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Abstract: A recent study conducted by Blocken et al. (Numerical study on the 

existence of the Venturi effect in passages between perpendicular buildings. Journal 

of Engineering Mechanics, 2008,134: 1021-1028) challenged the popular view of the 

existence of the ‘Venturi effect’ in building passages as the wind is exposed to an open 

boundary. The present research extends the work of Blocken et al. (2008a) into a more 

general setup with the building orientation varying from 0° to 180° using CFD 

simulations. Our results reveal that the passage flow is mainly determined by the 

combination of corner streams. It is also shown that converging passages have a 

higher wind-blocking effect compared to diverging passages, explained by a lower 

wind speed and higher drag coefficient. Fluxes on the top plane of the passage volume 

reverse from outflow to inflow in the cases of α=135°, 150° and 165°. A simple 

mathematical expression to explain the relationship between the flux ratio and the 

geometric parameters has been developed to aid wind design in an urban 

neighborhood. In addition, a converging passage with α=15° is recommended for 

urban wind design in cold and temperate climates since the passage flow changes 

smoothly and a relatively lower wind speed is expected compared with that where 

there are no buildings. While for the high-density urban area in (sub)tropical climates 

such as Hong Kong where there is a desire for more wind, a diverging passage with 

α=150° is a better choice to promote ventilation at the pedestrian level. 
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1 Introduction 

The influence of buildings on the wind micro-environment has aroused increasing attention in the 

area of urban planning and design [1-5]. Many researchers have found that the urban open space 

design with long and narrow passages between slab-type buildings can lead to a significant increase 

in local wind speed and cause wind nuisance for pedestrians [6-11]. This phenomenon is 

traditionally explained as the result of the Venturi effect [6, 9] since the flow speed in the building 

passage shows an increase along with a decrease in the section area, which is thought to be analog 

with the Venturi phenomenon described for duct flow well documented in fluid engineering [12]. 

This view has been widely recognized and propagated [10, 13-16]. However, recent work 

conducted by Blocken et al. [17, 18] doubted the applicability of the Venturi effect to the urban 

wind environment, and attributed the increase of wind speed near ground level mainly to the 

wind-blocking effect rather than the Venturi effect. They argued that the passage between two 

buildings is open to the atmosphere at the top rather than being a closed space. Therefore, with the 

decrease of flow cross-section area in converging flow, the maximum flow speed along the 

pedestrian centerline increases but is not accompanied by an increase of flow rate. The wind speed 

in diverging passages is however systematically larger than that in converging passages at the 

pedestrian level. In addition, they considered the wind-blocking effect as the most important 

physical process in controlling the flow condition in a passage, which causes the slowdown of wind 

speed upstream of the buildings, allowing part of the air mass to flow around and over the passage 

rather than being forced through the narrowest passage opening. 



 

 

The pioneering work from Blocken et al. [17, 18] has provided new insights into the ‘old’ question 

of the Venturi effect in urban wind design, but they only examined a 45° converging passage and a 

corresponding 135° diverging passage. Wind conditions under other different arrangements of 

passage buildings are still unclear. Existing studies have not provided sufficient guidance or a 

ready-to-use tool for urban design and planning professionals to guide their design practice. In the 

present paper, we intend to extend the work of Blocken et al. (2008a) [17] to a full range of 

building arrangements with the angles varying from 0° to 180°. Numerical simulation based on 

CFD is employed for a detailed investigation of the wind environment, wind speed amplification, 

wind flow flux and drag force in passages between two long narrow buildings with different 

orientations. A simple empirical formula based on the simulation database is also derived to guide 

urban wind design practice. The overarching aim of the current study is to offer further insights into 

the mechanism of wind conditions in passages. 

2 Model Setup 

The passage flow between buildings is mainly influenced by the building orientation, building 

arrangements, building dimensions and passage width. Blocken et al. (2008b) [18] conducted wind 

tunnel experiments to consider a typical passage model with two identical buildings of 

100m×10m×30m (L × B × H, in full scale) placed perpendicular to each other, which is believed to 

be a suitable arrangement for the occurrence of Venturi flow [6]. Two types of wind flow were 

considered, i.e., converging flow (α=45°) and diverging flow (α=135°) depending on the wind 

direction. Buildings orientation (𝛼) is defined as the angle between the building’s lengthwise edge 



 

 

and the approaching wind direction. In the present study, the same definition was adopted, and wind 

environment conditions were investigated by extending Blocken et al. (2008a)’s work to various 

building orientations (α): all α < 90° cases are referred to as converging arrangements, while all α > 

90° cases are diverging arrangements, and 0° and 90° cases are parallel arrangements. Schematic 

representations of basic passages are shown in Fig.1, which has identical models to those in [17] 

and all notations are the same. The passage width is assumed to be constant as W=30m (in full 

scale). In total, 12 cases were considered by varying α from 0° to 180° with a step-change of 15° (0° 

and 180° are the same cases). The top view of the building models is shown in Fig.2. Following 

[17], a coordinate system called the r-coordinate system is established with its origin at r0, at the 

location of the small cross-section of the passage (SCSP) and the unit length r = L/2. The same 

terminology as in [17] is applied in order to make a consistent comparison, the horizontal flux FP 

goes through the upstream plane AP, the horizontal flux FH goes through the downstream plane AH, 

and the vertical flux FV goes through the horizontal plane AV at the passage top. A positive or 

negative flux through a plane is determined according to the direction of the normal vector in the 

Fig.1. The positive direction of the coordinate is in line with the wind flow direction (positive in the 

downstream direction).  



 

 

 

Figure 1 Illustration and notations of passages between buildings: (a) α=45°, convergence flow (b) 

α=135°, divergence flow 

 

Figure 2. Top view of passages between buildings with different orientations 

 CFD simulation setup 

CFD software ANSYS Fluent 14 was utilized to simulate wind flow in and around passages. 

The governing equations are 3D steady-state isothermal and incompressible Reynolds-averaged 

Navier-Stokes equations, using the Standard k-ε model as the turbulence model, which was 

recommended in the study [19]. In our previous study [19], we compared various k-ε turbulent 
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models including Standard, RNG and Realizable k-ε models, and found the predicted wind speed by 

these models to be comparable, which agreed with other CFD studies on outdoor wind 

environments [20, 21]. Pressure-velocity coupling is taken care of by the SIMPLE algorithm. 

Pressure interpolation is second order. Second-order discretization schemes are used for both the 

convection terms and the viscous terms in the governing equations. A sufficiently high mesh 

resolution in the vertical direction within the pedestrian space [22], suitable values for y+ in the 

passages and a Reynolds number independent flow are required in CFD simulations of the 

pedestrian wind environment. Therefore, our simulations were performed at the scale of 1:40 to 

satisfy all these requirements as in [17]. The dimensions of the computational domain are 

1,400×1,400×400 m3 (Length × Width × Height) in full scale and buildings are placed at the center 

of the domain. The first-layer cells close to building surfaces are generated to ensure the y+ value 

falls within the range of 30-100 to satisfy the requirement of the standard wall function. In addition, 

the distances from the buildings to the top boundary was more than 10H, the lateral, windward and 

leeward boundaries were all more than 15H away. The maximum blockage ratios were less than 

0.6%, the maximum lateral directional blockage ratio was 16.4%, and all the vertical directional 

blockage ratios were 7.5%, all of which show good conformation with practice guidelines [22-24]. 

After grid-sensitivity analysis, which was conducted on hexahedral grids including 1.2 million, 2.4 

million, 3.4 million, and 9 million cells, a suitable structured hexahedral mesh with approximately 

3.4 million cells was obtained. Taking the 45° case as an example (Fig.3), fine grids were 

constructed near the building, and gradually increased toward the outer boundaries of the domain. 



 

 

  

Figure 3. (a) Perspective view of the grids near and in the passage (b) Detailed view of the grids 

near the small cross-section of the passage (SCSP) 

In these numerical simulations, following Blocken et al. (2007), a rough wall function was applied 

on the ground to minimize the inhomogeneity of the flow when traveling along the domain, while 

the sky and sides of the domain were set to be symmetry. Outflow was considered as a 

fully-developed, free-outflow boundary condition. Particularly, the profiles measured in the empty 

wind tunnel at the location where the buildings will be positioned are used as the inlet profiles in 

simulations with buildings, as shown in Fig.4. The inlet vertical profiles of mean wind speed, 

turbulence kinetic energy and turbulence dissipation rate were obtained based on wind tunnel 

measurements [17, 18, 24]: 
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where z is the height, I is turbulence intensity. The aerodynamic roughness length z0=0.00005m 

(CFD scale) and the friction velocity u* =0.45m/s were adopted from [17]. In the simulations, the 
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same value for physical roughness height as for the aerodynamic roughness length is utilized. Cs 

was set at its default value 0.5 and ks=0.001m (CFD scale). A simulation was conducted in an 

empty domain to assess the extent of horizontal homogeneity as suggested by [22]. Fig.4 shows that 

the incident profiles along the domain are reasonably consistent with the inlet profiles, where Ug 

denotes the wind speed above the gradient height. The difference between mean wind speeds is 

trivial while the difference between turbulence intensities is comparatively significant. Overall, it 

presents good consistency when wind flows through the domain.  

 

Figure 4. Vertical profiles of ratio U/Ug and turbulence intensity I, measured in a wind tunnel, at the 

inlet and where the buildings would be positioned. 

 Model Validation 

Model validation was done by comparing numerical results with wind tunnel measurements 

conducted by [18] at pedestrian height (2m in real scale) along the passage center line. Wind tunnel 

experiments were performed at a scale of 1:400 with the reference incident wind speed of 7.4 m/s. 

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

H
 (

m
)

U/U
g

 U/U
g
 (building position)

 U/U
g
 (inlet)

 U/U
g
 (wind tunnel)

0.00 0.03 0.06 0.09 0.12 0.15

0

100

200

300

400

 I (building position)

 I (inlet)

 I (wind tunnel)

H
 (

m
)

I 



 

 

Two cases were considered in the wind tunnel i.e. α=45° and 135° corresponding to the converging 

and diverging arrangements. The numerical results were presented as amplification factors for the 

mean wind speed. The amplification factor K is defined as the ratio of U/U0, where U is local wind 

speed, and U0 is reference wind speed at the height of 2m (full scale) at r = 0. Fig.5 shows the 

comparison of the amplification factor along the passage center line (Kpcl) between experimental 

and simulated results. It illustrates that, generally, numerical results agree quite well with the 

experimental data. However, the simulation results for the converging passage are more accurate 

than those for the diverging passage. The largest discrepancy occurs at the outlet of the diverging 

flow. This may be attributable to the limitations of the RANS model in addressing the complexity 

of the wake effects, which has been widely acknowledged in the literature [20, 21]. However, the 

current study centers its focus on the increase of the velocity where the so-called Venturi effect 

occurs rather than at the wake regions. This discrepancy has the minimum impact on the outcomes 

of the present study. It is also indicated in Fig.5 that the amplification factors Kpcl through the 

diverging passage is larger than that through the converging passage. In addition, the trends of Kpcl 

through the two types of passage are similar to each other: the peak and minimum Kpcl occur closer 

to r = 0.5 and r = -0.5, respectively, which are both near the SCSP 



 

 

  

 

 

Figure 5. Comparison of experimental and simulated results: (a) Kpcl at r=0 and at the position 

where its experimental value is maximum; (b) Kpcl along the passage center line; (c) comparison 

between experimental data and numerical simulation resutls along the passage center line. 

3 Results and discussions 

 Converging flow vs. diverging flow 

Results are discussed in terms of the amplification factor K at the height of 2m (full scale). Fig.6 
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shows the contours of K in and around the building passage. Generally, the higher K-value areas 

appear around corner streams and within passages in all cases, and the calm-wind areas are evident 

near windward and leeward sides of the buildings. With the angle between the building and 

centerline changing to become close to 90°, the regions of high wind speed shrink and the regions of 

low wind speed expand simultaneously, corner streams become weaker and the wake area grows 

larger. With α increasing from 0° to 90° and then 90° to 180°, low K-value regions at the windward 

side of buildings form near outside upstream corners at the beginning, and they grow larger and 

move inward to the SCSP. The largest area of windward low K-value regions appears near the 

center of buildings when α=90°, and then they move toward the SCSP and become smaller, until the 

smallest appears at α=180°. Therefore, the transition of low K-value regions to the windward of 

buildings is closely related to the variation of the frontal area density. 



 

 

 

Figure 6. Amplification factor K in a horizontal plane at 2m height above the ground; wind 

direction and building orientation α are shown in each figure; two schematic diagrams are 

illustrated based on the α=30° case. 

It is clear that the wind speed in most diverging passages is considerably larger than that in 

converging counterparts. In addition, Fig.6 shows that the K value is higher near the upstream outer 

corners than that within the passage for all α<90° cases. Similar results were observed by [17]. The 

greatest K appears near the upstream outer corners when α<90°, while for α>90°, it locates near the 

opening of the passages (at upstream). Furthermore, for each group of complementary cases (the 
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two cases with complementary angle α), the magnitudes of high K-value regions are similar and all 

appear in upstream regions. Therefore, for passages of α>90°, the passage flow can be regarded as 

the superposition of the upstream corner streams from the two buildings; while for α<90° cases, it is 

the superposition of the downstream corner streams. In other words, both the corner stream and the 

passage flow in the upstream region mostly show greater flow speeds than those in the downstream 

region. Moreover, [22] stated that the maximum K at the outer corners (Kc,max) is nearly independent 

of the passage width, and the maximum K in the passage (Kp,max) was also observed to be the same 

as the Kc,max at the outer corners when the passage width is equal or wider than 30 m. All these 

results show that the superposition of flows near buildings’ corners plays an important role in 

forming the passage flow. Taking another line of argument, this explains well that wind speed in 

diverging passages is strikingly larger than that in corresponding converging passages, because the 

SCSP of diverging passages are in the upstream area where corner streams are stronger. 

 Amplification factor in the passage 

Fig.7 illustrates the Kpcl as a function of r along the passage center line at pedestrian height for all 

cases. Comparing all curves from r = -1.5 to 1.5, the changing trends of Kpcl are similar but offset to 

each other. The following main observations can be made: 

1)  SCSP is very important in determining the overall characteristics of passage flow. After a 

general decrease of Kpcl before the SCSP, a dramatic increase would occur at the opening of 

the SCSP. The peak appears at approximately 0.25r~0.6r downstream of the SCSP and the 

valleys appear at approximately 0.25r~0.5r upstream of the SCSP.  



 

 

2) It is well observed that Kpcl are less than 1 for both cases when α=15° and 30°. It 

demonstrates that the so-called Venturi effect is not observed in the cases of 15° and 30° at 

all, though they belong to converging flow in principle. The results support the view that the 

Venturi effect is not able to describe the outdoor passage flow between two symmetric 

buildings with an open boundary. Furthermore, the highest Kpcl occurs in the case of 150°, 

showing the wind speed mounts to 1.49 times the original wind speed when the buildings 

are not present. Meanwhile, the smallest Kpcl is found in the case of α=75°, which means this 

arrangement has the greatest wind-blocking effect since the wind speed in front of the 

passage undergoes the largest decrease, approximately 0.46 times the reference velocity. In 

addition, the most flat curve is evident at α=15°, which should be recommended as an 

appropriate arrangement in urban design in cold climates since the passage flow changes 

smoothly and exhibits lower wind speed compared with that for no buildings. While for the 

high-density urban area in a tropical climate, such as Hong Kong where there is a desire for 

more wind, the diverging passage with α=150° is a better choice to promote ventilation at 

pedestrian levels. Therefore, these relative orientations of building blocks should be given 

cautious consideration during the urban design process. 

3) Further delving into Figure 7, it is found that the Kpcl,min decreases from α=15° to α=75° and 

then increases for converging flows. The maximum Kpcl-values (Kpcl,max) increases when α 

increases from 15° to 90°. For diverging flows, Kpcl,min increases from α=105° to α=180°, 

and Kpcl,max increases from α=105° to α=150°, and then decreases from α=150° to α=180° . 



 

 

The maximum Kpcl,max occurs when α=150° which is in accordance to the maximum ratio of 

flow flux penetrating into the passage through the top (shown in Fig.10). 

4) Comparing extreme values in Fig.7, Kpcl,min in each diverging case (α>90°) is greater than 

that in the complementary converging case. In a similar manner, all Kpcl,max in α>90° cases 

are larger than their complementary converging cases except for α=105°, whose Kpcl,max is 

smaller than that in the case of α=75°, also shown in the enlarged view of Fig.8. This 

observation adds more insights to Blocken’s conclusions in [17] that wind speed for a 

converging passage is systematically smaller than for its complementary diverging passage 

as they only studied one case which had α=45°.  

 

Figure 7. Amplification factor Kpcl along the passage center line  



 

 

 

Fig. 8. Enlarged view of amplification factor K in a horizontal plane at 2 m for the cases of 

α=75° and 105°  

 Drag coefficients 

A principal effect of wind flow around passage buildings is the wind-blocking effect, which forces 

the air to flow over and around buildings rather than just going through the narrow passage opening. 

Drag force/drag coefficient is normally used to describe the resistance of buildings to the air. 

Considering the important force of buildings acting on air, the drag coefficient, defined by Eq. (4) is 

exhibited in Fig.9Fig, including three drag coefficients along the x, y, z coordinates (as shown in 

Fig.3) respectively.  
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Atotal is the total surface area of buildings and D is the total drag force of buildings. Drag 

coefficients for the x-coordinate (spanwise) are nearly zero and for the z-coordinate (vertical) keep 

at a small magnitude as around 0.05 while α is within 30° and 150°, however, they constitute a 

significant portion of drag when α is near 0 and 180 although the overall magnitude is small. 

Moreover, different from fluxes changing dramatically in diverging passages, trends of drag 
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coefficients in y-coordinate show a good association with the directions of building orientations, 

indicating the frontal area is a major factor in determining the drag force. In addition, drag 

coefficients for α=15° and 165° are approximately the same due to their equal and small frontal 

areas, but the drag coefficient for the converging passage is slightly larger than the corresponding 

diverging one in all other pairs of complementary cases. It means that the wind-blocking effect of 

passage buildings in these converging arrangements is more pronounced than that in corresponding 

diverging arrangements, which contributes more reduction of fluid speed and longer deceleration 

distance in converging passages as shown in Fig.6 and Fig.7. The drag coefficient is therefore the 

main indicator of the wind-blocking effect. Furthermore, as shown in Fig.9, the curve shape of 

Kpcl,min is mirrored with that of the drag coefficient, indicating the Kpcl,min is inversely correlated 

with the drag coefficient. 

 

Figure 9. (a) Amplification factors as a function of the building orientations; (b) Drag coefficients 
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for the x, y, z coordinates defined by the Ug and the total surfaces area of buildings 

 Wind flow flux 

Apart from amplification factor, flow fluxes/flow rates through the passage are also analyzed.  

   

 

Figure 10. Flux ratios as a function of non-parallel buildings orientations (insets show vectors at Av) 

Fig.10 shows flux ratios (FV/FH and FP/FH) plotted against α, and negative flux ratio FV means the 

AV is inlet for wind to penetrate into the passage from the top and the positive Fv represents AV as 

an outlet. All converging arrangements have one inlet and two outlets, because both FP/FH and 

FV/FH are positive; the wind flows into passage volume through Ah and out through both the top AV 

and the downstream AP. In contrast, diverging arrangements show more complex flow conditions. 

While the case of α=105°, 120° and 180° are similar to converging passages with one inlet and two 

outlets, there are two inlets and one outlet in the cases of α=135°, 150° and 165°. This confirms the 



 

 

study in [17] for the diverging flow of 135°, and is further extended to the cases of 150° and 165°. 

However, our new study reveals that not all diverging flows show a similar trend. As shown in the 

vector diagram in Fig.10, the reattachment flow enters the passage space from the AV plane, causing 

fluxes to reverse from positive to negative in the α=135°, 150° and 165° cases. In addition, as 

observed from Fig.6 and Fig.10, passage areas for diverging arrangements α=105° and 120°are 

mainly located in the cavity zones of their wakes, but passage spaces in α=135°, 150° and 165° 

cases are larger, and beyond the cavity zone, so the reattachment flow separating from the buildings’ 

roofs will enter through the top surface AV. Therefore, the flow pattern in the diverging passage 

flow can be more intricate, being composed of the wind-blocking effect and the wake effect. 

Moreover, the passage arrangement α=180° is the same as that of α=0°, in which the wake region 

locates to the leeside of buildings and downstream of the passage area, so it is more like converging 

passages, influenced mainly by the wind-blocking effect. 



 

 

 

Figure 11 Flux ratios FP/FH and FV/FH against the passage width (converging passage α=45° but 

different passenger widths- Blocken et al. (2008a)), and against the buildings orientation (α), 

(passage width w=30m, but different orientations- current study). 

The wind-blocking effect refers to the resistance of the external flow by the presence of buildings, 

whose morphological characteristics are essential in terms of frontal area, plan area, shape and 

layout. In real design practice, urban planners hope to use simple empirical formula being able to 

predict the resultant wind conditions based on these urban morphological parameters. We firstly 

combined the data from [17] for a converging flow with different passage widths and our present 

study of a constant passage width of 30m but different building orientations in the converging flow 

category as depicted in Fig.11. It shows that the fluxes of converging passages are largely 

influenced by the wind-blocking effect characterized by the frontal area (represented by building 
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orientation in the current study) and the width of the passage. Moreover, Fig.11 also demonstrates 

that our results have a good agreement with those of Blocken et al in [17]. Given the converging 

passage enclosed by two non-parallel symmetrically-placed buildings, we hypothesize that the 

fluxes of converging passages are mainly influenced by the width of the passage (w), the length of 

the building (L) and the building’s orientation (α). A simple formula describing FP/FH (Eq.5) in 

relation to the above-mentioned parameters was derived by fitting the data to Cflux using the 

algorithm of logarithm and Excel software. Cflux is a flux coefficient which was created by 

synthesizing the morphological variables and defined in Eq.6.  This resulted in constants as shown 

in Eq.5.  

 VP

H H

=1- =0.1891 ln( )+0.4745flux

FF
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F F
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c L 
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Where L =100m is the length of the passage building; c is a function of w (10≤w≤90, m), and 

follows the empirical Eq.7. c was formulated by fitting to w using algorithm of polynomial and 

Origin 8.5, and this resulted in constants as shown in Eq.7. Those constants are derived from the 

simulations data of [17] and the current study. 

 2 3 6 475.095 6.171 0.168 0.002 7.399 10c w w w w            (7) 

Fig 12 shows the results of Eq.5 with both various passage widths and building orientations, 

indicating the fairly good accuracy of the fitting equation. It can roughly estimate the flux ratio of 

passages for converging flow formed by two symmetric slab-type buildings under various buildings 



 

 

arrangements. Since the flux data used for the derivation of those parameters were only deduced 

from the two studies, the applicability of the equation is for 10≤w≤90 and 0°≤α≤90° only. We 

further test the applicability of the empirical equation by investigating two extra cases (W=50 m 

and α=60° and 35°) which were not previously included in our database for deriving the equation. 

The CFD simulation results for the two extra cases agree very well with the prediction from the 

empirical equations (Eq.5-7), as shown in Figure 12. The red-filled triangle and the blue-filled star 

represent the two extra cases, both of them fall within the ±10% performance lines.  

 

Figure 12. Fitting accuracy of flux ratios against various passage widths and buildings orientations. 

4 Conclusions 

The passage flow between two symmetric slab-type buildings with various orientations has been 

studied by CFD in order to provide more insight into the mechanism of wind flow in building 

passages. A group of simplified passage models with varying angles (0° to 180°) between buildings 

and the centerline was developed by extending the previous work of [17]. Structured hexahedral 

grids were constructed and the horizontal homogenization and grid sensitivity were discussed. In 
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addition, the numerical results were validated by corresponding wind tunnel measurements 

available in the literature. Wind environments, characteristics of passage flow, drag coefficients and 

flow fluxes of passages with different building arrangements were investigated. The following 

conclusions can be made: 

1) The flow in diverging passages can be considered as a superposition of the corner flow 

near the upstream outer corners of buildings; and converging passages flow can be 

considered as a superposition of the downstream corner streams of buildings. Since the 

SCSP of diverging passages is near the upstream region, where corner streams are stronger, 

the wind speed with diverging passages is significantly larger than in the corresponding 

converging passage. 

2) The trends for amplification factor K for all cases are comparable; values for both peaks 

and valleys appear near the SCSP. In particular, in the cases of α=15° and 30°, the wind 

speed at pedestrian level in the whole passage is smaller than that in the empty domain 

without the presence of buildings, which supports the statement that the Venturi effect is 

unsuitable to describe the outdoor passage flow with open boundaries. In addition, all 

converging passages have longer deceleration distances and smaller Kpcl,min than diverging 

passages, because converging passages have more significant wind-blocking effects 

compared to complementary diverging passages. This is also reflected in drag coefficient 

analyses.  

3) Fluxes reversed from outflow to inflow on the AV planes in the cases of α=135°, 150° and 



 

 

165°, indicating that the flow pattern in diverging passages flow can be more complex. 

Within the passages flow, the wind-blocking effect is the major factor upstream of the 

SCSP. For the converging passage flow between two symmetric slab-type buildings, a 

simple prediction model for the flux ratio of the passage flow is derived as a function of 

the flux coefficient Cflux, which is defined by the passage width and the buildings’ 

orientations. Moreover, the trends of drag coefficients for the y-coordinate show good 

associations with the directions for building orientations. 

4) A passage with α=75° has the greatest wind-blocking effect since the wind speed in the 

passage has a decrease of approximately 0.55 times. Passages with α=15° are highly 

recommended for urban neighborhood design in cold and temperate climates since the 

passage flow changes smoothly and a relative lower wind speed is expected compared to 

that with no buildings. Meanwhile, for the high-density urban areas in a (sub)tropical 

climate, such as Hong Kong where there is a desire of more wind, the diverging passage 

with α=150° is a better choice to promote ventilation at the pedestrian level.  
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