the need to invert D, [27], [25]. In [27] the

authors identified that the Hessian of the state formulation can be preconditioned

using an approximation of the wc4DVAR model propagator, L. However they also

showed that the formulation is very sensitive to the approximation of L. We could

also study the conditioning of the saddle-point formulation problem, where the
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Hessian matrix is symmetric indefinite.

Another formulation that would be useful to consider is the weak-constraint

equivalent of the dual formulation, [12]. The weak-constraint problem, which

is considerably larger than the strong-constraint problem can be mapped into

observation space to reduce the size of the problem and achieve an equivalent

solution. The attractive prospect of this is that wc4DVAR is a much larger

problem than sc4DVAR, so wc4DVAR would possibly benefit more from being

solved in the lower dimensional observation space. Investigating the conditioning

of the weak-constraint dual problem would also complement the work by A. El

Akkraoui et al. [20], [21], but this has yet to be done.

This concludes the thesis quod erat faciendum.
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Appendix A

General Upper Bound: The

Strong-Constraint 4DVAR

Hessian Condition Number

We write the sc4DVAR Hessian, S ∈ R
N×N as

S = B−1
0 + ĤTR−1Ĥ, (A.1)

where

Ĥ =
[
HT

0 , (H1M1,0)
T , (H2M2,0)

T , . . . , (HnMn,0)
T
]T
, (A.2)

notice that Ĥ is identical to the first block column of HL−1 in the weak constraint

Hessian matrix (2.40).

We now present a general result, which shows the eigenvalue spectrum of the

Hessian of sc4DVAR is bounded by the eigenvalue spectrum of the Hessian of

wc4DVAR formulation (2.32).

Theorem A.0.1 The condition number of the Hessian of the strong-constraint

problem is bounded such that

κ(S) ≤ κ(Sp). (A.3)
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Proof: We prove this by showing that the largest and smallest eigenvalues of S

can be obtained by taking an appropriate Rayleigh Quotient of Sp. To illustrate

this we denote the spectrum of S by [λN , λ1], where λN is the smallest eigenvalue

and λ1 is the largest eigenvalue of S. Similarly we let the interval [σN(n+1), σ1]

denote the spectrum of Sp. Since we know the bounds of the Rayleigh Quotient

from Theorem 3.4.7 , we aim to show

σN(n+1) ≤ λN ≤ λ1 ≤ σ1. (A.4)

Note this does not mean that an eigenvalue of S is necessarily an eigenvalue of Sp.

Consider the Rayleigh Quotient of Sp

RSp
(w) = wT (D−1 + L−THTR−1HL−1)w, (A.5)

where w ∈ R
N(n+1) is such that

w =

( v1
0
.
.
.
0

)
, (A.6)

where v1 is an eigenvector of S corresponding to the largest eigenvalue.

We compute the first part of the Rayleigh Quotient of Sp,

wTD−1w = vT1 B0v1. (A.7)

Computing the second part yields

HL−1w = Ĥv1. (A.8)

The transpose of this statement is also true. Therefore the second term yields

wT (L−THTR−1HL−1)w = vT1 Ĥ
TR−1Ĥv1. (A.9)

The Rayleigh Quotient of Sp is then

RSp
(w) = vT1 B0v1 + vT1 Ĥ

TR−1Ĥv1 = RS(v1) = λ1, (A.10)

as required. The largest eigenvalue of the Hessian of the strong-constraint problem

exists in the eigenvalue interval of the Hessian of the weak-constraint problem

(2.32).
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The same argument can be made for the smallest eigenvalue λN of S. If the largest

and smallest eigenvalues of S both exist in the eigenvalue interval of Sp, recalling

the bounds of the Rayleigh Quotient from Theorem (3.4.7),

λN ≤ RS(x) ≤ λ1, (A.11)

σN(n+1) ≤ RSp
(x) ≤ σ1, (A.12)

we have

σN(n+1) ≤ λN ≤ λ1 ≤ σ1. (A.13)

Finally, the condition number as defined in (3.9) is the ratio of the largest and

smallest eigenvalue. So it follows that κ(S) is less then or equal to κ(Sp).

This completes the proof. �

The condition number of the Hessian of sc4DVAR being less then or equal to the

condition number of the Hessian of wc4DVAR formulation (2.32) suggests that the

iterative performance of wc4DVAR should not exceed the iterative performance

of the sc4DVAR when solving identical data assimilation problems. Ideally,

wc4DVAR will at least have the same convergence characteristics as sc4DVAR.
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