Buy Haworth

Pumbers

Mersenne

PREFACE

These notes have been issued on a small scale in 1983 and 1987 and on request at other times.

This issue follows two items of news. First, Walter Colquitt and Luther Welsh found the 'missed' Mersenne prime M_{110503} and advanced the frontier of complete M_p -testing to 139,267. In so doing, they terminated Slowinski's significant string of four consecutive Mersenne primes. Secondly, a team of five established a non-Mersenne number as the largest known prime. This result terminated the 1952-89 reign of Mersenne primes.

All the original Mersenne numbers with p < 258 were factorised some time ago. The Sandia Laboratories team of Davis, Holdridge & Simmons with some little assistance from a CRAY machine cracked M₂₁₁ in 1983 and M₂₅₁ in 1984. They contributed their results to the 'Cunningham Project', care of Sam Wagstaff. That project is now moving apace thanks to developments in technology, factorisation and primality-testing.

New levels of computer power and new computer architectures motivated by the open-ended promise of parallelism are now available. Once again, the suppliers may be offering free buildings with the computer. However, the Sandia '84 CRAY-1 implementation of the quadratic-sieve method is now outpowered by the number-field sieve technique. This is deployed on either purpose-built hardware or large syndicates, even distributed world-wide, of collaborating standard processors.

New factorisation techniques of both special and general applicability have been defined and deployed. The elliptic-curve method finds large factors with helpful properties while the number-field sieve approach is breaking down composites with over one hundred digits.

The material is updated on an occasional basis to follow the latest developments in primality-testing large M_p and factorising smaller M_p ; all dates derive from the published literature or referenced private communications. Minor corrections, additions and changes merely advance the issue number after the decimal point.

The reader is invited to report to the address below any errors and omissions that have escaped the proof-reading, to answer the unresolved questions noted and to suggest additional material associated with this subject.

Guy Haworth 33, Alexandra Rd., Reading, Berkshire England, RG1 5PG

Issue 10.2 of 22/01/90

ACKNOWLEDGMENTS

I must first recall with great pleasure that I was introduced to elementary number theory and the Mersenne numbers by an Oxford copy of Dan Shanks' "Solved and Unsolved Problems in Number Theory". His entertaining text remains most readable in its current third edition and achieves the difficult objective of presenting the key concepts in both a logical and a historical perspective.

In the same spirit, I should next like to thank my colleague Stewart Reddaway of ICL whose interest in parallel processors, multiplication techniques and the Mersenne problem re-awakened my earlier interest in this area. Stewart's DAP implementation team included Steve Holmes, David Hunt and Tom Lake; their thorough approach to the major coding task resulted in their second sourcing all M_p -LRs available and filing all necessary M_p -LRs for p < 100,000.

I thank now everyone who has directly or indirectly contributed to the content of these notes, not least those who developed algorithms and carried out computations on the Mersenne Numbers. The completeness and topicality of the material is due in large part to those who, in private correspondence, were able to restore the colour to the events of the past or even recreate old computations.

I thank Nelson, Shanks and Tuckerman for having the foresight to preserve unpublished M_p -LLT results in private files. I thank Brent, Brillhart, Davis & Holdridge, Keller, Naur, Pollard, Suyama & Wagstaff for factorisations associated with the M_p . They were willing to attack the major peaks which 70-digit numbers represented at the time and also patient and thorough enough to dismiss the small composites which I listed.

This compilation has been significantly assisted by the services provided to assist such research. I was fortunate to be able to call on the help of the British Library, Reading University's Library and Computer Service, the abstracting service of Mathematical Reviews and the production facilities provided by ICL.

CONTENTS

р	Ch	
1		Preface
2		Acknowledgments
3		Contents
4		Introduction
6	1	Abbreviations
7	2	Mersenne Number Status Table
8	3	Prime Mersenne Numbers
10	4	Tables of Factors of Mersenne Numbers
11	5	Original Mersenne Numbers - Positive Results only: M _p Order
14	6	Original Mersenne Numbers - All Results and some errors: $M_{ m p}$ Order
28	7	Further Mersenne Numbers – Lucas-Lehmer tests and errors: ${\rm M}_{\rm p}$ Order
37	8	Published Work - Errors: Author Order
44	9	Conjectures Resolved
46	10	Conjectures Outstanding
48	11	Theoretical Results
52	12	Computational Details
55	13	Status-quo and Questions
57	14	Authors
58	15	References indexed in "Mathematical Reviews"
60	16	Bibliography

75 17 Keywords

3

INTRODUCTION

The number system has been studied since the earliest times and this history begins with Pythagoras and Euclid.

One of the earliest interests was the concept of the 'perfect' number - a number equal to the sum of its proper divisors. Here, '1' but not the number itself is regarded as a proper divisor.

Such numbers are rare and the earliest examples, 6 and 28, were invested with mystical significance by numerologists and philosophers.

The major moments in the history of the search for perfect numbers have been provided by Euclid (275BC), Mersenne (1644), Lucas (1876) and by the advent of the electronic computer in the 1950s.

Euclid showed that $2^{n-1}(2^{n}-1)$ was perfect if $2^{n}-1$ was a prime. Again the early $2^{n}-1$ primes, 3 and 7, were specific objects of numerological interest. Supplementary results have shown that $2^{n}-1$ is prime only if 'n' is a prime 'p', that all even perfect numbers are of Euclid's form, and that the factors of $2^{p}-1$ are of a specific form.

No odd perfect numbers are known. As successive papers add to the conditions which such numbers must satisfy, their existence looks increasingly unlikely. Had '1' not been regarded as a proper divisor, the story might well have been different.

Mersenne took a specific interest in numbers of the form $2^{p}-1$ and incorrectly stated which p < 258 led to perfect numbers. He provided no proofs and it might be generous to regard his statement as a conjecture. Unwittingly or not, he contributed no results but threw down a challenge in 1644 which has been taken up ever since. Rouse Ball dubbed the $2^{p}-1$ 'Mersenne Numbers' in 1911, thereby creating the first nine Mersenne primes at a stroke. Some thousands of computational hours have been expended on the "Mersenne Numbers" $M_p = 2^{p}-1$ either to find their prime/composite status or to find their factors.

Lucas provided a convenient primality test for the $\rm M_p.$ D H Lehmer gave a full proof of a refined version of the test in 1930. The Lucas-Lehmer test was manually applied to 19 of the "original" $\rm M_p~(p<258)$ though correct computations were not always the result.

The status of Mersenne's statement - five errors - is commonly thought to have been resolved by Uhler's work in 1946. However, this is not so because the contributions of Fauquembergue (M_{101} , M_{137}) and Barker (M_{167}) were found in 1952 to be incorrect by Robinson's SWAC program. The SWAC results put on file for the first time a sufficient set of correct Lucas computations, correcting those errors and filling in for previous unpublished results. Robinson also ratified a number of Lucas computations; all Lucas results have been independently checked for these notes.

Before turning to the electronic computer, we should note the 'pre-history' work done with a variety of computational aids. These included factor stencils, mechanical or electro-mechanical calculators and D H Lehmer's various sieves which were specifically produced to attack residue problems. DHL's first sieve in 1927 relied on bicycle chains and pins attached to the links signalled a result. The second sieve in 1932 substituted holed gear-wheels for bicycle-chains and pins; a sensitive amplifier magnified the minute signal from a photo-electric cell when a ray of light fleetingly shone through the aligned holes in the wheels. An electronic sieve in 1965 continued the line. The late 1940s provided a quantum jump in computational capability. Lehmer's 700 hour calculation on M_{257} was confirmed in 48 seconds by the SWAC machine in 1952; the phrase "a month a minute" even then understated the ratio between manpower and computer power. Man was liberated from the drudgery of calculation. By the early 1970s, the computer could put away a lifetime's calculations in a second. Today, the latest supercomputers are equivalent to 10^7 SWACs on the M_p benchmark and we are only just beginning to exploit mass parallelism in our computer architectures.

Progress on primality-testing the M_p themselves has been governed by the increasing power of computers though the latest approaches to multiplication have contributed. The Schonhage-Strassen technique reduces the squaring of an n-bit number to O(n.logn) as compared to the O(n²) of the schoolboy technique and makes a real contribution when n is of the order of 100000.

Considerable mathematical progress has been achieved on factorisation and general primality-testing since 1970. The complete factorisation of Mersenne's original numbers was achieved in February 1984 and the smallest unfactorised M_p is now M449.

These notes tabulate the results in various ways and provides a full though inevitably incomplete reference to the relevant literature. The 'errors' section shows the difficulties of proof-reading and the desirability of automating the publication process.

The observations also tells a cautionary tale to those organising future computations for as noted above, occasional Lucas results connected with the M_p have later been revealed as incorrect. Computer programs are becoming increasingly important in our lives and their results, which cannot be checked manually, must as far as possible be self-checking or confirmed by independent program.

Mersenne requires no successor today but the 'Cunningham Project' [B17] provides the motivation and focus for current work aiming to advance the state of the art in factorisation and primality-testing. With Slowinski's code active on current and future CRAYs and with the advent of other supercomputers, we may anticipate further discoveries of Mersenne primes.

1 ABBREVIATIONS

ARPCL	-	Adleman-Rumely-Pomerance-Cohen-Lenstra primality test [A4; C31]
cf	-	Continued Fraction factorisation algorithm
cf-ea	-	Continued Fraction with early abort factorisation algorithm
cn	-	A composite number of 'n' decimal digits
DS	-	Difference-of-squares factorisation technique
ecm	-	Elliptic Curve (factorisation) method
Ep	-	the Perfect Number corresponding to prime M_p (= 2^{p-1} * M_p)
ep	-	the number of digits in the decimal representation of Ep
FÁCT	-	Composite and completely factorised
FFNT	-	Fast Fermat-Number Transform multiplication algorithm
fi	-	the 'ith' prime factor of the M _p in context
GCD	-	greatest common divisor
h°m's"	-	timing information: 'h' hours, 'm' minutes, 's' seconds
<pre>lprpn(p,q)</pre>	-	a 'Lucas probable prime' of 'n' decimal digits
lpspn(p,q)	-	a composite lprpn(p,q); a Lucas pseudoprime
LLT	-	Lucas-Lehmer test (M _p prime <===> LR = 0)
LR	-	Lucas Residue $(S_{p-1} \mod M_p \text{ where } S_n = S_{n-1}^2 - 2, S_1 = 4)$
Mp	-	the Mersenne number 2 ^p -1, p being prime
mp	-	the number of digits in the decimal representation of $M_{ m p}$
mp-qs	-	multiple-polynomial quadratic sieve factorisation method
NFF	-	'no further factor'
NZLR	-	non-zero Lucas Residue
pn	-	a prime number of 'n' decimal digits
Рр	-	Pollard's 'P-1' factorisation technique
PPL-pf	-	Proth-Pocklington-Lehmer prime-factorisation (certificate)
prpn(a)	-	a 'probable prime' N of 'n' decimal digits satisfying:
		$a^{N-1} = 1 \mod N;$ (a, N) = 1
pspn(a)	-	a composite prpn(a), a pseudoprime to base 'a'
qs	-	Quadratic Sieve factorisation algorithm
rho		Monte-Carlo factorisation method
sprpn(a)	-	a 'strongly probable prime' N of 'n' decimal digits satisfying:
		N-1 = d.2 ^s ; $a^d = 1 \mod N$ or $a^{d.2} = -1 \mod N$ for some r, $0 \le r \le s$
spspn(a)	-	a composite sprpn(a), a strong pseudoprime to base 'a'
TD	-	trial-division factorisation technique
ZLR	-	Zero Lucas residue (<===> 'M _p Prime')
[,]	-	References: an example
		[M3; c D1 p13 n66] - see [M3], also cited [D1 page 13 note 66]

2 MERSENNE NUMBER STATUS TABLE

The original Mersenne numbers are the 55 $\rm M_p$ = 2^p-1 with p < 258 and prime which were the subject of Mersenne's 1644 conjecture:

	р							Status
2 61	3 89	5 107	7 127	13	17	19	31	12 prime M _p
11	23	29	37	41	43	47	53	43 composite and
59	67	71	73	79	83	97	101	completely factorised Mp
103	109	113	131	137	139	149	151	٢
157	163	167	173	179	181	191	193	
197	199	211	223	227	229	233	239	
241	251	257						

See [B17 Edition 2]. For further M_p :

	р								Status
521			607		1279		2203		19 prime M _p
	2281		3217		4253		4423		
	9689		9941		11213		19937		
	21701		23209		44497	8	86243		
11	.0503	13	32049	2	16091				
263	269	271	277	281	283	293	307		46 composite and
311	313	317	331	337	347	349	353		completely factorised M _p
359	367	373	379	383	389	397	401		F
409	419	421	431	433	439	443	457	1	
461	463	487	491	499	503	509	547		
577	701	709	881	1049	1063				
1303	1327	1459	1637	3041	3359	4127	4243		9 composite and probably
7673									completely factorised M_p
449	467	479	541	557	563	569	571		First 39 partially
587	593	599	601	613	617	619	631		factorised M _p
641	643	647	653	659	661	673	677		P
683	691	719	733	739	743	757	761		
769	773	787	797	811	821	827			
523	727	751	809	823	971	983	997		First 9 M _p with
1061					84 - A - A				no known factor

See [B17 Edition 2 & update 2.2] and [K31] for the 'probably' factorised $\rm M_p.$

PRIME MERSENNE NUMBERS

	DATE	р	۳p	ep	NOTES
1	ca 275 BC	2	1	1	Euclid (275BC) [H3]; Nicomachus (ca 100AD)
2	ca 275 BC	3	1	2	Euclid; Nicomachus [c D1 p3 n2]
3	ca 275 BC	? 5	2	3	Euclid (?); Nicomachus
4	ca 275 BC	? 7	3	4	Euclid (?); Nicomachus
5	1456	13	4	8	Manuscript Codex lat. Monac [C26]
6	1588	17	6	10	Cataldi [C2; c D1 p10 n44]
7	1588	19	6	12	Cataldi [C2; c D1 p10 n44]
8	1772	31	10	19	Euler [E2 p584; E6 p35; c D1 p18 n95]
9	1883	61	19	37	Pervouchine [P13; P14; P16; c D1 p25 n140]
10	6/1911	89	27	54	Powers [P15]; independently, Fauquembergue
11	6/1914	107	33	65	Powers [P2]; independently, Fauquembergue
12	1876	127	39	77	Lucas [L16; L17]; confirmed, Fauquembergue
13	30/ 1/1952	521	157	314	Robinson (SWAC) [L3; R2]
14	30/ 1/1952	607	183	366	Robinson (SWAC) [L3; R2]
15	25/ 6/1952	1279	386	770	Robinson (SWAC) [L4; R2]
16	7/10/1952	2203	664	1327	Robinson (SWAC) [L5; R2]
17	9/10/1952	2281	687	1373	Robinson (SWAC) [L5; R2]
18	8/ 9/1957	3217	969	1937	Riesel (BESK) [R5; R1]
19	3/11/1961	4253	1281	2561	Hurwitz & Selfridge (IBM 7090) [H1; H2]
20	3/11/1961	4423	1332	2663	Hurwitz & Selfridge (IBM 7090) [H1; H2]
21	11/ 5/1963	9689	2917	5834	Gillies (Illiac II) [G1; G5; G7]
22	16/ 5/1963	9941	2993	5985	Gillies (Illiac II) [G1; G5; G7; M9]
23	2/ 6/1963	11213	3376	6751	Gillies (Illiac II) [G1; G7; M9]
24	4/ 3/1971	19937	6002	12003	Tuckerman (IBM 360/91) [T1; T3]
25	30/10/1978	21701	6533	13066	Nickel & Noll (CDC CYBER-174) [N5; N7; S4]
26 27	9/ 2/1979	23209	6987 13395	13973 26790	Noll (CDC CYBER-174) [N6; N7; S13] Nelson & Slowinski (CRAY-1) [N1; S1; S13]
27	8/ 4/1979	44497 86243	25962	51924	Slowinski (CRAY-1) [N21]
29	25/ 9/1982 29/ 1/1988	110503	33265	66530	Colquitt & Welsh (NEC SX-2/400) [C32]
30	20/ 9/1983	132049	39751	79502	Slowinski (CRAY-XMP) [C33; D4; N25]
31?		216091	65050	130100	Slowinski (CRAY-XMP) [CSS, D4, N2S]
21;	0/ 3/1302	210091	00000	120100	STUWINSKI (UKAT-AMP) [D0]
	(6/ 8/1989		65087		$391581.2^{216193}1$ Brown, Noll, Parady, Smith, Smith and Zarantonello (Amdahl 1200E) [D7])

The prime M_p in the 'original Mersenne number' range p < 258 were discovered without the aid of electronic computers. Prime M_p beyond that range were discovered with the aid of electronic computers.

An independent computation on the ICL 2900 DAP has confirmed the Lucas residues for all M_p in the range p < 50024 where no factor was known. A factor or LR has been calculated on the DAP for all M_p in the range p < 100000 [H18] and by Colquitt/Welsh on the NEC SX/2 [C32-C34] for all p in range 100000 < p < 139267.

Assuming Pomerance's conjecture on the distribution of Mersenne Primes, a computer using FFNT (or 'schoolboy') multiplication will spend twice (or four times) as long discovering the next Mersenne Prime as confirming all previous results. FFNT algorithms been implemented on the ICL DAP, CRAY-XMP, CYBER-205 and NEC SX-2/400.

Slowinski has not filed all the required $\rm M_p-f_1/LRs$ for $139267 and there may be further prime <math display="inline">\rm M_p$ in this range.

INCIDENCE OF MERSENNE PRIMES

N = a log_eP + c

	а	С	
Best Gillies-fit:	2.88539	-3.61278	
Best Pomerance-fit:	2.56954	-1.46586	
Optimal fit:	2.56560	-1.43906	

4 FACTORS OF MERSENNE NUMBERS

```
This section lists the major tabulations of M_p-factors.
1925
         Cunningham & Woodall [C16]
1929
         Kraitchik [K12]
1938
         Kraitchik [K20]
1947
         Lehmer [L6]: 32 factors of M_n, n < 490
         Ferrier [F4]: table of Factors of M_n, n = 3 (2) 499
1952
1957
         Robinson [R3]: some Factorizations of Numbers of the Form 2^{n} + 1
         Riesel [R1]: first factors f_1 < 10 + 2^{20} of M_p: p < 10,000
1958
         Brillhart & Johnson [B2]: some factors q of M_p: p < 1,194
1960
         Karst [K4]: 19 new factors of \rm M_p: 3,036 < p \stackrel{\scriptstyle \scriptstyle V}{<} 3,434
Kravitz [K5]: first factors f_1 < 10,485760 of some \rm M_p: 10,000 < p < 15,000
1961
1961
         Karst [K2]: some factors q of M_p [NB especially p = 10,009]
1961
         Karst [K23]: new divisors: 10,006 < p < 10,458 & 5,500,224 < p < 5,501,708
1962
         Karst [K24]: synopsis of factors and search ranges
1962
         Riesel [R4]: factors q < 10^8 of M<sub>p</sub>: p < 10^4
1962
         Brillhart [B3]: some miscellaneous factorizations Gillies [G1]: 2^{34} < q < 2^{36} of M<sub>p</sub>: 5,000 < p < 17,000
1963
1963
         Karst [K27]: factors q = 2kp+1, k < 10, of M<sub>n</sub>, p < 15,000
1963
1964
         Karst [K6]: miscellaneous
         Brillhart [B4]: remaining q < 2^{34} of M<sub>p</sub>: 258 < p < 20,000
1964
         Kravitz & Madachy [K8]: the factors q <2^{25} of \rm M_{p}\colon 20,000 < p < 100,000
1965
         Ehrman [E9]: factors q < 2^{31} of M<sub>p</sub>: 100,000 Brillhart, Lehmer & Selfridge [B6]: some factorizations of 2^{n} \pm 1
1966
1975
1976
         Wagstaff's factor-table [W8]:
         factors q < 2^{35} of M<sub>p</sub>: 17,000 further f<sub>1</sub> < 10^{11} of M<sub>p</sub>: 21,000 Keller [K30]: factors q < max(2^{36}, 10^7 p) of M<sub>p</sub>, p < 10^5
1977
         Ehrman's factors of M<sub>p</sub>: factors q < 2^{31} for p < 1,000,000 [c N3; N10]
1978
         Brent [B23]: factors q of M_p, p < 1,000
1981
         Lake [L45]: first factors f_1 < 2^{40} for 50,000 Wagstaff [W12]: factors 2^{31} < q < 2^{34}, 20000 5</sup> + others
1981
1982
         The 'Cunningham Project' [B17]: factors of Mn, p < 1200
1983
```

Factorisation

This section lists M_p 'status' (prime or completely factorised), the number of known factors, discovering authorities and dates. References, confirmation results, negative results, errors and further details are included in the fuller Section 6.

Status Notes p 2 PR ? Pythagoras (500BC ?); ? Euclid (275BC ?); In earliest tables (250BC ?); Nicomachus (100AD) 3 PR ? Euclid (275BC ?); Earliest tables (250BC ?); Nicomachus (100AD) ? Euclid (275BC ?); Earliest tables (250BC ?); Nicomachus (100AD) 5 PR 7 PR ? Euclid (275BC ?); ? Earliest tables (250BC ?); Nicomachus (100AD) Manuscript Codex lat. Monac. 14908 (1456); f1 & f2 - Regius (1536) 11 FACT Manuscript Codex lat. Monac. 14908 (1456) 13 PR PR Cataldi (1588) 17 Cataldi (1588) 19 PR f₁ - Fermat (1640); f₂ - Euler (1733) 23 FACT 29 f₁ (?) & f₂ - Euler (1733); f₃ - Euler (1750) FACT 31 Euler (1772) PR f₁ - Fermat (1640); f₂ - Landry (1867) 37 FACT 41 FACT f₁ & f₂ - Plana (1859) 43 f₁ - Euler (1733); f₂ & f₃ - Landry (1869) FACT f_1 - Euler (1741); f_2 - Reuschle (1856); f_3 - Landry (1869) 47 FACT f₁, f₂ & f₃ - Landry (1869) 53 FACT 59 f₁ & f₂ - Landry (1869) FACT 61 PR Pervouchine by ZLR (1883) 67 FACT COMP (?) - Lucas by NZLR (1876); COMP (?) - Fauquembergue (1894); f₁ & f₂ - Cole (1903) f₁ - Cunningham (1909); f₂ & f₃ - Ramesam (1912) 71 FACT 73 f₁ - Euler (1733); f₂ & f₃ - Poulet (1923) FACT 79 FACT f_1 - Reuschle (1856); $f_2 \& f_3$ - Lehmer (1933) 83 FACT f₁ - Euler (1733); f₂ - Ferrier (1950) Independently by ZLR - Powers (June 1911), Tarry (?) (November 1911) 89 PR and Fauquembergue (1912) 97 FACT f₁ - Le Lasseur (1881); f₂ - Ferrier (1952) 101 FACT COMP - Robinson by NZLR (1952); f₁ & f₂ - Brillhart, Lehmer & Johnson (1967) 103 FACT COMP (?) - Powers by NZLR (1914); COMP - Robinson by NZLR (1952); f₁ & f₂ - Brillhart (1963) 107 PR Powers by ZLR (1914) and independently Fauquembergue by ZLR (1914) 109 FACT COMP (?) - Powers by NZLR (1914); COMP - Robinson by NZLR (1952); f₁ - Robinson (1957); f₂ - Gabard (1958) 113 FACT f₁ - Reuschle (1856); f₂ & f₃ - Cunningham (1909); f₄ & f₅ - Lehmer (1946) Lucas by ZLR (1876) 127 PR 131 FACT f₁ - Euler (1733); f₂ - Brillhart (1966) 137 FACT COMP - Robinson by NZLR (1952); f₁ & f₂ - Schroepepel (1971) FACT 139 COMP - Lehmer by NZLR (1926); $f_1 \& f_2$ - Brillhart (1974) 149 FACT COMP - Lehmer by NZLR (1927); $f_1 \& f_2$ - Schroepepel (1972) f₁ - Le Lasseur (1881); f₂ - Cunningham (1909); f₃ - Kraitchik 151 FACT (1921); f₄ - Lehmer (1946); f₅ - Gabard (1952)

```
р
        Status
                     Notes
157
           FACT
                     COMP - Uhler by NZLR (1944); f<sub>1</sub> - Robinson (1957);
                           f<sub>2</sub>, f<sub>3</sub> & f<sub>4</sub> - Brillhart (1974)
                     f<sub>1</sub> - Cunningham (1908); f<sub>2</sub> - Lehmer (1946); f<sub>3</sub> - Brillhart (1960);
163
           FACT
                          f<sub>4</sub> & f<sub>5</sub> - Brillhart (1963)
                     COMP - Uhler by NZLR (1944); f<sub>1</sub> - Lehmer (1946);
167
           FACT
                          f<sub>2</sub> - Brillhart (1974)
173
           FACT
                     f<sub>1</sub> - Cunningham (1912); f<sub>2</sub> - Lehmer (1946);
                          f<sub>3</sub> & f<sub>4</sub> - Naur (1979)
179
           FACT
                     f<sub>1</sub> - Euler (1733); f<sub>2</sub> - Reuschle (1856); f<sub>3</sub> - Brillhart (1963)
181
           FACT
                     f<sub>1</sub> - Woodall (1911); f<sub>2</sub> - Lehmer (1946); f<sub>3</sub> - Brillhart (1960);
                          f<sub>4</sub> - Brillhart (1963)
                     f<sub>1</sub> - Euler (1733); f<sub>2</sub> - Brillhart (1963);
191
           FACT
                          f<sub>3</sub>, f<sub>4</sub> & f<sub>5</sub> - "Cunningham Project" (1974)
193
           FACT
                     COMP - Uhler by NZLR (1947); f1 - Brillhart (1960);
                          f<sub>2</sub> & f<sub>3</sub> - Naur (1981)
197
           FACT
                     f<sub>1</sub> - Cunningham (1895); f<sub>2</sub> - Brillhart (1974)
           FACT
199
                     COMP - Uhler by NZLR (1946); f_1 \& f_2 - Schroepepel (1976)
                     f<sub>1</sub> - Le Lasseur (1881); f<sub>2</sub> & f<sub>3</sub> - Davis & Holdridge (1983)
211
           FACT
                     f<sub>1</sub> - Le Lasseur (1881); f<sub>2</sub> - Kraitchik (1921);
223
           FACT
                           f<sub>3</sub> & f<sub>4</sub> - Lehmer (1946);
                          f<sub>5</sub> & f<sub>6</sub> - "Cunningham Project" (1981)
227
           FACT
                     COMP - Uhler by NZLR (1947); f1 & f2 - Brent (1982)
           FACT
229
                     COMP - Uhler by NZLR (Feb. 1946); f1 - Lehmer (Oct. 1946);
                           f<sub>2</sub> - Brillhart (1960);
                           f<sub>3</sub> & f<sub>4</sub> - Brent (Aug. 1981)
233
                     f<sub>1</sub> - Reuschle (1856); f<sub>2</sub> - Kraitchik (1921); f<sub>3</sub> - Lehmer (1946);
           FACT
                          f<sub>4</sub> - Brillhart (1974)
239
           FACT
                     f<sub>1</sub> - Euler (1733); f<sub>2</sub> - Reuschle (1856); f<sub>3</sub> - Bickmore (1896);
                          f<sub>4</sub> - Kraitchik (1921); f<sub>5</sub> - Brillhart (1960);
                           f<sub>6</sub> - Brillhart (1974)
241
           FACT
                     COMP - Powers by NZLR (1934); f<sub>1</sub> - Brillhart (1960);
                           f<sub>2</sub> - Brillhart (1974)
251
           FACT
                     f<sub>1</sub> (?) - Euler (1733); f<sub>1</sub> - Lucas (1878); f<sub>2</sub> - Cunningham (1909);
                           f<sub>3</sub>, f<sub>4</sub> & f<sub>5</sub> - Davis, Holdridge & Simmons (1984)
257
           FACT
                     COMP (?) - Kraitchik by NZLR (1922); COMP - Lehmer (1927);
                           f<sub>1</sub> - Penk (1979?) [c B16, B17, B19];
                           f<sub>2</sub> & f<sub>3</sub> - Baillie (1980?) [c B16, B17, B19]
```

5.2 Lucas-Lehmer Test Calculations

The last octal digits of the LR are listed for the original LLT primality tests on the 'original' M_p ; 't' denotes tests with $S_1 = 3$. This collection compensates for the fact that many of the LRs [G7; H8; N2; R10; T11; T12] have not been published.

Gillies' and Nelson's 1979 results confirmed that Robinson's 1952 results completed a correct set of LRs. Residual calculations in the 1980's second-sourced and sometimes corrected the other original LLT results:

p S_1 Date Residue (oct, mod 2^{60}) Notes

61	4	1883	ZERO	Pervouchine [P13; P14; P16]; [H5; L38]
67	3	1876	UNKNOWN	Lucas [c D1 p22 n115]
		1894	UNKNOWN	Fauquembergue [F8; F9; c D1 p27]
		1981	54316 42002 04344 62606	Thomason [T12]; [H17]
		1903	FACTORISED	Cole [C17; c D1 p29]
89	4	1911	ZERO	Powers [C12; P9; P15; c D1 p30]; [F11]
101	4	1913	INCORRECT	Fauquembergue [F12; c D1 p32; R2]
		1952	03353 51067 27402 72066	Robinson [R2; R10; U9]; [G7]; [N2]
103	3	1914	UNKNOWN	Powers [P1]
		1914	INCORRECT	Fauquembergue [F1; R2]
		1981	74422 12107 12525 17576	Thomason [T12]; [H17]
	4	1952	24114 55042 52156 55476	Robinson [R2; R10]; [G7]; [H8; N2]
107	3	1914	ZERO	Powers [P2]; Fauquembergue [F1]
109	4	1914	UNKNOWN	Powers [P1]
		1914	INCORRECT	Fauquembergue [F1; R2]
		1952	42137 07051 44077 17542	Robinson [R2; R10]; [N2]; [H8]
127	3	1876	ZERO	Lucas [L16; L17; c D1 p22]; [F1]
137	4	1920	INCORRECT	Fauquembergue [F10; R2]
		1952	10134 33201 72733 77550	Robinson [R2; R10]; [G7]; [H8; N2]
139	3	1926	26402 01452 65351 23053	Lehmer (unpub.) [L1; c A1]; [R2; R10]; [T12]
	4	1963	72153 37573 37744 53004	Gillies [G7]; [N2]; [H8]
149	4	1927	16542 63652 25676 04577	Lehmer [L2]; [R2; R10]; [G7; H8; N2; T11]
157	4	1944	06164 72124 57400 52105	Uhler [U1; U2; U4]; [R2; R10]; [H8; N2; T11]
167	3	1945	INCORRECT	Barker [B1; R2]
		1952	55023 73422 34113 66527	Robinson [R2; R10]; [T11]
	4	1944	03606 22171 27126 24024	Uhler [U3; U4]; [R2; R10]; [H8; N2; T11]
193	4	1947	03252 67125 36636 06362	Uhler [U5]; [R2; R10]; [G7; H8; N2; T11]
199	3	1946	76417 74230 46161 34351	Uhler [U5; U6]; [R2]; [T11]
	4	1952	12500 24134 55074 67307	Robinson [R2; R10]; [G7]; [H8; N2]
227	4	1947	76675 34333 53115 63716	Uhler [U5; U7]; [R2]; [G7]; [H8; N2; T11]
229	4	1946	43244 27335 00106 53763	Uhler [U5; U8]; [R2]; [N2]; [H8; T11]
241	4	1934	21746 40770 36712 62747	Powers [P3]; [R2; R10]; [G7; H8; N2; T11]
257	4	1922	UNKNOWN	Kraitchik [L2]
		1927	53356 13134 20206 35250	Lehmer [L2; L26]; [R2; R10]; [G7; N2; T11]

p = 2: 1st MERSENNE PRIME

1) $m_2 = 1; e_2 = 1; M_2 = 3; E_2 = 6$

- -500 2) **PRIME (?)**: Pythagoras [c D1 p4 n4] regarded E₂ as 'marriage, health, beauty'
- -275 3) PRIME (?): Euclid [H3] presumably knew of E2
- -250 4) **PRIME**: Included in the earliest known tables of primes [D1 p347]: Eratosthenes may have recorded such a table
- 100 5) Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
 - 6) Lucas-Lehmer test not applicable as '2' is an even number

p = 3: 2nd MERSENNE PRIME

1) m₃ = 1; e₃ = 2; M₃ = 7; E₃ = 28

- -275 2) PRIME (?): Euclid [H3] presumably knew of E3
- -250 3) **PRIME**: Included in the earliest known tables of primes [D1 p347]: Eratosthenes may have recorded such a table
- 100 4) Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
 - 5) Confirmed (!) prime by ZLR [R1; H1; G1; T1; N1]

p = 5: 3rd MERSENNE PRIME

- 1) $m_5 = 2; e_5 = 3; M_5 = 31; E_5 = 496$
- -275 2) PRIME (?): Euclid [H3] presumably knew of E5
- -250 3) **PRIME**: Included in the earliest known tables of primes [D1 p347]: Eratosthenes may have recorded such a table
- 100 4) Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
 - 5) Confirmed (!) prime by ZLR [R1; H1; G1; T1; N1]

p = 7: 4th MERSENNE PRIME

- 1) $m_7 = 3; e_7 = 4; M_7 = 127; E_7 = 8128$
- -250 2) May have been in earliest known prime-tables [D1 p347]
- 100 3) PRIME: Nicomachus [c D1 p3 n2] implied prime (by Euclid Book IX Prop.36)
 - 4) Confirmed (!) prime by ZLR [R1; H1; G1; T1; N1]

1456	1)	COMPOSITE: The authors of Codex lat. Monac. 14908 are thought by Curtze to have known that M_{11} had the factor 23 [C26; c D1 p6 n14]
1509	2)	ERROR: Carollus Bovillus [c D1 p7 n20] thought M_n prime for all odd n; an
		error repeated by others. Not true (e.g. 11, any composite 'n')
1536	3)	COMPOSITE: Regius [c D1 p7 n26] found complete factorisation:
		$M_{11} = 23 \times 89$
1588	4)	Cataldi [C2; c D1 p10 n44] found full factorisation (published 1603)
1638	5)	Stanislaus Pudlowski is credited with full factorisation by Broscius [c A1]
1640	6)	Fermat [c D1 p12 n59] found full factorisation
1935	7)	Archibald [A1] did not note Regius' or Cataldi's work

p = 13: 5th MERSENNE PRIME

1) $m_{13} = 4$; $e_{13} = 8$; $M_{13} = 8191$; $E_{13} = 33,550336$

- 1456 2) PRIME: Manuscript Codex lat. Monac. 14908 [C26; c D1 p6 n14] correctly gave E₁₃ as 5th Perfect Number, implying that M₁₃ is prime.
- 1536 3) Regius [c D1 p7 n26] also declared E13 Perfect
 - 4) Confirmed prime by Cataldi (1588), Pauli (1678), Euler (1733)[c D1 Ch1 ns44, 70 & 83 respectively]
 - 5) Confirmed prime by ZLR [R1; H1; G1; T1; N1]

p = 17: 6th MERSENNE PRIME

	1)	$m_{17} = 6; e_{17} = 10$); M ₁₇ = 131071; E ₁₇ = 8589,869056
1588	2)	PRIME: Cataldi [C	C2; c D1 p10 n44] tested with all 72 primes to 359
1750	3)	Confirmed prime by	/ Euler [E3 p27; E2 p104; c D1 p18 n89]
	4)	Confirmed prime by	/ ZLR [R1; H1; G1; T1; N1]

p = 19: 7th MERSENNE PRIME

	1)	$m_{19} = 6; e_{19} =$	12; M ₁₉ = 524287; E ₁₉ = 137438,691328 [T3; T11; U11]
1588	2)	PRIME: Cataldi	[C2; c D1 p10 n44] tested with all 128 primes to 719
1752	3)	Confirmed prime	by Euler [E3 p27; E2 p104; c D1 p18 ns 89 & 92]
	4)	Confirmed prime	by ZLR [R1; H1; G1; T1; N1; H8]

p = 23

1588	1)	ERROR: reg	garded by	Catal	di [C2;	c D1	p10 n44] as prime
1640	2)	COMPOSITE:	Fermat	[F5 p2]	10; c D1	p12	n56] found $f_1 = 47$
						-	

1733 3) Euler [E3 p27; E2 p104; c D1 p18 n89] completed factorisation: M₂₃ = 47 * 178481

p = 29

- 1588 1) ERROR: regarded by Cataldi [C2; c D1 p10 n44] as prime
- 1644 2) Stated by Mersenne [M3; c D1 p13] to be composite
- 1733 3) COMPOSITE: Euler [E1 p106; E2 p2; c D1 p17 n83]: 1103 is a factor
- 1750 4) Euler [E3 p27; E2 p104; c D1 p18 n89] completed the full factorisation: M₂₉ = 233 * 1103 * 2089
- 1935 5) Archibald [A1] credited Euler with 233, Dickson [D1] did not

p = 31: 8th MERSENNE PRIME

- 1) m₃₁ = 10; e₃₁ = 19; M₃₁ = 2147,483647; E₃₁ = 2,305843,008139,952128 [T3; T11; U11]
- 1644 2) Stated by Mersenne [M3; c D1 p13] to be prime
- 1733 3) Conjectured by Euler [E1 p103; E2 p2; c D1 p17 n83] as prime
- 1751 4) Regarded by de Winsheim [W5; c D1 p18 n90] as prime
- 1752 5) Euler [E8; c D1 p18 n92]: no factor < 2000
- 1772 6) PRIME: Euler [E6 p35; E2 p584; c D1 p18 n95] tried the 84 eligible primes
 7) Confirmed prime by Landry (1859), Seelhoff (?) [c D1 p25 n142] (1887), Lucas (1876), Moret-Blanc (1881)
 - 8) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

<u>p = 37</u>

1588	1)	ERROR: regarded by Cataldi [C2; c D1 p10 n44] as prime
1640	2)	COMPOSITE: Fermat [F5 p199; c D1 p12 n59] found $f_1 = 223$
1867	3)	Landry [c D1 p21 n112] claimed full factorisation
1869	4)	Landry [L19; c D1 p22 n113] published full factorisation:
		$M_{37} = 223 \times 616,318177$

<u>p = 41</u>

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1678	2)	ERROR: Pauli [P11; c D1 p15 n70] gave 83 as a factor
1733	3)	Euler [E1 p106; E2 p2; c D1 p17 n83] wrongly conjectured prime
1859	4)	COMPOSITE: Plana [P12; c D1 p21 n110] gave full factorisation:
		M ₄₁ = 13367 * 164,511353
1888	5)	ERROR: Christie [C27; C28; c D1 p27 n155] thought M ₄₁ prime

p = 43

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1733	2)	COMPOSITE: Euler [E1 p106; E2 p2; c D1 p17 n83]: f ₁ = 431
1867	3)	Landry [L20; c D1 p21 n112] claimed full factorisation
1869	4)	Landry [L19; c D1 p22 n113] published full factorisation:
		$M_{43} = 431 \times 9719 \times 2,099863$

<u>p = 47</u>

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1733	2)	Euler [E1 p106; E2 p2; c D1 p17 n83] wrongly conjectured prime
1741	3)	COMPOSITE: Euler [K18; c D1 p19 n93] found f ₁ = 2351
1751	4)	De Winsheim [W5; c D1 p18 n90] independently $(?)$ found f ₁ = 2351
1856	5)	Reuschle [R8; c D1 p21 n108] found $f_2 = 4513$ (note $f_3 < f_2 * f_2$)
1867	6)	Landry [L20; c D1 p21 n112] claimed full factorisation
1869	7)	Landry [L19; c D1 p22 n113] published full factorisation:
		M ₄₇ = 2351 * 4513 * 13,264529
1888	8)	ERROR: Christie [C27; C28; c D1 p27 n155] thought M ₄₇ prime

p = 53

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1859	2)	ERROR: Plana [P12; c D1 p21 n110] found no factor < 50033
1867	3)	Landry [L20; c D1 p21 n112] claimed full factorisation
1869	4)	COMPOSITE: Landry [L19; c D1 p22 n113] published full factorisation:
		$M_{53} = 6361 \times 69431 \times 20,394401$

<u>p = 59</u>

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite	2
1867	2)	Landry [L20; c D1 p21 n112] claimed full factorisation	
1869	3)	COMPOSITE: Landry [L19; c D1 p22 n113] published full factorisation:	
		M ₅₉ = 179951 * 3,203431,780337	

p = 61: 9th MERSENNE PRIME

	1)	m ₆₁ = 19; e ₆₁ = 37; M ₆₁ = 2,305843,009213,693951;
		E ₆₁ = 2,658455,991569,831744,654692,615953,842176 [H3; T3; T11; U11]
1644	2)	ERROR: stated by Mersenne [M3; c D1 p13] to be composite
1869	3)	Landry [L14; c D1 p22 n113] conjectured prime
1881	4)	Le Lasseur [c D1 p24 n131] found no factor < 30,000
1883	5)	PRIME: Pervouchine [P13; P14; P16; c D1 p25 n140] computed a ZLR
1886	6)	ERROR: Seelhoff [S12; c D1 p25 n141] wrongly stated M ₆₁ prime having
		only found it pseudoprime (base 3)
1887	7)	Hudelot [H5; L38; c D1 p25 n144] confirmed prime by ZLR (54 hours work)
1903	8)	Cole [C17; c D1 p29 n173] criticised Seelhoff's 'proof' of primality
1927	9)	Lehmer [L11] indicated error in Seelhoff's 'proof' of primality
	10)	Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

p = 67

1644	1)	ERROR: stated by Mersenne [M3; c D1 p13] to be prime
1876	2)	COMPOSITE (?): Lucas [c D1 p22 n115] computed NZLR (correctly?)
1881	3)	Le Lasseur [c D1 p24 n131] found no factor < 30,000
1894	4)	COMPOSITE (?): Fauquembergue [F8; F9; c D1 p27 n160] - NZLR (?)
1895	5)	Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1903	6)	COMPOSITE: Cole [C17; c D1 p29 n173] found the full factorisation:
		M ₆₇ = 193,707721 * 761838,257287
1935	7)	Archibald [A1] did not cite Lucas or Fauquembergue (2 and 4 above)
1981	8)	Thomason [T12] computed NZLR as 67 54316 42002 04344 62606 (S $_1$ = 3) [H17]

- p = 71
- 1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
- 1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
- 1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
- 1908 4) Cunningham [C8] found no factor < 200,000
- 1909 5) COMPOSITE: Cunningham [C10; c D1 p30 n181] found f₁ = 228479

1912 6) Ramesam [R9; B8; c D1 p31 n191] completed the full factorisation: M₇₁ = 228479 * 48,544121 * 212,885833

p = 73

- 1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
- 1733 2) COMPOSITE: Euler [E1 p106; E2 p2; c D1 p17 n83] found f₁ = 439
- 1923 3) Poulet [P7; c A1 n12] completed the factorisation:

- 1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
- 1856 2) COMPOSITE: Reuschle [R8; c D1 p21 n108] found f1 = 2687
- 1933 3) D H Lehmer [L7; c A1 n13] found f₂ & f₃ to complete the factorisation: $M_{79} = 2687 \times 202,029703 \times 1,113491,139767$

 $M_{73} = 439 * 2,298041 * 9,361973,132609$

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite

1733 2) COMPOSITE: Euler [E1 p105; E2 p2; c D1 p17 n83] found f1 = 167 (theorem)

1946 3) D H Lehmer [L6] found no further factor < 4,538800

1950 4) Ferrier [F3] used method [F2] to complete the full factorisation: $M_{83} = 167 + 57912,614113,275649,087721$

p = 89: 10th MERSENNE PRIME

- 1) $m_{89} = 27$; $e_{89} = 54$; $M_{89} = 618,970019,642690,137449,562111$; $E_{89} = 191561,942608,236107,294793,378084,303638,130997,321548,169216$ [T11; U11] - [T3] is incorrect
- 1644 2) ERROR: stated by Mersenne [M3; c D1 p13] to be composite
- 1876 3) ERROR: Lucas [L13 p376; c D1 p22 n115] computed a NZLR
- 1881 4) Le Lasseur [c D1 p24 n131] found no factor < 30,000
- 1895 5) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
- 1908 6) Cunningham [C8] found no factor < 200,000
- 1911 7) PRIME: Powers [C12; P9; P15; c D1 p30 n185] computed ZLR (June)
- 1911 8) PRIME (?): Tarry [T4; c C12 & D1 p30 n186] completed (?) calculation
- 1912 9) PRIME: Fauquembergue [F11; c D1 p30 n187] found ZLR independently (base 2)
 - 10) Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

p = 97

- 1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
- 1881 2) COMPOSITE: Le Lasseur [c D1 p24 n131] found $f_1 = 11447$
- 1935 3) Archibald [A1] recorded that only f1 had been found
- 1946 4) D H Lehmer [L6] found no further factor < 4,538800
- 1952 5) Ferrier [F4; K7 p13; K17 p48] found f₂ to complete the factorisation: $M_{07} = 11447 + 13,842607,235828,485645,766393$

- 1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
- 1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
- 1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
- 1908 4) Cunningham [C8] found no factor < 200,000
- 1911 5) Cunningham [C4; W1] found no factor < 500,000
- 1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
- 1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
- 1913 8) ERROR: Fauquembergue [F12; c D1 p32 n192c] computed incorrect NZLR
- 1946 9) D H Lehmer [L6] found no factor < 4,538800
- 1952 10) COMPOSITE: Robinson [R2; R10; U9] computed NZLR not Fauquembergue's
- 1957 11) Robinson [R3] on IBM701 found no factor < 2^{30}
- 1960 12) Brillhart [B2] on IBM701 found no factor < 2^{31}
- 1963 13) Brillhart [B4] found no factor < 2^{35}
- 1963 14) Gillies [G1; G7] confirmed (last 5 octal digits of) Robinson's NZLR

p = 1031644 1) Stated by Mersenne [M3; c D1 p13] to be composite 1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000 1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000 1908 4) Cunningham [C8] found no factor < 200,000 1911 5) Cunningham [C4; W1] found no factor < 500,000 1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin) 1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000000 1914 8) ERROR: Fauquembergue [F1] computed incorrect NZLR [R2] (S1 = 3) 1914 9) COMPOSITE (?): Powers [P1] computed unpublished NZLR (correctly?) ($S_1 = 3$) 1946 10) D H Lehmer [L6] found no factor < 4,538800 1952 11) COMPOSITE: Robinson [R2; R10; U9] computed NZLRs (S1 = 3 & 4) 1957 12) Robinson [R3] on IBM701 found no factor < 2^{30} 1960 13) Brillhart [B2] found no factor < 2^{31} 1963 14) Brillhart [B3] found complete factorisation: $M_{103} = 2550, 183799 * 3976, 656429, 941438, 590393$ 1963 15) Gillies [G1, G7] confirmed (last 5 octal digits of) Robinson's NZLR ($S_1 = 4$) 1981 16) Thomason [T12] computed NZLR .. 74422 12107 12525 17576 (S₁ = 3) [H17]

p = 107: 11th MERSENNE PRIME

	1)	$m_{107} = 33; e_{107} = 65;$
		M ₁₀₇ = 162,259276,829213,363391,578010,288127 [R6]
		$E_{107} = 13164,036458,569648,337239,753460,458722,910223,472318,>$
		> 386943,117783,728128 [T11] - [T3; U11] are incorrect
1644	2)	ERROR: stated by Mersenne [M3; c D1 p13] to be composite
1881	3)	Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895	4)	Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908	5)	Cunningham [C8] found no factor < 200,000
1911	6)	Cunningham [C4; W1] found no factor < 500,000
1912	7)	Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912	8)	Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1914	9)	PRIME: Powers [P2; P6; P10] computed ZLR (S ₁ = 3) (11th June)
1914	10)	PRIME: Fauquembergue [F1; c D1 p32 n200] independently computed ZLR (June)
		Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1881	2)	Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895	3)	Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908	4)	Cunningham [C8] found no factor < 200,000
1911	5)	Cunningham [C4; W1] found no factor < 500,000
1912	6)	Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912	7)	Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1914	8)	ERROR: Fauquembergue [F1] computed incorrect NZLR (cf notes 11, 17)
1914	9)	COMPOSITE (?): Powers [P1] computed (unpublished) NZLR (correctly?)
1946	10)	D H Lehmer [L6] found no factor < 4,538800
		COMPOSITE: Robinson [R2; R10; U9] computed NZLR - not Fauquembergue's
1957	12)	Robinson [R3] found one factor < 2 ³⁰ : f ₁ = 745,988807
1958	13)	Gabard [G2; c B5] found the unresolved part prime:
		M ₁₀₉ = 745,988807 * 870035,986098,720987,332873
1960	14)	Brillhart [B2] not knowing of [G2] found no $f_2 < 2^{31}$
1963	15)	Brillhart [B4] not knowing of [G2] found no $f_2 < 2^{35}$
1966	16)	Brillhart [B5] confirmed Gabard's factorisation
1979	17)	Nelson [N1; N2] confirmed (last 24 octal digits of) Robinson's NZLR

<u>p = 113</u>

1644	1)	Stated by Mersenne [M3; c D1] to be composite
1856	2)	COMPOSITE: Reuschle [R8; c D1 p21 n108] found f ₁ = 3391
1909	3)	Cunningham [W1; c D1 p31 n192a] noted $f_2 = 23279$ and $f_3 = 65993$
1935	4)	Archibald [A1 ns 7, 10] cited Reuschle and Cunningham for f_1 , f_2 and f_3
1946	5)	D H Lehmer [L6] completed the full factorisation:
		M ₁₁₃ = 3391 * 23279 * 65993 * 1,868569 * 1066,818132,868207

p = 127: 12th MERSENNE PRIME

	1)	m ₁₂₇ = 39; e ₁₂₇ = 77;
		M ₁₂₇ = 170,141183,460469,231731,687303,715884,105727 [01 p73; B11]
		E ₁₂₇ = 14474,011154,664524,427946,373126,085988,481573,677491,>
		> 474835,889066,354349,131199,152128
		[T3; T11] - [U11] is incorrect
1644	2)	Stated by Mersenne [M3; c D1 p13] to be prime
1876	3)	PRIME : Lucas [L16; L17; c D1 p22 n116, A1 n17] computed ZLR ($S_1 = 3$)
1881	4)	Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895	5)	Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1914	6)	Fauquembergue [F1; c D1 p32 n200] confirmed prime by ZLR ($S_1 = 3$)
	7)	Confirmed prime by ZLR [R1; H1; G1; T1; N1; H8]

p = 131

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1733	2)	COMPOSITE: Euler [E1 p105; E2 p2; c D1 p17 n83] found $f_1 = 263$ by theorem
1946	3)	D H Lehmer [L6] found no further factor < 4,538800
1957	4)	Robinson [R3] found no further factor < 2^{30}
1960	5)	Brillhart [B2] found no further factor < 2^{31}
1963	6)	Brillhart [B4] found no further factor < 2^{35}
1966	7)	Brillhart [B5] found f ₂ prime to complete the factorisation:
		M ₁₃₁ = 263 * 10,350794,431055,162386,718619,237468,234569

<u>p = 137</u>

e's

- 1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
- 1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
- 1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
- 1908 4) Cunningham [C8] found no factor < 200,000
- 1911 5) Cunningham [C4; W1] found no factor < 500,000
- 1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
- 1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
- 1926 8) COMPOSITE: D H Lehmer [L1; c A1 n13] computed (unpublished) NZLR ($S_1 = 3$)
- 1946 9) D H Lehmer [L6] found no factor < 4,538800
- 1953 10) Robinson [R2; R10] on SWAC confirmed Lehmer's NZLR ($S_1 = 3$)
- 1957 11) Robinson [R3] found no factor < 2^{30}
- 1960 12) Brillhart [B2] found no factor < 2^{31}
- 1963 13) Brillhart [B4] found no factor < 2^{35}
- 1963 14) Gillies [G1; G7] computed NZLR ($S_1 = 4$)
- 1972 15) Brillhart [B6; S28] found full factorisation (cf):
 - $M_{139} = 5,625767,248687 \times 123876,132205,208335,762278,423601$
- 1979 16) Nelson [N2] confirmed Gillies' NZLR
- 1981 17) Thomason [T12] confirmed Robinson's NZLR (S1 = 3)

p = 149

- 1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
- 1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
- 1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
- 1908 4) Cunningham [C8] found no factor < 200,000
- 1911 5) Cunningham [C4; W1] found no factor < 500,000
- 1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
- 1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
- 1927 8) COMPOSITE: D H Lehmer [L2; L27; c A1 n13] computed correct NZLR [R2; T11]
- 1946 9) D H Lehmer [L6] found no factor < 4,538800
- 1952 10) Robinson [R2; R10] confirmed Lehmer's NZLR on SWAC
- 1957 11) Robinson [R3] found no factor < 2^{30}
- 1960 12) Brillhart [B2] found no factor $< 2^{31}$
- 1963 13) Brillhart [B4] found no factor $< 2^{35}$

p = 151

- 1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
- 1881 2) COMPOSITE: Le Lasseur [L18; c D1 p24 n131] found $f_1 = 18121$
- 1909 3) Cunningham [W1; c D1 p31 n192a] found f₂ = 55871
- 1921 4) Kraitchik [K3; K16; c A1 n18] found $f_3 = 165799$
- 1946 5) D H Lehmer [L6] found $f_4 = 2,332951$ and no other factor < 4,538800
- 1952 6) Gabard [G12] found the unresolved part prime:

M₁₅₁ = 18121 * 55871 * 165799 * 2,332951 * 7,289088,383388,253664,437433

- 1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
- 1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
- 1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
- 1908 4) Cunningham [C8] found no factor < 200,000
- 1911 5) Cunningham [C4; W1] found no factor < 500,000
- 1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
- 1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
- 1944 8) COMPOSITE: Uhler [U1; U2; c A3] computed correct NZLR [R2; R10; T11]
- 1945 9) Barker [U4] confirmed Uhler's NZLR
- 1946 10) D H Lehmer [L6] found no factor < 4,538800
- 1952 11) Robinson [R2; R10] confirmed Uhler's NZLR on SWAC
- 1957 12) Robinson [R3] found $f_1 = 852,133201$ below search-limit 2^{30}
- 1960 13) Brillhart [B2] found no further factor < 2^{31}
- 1963 14) Brillhart [B4] found no further factor < 2^{35}

1974 15) Brillhart [B6] found f_2 , f_3 and f_4 to complete the full factorisation: $M_{157} = 852,133201 * 60726,444167 * 1,654058,017289 * 2134,387368,610417$

p = 163

1644 1) Stated by Mersenne [M3; c D1 p13] to be composite 1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000 1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000 1908 4) COMPOSITE: Cunningham [C8; C9; c D1 p30 n180] found $f_1 = 150287$ 1946 5) D H Lehmer [L6] found $f_2 = 704161$ and no other factor < 4,538800 1960 6) Brillhart [B2] found $f_3 = 110,211473$ below search-limit 2^{31} 1963 7) Brillhart [B3] found f_4 and f_5 to complete the factorisation: $M_{163} = 150287 * 704161 * 110,211473 * 27669,118297 *$ 36,230454,570129,675721

```
1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1944 8) COMPOSITE: Uhler [U3; U4; c A3] computed correct NZLR [R2; T11] (S<sub>1</sub> = 4)
1945 9) ERROR: Barker [B1] computed incorrect NZLR [R2; T11] (S<sub>1</sub> = 3)
1946 10) D H Lehmer [L6] found f_1 = 2,349023 and no further factor < 4,538800
1952 11) Robinson [R2; R10] computed NZLRs (S_1 = 3 \& 4) confirming Uhler's NZLR
1960 12) Brillhart [B2] confirmed f_1 and found no further factor < 2^{31}
1963 13) Brillhart [B4] found no further factor < 2^{35}
1974 14) Brillhart [B6 p645] found f2 prime to complete the factorisation:
            M_{167} = 2,349023 *
                   79,638304,766856,507377,778616,296087,448490,695649
1981 15) Thomason [T11] confirmed Robinson's NZLR (S_1 = 3)
```

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1881	2)	Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895	3)	Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908	4)	Cunningham [C8] found no factor < 200,000
1911	5)	Cunningham [C4; W1] found no factor < 500,000
1912	6)	COMPOSITE: Cunningham [C1; c D1 p31 n190]: f ₁ = 730753 (with Gerardin)
1946	7)	D H Lehmer [L6] found $f_2 = 1,505447$ and no further factor < 4,538800
1960	8)	Brillhart [B2] confirmed $f_1 \& f_2$ and found no further factor < 2^{31}
1963	9)	Brillhart [B4] found no further factor < 2 ³⁵
1974	10)	Brillhart [B6] found the unresolved part composite
1979	11)	Naur [N20] found f_3 (Pp) & f_4 prime to complete the factorisation:
		M ₁₇₃ = 730753 * 1,505447 * 70084,436712,553223 *
		155285,743288,572277,679887

p = 179

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1733	2)	COMPOSITE: Euler [E1 p105; E2 p2; c D1 p17 n83] found $f_1 = 359$ (theorem)
1856	3)	Reuschle [R8; c D1 p21 n108] found f ₂ = 1433
1946	4)	D H Lehmer [L6] found no further factor < 4,538800
1960	5)	Brillhart [B2] confirmed f $_1$ & f $_2$ and found no further factor < 2 31
1963	6)	Brillhart [B3] found f ₃ prime to complete the factorisation:
		$M_{179} = 359 \times 1433 \times$
		1,489459,109360,039866,456940,197095,433721,664951,999121

p = 181

1644	1)	Stated by Mersene [M3; c D1 p13] to be composite
1881	2)	Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895	3)	ERROR: Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908	4)	ERROR: Cunningham [C8] found no factor < 200,000
1911	5)	COMPOSITE: Woodall [C11; W1; c D1 p30 n184] found f ₁ = 43441
1946	6)	D H Lehmer [L6] found $f_2 = 1,164193$ and no further factor < 4,538800
1960	7)	Brillhart [B2] found $f_3 = 7,648337$ and no further factor < 2^{31}
1963	8)	Brillhart [B3] found f_4 prime to complete the factorisation:
		M ₁₈₁ = 43441 * 1,164193 * 7,648337 *
		7,923871,097285,295625,344647,665764,672671

<u>p = 191</u>

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1733	2)	COMPOSITE: Euler [E1 p105; E2 p2; c D1 p17 n83] found $f_1 = 383$ (theorem)
1946	3)	D H Lehmer [L6] found no further factor < 4,538800
1960	4)	Brillhart [B2] confirmed f $_1$ and found no further factor < 2 31
1963	5)	Brillhart [B3] found $f_2 = 7068,569257$ (TD)
1963	6)	Brillhart [B4] found no further factor < 2 ³⁵
1974	7)	Brillhart [B6] found the unresolved part composite
1974	8)	"Cunningham Project" [c B16; B17; B19; R12] found f ₄ = 332,584516,519201 (Pp)
1974	9)	"Cunningham Project" [c B16; B17; B19; R12] completed the factorisation (cf);
		note the four different factorisation methods used on M_{191} :
		M ₁₉₁ = 383 * 7068,569257 * 39940,132241 * 332,584516,519201 *
		87,274497,124602,996457

```
1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1946 8) D H Lehmer [L6] found no factor < 4,538800
1947 9) COMPOSITE: Uhler [U5; c A3] computed a NZLR
1952 10) Robinson [R2; R10; T11] on SWAC confirmed Uhler's NZLR
1960 11) Brillhart [B2] found f_1 = 13,821503 only below search-limit 2^{31}
1963 12) Brillhart [B4] found no further factor < 2^{35}
1963 13) Gillies [G1; G7] confirmed (last 5 octal digits of) Robinson's NZLR
1974 14) Brillhart [B6] found the the unresolved part composite
1981 15) Naur [N18; N19] found primes f2 (cf) & f3 to complete the factorisation:
           M_{193} = 13,821503 * 61654,440233,248340,616559 *
                   14732,265321,145317,331353,282383
```

p = 193

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1881	2)	ERROR: Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895	3)	COMPOSITE: Cunningham [C3; C6; c D1 p28 n164] found f ₁ = 7487
1946	4)	D H Lehmer [L6] found no further factor < 4,538800
1960	5)	Brillhart [B2] confirmed f $_{ m 1}$ and found no further factor < 2 $^{ m 31}$
1963	6)	Brillhart [B4] found no further factor < 2 ³⁵
1974	7)	Brillhart [B6] found f ₂ prime to complete the factorisation:
		M ₁₉₇ = 7487 *
		26,828803,997912,886929,710867,041891,989490,486893,845712,448833
		[S18; T10]

```
1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908 4) Cunningham [C8] found no factor < 200,000
1911 5) Cunningham [C4; W1] found no factor < 500,000
1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1946 8) COMPOSITE: Uhler [U5; U6] computed correct NZLR [R2; T11] (S1 = 3)
1946 9) D H Lehmer [L6] found no factor < 4,538800
1952 10) Robinson [R2; R10] computed NZLRs (S1 = 3 & 4) confirming Uhler's NZLR
1960 11) Brillhart [B2] found no factor < 2^{31}
1963 12) Brillhart [B4] found no factor < 2^{35}
1963 13) Gillies [G7] confirmed Robinson's NZLR (S1 = 4)
1976 14) Schroepepel [c B16; B17; B19; c R12] found the factorisation (rho):
            M199 = 164504,919713 * 4,884164,093883,941177,660049,098586,324302, --->
                                ---> 977543,600799 [S18; T10]
1981 15) Thomason [T11] confirmed Uhler's NZLR (S<sub>1</sub> = 3)
```

- 1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
- 1881 2) COMPOSITE: Le Lasseur [L18; c D1 p24 n131] found f₁ = 15193
- 1946 3) D H Lehmer [L6] found no further factor < 4,538800

1960 4) Brillhart [B2] confirmed f_1 and found no further factor < 2^{31}

- 1963 5) Brillhart [B4] found no further factor $< 2^{35}$
- 1974 6) Brillhart [B6] found the unresolved part composite, c60
- 1983 7) Davis & Holdridge found $f_2~(qs)$ & f_3 to complete the factorisation:
 - M₂₁₁ = 15193 * 60,272956,433838,849161 *

3593,875704,495823,757388,199894,268773,153439

<u>p = 223</u>

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1881	2)	COMPOSITE: Le Lasseur [L18; c D1 p24 n131] found $f_1 = 18287$
		Kraitchik [K3 p24; K16; c A1 n18] found f ₂ = 196687
		D H Lehmer [L6] added just $f_3 = 1,466449$ and $f_4 = 2,916841$ below 4,538800
1960	5)	Brillhart [B2] confirmed f ₁ to f ₄ and found no further factor < 2^{31}
1963	6)	Brillhart [B4] found no further factor < 2 ³⁵
1974	7)	Brillhart [B6] found the unresolved part composite
1981	8)	"Cunningham Project" [B22] completed the factorisation (cf):
		M ₂₂₃ = 18287 * 196687 * 1,466449 * 2,916841 *
		1469,495262,398780,123809 * 596242,599987,116128,415063

p = 227

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1881	2)	Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895	3)	Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908	4)	Cunningham [C8] found no factor < 200,000
1911	5)	Cunningham [C4; W1] found no factor < 500,000
1912	6)	Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912	7)	Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1946	8)	D H Lehmer [L6] found no factor < 4,538800
1947	9)	COMPOSITE: Uhler [U5; U7; c A3] computed correct NZLR [R2; T11]
1952	10)	Robinson [R2] on SWAC confirmed Uhler's NZLR
1960	11)	Brillhart [B2] found no factor < 2 ³¹
1963	12)	Brillhart [B4] found no factor < 2 ³⁵
1000	121	

1982 13) Brent [B30] found primes f1 (rho) & f2 to complete factorisation: M_{227} = 26986,333437,777017 *

7992,177738,205979,626491,506950,867720,953545,660121,688631

- 1644 1) Stated by Mersenne [M3; c D1 p13] to be composite
- 1881 2) Le Lasseur [c D1 p24 n131] found no factor < 30,000
- 1895 3) Cunningham [C7; c D1 p28 n165] found no factor < 50,000
- 1908 4) Cunningham [C8] found no factor < 200,000
- 1911 5) Cunningham [C4; W1] found no factor < 500,000
- 1912 6) Cunningham [C1] found no factor < 800,000 (working with Gerardin)
- 1912 7) Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
- 1946 8) COMPOSITE: Uhler [U5; U8; c A3] computed correct NZLR [R2; T11] (February)
- 1946 9) D H Lehmer [L6] found $f_1 = 1,504073$ and no other factor < 4,538800 (Oct.)
- 1952 10) Robinson [R2] on SWAC confirmed Uhler's NZLR
- 1960 11) Brillhart [B2] confirmed f_1 , added f_2 = 20,492753 and found NFF < 2^{31}
- 1963 12) Brillhart [B4] found no further factor < 2^{35}
- 1974 13) Brillhart [B6] found the unresolved part composite
- 1981 14) Brent [B24; B27; B28] found f_3 (rho) & f_4 to complete the factorisation: $M_{229} = 1,504073 \pm 20,492753 \pm 59833,457464,970183 \pm 467,795120,187583,723534,280000,348743,236593$

p = 233

1644	1)	Stated by Mersenne [c D1 p13] to be composite
1856	2)	COMPOSITE: Reuschle [R8; c D1 p21 n108] found f ₁ = 1399
1921	3)	Kraitchik [K3 p24; K16; c A1 n18] found f ₂ = 135607
1946	4)	D H Lehmer [L6] found $f_3 = 622577$ and no further factor < 4,538800
1960	5)	Brillhart [B2] confirmed f $_1$, f $_2$ and f $_3$ above and found NFF < 2 31
1963	6)	Brillhart [B4] found no further factor < 2 ³⁵
1974	7)	Brillhart [B6; B16] found f ₄ prime by Corollary 11 [B6]:
		$M_{233} = 1399 * 135607 * 622577 *$
		116,868129,879077,600270,344856,324766,260085,066532,853492,178431
		[S18: T10]

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1733	2)	COMPOSITE: Euler [E1; E2 p2; c D1 p17 n83] found $f_1 = 479$ by observation
1856	3)	Reuschle [R8; c D1 p21 n108] found f ₂ = 1913
1896	4)	Bickmore [B12; c D1 p28 n166] confirmed f_2 and added $f_3 = 5737$
1921	5)	Kraitchik [K3 p24; K16; c A1 n18] found $f_4 = 176383$
		D H Lehmer [L6] found no further factor < 4,538800
1960	7)	Brillhart [B2] confirmed $f_1 - f_4$; added $f_{5_2} = 134,000609$; found NFF < 2^{31}
1963	8)	Brillhart [B4] found no further factor < 2 ³⁵
1974	9)	Brillhart [B6] found f ₆ prime to complete the factorisation:
		M ₂₃₉ = 479 * 1913 * 5737 * 176383 * 134,000609 *
		7,110008,717824,458123,105014,279253,754096,863768,062879
		[S18; T10]

```
p = 241
```

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1881	2)	Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895	3)	Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1908	4)	Cunningham [C8] found no factor < 200,000
1911	5)	Cunningham [C4; W1] found no factor < 500,000
1912	6)	Cunningham [C1] found no factor < 800,000 (working with Gerardin)
1912	7)	Gerardin [G6; c D1 p31 n192b] found no factor < 1,000,000
1934	8)	COMPOSITE: Powers [P3] computed correct NZLR [R2; T11]
1946	9)	D H Lehmer [L6] found no factor < 4,538800
1952	10)	Robinson [R2; R10] on SWAC confirmed Powers' NZLR
1960	11)	Brillhart [B2] found f_1 = 22,000409 and no further factor < 2^{31}
1963	12)	Brillhart [B4] found no further factor < 2 ³⁵
1974	13)	Brillhart [B6] found f ₂ prime to complete the factorisation:
		M ₂₄₁ = 22,000409 * 160619,474372,352289,412737,508720,216839,

---> 225805,656328,990879,953332,340439

p = 251

1644	1)	Stated by Mersenne [M3; c D1 p13] to be composite
1733	2)	An observation of Euler gives $f_1 = 503$; did Euler state this explicitly?
1878	3)	COMPOSITE: Lucas [L14 p236; c D1 p23 n123] found $f_1 = 503$
1909	4)	Cunningham [W1; c D1 p31 n192a, A1 n10] found $f_2 = 54217$
1946	5)	D H Lehmer [L6] found no further factor < 4,538800
1960	6)	Brillhart [B2] confirmed f $_1$ & f $_2$ and found no further factor < 2 31
1963	7)	Brillhart [B4] found no further factor < 2 ³⁵
1974	8)	Brillhart [B6] found the unresolved part composite, c69
1984	9)	Davis et al found f_3 , f_4 (qs) & f_5 prime [T14], completing the factorisation:
		M ₂₅₁ = 503 * 54217 * 178,230287,214063,289511 *
		61676,882198,695257,501367 * 12,070396,178249,893039,969681

p = 257

1644	1)	ERROR: Stated by Mersenne [M3; c D1 p13] to be prime
1881	2)	Le Lasseur [c D1 p24 n131] found no factor < 30,000
1895	3)	Cunningham [C7; c D1 p28 n165] found no factor < 50,000
1911	4)	Powers [C15; P8] found no factor < 10,017000
1922	5)	COMPOSITE (?): Kraitchik [L2] computed a NZLR - lost in Gerardin's files
1927	6)	COMPOSITE: D H Lehmer [L2; L26] computed correct NZLR [R2; R10; T11]
1936	7)	ERROR: Krieger [K19] thought M ₂₅₇ prime
1952	8)	Robinson [R2; R10] confirmed Lehmer's NZLR
1960	9)	Brillhart [B2] found no factor $< 2^{31}$
1963	10)	Brillhart [B4] found no factor < 2^{35}
1979	11)	Penk [c B16; B17; B19] found f ₁ = 535,006138,814359 (rho) to be prime
1980	12)	Baillie [c B16; B17; B19] found f_2 (Pp) & f_3 to complete the factorisation:
		M ₂₅₇ = 535,006138,814359 * 1,155685,395246,619182,673033 *
		374,550598,501810,936581,776630,096313,181393 [S18; T10]

A trivial computation will satisfy the reader that the above statements $M_p = \iint_{f_i} f_i$ are correct. The confirmation, if required, that the f_i are prime is a much more significant computation which could be simplified by the provision of supporting evidence in the form of a primality-certificate; Vaughn Pratt [P5] proved that succinct certificates exist in all cases. The author [H20] has compiled certificates using factorisations by Brent, Davis & Holdridge, Naur, Pollard and Wagstaff. These certificates minimise the verifier's work and 'go down' the 'p-1 route'.

7 FURTHER MERSENNE NUMBERS - LUCAS LEHMER TESTS AND ERRORS: Mp ORDER

Results are grouped in line with the ranges of prime indexes of "original" computations. All prime-indexes 'p' have been accounted for by Lucas Residue (LR) or prime factor for p < 100,000.

258 < p < 2304

1949	NEWMAN, KILBURN & TOOTILL [H21; N16; T13]
1)	Computed LRs for all (?) p < 354
2)	Confirmed prime/composite pattern for p < 258 Did not publish p or LRs
1952	LEHMER & ROBINSON [L3; L4; L5; R2; R3]
1)	Lehmer eliminated M_p where a factor was known
2)	Robinson computed LR for all (sic) remaining M_p in this range
3)	PRIME: 13th Mersenne Prime M_{521} discovered on 30/1/1952 [L3]
4)	PRIME: 14th Mersenne Prime M_{607} discovered on 30/1/1952 [L3]
5)	PRIME: 15th Mersenne Prime M_{1279} discovered on 25/6/1952 [L4]
6)	PRIME: 16th Mersenne Prime M_{2203} discovered on 7/10/1952 [L5]
7)	PRIME: 17th Mersenne Prime M_{2281} discovered on 9/10/1952 [L5]
8)	Checked with identical runs on different days until two results agreed
9)	Used an alternative starting value, $S_1 = 10$, for the Lucas test
10)	Made residues available to subsequent workers (Selfridge & Hurwitz)
11)	ERROR: incorrect NZLR for M_{1889} . Found by Hurwitz' IBM7090 [S3]
12)	Did not use modulus check on the computation [R10]
13)	Did not publish p, LRs, M_p -factors and factor-table sources
14)	Did not remark on the frequency of residue disagreements (8 above)
1961	SELFRIDGE & HURWITZ [H1; H2; S3]
1)	Computed LR for all (sic) M_p where no M_p -factor was known
2)	Found SWAC LR for M_{1889} incorrect; SWAC confirmed error [S3]
3)	Did not publish p, LRs, M_p -factors and factor-table references
1963	GILLIES [G1; G7]
1)	Computed LR for all M_p where no M_p -factor was known [G7]
2)	Tabled last 5 octal digits of LRs [G7]
1971	TUCKERMAN [T1]
1)	Computed LR for all (sic) M _p where no M _p -factor was known
2)	Did not publish p, LRs, M _p -factors and factor-table references
1979	NELSON & SLOWINSKI [N1; N12; S1]
1)	Computed LR for all p < 16310, 16400 - 17188, 18020 - 24000 et al [N12]
2)	Second-sourced all LRs in the above three ranges [N12]
3)	Confirmed prime/composite- M_p pattern for p < 21000
4)	Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]
1982	ICL 2900 DAP [H8 - H15]
1)	Computed 2828 LRs for p < 50024
2)	Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3)	Confirmed all LRs in [N12] where no factor was known with 16 corrections
4)	Deposited LRs for p < 62982 in MC UMT file [H15]

1957	RIESEL [R5; R1]
1)	Examined all M_p , p < 10000, for a factor q < 10.2 ²⁰
2)	Computed LR for all (sic) remaining M _p in this range
3)	PRIME: 18th Mersenne Prime M ₃₂₁₇ discovered on 8/9/1957
4)	Checked with second run that M_{3217} is prime
5)	Checked all previously known prime Mp for zero residue
6)	Checked factor values against other sources: Lehmer, Kraitchik,
7)	Double-checked that (all?) factors are of form '2kp + 1'
8)	Published first factor of M _p where known
9)	Cautioned that 'factors' tabled may not be true divisors of M _p
10)	Cautioned that BESK only did one run on 'composite' Mp
11)	Made the LRs available (in hexadecimal) to Selfridge & Hurwitz [S3]
12)	ERRORS: Two proof-preparation errors in factor table; corrected [S5]
13)	ERRORS (?): 4 (?) NZLRs (p = 2957, 2969, 3049, 3109) incorrect [S3]
14)	Did not use modulus check on the calculation [R12]
15)	Did not use alternative starting value $S_1 = 10$ for Lucas test
16)	
17)	Did not publish the computed LRs
1961	SELFRIDGE & HURWITZ [H1; H2; S3]
1)	Computed LR for all (sic) M _p where no M _p -factor was known
2)	Disagreed with Riesel's LRs for 4 indexes 'p', see note 13 above [S3]
3)	ERRORS: 4 incorrect NZLRs originally computed; later corrected [S3]
4)	Did not publish p, LRs, M_p -factors and factor-table references
1963	GILLIES [G1; G7]
1)	Computed LR for all M _p where no factor was known for p < 12124
2)	Tabled last 5 octal digits of LRs [G7]
	TUCKERMAN [T1]
1)	
2)	Did not publish p, LRs, $M_{ m p}$ -factors and factor-table references
1070	NELCON & CLOUTNERT EN1, N12, C1]
1979	NELSON & SLOWINSKI [N1; N12; S1]
1)	Computed LR for all $p < 16310$, 16400 - 17188, 18020 - 24000 et al [N12]
2)	
3)	Confirmed prime/composite-M _p pattern for p < 21000 Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]
4)	Deposited LKS III Maths. Comp. OMI TITE IDI p < 30024 [MIZ]
1982	ICL 2900 DAP [H8 - H15]
1)	Computed 2828 LRs for $p < 50024$
2)	Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3)	Confirmed all LRs in [N12] where no factor was known with 16 corrections
4)	Deposited LRs for p < 62982 in MC UMT file [H15]

1961 SELFRIDGE & HURWITZ [H1; H2; S3] 1) Computed LR for all ${\rm M}_{\rm p}$ in this range where no factor was known 2) PRIME: 19th Mersenne Prime M4253 discovered on or before 3/11/1961 3) PRIME: 20th Mersenne Prime M4423 discovered on or before 3/11/1961 3) Used Lucas test with both $S_1 = 4$ and $S_1 = 10$ on prime M_p 4) Used Brillhart's factors to eliminate some composite Mp 5) Published last 5 octal digits of LRs 6) Published sign of S_{p-2} for prime M_p 7) ERRORS : 4 incorrect NZLRs (p = 3637, 3847, 4397, 4421) [S3] 8) Did not check Brillhart's factors 10) Did not modulus-check the computation 1963 GILLIES [G1; G7] 1) Computed LR for all $\rm M_p$ where no factor was known [G7] 2) Corrected Hurwitz' four errors [G7; G1], see note 7 above 3) Confirmed (last 5 octal digits of) all Hurwitz' remaining LRs in this range 4) Tabled last 5 octal digits of LRs [G7] 1971 TUCKERMAN [T1] 1) Computed LR for all (sic) $\rm M_p$ where no $\rm M_p\mbox{-}factor$ was known 2) Did not publish p, LRs, M_p -factors and factor-table references 1979 NELSON & SLOWINSKI [N1; N12; S1] 1) Computed LR for all M_p , p < 16310, 16400 - 17188, 18020 - 24000 et al [N12] 2) Second-sourced all LRs in the above three ranges [N12] 3) Confirmed prime/composite-M $_{\rm p}$ pattern for p < 21000 4) Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12] 1982 ICL 2900 DAP [H8 - H15]

- 1) Computed 2828 LRs for p < 50024
- 2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
- 3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
- 4) Deposited LRs for p < 62982 in MC UMT file [H15]

1963	SELFRIDGE & HURWITZ [S3]
1)	Computed LR for all M _p where no M _p -factor was known
2)	Published last 5 octal digits of LRs
3)	Checked both S $_{ m i}$ squaring and mod M $_{ m p}$ reduction modulo 2 $^{ m 35-1}$
1963	GILLIES [G1; G7]
	Computed LR for all M_p where no M_p -factor was known [G7]
2)	Tabled last 5 octal digits of LR [G7]
	Found factor and did not compute NZLR for $p = 5387, 5591, 5641, 5987$
	Confirmed (last 5 octal digits of) Selfridge/Hurwitz's remaining NZLRs
1971	TUCKERMAN [T1]
	Computed LR for all (sic) M _p where no M _p -factor was known
	Did not publish p, LRs, M _p -factors and factor-table references
1979	NELSON & SLOWINSKI [N1; N12; S1]
1)	Computed LR for all M_p , p < 16310, 16400 - 17188, 18020 - 24000 et al [N12]
	Second-sourced all LRs in the above three ranges [N12]
3)	Confirmed prime/composite-M _p pattern for p < 21000
4)	Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]
1982	ICL 2900 DAP [H8 - H15]
1)	Computed 2828 LRs for p < 50024

2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]

3) Confirmed all LRs in [N12] where no factor was known with 16 corrections

4) Deposited LRs for p < 62982 in MC UMT file [H15]

1963 KRAVITZ & BERG [K1]

- 1) Computed LR for all $\rm M_p$ in this range where no factors was known
- 2) Published last 5 octal digits of LRs: last 12 octal digits tabled [B14]
- 3) ERROR: originally computed incorrect NZLR for 10 $\rm M_p$ (asterisked [K1])
- 4) Corrected these errors after Gillies' letter and before publication
- 5) Did not modulus-check the computation [B14; K21; K22]

1963 GILLIES [G1; G7]

- 1) Computed LR for all $\rm M_p$ where no factor was known, p < 12124
- 2) Computed extended factor-table after LR computations
- 3) Tabled last 5 octal digits of LRs

4) Did not table computed LRs for p = 6089, 6661, 6779, 6907

1971 TUCKERMAN [T1]

1) Computed LR for all (sic) $\rm M_p$ where no $\rm M_p$ -factor was known 2) Did not publish p, LRs, $\rm M_p$ -factors and factor-table references

1979 NELSON & SLOWINSKI [N1; N12; S1]

- 1) Computed LR for all $M_{\rm p},\,p$ < 16310, 16400 17188, 18020 24000 et al [N12]
- 2) Second-sourced all LRs in the above three ranges [N12]
- 3) Confirmed prime/composite- M_p pattern for p < 21000
- 4) Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]

1982 ICL 2900 DAP [H8 - H15]

- 1) Computed 2828 LRs for p < 50024
- 2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
- 3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
- 4) Deposited LRs for p < 62982 in MC UMT file [H15]

1963	GILLIES [G1; G7]
1)	
2)	
3)	PRIME: 21st Mersenne Prime M9689 discovered on or before 11/5/1963 [G5]
4)	PRIME: 22nd Mersenne Prime M ₉₉₄₁ discovered around 16/5/1963 [G5; M9]
5)	PRIME: 23rd Mersenne Prime M ₁₁₂₁₃ discovered on 2/6/1963 [M9]
6)	Checked calculation modulo 244-1
7)	Published p, LRs and M_p -factors discovered and/or used to eliminate M_p
8)	ERROR: NZLR for $p = 12143$ corrected by Tuckerman [T2]
9)	Did not use Lucas test with S $_{ m 1}$ = 10 or do a confirmation run
10)	Did not check available residues of composite M_p , p < 3300
1971	TUCKERMAN [T1; T2]
1)	Computed LR for all (sic) M $_{ m p}$ where no factor was known, p < 21000
2)	Corrected Gillies' NZLR for p = 12143 [T2]
3)	Did not publish p, LRs, M _p -factors and factor-table references
1979	NELSON & SLOWINSKI [N1; N12; S1]
1)	Computed LR for all M_p , p < 16310, 16400 - 17188, 18020 - 24000 et al [N12]
2)	Second-sourced all LRs in the above three ranges [N12]
3)	Confirmed prime/composite-M _p pattern for p < 21000
4)	Deposited LRs in Maths. Comp. UMT file for p $<$ 50024 [N12]
1982	ICL 2900 DAP [H8 - H15]
	Computed 2828 LRs for $p < 50024$
	Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
3)	Confirmed all LRs in [N12] where no factor was known with 16 corrections

4) Deposited LRs for p < 62982 in MC UMT file [H15]

12144 < p < 21000

- 1971 TUCKERMAN [T1; T6]
 - 1) Eliminated some composite ${\rm M}_{\rm p}$ using factor-tables

 - 2) Computed LR for remaining M_p in this range 3) PRIME: 24th Mersenne Prime M_{19937} discovered on 4/3/1971 4) Checked calculation-steps modulo 2^{24} -1 and 2^{24} -3

 - 5) Confirmed known factors of these M_p before eliminating them
 - 6) Checked zero residue for M_{19937} with altered program
 - 7) Communicated result to MIT; it was confirmed by Speciner & Schroepepel
 - 8) Tabled last 5 octal digits of LRs [T3]
 - 9) Did not use Lucas test with $S_1 = 10$

1979 NELSON & SLOWINSKI [N1; N12; S1]

- 1) Computed LR for all $\rm M_{p}, \ p < 16310, \ 16400$ 17188, 18020 24000 et al [N12]
- 2) Second-sourced all LRs in the above three ranges [N12]
- 3) Confirmed prime/composite-M $_{\rm p}$ pattern for p < 21000
- 4) Deposited LRs in Maths. Comp. UMT file for p < 50024 [N12]
- 1982 ICL 2900 DAP [H8 H15]
 - 1) Computed 2828 LRs for p < 50024
 - 2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
 - 3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
 - 4) Deposited LRs for p < 62982 in MC UMT file [H15]

1979 NICKEL & NOLL [N5; N6; N7; S4; S13]

- 1) Eliminated some composite M_p using Wagstaff's factor-table
- 2) Computed LR for remaining $M_{\rm D}^{'}$ in this range
- 3) PRIME: 25th Mersenne Prime M21701 discovered on 30/10/1978
- 4) PRIME: 26th Mersenne Prime M23209 discovered on 9/2/1979
- 5) Checked results with second computation
- 6) Submitted the prime M₂₁₇₀₁ to Lehmer & Tuckerman for checking [N5]
- 7) Published p, LRs, Mn-factors and factor-table references [N7]
- 8) ERROR: omitted "22501 67260" from first table [N7]: f1 = 3026,834521
- 9) No modulus check included in the code [N4]

1979 NELSON & SLOWINSKI [N1; N2; N12; S1]

- 1) Computed LR for all $\rm M_p, \ p \ < \ 16310, \ 16400$ 17188, 18020 24000 et al [N2]
- 2) PRIME: independently discovered M23209 on 23/2/1979
- 3). Confirmed prime/composite-M $_{\rm D}$ pattern for p < 21000
- 4) Deposited LRs in Maths. Comp. UMT file [N12]
- 5) Did not compare NZLR values for all computed tests [N2]

1981 ICL 2900 DAP [H8 - H15]

- 1) Computed 2828 LRs for p < 50024
- 2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]

3) Confirmed all LRs in [N12] where no factor was known with 16 corrections

4) Deposited LRs for p < 62982 in MC UMT file [H15]

24500 < p < 50024

1979 NELSON & SLOWINSKI [N1; N12; N14; N15; S1; S13]

- 1) Computed LR for all p < 16310 [N2]
- 2) Eliminated some composite M_p using Wagstaff's factor-table [W8]
- 3) Computed LR for remaining p, 30000 < p < 50024
- 4) PRIME: 27th Mersenne Prime M44497 discovered on 8/4/1979
- 5) Noll confirmed M44497 prime [N9]
- 6) Checked the squaring modulo 2²⁴-1 [N1]
- 7) Deposited LRs in Maths. Comp. UMT file [N12]
- 8) Did not confirm the Mp-eliminating factors used
- 9) Did not check against many known Lucas residues
- 10) Did not use Lucas test with $S_1 = 10$
- 11) ERROR: omitted indexes 24733, 40639 and 44623
- 12) ERROR: wrong residue on 32831 due to 'p = 23 mod 24' error [N12; N14; N15]
- 13) ERROR: wrong residue on 43793 due to transient fault during (?) mod-reduction
- 14) ERROR: wrong residues on 14 indexes due to possible code-experimentation: 46399, 47137, 48079, 48119, 48157, 48164, 48193, 48409, 48413, 48437, 48449, 48473, 48481, 50021
- 15) Corrected errors above given ICL DAP results below [N14; N15]

1981 ICL 2900 DAP [H8 - H15]

- 1) Computed 2828 LRs for p < 50024
- 2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
- 3) Confirmed all LRs in [N12] where no factor was known with 16 corrections
- 4) Deposited LRs for p < 62982 in MC UMT file [H15]
50024 < p < 62982

1982 ICL 2900 DAP [H8 - H15; L45]

- 1) Computed 2828 LRs for p < 50024
- 2) Confirmed all LRs or corrected LRs in [G1; G7; H2; K1; N7; R10; S3; T6]
- 3) Confirmed all LRs in [N12] after 16 corrections and 3 additions
- 4) Checked the squaring modulo $2^{3}-1$ and computed on 32 numbers in parallel
- 5) Computed factor-table and checked against others [K30; L45; W8; W12]
- 6) Deposited last 15 octal digits of LRs and factor-table in MC UMT file [H15]

62982 < p < 216092

At this point, the previous strict chronology breaks down. Isolated ${\rm M}_p$ have been tested, a number of computer codes are simultaneously active and Slowinski's testing is both non-sequential and unfiled.

1978 NOLL [N10]

- 1) Computed NZLR (25/12/1978) for $\rm M_{65537}$ in 168° on CDC CYBER-174
- 2) NZLR for M₆₅₅₃₇ is 56172 70454 77750 45726

1979 NELSON [N17]

- 1) Confirmed NZLR (13/3/1979) for M₆₅₅₃₇ in 1°1'51"
- 2) Computed NZLR (29/4/1979) for $M_{1,31071}$ as 21673 53757 40460 in 7°28'

1981 NELSON [N17]

- 1) Computed NZLR for M₆₅₅₃₉ as 21616 05464 50663
- 2) Computed NZLR for $M_{65543}\ as$ 02405 16722 60672

1982 SLOWINSKI [N21; N23]

- 1) Computed factor or LR for 'most' M_p in 75000 < p < 90000 [N21]
- 2) PRIME: 28th known Mersenne prime M86243 discovered on 25/9/1982 in 1°36'22"
- 3) Nelson confirmed M₈₆₂₄₃ prime using the CRAY/1 '1979' code
- 4) McGrogan & Noll confirmed M_{86243} prime using a CYBER-205 in 1° [N23]
- 5) Holmes et al confirmed M₈₆₂₄₃ prime using an ICL-DAP on 22/12/1982 in 38'38"

1983 ICL 2900 DAP [B32; B33; B34; H15]

- 1) Tabulated the 1913 $M_p-f_1 < 2^{40}$ for 62982 < p < 100000
- 2) Confirmed factor-table against those of Keller and Wagstaff [K30; W14]
- 3) Code C confirmed 520 known LRs
- 4) Computed NZLR for the 397 remaining p, 62982 < p < 73180
- 5) Computed NZLR for the 339 remaining p, 90534 < p < 100000
- 6) Checked the squaring modulo 2^{16} -1 and computed 16 M_n in parallel

1983 SLOWINSKI

- 1) PRIME: 29th known Mersenne prime M132049 discovered on 20/9/83 in 32'30"
- 2) Reportedly computed LR for all p < 103,000 [D4]

1984 ICL 2900 DAP [H18; H19]

- 1) Computed LR for the 626 $\rm M_p,~73180~<~p~<~90534$
- 2) Confirmed M_{86243} as the 28th Mersenne Prime in order of size
- 3) Deposited LRs for the complete range, 50024 < p < 100000 [H19] in MC UMT

1985 SLOWINSKI [D6]

- 1) PRIME: 30th known Mersenne prime M216091 discovered on 6/9/86 in 3°
- 2) McGrogan confirmed prime prior to publication

1988 COLQUITT & WELSH [C32; C33]

- 1) PRIME: 31st known Mersenne prime M110503 discovered on 29/1/88
- 2) NEC SX-2 program included a modulus-check on the squaring
- 3) M_{110503} confirmed prime by McGrogan (ELXSI), SLowinski (CRAY XMP), Young
- (CRAY XMP) and Colquitt (NEC SX-2, 'schoolboy multiplication' code) [C33] 4) Computed an M_p-f_1 or M_p-LR for all p, $10^5 [C33]$

1989 COLQUITT & WELSH [C34; H22]

- 1) Computed an $M_p\text{-}f_1$ or $M_p\text{-}LR$ for all p, $10^5 [C34; H22]$
- 2) Confirmed 1134 of 2828 LRs with p < 50000 [H19] with no disagreements [H22]

PUBLISHED WORK - ERRORS: AUTHOR ORDER 8

This section does not claim to be complete as the errors have been noticed 'en passant' rather than as a result of deliberate proof-reading. Published errata and corrigenda have been included here.

R. C. ARCHIBALD

- 1) Attributions in doubt or incomplete: M₁₁, M₁₃, M₂₃, M₃₇
- 2) Note 6: Lucas authored Amer. J. Math. v1 p240 table is 'apres Landry' 3) Note 10: On M163, for "30th April 1908" read "7th May 1908"
 - The date was incorrectly printed on that page of 'Nature'.
- 4) Note 11: For "p80" read "p86" unclear 'Nature' typeface5) Note 13: end of 2nd paragraph: "p118" may be incorrect
- 6) Note 14: for "p383" read "p883"
- 7) Euler's "Opuscula": On p113, "2 ---> 36"; on p116, " ---> 37"

C. B. BARKER

1) NZLR incorrect even though he used modulus checks [R2; T11] B1

A. H. BEILER

B21

A1

1) p18, ending paragraph 1: Uhler found that none of the numbers corresponding to the six indices (157, 167, 193, 199, 227, 229) were perfect. 2) p247: references 5 & 6 are by D H Lehmer, not D N Lehmer

C. E. BICKMORE

B12 1) p17, line 10: for "2³¹-1" read "2³⁷-1"

R. P. BRENT

B26 1) Against k = 337, for "prp67" read "prp68", later proved "p68" [B28]

J. BRILLHART

- 1) p366, 3A: for "55" read "47" B2
 - 2) p368: remove the "*" against all $f_i < 10^6$ except for p = 1049, ie for p = 571, 641, 719, 761, 883, 967, 1019, 1093. See MR23#A832. Source of factors for p = 719, 967, 1019, 1093 unknown to this author.
- B4 1) Tenth reference needed - should be to [K2] [K2] on p85 has a reference to 3 factors, namely: f2 of M10,007; f1 of M10,009; f2 of M10,091
- **B6**
 - 1) p644: for "The eight new" read "The nine new" and insert "233" in the list. f3 of M233 was found prime by Corollary 11 [B16]
 - 2) p645: Schroeppel did not publish M_{149} 's factorisation in AIM 239 (ref [1]) but communicated it privately to the author [B16]
 - 3) see MC v39 (1982) p747

P. A. CATALDI

C2 1) Regarded M₂₃, M₂₉ and M₃₇ as primes

- R. W. D. CHRISTIE
- C27 1) Regarded M_{41} and M_{47} as primes

A. J. C. CUNNINGHAM

- C7 1) Found no factor < 50,000 for M_{181} ; in fact $f_1 = 43441$ [C11; W1] 2) 14831 $7M_{1483}$ but 14591 | M_{1459} [B29; K30]
- C8 1) For "Only 18 Mersenne's numbers remain unverified" read "Only 18 Mersenne's numbers stated to be composite by Mersenne remain unverified. M₂₅₇, stated by Mersenne to be prime, also remains unverified." Evidence of Cunningham's concentration on 'composite M_p' comes from [C11; C4; C29]
 - 2) Found no factor < 200,000 for M_{181} ; in fact $f_1 = 43441$ [C11; W1]
- C16 1) Various errors; see original copy & Thorkil Naur's letter
 - L. E. DICKSON

D1

- 1) p18 n89: for "p25" read "pp26-7". Euler did not claim all factors prime.
 - 2) p30 n184: for "BAMS v16" read "BAMS v17"
 - 3) p31 n191: for "p87" read "p86"
 - 4) p31 n192b: "d = 1 mod 24" is incorrect for p = 31, 61 (Gerardin's error?)
- 5) p31 n192c: Fauquembergue's NZLR for M_{101} was found incorrect in 1952 [R2]
- 6) p32 n199: for "31" read "131" in the reference to Lucas' test
- 7) p32 n200: Fauquembergue's NZLRs for $\rm M_{103}~\&~M_{109}$ were also found to be incorrect in 1952 [R2]

```
L. EULER
      1) p27, against 2<sup>21</sup>: for "3 23 89" read "3.23.89"
E3
       2) p27, against 3: for "2 " read "2^2"
       3) p27, against 3<sup>3</sup>: for "2 " read "2<sup>3</sup>"
       4) p27, against 5<sup>5</sup>: for "3<sup>3</sup>" read "3<sup>2</sup>"
       5) p27, against 7<sup>10</sup>: for "329554457" read "1123.293459" [B29]
       6) p28, against 37^3: for "2603" read "19.137"
7) p28, against 41^3: for "292" read "292"
       8) p28, entries for 79, 79^2 and 79^3 have been omitted. They should read [E4]:
             79 :: 2^4.5, 79^2 :: 3.7^2.43, 79^3 :: 2^5.5.3121
       9) p28, against 137<sup>3</sup>: for "2 " read "2<sup>2</sup>"
      10) p28, against 149<sup>3</sup>: for "11.101" read "17.653"
      11) p28, against 157<sup>3</sup>: for "29 79" read "29.79"
      12) p28, against 167<sup>3</sup>: for "3 5.7 2789" read "3.5.7.2789"
      13) p28, against 173<sup>2</sup>: for "67.449" read "30103"
      14) p28, against 193<sup>2</sup>: for "3 7" read "3.7"
      15) p29, against 257<sup>2</sup>: for "43 1321" read "43.1321"
      16) p29, against 283<sup>2</sup>: for "2<sup>2</sup>" read "2<sup>3</sup>"
      17) p29, against 311<sup>3</sup>: for "2<sup>4</sup> 3" read "2<sup>4</sup>.3"
      18) p29, against 347^3: for "2<sup>3</sup> 3" read "2<sup>3</sup>.3"
      19) p29, against 353<sup>3</sup>: for "5 17" read "5.17"
      20) p30, against 461<sup>3</sup>: for "11106261" read "11.106261"
      21) p30, against 523<sup>3</sup>: for "7" read "17"
      22) p30, against 563<sup>3</sup>: for "3 5 29" read "3.5.29"
      23) p30, against 571<sup>3</sup>: for "163041" read "163021"
      24) p30, against 613<sup>2</sup>: for "125461" read "7.17923"
      25) p31, against 769<sup>3</sup>: for "71" read "17"
      26) p31, against 811: for "2" read "2<sup>2</sup>"
      27) p31, against 827: for "3^3" read "3^2"
      28) p31, against 863: for "25" read "2<sup>5</sup>"
      29) p31, against 907<sup>3</sup>: for "23" read "2<sup>3</sup>"
      30) p31, against 929<sup>3</sup>: for "31 431521" read "31.431521"
E2
       1) The errors in [E3] listed above as 4-6, 8, 10, 13, 16, 20, 21, 23-27 are
              reproduced here.
       2) p104, against 17: for "3<sup>3</sup>" read "3<sup>2</sup>"
       3) p105, against 41<sup>3</sup>: for "29" read "29<sup>2</sup>"
       4) p106, against 359<sup>3</sup>: for "3<sup>3</sup>" read "3<sup>2</sup>"
       5) p109, below "929", for "919<sup>2</sup>" read "929<sup>2</sup>" and for "919<sup>3</sup>" read "929<sup>3</sup>"
F4
       1) p90, against 7<sup>10</sup>: for "329554457" read "1123.293459" [B29]
     E. FAUQUEMBERGUE
F12
     1) Incorrect NZLR for M<sub>101</sub>: discovered by Robinson on SWAC in 1952 [R2]
       1) Incorrect NZLR for M_{103}: discovered by Robinson on SWAC in 1952 [R2]
F1
       2) Incorrect NZLR for M_{109}: discovered by Robinson on SWAC in 1952 [R2]
F10
       1) Incorrect NZLR for M_{137}: discovered by Robinson on SWAC in 1952 [R2]
```

A. FERRIER

F4 1) p5, against p = 359: for "855851" read "855857" [K30]

D. B. GILLIES

G7

- 1) NZLR for M₁₂₁₄₃ incorrect [H8; T2]. For "27361" read "71510".
- 2) (Author's copy) M₁₂₆₄₁, f₄: for "4124,947915" read "41249,479151" [G1]
- 3) (Author's copy) M₁₄₅₉₃, f₅: for "6336,911017" read "63369,110177" [G1]
- G1 1) NZLR for M₁₂₁₄₃ incorrect [H8; T2]. For "27361" read "71510".

V. A. GOLUBEV

- G11 1) p258: add two columns to the table of Seredinskij: (130 .. 23 .. 5197 .. 31183) and (50 .. 47 .. 10357 .. 62143) [K28]
 2) p259: In Theoreme II, for "2¹²ⁿ⁺¹-1 ... 12n+1" read "2²ⁿ⁺¹-1 ... 2n+1"
 3) p259: In Theoreme II, for "=2¹²ⁿ⁺¹" read "=2²ⁿ⁺¹"
 4) p259: In the 5th row of the table, x, for "36" read "86"
 5) p259: In the 7th row of the table, p1, for "1692" read "1693"
 6) p260: Theoreme IV. For "2ⁿ-1" read "2^p-1"
 7) p260: In the 3rd row of the first table, p, for "1365" read "1367"
 8) p260: Delete the 14th column of the first table because 19337 = 61 * 317
 9) p260: Exchange the "x" and "y" in the labellings of the second table
 - 10) p260: In the 1st row of the second table, for "15" read "25"
 - 11) p261: Add to the first table the column (13 .. 31 .. 4447 .. 71153)

G. H. HARDY & E. M. WRIGHT

- H6 1) (3rd Edition: 1954), on p11, M₂₂₈₁ is said to have 686 decimal digits. For "686" read "687".
 - 2) (4th Edition: 1960, reprinted 1965), on p16, $\rm M_{11213}$ is said to have 3375 decimal digits. For "3375" read "3376". Noted by M. Lal [L12]

A. HURWITZ

H2 1) NZLRs found incorrect [S3] for 4 M_p with p < 3300

2) NZLRs found incorrect [G1; G7; N2; N3] for 4 M_p: for M₃₆₃₇'s "67413" read "53313", for M₃₈₄₇'s "57652" read "14400", for M₄₃₉₇'s "40174" read "44327", for M₄₄₂₁'s "25131" read "03013"

E. KARST

K2 1) p80: proof that \nexists prime q s.t. q² | M_n is fallacious [K8]

D. E. KNUTH

K26 1) p391: credited Lucas with showing M₆₇ composite. NZLR unconfirmed

- 2) p391: credited Kraitchik with showing M₂₅₇ composite. NZLR unconfirmed
 - 3) p391: for "CRAY-I" read "CRAY-1"
 - p394: "The world's largest explicitly known prime numbers have always been Mersenne primes, at least from 1772 until 1980" is incorrect.

In 1867 [L20; c D1] and 1869 [L19 p4; c D1], Landry preceded Lucas' prime M_{127} of 1876 by listing 14 primes > M_{31} . Landry's work may be regarded as reliable although he pronounced one composite number prime in those tables. The two 1867 primes of the 14 are asterisked below:

In 1951-2, the primes of Miller & Wheeler and of Ferrier [M2; M5] superceded M_{127} and preceded M_{521} .

M. KRAITCHIK

- K3 1) Chapter 3, p24, Section 65 table: against n=163, for "160287" read "150287"
- K13 1) p756, table 1, against n = 67: for "19,370721" read "193,707721" 2) p756, table 2, against n = 163: for "160287" read "150287"
- K32 1) p756, against n = 67: for "19,370721" read "193,707721"
 2) p756, against n = 67: for "7,618388,257287" read "761838,257287"
 3) p756, against n = 87: for "1107" read "1103" [B29; F4]

4) p756, against n = 127: for "...864..." read "...884..."

S. KRAVITZ

- K5 1) After p = 13049, for "12063" read "13063"
- K1 1) For ten asterisked M_p, incorrect NZLRs were corrected before publication. These were caused by an inadmissable value of S₁ being introduced by a card-punch error while making up three 'identical' program-decks.

Le LASSEUR de SANZY

L25 1) Found no factor < 30,000 for M_{197} [c D1 p24 n131]; $f_1 = 7487$ [C3; C6]

D. H. LEHMER

- L2 1) M₂₃₃ is listed as "only one factor known". N G W H Beeger noted [L7] that f₂ was known at that time.
- L3 1) For "k = 744" read "k = 774": corrected by T Wilcox [W4]

E. LUCAS

- L14 1) Incomplete proofs of his residue-tests
- L32 1) p283: for "177951" read "179951"
- L13 1) p376: the prime M_{89} was pronounced composite following NZLR computation

Several historical misattributions; unsubstantiated claims about machines [A1]

M. MERSENNE

M3

- 1) Stated M₆₇ to be prime; it is composite [F8; F9; C17]
 - 2) Stated M_{257} to be prime; it is composite [L2]
 - 3) Stated M₆₁ to be composite; it is prime [P13; P14; P16]
- 4) Stated M₈₉ to be composite; it is prime [C12; P9; P15]
- 5) Stated M₁₀₇ to be composite; it is prime [P2; P6; P10]
- 6) Stated in effect that M_p was composite for 17000 M_p is prime for p = 19937 [T1; N1], 21701 [S4; N5; N1; T6] and 23209 [N6; N1; S13; S1] and only for those p [N1]
- M6 1) " $p = 2^{2n} + k$; k = 1, 2 or $3 ===> M_p$ prime" Correct for p = 2, 3, 5, 7, 17, 19 (known to Mersenne) Incorrect for p = 67, 257 & 4099

H. L. NELSON

- N1 1) Credited Mersenne with a knowledge of M29's f2
 - 2) Did not credit Mersenne with the knowledge of M_{37} 's f₁
 - 3) p266: for "2100 by 1971" read "21000 by 1971"
 - 4) p266: for "2, 3, 4, 5" read "2, 3, 5, 7"
 - C. L. NOLL
- 1) Cited Seelhoff as a discoverer of the prime M_{61} N5
- 1) Credited Gillies with search-range p < 11400 and not p < 12144N7
 - 2) Omitted "22501 67260" from first table: M_{22501} -f₁ = 3026,834521
 - 3) Reference 2 Knuth: for "1963" read "1973"

J. W. PAULI

P11 1) Gave 83 as a factor of M_{41}

J. PLANA

P12 1) Found no factor < 50,033 for M_{53} : in fact $f_1 = 6361$ [L19]

H. RIESEL

- R1 1) Disputed NZLRs [N2; S3; R13] for M_{2957} , M_{2969} , M_{3049} and M_{3109}
 - 2) In reference [3] to M. Kraitchik, for "1952" read "1924"

 - 3) Archibald (p208) did not misprint f₁ of M_{163} [A1] as did Kraitchik [K3] 4) p210: against p = 2689, for "7158199" read "7158119". See Selfridge [S5]
 - 5) p211: against p = 5743, for "543217" read "643217". See Selfridge [S5]
- 1) In the editor's footnote, for "330" read "3300" R4 2) 4 errors/omissions in factor table [B20]

R. M. ROBINSON

R2 1) Incorrect NZLR detected [S3] for M1889 2) 2nd para, 4th line: for 2^{n-1} read 2^{n-1}

P. SEELHOFF

S12 1) Declared M₆₁ to be prime, having only found it probably-prime and made the obvious mistake of assuming a | b & a | c ===> b | c or c | b" [C17; L11]

W. SIERPINSKI

S17 1) p341, 2nd para: for "r101" read "r100" 2) p341, 4th para: for "376 digits" read "386 digits" 3) p341, 6th para: for "M g41" read "Mg941" 4) p341, 6th para: for "3381 digits" read "3376 digits"; see La1 [L12] 5) p341, 6th para: for "Gilles" read "Gillies"

D. SLOWINSKI

1) p259: for "19737" read "19937" S1 2) p260: for "D. Wheeler, 1959" read "D. Wheeler, 1953"

The "TIMES"

T8 1) p9: for "2²¹⁷⁰¹" read "2²¹⁷⁰¹ - 1": corrected [T9]

- J. TRAVERS
- T3 1) Against E₈₉, for "...378082..." read "...378084..." [T11; U11]
 - 2) Against E₁₀₇, for "...975360..." read "...9753460..." [T11; U11]

H. S. UHLER

- U2 1) For "page iii" read "page xxxvi"
- U11 1) v₅: for "3335" read "3355"
 - 2) v₁₁: for "14 13164" read "13164" (there are 65 digits not 67) [T3; T11]
 - 3) v₁₂: for "47401" read "14 47401" (there are 77 digits not 75) [T3; T11]

9 CONJECTURES RESOLVED

In these notes, 'conjecture' is interpreted in the widest sense to include explicit conjectures, observations and statements not backed by proof whose status is lost in the mists of time.

- 1) " $2^{n-1} * M_n$ is perfect for all odd n" [c D1 Ch1 ns 20, 24, 38, 42, 43] FALSE: n composite ===> $M_n = (2^a-1)(2^b-1)c$ ===> $2^{n-1}*(2^n-1)$ not perfect. M_n composite ===> $2^{p-1} * M_n$ is not perfect, the case also for most prime p.
- 3) "Ep exists with any number of decimal digits" [D1 Ch1 ns 4, 27, 29, 33, 45, 53] FALSE: The Ep sequence begins 6; 28; 496; 8128; $\underline{33,550336}$ The 28th Ep has 51,924 decimal digits Would not be true even if $2^{n-1} * M_n$ were perfect for all odd 'n'
- 4) MERSENNE: [M3; c D1 p12 n60] Effectively, "For 28 M_p is prime only for p = 31, 67, 127, 257" FALSE: Incorrect on p = 61, 89 & 107 (later found prime) and on p = 67 & 257 (later found composite) Mersenne knew the status of M_p for p < 24 and p = 37 (10 of 55 M_p) His statement was correct on the remaining 40 M_p
- 5) MERSENNE: [c D1 p13 n60]

"There is no perfect number from the power 17000 to 32000"

- FALSE: Let us assume this means " M_p is composite for 17000 ". $There are 3 prime <math>M_p$ (p = 19937, 21701 & 23209) in this range. This conjecture is perhaps based on the belief that ' M_p prime ===> p near $2^{k'}$, the relevant 2^{k} here being 16,384 and 32,768.
- 6) MERSENNE: "p = 2²ⁿ + k; k < 4 ===> M_p prime" [M6; c D1 p13 n61] FALSE: Correct for p = 2, 3, 5, 7, 17, 19, all known to Mersenne. Incorrect for p = 67, 257, 4099, 65537 & 65539 Suggests that '67' was not a misprint of '61' - Conjecture 4 above [B10 p316; B11]
- 7) MERSENNE (according to Lucas & Tannery) [c D1 p28 n162]: "M_p prime <==> p prime and p = $2^{2n} + 1$, $2^{2n} + 3$ or $2^{2n+1} - 1$ "
 - FALSE: Correct only for (known) p = 2, 5, 7, 13, 17, 19 and p = 31, 61, 127===> incorrect for p = 3, 89, 107 and the next 16 prime M_p , p > 257<=== incorrect for p = 67, 257, 1021, 4093, 4099, 8191, 16381, 65537, 65539 & 131071.
 - These are the counterexamples for p < 262140.
 - This attribution explains four out of five of Mersenne' errors BUT
 - 1) Clearly, Mersenne knew $M_3 = 7$ to be prime
 - Mersenne regarded M₆₁ as composite (prime by this conjecture)

8) MERSENNE (according to Drake) [D2]: "p prime, p = $2^{n} \pm k$, k < 4 <===> M_p prime" FALSE: Correct for p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 127 ===> incorrect for p = 67, 257, 1021, 4093, 4099, 8191, 16381, 65537, 65539 & 131071. <=== incorrect for p = 89, 107 and the 13th-31st prime M_p . These are the counterexamples for p < 262140. 9) CATALAN: "q = M_p prime ===> M_q prime" [c D1 p24 n135]: FALSE: Correct for p = 2, 3, 5, 7. Incorrect for p = 13, 17, 19 and 31. Catalan knew only of the cases p = 2 and 3. Let M represent M_M . NZLR for $M_{13} = M_{8191}$ computed by Wheeler et al [G1; H2; H14; N12; T1] $2 * 20,644229 * M_{13} + 1 = 338193,759479 | M_{13}$ [K31] $2 \times 884 \times M_{17} + 1 = 231,733529 | M_{17}$ [R3] 2 * 245273 * M_{17} + 1 = 64296,354767 | M_{17} [K31] $2 * 60 * M_{19} + 1 = 62,914441 | M_{19} [R3]$ 2 * 68745 * M₃₁ + 1 = 295,257526,626031 | M₃₁ [K31] 10) CUNNINGHAM: "M_p prime ===> $p = 2^{n} \pm 1$ or $2^{n} \pm 3$ " [C5; C7] FALSE: Correct for p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 127, all known to Cunningham Incorrect for p = 89, 107 and the known 19 prime M_n after M₁₂₇ Retracted by Cunningham [C12] when Powers announced the primality of Mag 11) GERARDIN [G6]: "a) If $p = 43 \mod 60$, the first factor of M_p , $f_1 = 47 \mod 96$ b) If $p = 33 \mod 40$, the first factor of M_p , $f_1 = 7 \mod 24$ c) If p = 1 mod 30, the first factor of M_p , $f_1 = 1 \mod 24$ - with the exception of (Euler) cases where p = 4n+3 and 2p+1 is prime" FALSE: a) Correct for p = 43, 163, 223 [B3], three cases known to Gerardin Incorrect for 291 of 319 known cases with p $< 10^5$, for example $p = 103 (f_1 = 2550, 183799 [B3])$ and $p = 283 (f_1 = 9623 [B2])$ b) Correct for p = 73, 113, 233 [B3], three cases known to Gerardin Incorrect for 230 of 348 known cases with p < $10^5,$ for example $p = 193 (f_1 = 13,821503 [B2]), p = 313 (f_1 = 10,960009 [B2])$ c) Correct for p = 151, 181, 211 [B3], three cases known to Gerardin Incorrect for 573 of 672 known cases with $p < 10^5$, for example p = 31 & 61 for which M_{p} is prime, $p = 241 (f_1 = 22,000409 [B2]) and p = 571 (f_1 = 5711 [B2])$ Analysis [H22] based on merge of results [C34; H19] 12) GERARDIN: "q divides M_p and $q \neq 2^r - 1 ==> M_q$ is composite" [c D1 p30 n188b] FALSE: M₁₁ = 23 * 89: M₈₉ is prime [C12; P3; c D1 p30 n185] M967 = 23209 * 549257 * c281 [B2; B17]: M23209 is prime [S13; S1] Presumably this was posed just before Powers found Mgg prime 'q $\neq 2^r - 1$ ' excludes the (Catalan) cases q = 3, 7, 31, 127 13) TARRY: "If q is the least factor of a composite M_p , M_q is composite" [c D1 p30 n188b] FALSE: M₉₆₇ = 23209 * 549257 * cofactor [B2]: M₂₃₂₀₉ is prime [S13; S1] KNUTH: [K26 p394] 14) "One day, the largest explicitly-known prime will not be a Mersenne prime" TRUE: $p65050 = M_{216091} < 391581.2^{216193} - 1 = p65087$, found 6/8/89 [D7] 15) NAUR: Meta-conjecture on reading previous version of this section: "All Mersenne-number conjectures are false". FALSE: See resolution of conjecture 14 above.

10 CONJECTURES OUTSTANDING

- 1) MERSENNE: "M_p is composite for 1,050,000 This statement is apparently based on the belief that M_p is prime only when p is near 2^k', the relevant 2^k here being 1,048576 & 2,097152. Based on Pomerance's conjecture on the distribution of prime M_p and current knowledge, the 'likelihood' of this conjecture being true is 0.15649.
- 2) MERSENNE: "No interval of powers can be assigned so great but that it can be given without perfect numbers" [M3; c D1 p13 n60] This is interpreted as "∀N, ∃n(N) s.t. p≤[n, n + N] ===> M_p composite" This statement is perhaps based on a belief that 'M_p prime ===> p near 2^k' This conjecture is wrongly motivated but probably correct - see 8 below.
- 3) CATALAN: " $p_1 = 3$ and $p_{n+1} = 2^{p_{n-1}} = ==> p_{n+1}$ is prime for all n" True for p_1 , p_2 , p_3 ; $M_p = 3$, 7, 127 & M_{127} are prime The generalisation, replacing ' $p_1 = M_2$ ' by ' $p_1 = M_q$ ' is false: For $p_1 = M_5 = 31$, p_1 and p_2 are prime but M_q is composite for $q = M_{31}$ For $p_1 = M_q = r = M_{13}$, M_{17} or M_{19} , M_r is composite See Section 9, Conjecture 9 for the first M_p -factors. For $p_1 = M_q = r = M_{61}$, M_{89} or M_{127} , the status of M_r is unknown.
- SCHINZEL: "There are an infinite number of Mersenne composites" [S2 p29] This is likely to be correct; for stronger versions - see 6, 8-10 below.
- 5) "There are an infinite number of Mersenne primes" [S2 p29] For a stronger version of this conjecture, see 8 and 9 below. Golubev [G11] alone says "There are serious reasons for believing that the number of prime M_p is finite."
- 6) "There are an infinite number of prime p=4k+3 such that 2p+1 is prime" [S2 p29] For such primes p, M_p has the factor 2p+1 by a theorem of Euler. This conjecture therefore implies Conjecture 4 above.

7) JAKOBEZYK: "There is no prime q such that q^2 is a factor of some M_p " [S10 p92] Karst's alleged proof [K2 p80] is incorrect [K8]. Brillhart [B4; B16] has checked this conjecture for $q < 2^{35}$, 102 , <math>258 $<math>q^2 | M_p ==> 2q^{-1} = 1 \pmod{q^2}$ [W11] There are no such M_p -factors $q < 6.10^9$ [L46] More generally, this is incorrect for $M_n = 2^{n-1}$ with n composite [B17; R6]: first examples: $3^2 | M_6, 5^2 | M_{20}, 7^2 | M_{21}, 11^2 | M_{110}, 13^2 | M_{156}, 17^2 | M_{136}$ $31^2 | M_{155}$ later examples: $3^5 | M_{162}, 5^3 | M_{100}, 7^3 | M_{147}$

8) GILLIES: [G7; G1]

"a) The probability that M_p is prime ~ (2 $\log_e 2p$)/(p $\log_e 2$),

- b) The expected number of prime $\rm M_p$ s.t. x < $\rm M_p$ < 2x is 2 + 2 $\rm log_e(log_e2x/log_ex),$
- c) The number of prime $M_p < x \sim 2 \times (\log_e \log_e x)/\log_e 2''$ ie the number of prime M_p , $p < y \sim 2 \log_e y/\log_e 2 \sim 2.8853901 \log_e y$
- 9) POMERANCE & LENSTRA: [P24] "The number of prime M_p with $p < y \sim e^{1}\log_e y / \log_e 2 \sim 2.5695442 \log_e y$ " As seen in the Section 3 graph, this is a much better fit to the data than Gillies' conjecture above. Euler's constant, $\gamma = 0.577215665$

10) SHANKS & KRAVITZ: [S6] Let $f_k(x)$ be the number of M_n (p < x) such that d = 2kp+1 is a prime divisor of Mn Let Z'(x) be the conjectured estimate for the number of twin-prime pairs $\langle x \rangle$ Then: $f_k(x) = Z'(x) [\cos^2(k\pi/4)/k] \pi[(q-1)/(q-2)] *$ q | k $[1 - \{\log(2k)/\log x\} + O(\log^2 x)^{-1}]$ This conjecture accords with the known result "k = 4m+2 ===> $f_k(x) = 0$ " This conjecture implies $f_1(x) = Z'(x)/2$ and $f_3(x) = Z'(x)/3$ see Conjectures 4 and 6 above. 11) SELFRIDGE: [N10] "If two of the following statements are true, the third is also true" a) $p = 2^m + 1$ or $p = 2^{2m} + 3$ b) M_p is prime c) $(2^{p} + 1)/3$ is prime If 'p' is not prime, then statements b and c are false [B35] Each statement defines a set of primes 'p' to test the conjecture. Bateman et al [B35] find the conjecture true for 56 'p' in these ranges: 'a' primes p < 1,000000 'b' primes p < 132050 'c' primes p < 4000 Prior to [N10], it was known that a^b^c was true 9 times; what was the probability of this being true 'at random'. It is unlikely to be true [B35] again on a random basis. Statements a, b & c are separately true 12, 21 & 14 times respectively. This condition is proposed [B35] as a neat way to discriminate between the Mersenne conjecture 'hits' (31, 61, 127) and 'misses' (67, 89, 107, 257). There is no evidence that Mersenne considered numbers of form $(2^{p+1})/3$. Knowing that M_{11} is composite, he may have chosen not to speculate that M_{29} and M131 were prime. 0 3 4 : 5 6 7 8 k 1 2 Key: **7** 15 : **31** 63 **127** 255 2 -1 o 1 3 p = composite M_p 2^k+1 2 5 9 17 : 33 65 129 257† $\mathbf{p} = \text{prime } M_{\mathbf{p}}$ 3 2k-3 -2 : = M conjecture (5) 13 : 29 61† 125 253 -1 1 2^k+3 4 67+ 131 259 (5)7 11 19 : 35 boundary t = Mersenne wrong 12) SLOWINSKI - Meta-conjecture: [S1] "There will always be more conjectures concerning Mersenne primes than there are known Mersenne primes". This is trivially true if we allow the class of untested statements 'Mn is prime'. Therefore, Slowinski must be assuming some process for admitting statements as 'worthy' conjectures. Shanks [S2, 3rd Edition] proposes such a process but it has not been used here. A formal definition of 'conjecture' must precede formal decidability. Let us delete 'always' and substitute: 'Mersenne numbers' for the first 'Mersenne primes', 'unresolved conjecture' for 'conjecture'. Slowinski has done more than most to make this meta-conjecture false. Interpreting 'conjecture' in its widest reasonable sense above, the

resulting list of unresolved conjectures makes the score 31:12 in favour of the primes. Further submissions are invited.

If the word 'always' is heeded, this meta-conjecture is false.

THEORETICAL RESULTS 11

These are classified below and some sections are expanded.

incse are	erassified before and some sections are expanded.
11.1	EARLY RESULTS ON PERFECT AND MERSENNE NUMBERS
11.1.1	Euclid's Proposition 36: $2^{n}-1$ prime ===> $2^{n-1}(2^{n}-1)$ perfect
11.1.2	2 ⁿ -1 prime ===> n prime
11.1.3	Even Perfect numbers are of Euclid's form
11.2	FACTORISATION TECHNIQUES
11.2.1	Pre-1970 factorisation methods
11.2.1.1	$q \mid M_p \equiv 2kp + 1$
11.2.1.2	$q \mid M_{D}^{r} = = > q = 8r \pm 1$
11.2.1.3	$p = 4k+3 \& q = 2p+1; q prime <==> q M_p [K27]$
11.2.1.4	p = 4k+1 & q = 6p+1 = u ² +27v ² prime, u = 12m <u>+</u> 2, v odd ===> q M _p [K27]
11.2.1.5	$q = 8p+1 = u^2+64v^2$ prime, v odd, 3†u, 3†v ===> $q M_p [K27]$
11.2.1.6	$p = 30k+11$, $q = 8p+1 = u^4+8v^4$, v odd ===> $q \mid M_p [S21]^{-1}$
11.2.1.7	$p = 4k+3 \& q = 10p+1 \text{ prime} ===> q M_p \text{ or } q 2^{5p}-1 [K27]$ $p = 4k+1 \& q = 14p+1 \text{ prime} ===> q M_p \text{ or } q 2^{7p}-1 [K27]$
11.2.1.8	$p = 4k+1 \& q = 14p+1 \text{ prime} ===> q M_p \text{ or } q 2^{/p}-1 [K27]$
11.2.1.9	$q = 16p+1 = u^2+256v^2 = w^2+32x^2$ prime, v+x even, 3 w ===> q M _p [K27]
11.2.1.10	$p = 4k+3 \& q = 18p+1 \text{ prime} ===> q M_p \text{ or } q 2^{3p}-1 \text{ or } q 2^{9p}-1 [K27]$
11.2.1.11	$q = 24p+1 = u^2+27v^2 = w^2+64x^2$ prime, x odd ===> $q \mid M_p$ [G11]
11.2.1.12	
11.2.2	Pollard's Monte-Carlo method [B18; P22]
11.2.3	Pollard's P-1 method [P21]
11.2.4	The Continued Fraction method [B15; W10]
11.3	PRIMALITY TESTING
11.3.1	The Lucas-Lehmer test on M _p [L8; L24]
11.3.2	On the Converse of Fermat's theorem [B6; L11; L33; L36; L43; P17; R11]
11.3.3	The general 'N+1' Lucas test [B6]
11.3.4	Combined 'N-1, N+1' methods [B6]
11.3.5	Adleman-Pomerance-Rumely's 'ARPCL' method [A4; C31]
11.4	MISCELLANEOUS RESULTS
11.4.1	The sum of the reciprocals of the divisors of a perfect number is 2
11.4.2	
11.4.3	Composite M _p -factors are pseudoprime base 2 q ² M _p ===> 2 ^{q-1} = 1 mod q ² [L46; W11]
11.4.4	q pseudoprime base 2 ===> M _g pseudoprime base 2
11.4.5	All E _n are both triangular and hexagonal numbers
11.4.6	For n odd, $E_n = 1 \mod 9$
11.4.7	For $n \ge 3$ and odd, $E_n = 8/6$ mod 10 alternately
11.4.8	For n odd, E_n is a partial sum of $(2i-1)^3$

- 11.4.8For n odd, E_n is a partial sum of (11.4.9Mersenne numbers M_p are coprime11.4.10 $(2^n+1)/3$ prime, n odd ===> n prime

11.1.1 Euclid's Proposition 36: 2^{n-1} prime ===> $2^{n-1}(2^{n}-1)$ perfect

Let q = $2^{n}-1$ be prime and let $E_n = 2^{n-1}(2^{n}-1) = 2^{n-1}q$. The set of factors of E_n is precisely $\{2^{i}q^{j} \mid i = 0, ..., n-1 \& j = 0 \text{ or } 1\}$ Let s(N) = the sum of the factors of N. $s(E_n) = (1+2+...+2^{n-1}) * (1+q) = (2^{n}-1)*2^n = 2*E_n \#$

Euclid did not prove the converse, E_n perfect ===> 2^{n-1} prime: Let $E_n = 2^{n-1}ab = 2^{n-1}(2^{n}-1)$. Then $s(E_n) \ge (2^{n}-1) * (1+a+ab) = (2^{n}-1) * (1+a+2^{n}-1) = (2^{n}-1) * (2^{n}+a) > 2 * E_n$ Therefore, $2^{n}-1$ composite ===> E_n not perfect Therefore E_n perfect ===> $2^{n}-1$ prime ##

11.1.2 2ⁿ-1 prime ===> n prime

We will prove by induction on 'a' that $2^{b}-1 \lfloor 2^{ab}-1$. This is clearly true for a = 1. $2^{ab}-1 = 2^{b} \star (2^{(a-1)b}-1) + (2^{b}-1)$ Therefore $2^{b}-1 \mid 2^{(a-1)b}-1 ===> 2^{b}-1 \mid 2^{ab}-1$. Therefore, n = ab composite, a & b > 1 ===> 2^{a}-1 \mid 2^{n}-1 and $2^{b}-1 \mid 2^{n}-1$. Therefore $2^{n}-1$ prime ===> n prime ##

11.1.3 Even Perfect Numbers are of Euclid's form

Let E = $2^{n-1}q$ (q odd) be a perfect number. Let s(x) = the sum of the divisors of x Then s(E) = $s(2^{n-1})s(q) = (2^n-1)s(q)$ and $s(E) = 2E = 2^nq$. $(2^n-1)s(q) = 2^nq$. Letting $M_n = 2^n-1$, we have $M_nQ = (2^n-1)Q = q$ $s(q) = 2^nQ > q + Q = 2^nQ$ Q = 1 and $q = 2^{n-1}$ is prime ##

$.2.1.1 \quad q \mid M_p ==> q = 2kp+1$

First, let q be a prime. $q \mid M_p ===> 2^{p}-1 = 0 \mod q ===> 2^{p} = 1 \mod q$. Let s be the smallest integer i such that $2^{i} = 1 \mod q$. $2^{t} = 1 \mod q ===> t = rs$. Therefore $2^{p} = 1 \mod q$ with p prime ===> p is that smallest integer 's'. But by Fermat's 'little' theorem, q prime ===> $2^{q-1} = 1 \mod q$ Therefore (q-1) = rp = 2kp and q = 2kp + 1. If $Q \mid M_p$, then $Q = q_1^{p'} * \ldots * q_n^{p'} = \prod_{i=1}^{p} (2k_ip + 1)^{p'} = 2Kp + 1 \#$

11.4.1 The sum of the reciprocals of the divisors of a perfect number is 2

Let D = {d | d | M_p} E_p perfect ===> 2E_p = \sum_{D} d ===> 2 = \sum_{D} d/E_p ===> 2 = \sum_{D} 1/d ##

11.4.2 Composite M_p-factors are psp(2)

The term 'pseudoprime' is reserved here for composite numbers N satisfying Fermat's equation $a^{N-1} = 1 \mod N$ for some base a. Therefore, let q be a composite factor.

q | M_p ===> $2^{p-1} = 0 \mod q$ and q = $2^{kp+1} ===> 2^{p} = 1 \mod q$ ===> $2^{kp} = 1^{2k} = 1 \mod q$ ===> $2^{q-1} = 1 \mod q$ ===> q pseudoprime base 2 ## $11.4.3 \quad q^2 \mid M_p = 2q^{-1} = 1 \mod q^2$

q | M_p ===> q = 2kp + 1, see 11.2.1.1. Therefore $2(q-1)/2_{-1} = 2^{kp-1} = (2^{p}-1) * a$, see 11.1.2. Therefore $q^2 | M_p$ ===> $q^2 | 2^{p-1} ===> q^2 | 2^{(q-1)/2}-1 ===> q^2 | 2^{q-1}-1$ Therefore $q^2 | M_p$ ===> $2^{q-1} = 1 \mod q^2 \#$ This provides a test that $q^2 \ddagger M_p$ independent of p and of any factorisation. This test also relates to Fermat's last theorem [W11]. However, for small q it is quicker to factorise (q-1)/2 and test-divide candidate M_p .

11.4.4 <u>q pseudoprime base 2 ===> M_q is psp(2)</u>

q pseudoprime ===> q composite ===> M_q composite q pseudoprime base 2 ===> $2^{q-1} = 1 \mod q$ ===> $2^q = 2 \mod q$ ===> $2^q-2 = 0 \mod q$ ===> $2^{q-2} = kq$ $M_q = 2^{q-1} ===> 2^{q-2} = 1 \mod M_q$ ===> $2^{k-1} = 1 \mod M_q$ ===> $2^{2^{q-2}} = 1 \mod M_q$ ===> $2^{M} p^{-1} = 1 \mod M_q$ ===> M_q pseudoprime base 2 ##

11.4.5 All E_n are both triangular and hexagonal numbers

The mth triangular number is $S_{1,m} = \sum i = m(m+1)/2$ The sequence starts 1, 3, 6, 10, If $m = 2^{n}-1$, $S_{1,m} = 2^{n-1}(2^{n}-1) = E_n \#\#$

The mth hexagonal number is $H_m = m(2m-1)$ The sequence starts 1, 6, 15, 28, 45, ... [K29 p67] If $m = 2^{n-1}$, $H_m = 2^{n-1}(2^{n-1}) = E_n \#\#$

11.4.6 For n odd, $E_n = 1 \mod 9$

11.4.7 For $n \ge 3$ odd, $E_n = 8/6 \mod 10$ alternately

11.4.8 For n odd, E_n is a partial sum of $(2i-1)^3$

 $S_{2,m} = \sum i^2 = m(m+1)(2m+1)/6$ may be proved by induction $S_{3,m} = \sum i^3 = m^2(m+1)^2/4 = S_{1,m}^2$ may be proved by induction $S_m = \sum (2i-1)^3 = \sum (8i^3-12i^2+6i-1) = m^2(2m^2-1)$

If n = 2k+1 and m = 2^{k} then $S_{m} = 2^{2k}(2^{2k+1}-1) = 2^{n-1}(2^{n}-1) = E_{n} \#$ First proved by Heath [c K29 p72]

11.4.9 Mersenne numbers M_n are coprime

Let b = k_0a + r_1 with 0 \leq r, < a. We first prove that q | Ma, q | Mb ===> q | Mr.

 $M_b = M_r + M_a \quad 2^{ai+r} ==> q | M_r \# #$

Let (a, b) = c be the GCD of a & b. We prove that $q \mid M_a, q \mid M_b ==> q \mid M_c$.

 $b = k_0 a + r_1$ and $0 < r_1 < a$

 $a = k_1r_1 + r_2$ and $0 < r_2 < r_1$

 $r_{i} = k_{i}r_{i+1}$ and $(a, b) = c ==> r_{i+1} = c$

But from the first proof: $q \mid M_a$, $q \mid M_b ===> q \mid M_r$ for j = 1, ..., i+1===> $q \mid M_c \#$ #

Now we prove that M_{p_1} and M_{p_2} are coprime if p_1 and p_2 are distinct prime indexes.

 $(p_1, p_2) = 1$. Thus: $q \mid M_p$, $q \mid M_p$ ===> $q \mid M_1$ ===> q = 1 # #

$11.4.10 (2^{n}+1)/3$ prime, n odd ===> n prime

This is relevant in the context of unresolved conjecture 11 [B35, N10]. We will prove by induction on 'a' that $2^{b}+1 \mid 2^{ab}+1$. This is clearly true for a = 1. $2^{ab}+1 = (2^{b}+1) * (2^{(a-1)b}-2^{(a-2)b}) + (2^{(a-2)b}+1)$ Therefore $2^{b}+1 \mid 2^{(a-2)b}+1 ==> 2^{b}+1 \mid 2^{ab}+1$. Therefore, odd n = ab composite, a & b > 1 ===> 2^{a}+1 \mid 2^{n}+1 and $2^{b}+1 \mid 2^{n}+1$. Note that this proof applies for b = 1. Therefore, $2^{1}+1 = 3 \mid 2^{n}+1$ for all odd n. Therefore $(2^{n}+1)/3$ prime ===> n prime ##

12 COMPUTATIONAL DETAILS

12.1 LLT Modulus-checks

This section concerns modulus checks in Lucas-Lehmer-Test computations. These show the efforts made to ensure the correctness of NZLRs which are not self-evidently correct and the extent to which these efforts succeeded.

12.1.1 Modulus-check(s) included: residues confirmed correct

 1926 1927 1927 1934 1944 1946 1947 1947 1953 1961 1963	Lehmer Lehmer Powers Uhler Uhler Uhler Uhler Wheeler Selfridge/Hurwitz Gillies	M ₁₃₉ M ₁₄₉ M ₂₅₇ M ₂₄₁ M ₁₅₇ M ₁₉₉ M ₂₂₇ M ₁₉₃ M ₈₁₉₁ 5000 2 4734 < p < 7000	Mod Mod Mod Mod Mod Mod Mod	10 ³ +1 [L1; R2; R10; T12] 10 ⁸ +1, 10 ⁹ +1 [L2; R2; R10] 10 ⁸ +1, 10 ⁹ +1 [L2; R2; R10] 9, 10 ³ +1, 10 ⁴ +1, 10 ⁷ +1 [P3] 10 ³ +1, 10 ⁴ +1, 10 ⁷ +1 [U1; R2] 10 ⁵ +1, 10 ⁸ +1 [U6; R2; T11] 10 ⁵ +1, 10 ⁶ +1, 10 ⁸ +1 [U7; R2] 10 ⁷ +1 [U5; R2; R10; G7; T11] 2 ³⁹ -1 [H2; W7] 2 ³⁵ -1 [G7; H8; S3] 2 ⁴⁴ -1 [G7; H2; N2; N3; N11] " [G7; H2; H8; K1; N11; S3]
1971 1979 1982	Tuckerman Nelson/Slowinski ICL DAP	7000 12142 4 18 < p < 50024	Mod	[G7; G1; H2; H8; T1] 2 ²⁴ -1, 2 ²⁴ -3 [H8; T1] 2 ²⁴ -1 [N1; N2; N12] 2 ³ -1 [H14]

12.1.2 Modulus-check included: residues presumed correct

1982	ICL DAP	50024 <	p <	62982	Mod 2 ³ -1	
1984	ICL DAP	62982 < 1	p <	100000	Mod 2 ¹⁶ -	1 [H18]

12.1.3 Modulus-check(s) included: residue found incorrect

1945	Barker	p = 167	Mod 10 ⁵ +1, 10 ⁷ +1 [B1; U4]
1963	Gillies	p = 12143	Mod 2 ⁴⁴ -1 [G1; G7; T2]
1979	Nelson/Slowinski	16 values of p	Mod 2 ²⁴ -1 [H10; N11; N12; N14]
			Corrected, 1982 [N14]

12.1.4 Modulus-check not included: residues found correct

1979 Nickel & Noll 21000 < p < 24500 [H8; N7]

12.1.5 Modulus-check not included: residues found incorrect

1876	Lucas	M89	[L13 p376; c D1 p22 n115]
1914	Fauquembergue	M101 M103 M109 M137	[F1; F10; F12]
1952	Robinson	M ₁₈₈₉	[\$3]
1957	Riesel	4 (?) values of p	[R13; S3]
1961	Hurwitz	8 values of p	4 published [G1; G7; H2; S3]
1963	Kravitz/Berg	10 values of p	Corrected before publication [K1]
			Wrong value of S ₁ ; card-punch error

12.2 Computer Performance

A comparison of one computer code with another cannot necessarily be made given the timings for primality-testing just one M_p . For example, the practice of comparing codes on the number M_{8191} is now out of date. Different codes for the same algorithm have different break-points at which new efficiencies or inefficiencies are introduced. Different algorithms have very different computational characteristics.

All Lucas-Lehmer primality-testing was carried out until 1981 using 'schoolboy' multiplication which gives an $O(p^3)$ algorithm for the LLT. The parallel lines on the following graph have a slope of about 3 and suggest this. Since 1981, new codes have been run using more efficient multiplication algorithms. Slowinski on the CRAY/1 used the 'divide-and-conquer' idea. Holmes et al on the ICL DAP used the Fast-Fermat transform idea which made the LLT linear over finite ranges and asymptotically $O(p^2 \log_P p)$.

Some miscellaneous details on computation times:

1)	Lehmer:	60° on M $_{139}$ [L1], 70° on M $_{149}$ [L2] and 700° on M $_{257}$ [R7]
2)	ILLIAC-1:	100° on M ₈₁₉₁ [W7]
3)	SWAC:	13'25" on M_{1279} [L4], 59' on M_{2203} and 66' on M_{2281} [L5; U10]
		The profile of $0.25p^3 + 125p^2$ [R2] psecs for M _p underestimates
		the actual times but with a least-squares-fit multiplier of
		1.0882 gives model times of 1'15" on $M_{521},\ 1'51"$ on $M_{607},$
		13'12" on M_{1279} , 59'29" on M_{2203} and 65'36" on M_{2281}
		Store-limited SWAC was actually faster than BESK or ILLIAC I.
4)	BESK:	5°30' on M ₃₂₁₇ [R1]
5)	IBM7090:	50' on M ₄₄₂₃ [H2] and 5.2° on M ₈₁₉₁ [G1]
6)	ILLIAC II:	49' on M ₈₁₉₁ , 1°23' on M ₉₆₈₉ , 1°30' on M ₉₉₄₁ and
		2°15' on M ₁₁₂₁₃ [G1]
7)	IBM 360/91:	3'06" on M_{8191} , 7'04" on M_{11213} and 35'01" on M_{19937} [T1]
8)	CYBER-174:	7°40'20" on M ₂₁₇₀₁ and 8°39'37" on M ₂₃₂₀₉ [N7]
9)	CRAY-1 '79:	0.179" on M_{1279} , 1.054" on M_{3217} , 23" on M_{11213} ,
		1'53" on M_{19937} , 2'52.766" on M_{23209} , 18'39.579" on M_{44497} ,
		2°9'36" on M_{86243} and by extrapolation 7°37'43" on M_{132049} .
		A model of this computation which fits closely on large p is:
		T = a ₁ cw ² + a ₂ cwv + a ₄ cw + a ₆ c + a ₇ seconds
		M _p is stored in 'v' vectors of 128 words or 'w' words holding
		24 bits each. c = p-2 cycles.
		Possible $a_3 cv^2$ and $a_5 cv_1$ terms were set to zero by the model:
		$a_1 = 0.661889 \times 10^{-8}, a_2 = 0.113741 \times 10^{-7},$
		$a_4 = 0.101383 \times 10^{-5}, a_6 = 0.166363 \times 10^{-3},$
		a ₇ = 0.210205
10)	ICL DAP:	Code A - 2'22" on M ₃₁₄₈₇ ; Code B - 9'22" on M ₆₂₉₂₉ ;
		Code C - 38'38" on M ₈₆₂₄₃ [H14; H15]
11)	CRAY-1 '82:	1°36'22" on M ₈₆₂₄₃ [N23] and 2°32'18" on M ₈₉₁₃₇ [N21]
12)	CYBER-205:	1° on M ₈₆₂₄₃ [N24]
13)	CRAY-XMP '83:	32'30" on M ₁₃₂₀₄₉ [D4; N25]
		(M ₁₃₂₀₄₉ confirmed prime in 3°5'10" by CRAY-XMP '79 code [N26])
14)	CRAY-XMP '85:	3° on M ₂₁₆₀₉₁ [D6]
15)	NEC SX-2 '88:	11213 13703 100003
		11'26" on M ₁₁₀₅₀₃ [C32; C33]

Times for ICL DAP and CRAY-XMP are not elapsed times but represent the effective throughput on those processors. The ICL DAP was testing 16 or 32 M_p in parallel and therefore elapsed times were 16 or 32 times longer. The CRAY-XMP '83 code was testing 2 M_p in parallel.

COMPUTER TIMINGS

13 STATUS-QUO AND QUESTIONS

This section defines the current state of the art in primality-testing and factorising the M_n . It also lists some questions raised but not answered by this collection of notes.

13.1 The Status-Quo

- 1) $M_{449} = p7.p13.p22.c95 = smallest unfactorised M_p [B17 Edition 2]$ $2) <math>M_{523} = c158 = smallest M_p with no known factor [B17]$
- 3) M_{1063} = largest fully-factorised composite M_p [B17]
- 4) M₇₆₇₃ = largest 'probably' fully-factorised M_p [Keller?]
- 5) M_{50069} = smallest M_p without twin-sourced LR [H15]
- 6) M_{139273} = first M_p of unknown prime/composite status [C34]
- 7) $M_{216091} = largest known Mersenne prime [D6]$ 8) 391581.2²¹⁶¹⁹³-1 = p65087 = the largest known non-Mersenne prime [D7]
- 9) 391581.2²¹⁶¹⁹³-1 = largest known prime [D7]

p65087 found by Brown, Noll, Parady, Smith, Smith and Zarantonello on 6/8/89 in 33' using an Amdahl 1200E. Confirmed by Cray Research

- 10) M_p with p = 4k+3 = 39051.2⁶⁰⁰¹-1 is the largest known composite M_p [Y1] q = 2p+1 = 39051.2⁶⁰⁰²-1 prime ===> q | M_p by Euler's theorem (Germain, 1987)
- 11) $M_{277}-f_2 = p38 = largest non-algebraic/cofactor M_p-factor found [B17]$
- 12) $M_{1063}-f_2 = p311 = largest proper M_p-factor proved prime [B17, Ed 2, Morain]$
- 13) p = prp2298 | M7673: p = largest known 'prp' Mp-factor, found by Keller
- 14) $p = p26 \mid M_{241} f_2 1$: p = largest prime, other than algebraic factors and cofactors, used to create an M_p PPL-pf certificate (Brent, ecm, 1986)
- 15) M_{349} = smallest M_p lacking a PPL-pf certificate
- 16) M_{607} = largest prime featuring in an M_p PPL-pf certificate [B23]

13.2 General Primality-testing Progress

A 'probably-prime' test demonstrates that a number is probably prime and is ideally one which no composite number is known to have passed. The "Cunningham Project" [B17, IIIB3a.1] uses one such, the Baillie-PSW test, suggested by Baillie [P27] and published by Pomerance [P26, p1024]. It follows a 'Fermat' sprp(a) test with a 'Lucas' lprp(p, q) test.

A primality test proves that a number is prime; the latest tests are more efficient, rely less on factorisation results and are almost polynomial in complexity. None the less, new algorithms have been needed to test the largest [B17] numbers.

In 1981, some proofs on 70-digit numbers took several hours [B17, Update 1]. In 1984, the advent of codes based on the radically better 'ARPCL' test [A4; B17 Ed 2] enabled 100-digit numbers to be tested in less than a minute and 200-digit numbers to be tested in a reasonable time. In 1988, Morain's implementation of Atkin's elliptic curve primality-test [B17 IVA3c] cleared the last "Cunningham" prp, a prp343.

The "Cunningham Project" [B17] illustrates the impact of new algorithms in converting its Appendix A residue of prpn into pn. Against the dates below and B17 updates, in brackets, are tabulated the smallest prpn and the number of prpn remaining.

8/81	prp73	322	(1.0)	8/84	prp228	24	(1.2)	6/87	prp222	35	(1.5)
10/82	prp54	355	(1.0)	6/85	prp213	31	(1.3)	1/88	prp228	36	(2.1)
7/83	prp51	405	(1.1)	7/86	prp213	36	(1.4)	6/88		0	(2.2)

13.3 General Factorisation Progress

Brillhart et al [B6] saw c50s as the largest composite it was feasible to approach in 1975. No computation longer than twenty hours was thought worthwhile.

Around the dates below, the smallest 'cn' relevant to the Cunningham Project [B17] in Wagstaff's files increased to the size shown. This is a measure of progress in general factorisation methods (eg cf-ea & mp-qs) but is to some extent influenced by the priority given to factorising record-breaking rather than 'smallest' cn.

c47	31/ 8/81	c54 8/	8/83 c72	4/ 8/86	c81	29/ 9/87	c88	27/ 5/89
c48	3 27/ 3/82	c55 25/	10/85 c75	21/11/86	c82	19/11/87	c90	13/ 6/89
c49	26/ 6/82	c60 16/	'11/85 c76	10/ 2/87	c83	27/ 1/88	c91	
c50	8/ 8/82	c61 29/	'11/85 c77	22/ 4/87	c84	27/11/88	c92	
c51	10/ 9/82	c64 28/	1/86 c78	29/ 4/87	c85	25/ 1/89	c93	
c52	14/ 6/83	c70 14/	5/86 c79	2/ 6/87	c86	17/ 2/89	c94	
c53	1/ 8/83	c71 13/	6/86 c80	10/_6/87	c87	23/ 4/89	c95	

If computers double in speed every three years, then the length of numbers which it is feasible to factorise would increase by one decimal digit each year. The 43 digit advance in 8 years indicates greater progress in algorithms and technology.

13.4 Outstanding Questions

Pre-history:

- a) Where does the 'prime number' concept surface in Greece, Egypt, China, Pythagoras and Euclid?
- b) Can we infer that Euclid knew M_p not prime ===> E_p not perfect"?
- c) M_{11} : did the authors of Codex lat. Monac 14908 record the factors of M_{11} ? Curtze [C26] reasonably infers that they knew M_{11} to be composite.
- d) Did Euler enumerate $M_{251}-f_1 = 503$ or check it as a factor?
- e) Are there sources for the '*' entries, especially for Sphinx-Oedipe?

Pre-computer:

- a) M₃₁: what did Seelhoff actually achieve; cf his incomplete effort on M₆₁? [S14; S15; c D1 p25 n142]
- b) M_{61} : what did Seelhoff prove and where did he go wrong? [S12]
- c) M₇₁: How did Ramesam factorise this number?
- d) M73: How did Poulet factorise this number?
- e) M₁₁₃: how did D H Lehmer check primality of f₅ [L6]?
- f) How did Gillies [G6] get his interpretation of Shanks' argument [S2 p192]?

Are the, currently presumed lost, print-outs available for the following NZLRs:

- a) M₆₇: Lucas' [L13; L15] and Fauquembergue's [F8; F9]
- b) M₈₉: Tarry's result [T4; T5]
- c) M₁₀₃ and M₁₀₉: Powers' NZLRs
- d) M₂₅₇: Kraitchik's NZLR
- e) The Lehmer/Robinson SWAC NZLRs
- f) The Riesel BESK NZLRs

When were the following results achieved?

- a) Wunderlich's M₁₇₃ factorisation
- b) Penk's discovery of M₂₅₇-f₁ and Baillie's discovery of M₂₅₇-f₂ and M₂₅₇-f₃

Other:

a) Do the incorrect residues of Hurwitz, Gillies, Noll correspond to interim (or subsequent) residues or to the wrong starting value for S₁? Adleman, L M Archibald, R C Ball, WWR Barker, C B Bateman, P T Beeler, M Beiler, A H Berg, M Bickmore, C E Bray, H G Brent, R P Brillhart, J D Carmichael, R D Cataldi, P A Christie, R W D Cohen, E L Cohen, H Cole, F N Colquitt, W N Cunningham, A J C Curtze, M Davis, J Devlin, K Dickson, L E Drake, S Ehrman, J R Euler, L Ewing, J Fauquembergue, E Fermat, P de Ferrier, A Gabard, E Gardner, M Gerardin, R A P

Gillies, D B Golubev, V A Good, I J Hall, J A Hardy, G H Haworth, G M^CC Heath, T L Holdridge, D Holmes, S M Holte, R Hudelot, J Hurwitz, A Isemonger, K R Johnson, G D Jones, J P Judd, J S Karst, E Keller, W Knuth, D E Kraft, G W Kraitchik, M B Kravitz, S Kronsjo, L I Lake, T W Lal, M Landry, F Le Lasseur Legendre, A M Lehmer, D H Lehmer, D N Lenstra H W, Jr. Lucas, F E A Macdivitt, A R G Mason, T E

McDonnell, J McGrogan, S K McWhirter, N D Mersenne, M Metropolis, N Miller, G L Miller, J C P Morrison, M A Naur, T Nelson, H L Newman, M H A Nickel, L A Niewiadomski, R Noll, C L Ondrejka, R Ore, O Pauli, J W Pepin, P Pervouchine, I M Plana, J Pocklington, H C Pollard, J M Pomerance, C Poulet, P Powers, R E Pratt, V R Proth, M E Ramesam, V Reid, C Reuschle, K G Riesel, H Robinson, R M Rumely, R S Scheffler, D

Schinzel, A Schonfelder, J L Schroepepel, R C Seelhoff, P Selfridge, J L Servais, C Shanks, D C Sierpinski, W Simmons, G J Slowinski, D A Smith, H V Solovay, R M Storchi, E Strassen, V Suyama, H Tarry, H Thomason, J T Touchard, J Travers, J Tuckerman, B Turing, A M Uhler, H S Valentin, G Wagstaff, S S, Jr. Warren, Le Roy J Western, A E Wheeler, D J Wilcox, T Williams, H C Winsheim, de Woodall, H J Wright, E M Wunderlich, M C Yates, S

```
ITEM
           REF
 ٧
                  NOTES
6 p
      57 [U1] Uhler's NZLR for M<sub>157</sub>
                  Barker's incorrect NZLR for M_{167}
 6 p
      255 [B1]
 7 p
                  Uhler's note on M_{157} and M_{167}
      273 [U4]
 7 p
      413 [U8]
                  Uhler's NZLR for M229
     368 [U6] Uhler's NZLR for M199
8 p
8 p 441 [L6] Lehmer's factors of 2<sup>n</sup> + 1
9 p
     410 [U5] Review of Uhler's work on six M_p with p < 258 including M_{193}
9 p 410 [U7] Uhler's NZLR for M227
10 p 100 [01] Ore's book on "Number Theory and its History"
10 p 681 [L43] Lehmer on the converse of Fermat's 'little' theorem, II
      11 [F2] Ferrier's note on factors of 2^{n}+1 and the prime (2^{92}-1)/17
11 p
13 p 436 [M5] Miller & Wheeler's large primes including 180(2^{127}-1)^2+1
14 p 121 [K17] Kraitchik's review of factorisations of 2^{n} + 1
14 p \, 343 [U9] \, Uhler's history on the \rm M_p and latest primes \,
14 p 535 [K7] Kraitchik's "Introduction a la Theorie des Nombres"
14 p 1063 [T7] Touchard on prime and perfect numbers
14 p 1063 [W9] Wright's theorem on the primality of kp<sup>3</sup>+1
15 p 199 [U10] Uhler on the values of the 16th and 17th perfect numbers
15 p 933 [G12] Gabard's two factorisations including M109
16 p 335 [R2] Robinson's SWAC computations on \rm M_p and \rm F_n
16 p 447 [U11] Uhler on the values of the first 17 perfect numbers
16 p 673 [H6] Hardy & Wright's "Introduction to the Theory of Numbers"
17 p 127 [G4] Good's conjectures on \rm M_p
17 p \, 127 [S21] Storchi's theorems and criteria for M_p factorisation
20 # 832 [R3] Robinson: some factorisations of 2<sup>n</sup> + 1
20 # 4520 [R11] Robinson: the converse of Fermat's theorem
21 #
     28 [G11] Golubev's review of factorisation theorems with enumeration
21 # 657 [R1] Riesel's M_p-factors and the prime M_{3217}
     22 [I1]
                  Isemonger's complete factorisation of 2^{132}+1
22 #
                  Scheffler & Ondrejka's evaluation of {\rm E}_{\rm 3217}
22 # 3093 [S8]
22 # 7268 [K2]
                  Karst's M_p-factors for 3000 < p < 3500
22 # 10949 [K2]
                  Karst's review of M_p-factors including the range 10^5 10^8
23 # A 832 [B2]
                  Brillhart and Johnson's Mp-factors: p < 1200
23 # A 833 [K5]
                  Kravitz' Mp-factors for 10,000 < p < 15,000
                  Isemonger's complete factorisation of 2<sup>159</sup>-1
23 # A1577 [I2]
26 # 3684 [H2] Hurwitz' LRs for 3000 M_p
26 # 6139 [B9] Bateman and Horn's heuristic formula for prime distribution
27 # 2462 [R4]
                  Riesel's M_p-factors: p < 10^4, q < 10^8
27 # 3609 [S9]
                  Schinzel's remark on the paper of Bateman and Horn
28 # 1152 [K1] Kravitz' LRs for 6000 < p < 7000
28 # 2990 [G1] Gillies's LRs for 7000 < p < 12124, three prime \rm M_p and factors
28 # 2991 [S3]
                  Selfridge and Hurwitz' LRs for 5000 < p < 6000 and Fn-factors
28 # 2992 [B4]
                  Brillhart's M_p-factors: p < 20,000 and q < 2^{34}
                  Shanks' "Solved and Unsolved Problems in Number Theory"
28 # 3952 [S2]
29 # 1169 [K6]
                  Karst's M<sub>p</sub>-factors
29 # 3422 [K24] Karst's review of search-limits on M_p-divisors
30 # 1106 [K27] Karst's list of M_p-factors q = 2Kp+1 (K < 10) for p < 15000
```

۷	ITEM	REF	NOTES
36 #	3717	[\$6]	Shanks' analysis of M _p -factor distribution
36 #		_	Ehrman's analysis of Mfactor distibution
37 #			Ehrman's analysis of M _p -factor distibution Brillart and Selfridge's factors of some M _n
40 #			Lehmer's review of computers as applied to number theory
41 #			
42 #			Riesel's "En Bok om Primtal"
44 #		[K26]	Knuth's "The Art of Computer Programming, Volume 2"
45 #	166		Tuckerman's announcement of the prime M19937
45 #	3314		Pollard's algorithm for primality-testing any integer
47 #		-	"Computers in Number Theory " including D H Lehmer article
47 #	4932		Shanks' "Class Number, Theory of Factorisation and Genera"
47 #			Selfridge & Guy's "Primality testing on small machines"
50 #	4229	[B11]	Rouse Ball's "Mathematical Recreations and Essays", 12th Ed.
50 #	6992	[P22]	Pollard's Monte-Carlo factorisation technique
51 #	8017	[B15]	Brillhart and Morrison's factorisation technique and F7
52 #	5546	[B6]	Brillhart etc's primality criteria and factorisations of 2^{n} + 1
53 #	4461	[L44]	Lehmer's corrigenda to MR10#681 [L36; L43]
55 #	2732	[S20]	Solovay and Strassen's fast Monte-Carlo Primality test
56 #	233	[T2]	Tuckerman's corrigendum to MR 28 #2990 [G1]
57 #	5885	[S22]	Solovay & Strassen's correction to MR55#2732 [S20]
58 #	470a	[M10]	Miller's primality test assuming the Riemann Hypothesis
58 #	10681	[R12]	Riesel's supplement to "En Bok Om Primtal"
58 #	26870	[D2]	Drake's analysis of Mersenne's "rule"
58 #	27706	[L31]	Lehmer on the exploitation of parallelism in number theory
80e:	10003	[S2]	Shanks' "Solved & Unsolved Problems in Number Theory" 2nd Edition
80g:	10013	[S1]	Slowinski's announcement of the prime M44497
80m:	68004	[K15]	Kronsjo's "Algorithms - their complexity and efficiency"
81a:	10020	[J1]	Jones' Diophantine representation of M_p and E_p
81f:	10011	[W10]	Wunderlich's performance analysis of Brillhart's CF-factorisation
81i:	10002	[H6]	Hardy & Wright's "Introduction to the Theory of Numbers" 5th Ed.
81k:	10010	[N7]	Nickel & Noll on the 25th and 26th Mersenne primes
82a:	10007	[B18]	Brent's improved Monte-Carlo factorisation algorithm
	10004		Lehmer on Fermat's quotient, base two
83h:	10015	[P24]	Pomerance's review of recent developments in primality-testing
84e:	10006	[A4]	Adleman et al's almost-polynomial primality test
85b:	11117	[K33]	Keller's table of Fermat factors and large k.2 ⁿ +1 primes
	11078	[C31]	Cohen and Lenstra's practical primality test
5			

16 BIBLIOGRAPHY

The author has not seen those references marked with a '*'. 'Pr Comm' denotes a private communication. L. M. ADLEMAN (C Pomerance & R S Rumely): "On distinguishing prime numbers from A4 composite numbers", Annals of Maths. v117 (1983) pp173-206. MR84e:10006. R. C. ARCHIBALD A1 "Mersenne's Numbers", Scripta Mathematica v3 (1935) pp112-9 RMT 434[F] - Review of [L6]: MTAC v2 (1946-7) p341 A2 Review Note 98 - "Mersenne's Numbers", MTAC v3 (1948-9) p398 A3 W. W. R. BALL "A Short Account of the History of Mathematics" 3rd Ed. (1901) Macmillan B10 "Mathematical Recreations and Essays" 5th Ed. (1911) p336. B11 (18th Ed. MR50#4229.) "Mersenne's Numbers", Nature v89 (1912) p86 **B**8 C. B. BARKER B1 "Proof that the Mersenne Number M_{167} is Composite", BAMS v51 (1945) p389. MR6p255. In error, see [R2; T11]. P. T. BATEMAN & R. A. HORN (& R A Horn): "A Heuristic Asymptotic Formula concerning the **B**9 Distribution of Prime Numbers", MC v16 (1962) pp363-7. MR26#6139. (J L Selfridge & S S Wagstaff Jr): "The Editor's Corner: The New B35 Mersenne Conjecture", Amer. Math. Monthly 96 (1989) pp125-8 M. BEELER, R. W. GOSPER & R. SCHROEPEPEL **B**7 "HAKMEM", MIT Artificial Intelligence Lab. Memo. 239 (1972), p13 A. H. BEILER B21 "Recreations in the Theory of Numbers - the Queen of Mathematics Entertains", Dover (1964) M. BERG B14 Pr Comm: (20/10/1980) C. E. BICKMORE B12 "On the Numerical Factors of aⁿ-1", Messenger of Mathematics v25 (1895-6) pp1-44, esp. p19 B13 "On the Numerical Factors of aⁿ-1", Messenger of Mathematics v26 (1896-7) pp1-38 G. BOWGEN Pr Comm (21/7/83): 352 M_p-NZLRs for 90534 < p < 100184 B32 Pr Comm (20/10/83): 397 M_p -NZLRs for 63376 < p < 73180 B33 B34 Pr Comm (16/11/83): 13 Mp-NZLRs for 62982 < p < 63376

60

R. P. BRENT B18 "An Improved Monte Carlo Factorization Algorithm", BIT v20 (1980) pp176-84. MR82a:10007 B23 Pr Comm (9/7/1981): M_p -factors for p < 1000 (updated 1986) Pr Comm (26/8/1981): M_p -factors including those of M₂₂₉ B24 "New Factors of Mersenne Numbers", Abstracts of the AMS v2 no3 (1981) B26 p367, 81T-10-246 B27 Pr Comm (22/9/1981): M₂₂₉'s factorisation B28 "New Factors of Mersenne Numbers, II", Abstracts of the AMS v3 nol (1982) p132, 82T-10-34 B29 Pr Comm (11/5/1982): various factorisations Pr Comm (23/8/1982): full M₂₂₇ factorisation B30 B31 "New Factors of Mersenne Numbers, III", Abstracts of the AMS v4 no2 (1983) p197, 83T-10-138 J. D. BRILLHART B2 (& G D Johnson): "On the Factors of Certain Mersenne Numbers", MC v14 (1960) pp365-9. (Corrected in) MR23#A832. "Some Miscellaneous Factorizations", MC v17 (1963) pp447-50 R3 Table Errata for [R4], MC v17 (1963) p486 B20 "On the Factors of Certain Mersenne Numbers, II", MC v18 (1964) pp87-92. **B4** MR28#2992. **B**5 (& J Selfridge): "Some Factorizations of $2^{n} + 1$ and Related Results", MC v21 (1967) pp87-96. MR37#131. Corrected [B25]. B25 Corrigenda to [B5], MC v21 (1967) p751 (D H Lehmer & J Selfridge): "New Primality Criteria and Factorizations of **B6** 2^m + 1", MC v29 (1975) pp620-47. MR52#5546. B15 (& M A Morrison) "A Method of Factoring and the Factorization of F7", MC v29 (1975) pp183-205. MR51#8017. Corrected MCv35 (1980) p1444, MR82b:10009 B16 Pr Comm (16/12/1980): factorisations B19 Pr Comm (29/1/1981): factorisations Pr Comm (17/2/1981): M₂₂₃'s factorisation B22 B17 (D H Lehmer, J L Selfridge, B Tuckerman & S S Wagstaff): "Factorizations of bⁿ+1; b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers", Contemporary Mathematics v22, American Mathematical Society, (1st Edition 1983, 2nd Edition 1988), ISBN 0-8218-5078-4. Updates: 1.1 (20/07/1983), 1.2 (27/08/1984), 1.3 (30/06/1985), 1.4 (3/07/1986), 1.5 (21/06/1987), 2.1 (13/01/1988) 2.2 (23/06/1988), 2.3 (14/07/1989) R. D. CARMICHAEL C30 "Multiply Perfect Numbers of Four Different Primes", Annals of Mathematics, s2 v8 (1906-7) pp149-P. A. CATALDI C2 "Trattato de Numeri Perfetti", Bologna (1603) esp pp12-22 R. W. D. CHRISTIE C27* Maths. Questions Educational Times v48 (1888) pp.xxxvi, 183 C28* Maths. Questions Educational Times v49 (1889) p85 E. L. COHEN & D. W. DOWD

Corrigendum to [K8], MC v27 (1973) p453

H. COHEN

C31

C25

(& H W Lenstra Jr): "Primality testing and Jacobi Sums", MC v42 (1984) pp297-330. MR86g:11078.

C17	N. COLE "On the Factoring of Large Numbers", BAMS v10 (1903) pp134-7	
C32 C33 C34	N. COLQUITT Pr Comm (12/10/88): complete NEC SX-2/400 results for p < 112000 Pr Comm (16/11/88): complete NEC SX-2/400 results for $10^5Pr Comm (21/08/89): complete NEC SX-2/400 results for 10^5$	
C5 C3 C6 C7 C24 C19 C8 C9 C20 C10 C22* C11 C4 C29 C12 C21* C1 C13 C14 C15 C18 C23 C16	<pre>J. C. CUNNINGHAM "On Mersenne's Numbers", Report of the BAAS (1894) pp563-4 "Proceedings of 14/3/1895", Proc. London Math. Soc. v26 (1894-5) p261 "On Mersenne's Numbers", Nature v51 (1895) p533 "On Mersenne's Numbers", Report of the BAAS (1895) p614 "On 2 as a 16-ic Residue", Proc. London Math. Soc. v27 (1895) pp85-122 "On Hyper-Even Numbers and on Fermat's Numbers", Proc. London Math. Soc. s2 v5 (1907) pp 237-74 esp p250 & p259 "Note of 30/4/1908 Meeting", Proc. London Math. Soc. s2 v6 (1908-9) p.xxii Nature v78 (1908) p23 L'Intermediaire d. Math. v16 (1909) p252 "Notes", Nature v81 (1909) p194 Sphinx-Oedipe v4 (1909) pp36-7 "Note of 8/6/1911 Meeting", Proc. London Math. Soc. s2 v9 (1910-1) p.xvi "On Mersenne's Numbers", Report of the BAAS (1911) p321 Nature v87 (1911) p499 "On Mersenne's Numbers", Proc. London Math. Soc. s2 v10 (1911-2) p.ii Sphinx-Oedipe v7 (1912) p38 "Mersenne's Numbers", Proc. London Math. Soc. s2 v11 (1912-3) p.xxiv "On Mersenne's Numbers", Report of the BAAS (1912) pp406-7 Nature v90 (1912) p425 "On Mersenne's Numbers", Proc. London Math. Soc. s2 v12 (1913) p.xxvvi Proc. 5th International Congress of Mathematicians, Cambridge (1913), Edited by E W Hobson & A E H Love, v1 pp384-6 (Creak & H J Woodal1): "Haupt-Exponents, Residue-Indices, Primitive-Roots</pre>	
C26	CURTZE "Mathematisch-historische Miscellen", Bibliotheca Mathematica s2 v9 (1895) pp33-42, esp pp39-42	
D4 D5 D6	<pre>DEMBART "Scientists Find New High in Prime Numbers Game", Los Angeles Times (23/9/1983) pp 1 & 21. "Number Feat Aids Security of Computers", Los Angeles Times (16/12/1983) pp 3 & 23. "Supercomputer comes up with whopping prime number", Los Angeles Times (17/9/1985) pp 3 & 19.</pre>	
D7	DEVLIN "Playing it by numbers", The (UK) Guardian (12/10/89)	
D1	E. DICKSON "History of the Theory of Numbers" (1919) v1, especially chl	

DISCOVER

"Biggest Prime, Largest Pi", Discover (1983) pp92-3

S. DRAKE

D2

E9

E5

E10

D3

"The rule behind Mersenne's Numbers", Physis-Rivista Internazionale Storia Scienza v13 (1971) pp421-4. MR58#26870.

J. R. EHRMAN

"Prime divisors of Mersenne numbers", TN-66-40 (1966), Stanford Linear Accelerator Center, Stanford, California

"The Number of Prime Divisors of Certain Mersenne Numbers", MC v21 (1967) pp700-4. MR**36#**6368.

L. EULER

E1	Comm. Acad. Sci. Petropol. v6 (1738) ad annos 1732-3, pp103-7
E3	Opuscula Varii Argumenti v2 Berlin (1750) esp pp25-32
E6	Nouv. Mem. d. l'Acad. d. Sc. de Berlin 1772, 1774; Histoire pp35-6
E8	Corresp. Math. Phys. (ed., Fuss) v1 (1843) pp590-1 & 597-8
E2	Commentationes Arithmeticae Collectae, I, Petropoli (1849)
	esp pp1-3, 102-9, 584
E4	Opera Omnia s1 v2 (1915) pp1-5, 86-95
E7	Opera Omnia s1 v3 (1917) pp336-7

J. EWING

"2⁸⁶²⁴³-1 is prime", Mathematical Intelligencer v5 no1 (1983) p60

E. FAUQUEMBERGUE

F8	Note 266, L'Intermediaire des Math. v1 (1894) p148
F11*	Sphinx-Oedipe v7 (1912) pp20-2
F12*	Sphinx-Oedipe v8 (1913) p176. In error, see [R2]
F1 *	Sphinx-Oedipe v9 (1914) pp85 & 103–5. In error, see [R2]
F9	"Au sujet du nombre 2 ⁶⁷ -1", L'Intermediaire des Math. v22 (1915) p105
F6	L'Intermediaire des Math. v24 (1917) p33
F10	Sphinx-Oedipe v15 (1920) pp17–8. In error, see [R2]

P. de FERMAT

F5	Oeuvres de	e Fermat	v2	(1894)	pp176, 185	, 194,	198-9, 21	0-1
F7	Oeuvres de	e Fermat	v4	(1912)	pp67, 250			

A. FERRIER

F2	"Note on the Factors of 2 ⁿ +1", MTAC v3 (1948-9) pp496-7. MR11p11, 870.
F3	"New Factorizations of 2 ⁿ +1", MTAC v4 (1950) pp55-6 note 110
F4	"Table of Factors of $2^{n}-1$ " reviewed as UMT 137[F]. MTAC v6 (1952) p39

E. GABARD

G12	"Sur deux factorisations", Mathesis v63 (1954) pp117-9. MR15p933.
G13	"Trois factorisations inedites", Mathesis v63 (1954) p285
G2	"Factorization d'un nouveau nombre de Mersenne", Mathesis v68 (1959) p61

M. GARDNER

G16 "A Short Treatise on the Useless Elegance of Perfect Numbers and Amicable Pairs", Scientific American v218 No3 (March 1968) pp121-4 and v218 No4 (April 1968) p120 GENAILLE

G10* Comptes Rendus (1891) ? part 1 p159

R. A. P. GERARDIN G15 "Erreurs de Mathematiciens", L'Intermediaire des Math. v15 (1908) pp230-1 "Sur une nouvelle machine algebrique", Report of the BAAS (1912) pp405-6 G3 Sphinx-Oedipe v7 (1912) pp15-6 G6 * "Methode Inedite de Recherche des Facteurs des Grands Nombres", Compte G14 Rendu du Congres des Societes Savants (1920) pp53-5 G8 Sphinx-Oedipe v17 (1922) p64 Sphinx-Oedipe v18 (1923) pp17-8 G9 D. B. GILLIES Science News Letter v83 (11/5/1963) p291 G5 "Three New Mersenne Primes and a Conjecture", Report No. 138 Digital G7 Computer Laboratory, University of Illinois, Urbana, Illinois (1963) "Three New Mersenne Primes and a Statistical Theory", MC v18 (1964) G1 pp93-7. MR28#2990. Corrected [T2] V. A. GOLUBEV "Nombres de Mersenne et caracteres du nombre 2", Mathesis v67 (1958) G11 pp257-62. MR21#28. I. J. GOOD "Conjectures Concerning the Mersenne Numbers", MTAC v9 (1955) pp120-1. G4 MR17p127. J. A. HALL H22 Pr Comm (12/12/89): computer analysis of Mp-f1/LR data from [C34; H19] G. H. HARDY & E. M. WRIGHT "Introduction to the Theory of Numbers". 3rd Edition, MR16p673: H6 5th Edition, MR81i:10002 G. M^CC. HAWORTH H4 Pr Comm to R M Robinson (15/9/1980) Pr Comm to C L Noll (21/10/1980) H7 Pr Comm to D Shanks (3/8/1981): ICL DAP "Code A" provisional results H9 Pr Comm to D Shanks (26/1/1982): ICL DAP "Code B" provisional results H11 including some for 50024 < p < 62982 Pr Comm to D Shanks (31/1/1983): deposition in MC UMT file of ICL DAP H15 results. Twin-sourced for 18 and original for50024 < p < 62982 Confirmation of Thomason's $S_1=3 M_p$ -NZLRs for p = 67 & 103 (20/10/1984) H17 "Primality-testing Mersenne Numbers, II", Abstracts of the AMS, v7 no2 H18 (March 1986) pp224-5, 86T-11-57 "Mersenne Numbers; Consolidated Results": all LRs etc ex DAP (1986) H19 "M_n prime-factorisation certificates": PPL-pf certificates (1986) H20 T. L. HEATH "The Thirteen Books of Euclid's Elements" 2nd Ed. (1926) v2 pp421-6 H3 A. HODGES

H21

"The Enigma of Intelligence", Hutchinson (1983) ISBN 0-04-510060-8

H8 H10 H12 H13 H14	S.	 M. HOLMES Pr Comm (27/7/1981): ICL DAP "Code A" provisional results Pr Comm (24/1/1982): ICL DAP "Code B" provisional results Pr Comm (24/2/1982): ICL DAP "Code A" production results, p < 31488 Pr Comm (20/10/1982): ICL DAP "Code B" production results for 31488 (D J Hunt, T W Lake, P J Marron, S F Reddaway, N Westbury & G M^CC Haworth): "Primality-testing Mersenne Numbers", Abstracts of the AMS, v4 no2 (Feb 1983) p196, 83T-10-82 "Variable Precision Arithmetic on DAP", Section3.6 of "DAP in Action" edited by J Howlett, D Parkinson & J Sylwestrowicz, ICL Technical
		Journal v3 no3 (1983) pp330-44
Н5	J.	HUDELOT Sphinx-Oedipe v4 (1909) p16
H1 H2	Α.	<pre>HURWITZ "Fermat Numbers and Perfect Numbers", Notices of the American Math. Soc. v8 (1961) p601 "New Mersenne Primes", MC v16 (1962) pp249-51. MR26#3684. Corrected [G1]</pre>
I1 I2	К.	R. ISEMONGER "The Complete Factorization of 2^{132} +1", MC v14 (1960) pp73-4. MR22#22. "Complete Factorization of 2^{159} -1", MC v15 (1961) pp295-6. MR23#A1577.
J1	J.	P. JONES "Diophantine representation of Mersenne and Fermat Primes", Acta Arithmetica v35 (1979) pp209-21. MR81a:10020.
K14* K2 K4 K23	E.	 KARST BYU - Applied Number Theory Newsletter (1960) pp3-6 "Faktorenzerlegung Mersennescher Zahlen mittels programmgesteuerter Rechengerate", Numerische Math. v3 (1961) pp79-86. MR22#10949. "New Factors of Mersenne Numbers", MC v15 (1961) p51. MR22#7268. "Some New Divisors of Mersenne Numbers", BIT v2 (1962) p90
K24 K27 K6		<pre>"Search Limits on Divisors of Mersenne Numbers", BIT v2 (1962) pp224-7. MR29#3422. "List of all prime divisors q = 2Kp+1 of 2^p-1, K < 10, p < 15000", BIT v3 (1963) pp222-8. MR30#1106. "Some New Divisors of Mersenne Numbers", BIT v4 (1964) pp28-9. MR29#1169.</pre>
K30	W.	<pre>KELLER "Primteiler von Mersenne-Zahlen" (1977). Factors q < max(2³⁶, 10⁷p) of M_n, p < 10⁵.</pre>
K31		Pr Comm (27/11/1981): "New Factors of Mersenne Numbers and Some Related
K33		Primes", intended for publication but not published "Factors of Fermat Numbers and Large Primes of the form k.2 ⁿ +1", MC v41 (1983) pp661-673. MR 85 b:11117.
K26	D.	E. KNUTH "The Art of Computer Programming", Volume 2 "Seminumerical Algorithms", 2nd Edition, Addison-Wesley (1981 Printing). MR44#3531.
K18*	G.	W. KRAFT Novi Comm. Ac. Petrop., v3 (1753), ad annos 1750-1

	M. B. KRAITCHIK
K16*	"Table de la plus grande solution de la Congruence $2^{(p-1)/x} = 1$
	mod p pour tous les nombres premiers p inferieurs a 300,000 excepte
	les cas de x = 1 ou 2", Nancy (1921)
K10	"Théorie des Nombres", Paris (1922) v1, esp pp34-44, 146, 218
К3	"Recherches sur la Theorie des Nombres", Paris (1924) vl,
	esp pp 20–1, 24, 165, 170, 175
K11	"Théorie des Nombres", Paris (1926) v2, esp p135 & p142
K13	"Nombres Parfaits", L'Echiquier v3 (1927) pp755-6
K32	"Decomposition de 2 ⁿ <u>+</u> 1", L'Echiquier v3 (1927) pp756-7
K12	"Recherches sur la Théorie des Nombres", Paris (1929) Tome 2
K25	"Les Grands Nombres Premiers", Mathematica v7 (1933) pp92-4
K20	"Factorizations de $2^{n} \pm 1$ ", Sphinx v8 (1938) pp148-150
K17	"On the Factorization of $2^{n} \pm 1$ ", Scripta Mathematica v18 (1952)
47	pp39-52. MR14p121.
К7	"Introduction à la Theorie des Nombres": Paris 1952, esp pp39-40.
1/20	MR14p535.
K29	"Mathematical Recreations", Allen & Unwin, London (1955)
	S. KRAVITZ
К5	"Divisors of Mersenne Numbers 10,000 < p < 15,000", MC v15 (1961)
K0	pp292-3. MR 23 #A833.
К1	(& M Berg): "Lucas' Test for Mersenne Numbers, 6000 < p < 7000", MC v18
	(1964) pp148-9. MR28#1152.
К8	(& J S Madachy): Review of UMT-113[F] "Divisors of Mersenne Numbers,
	20,000 < p < 100,000", MC v19 (1965) p686 (Corr. MC v27 (1973) p453)
К9	"Distribution of Mersenne Divisors", MC v20 (1966) pp448-9
K28	"The Lucas-Lehmer test for Mersenne Numbers", Fibonacci Quarterly
	v8 (1970) pp1-3. MR 41 #1675.
K21	Pr Comm (4/9/1980)
K22	Pr Comm (7/10/1980): the Kravitz/Berg Code
	L. I. KRONSJO
K15	"Algorithms – their complexity and efficiency" Wiley (1979)
	esp Ch. 5 & 6. MR 80m :68004.
	T. W. LAKE
L45	(& S M Holmes) Pr Comm (25/8/81): first factors < 2 ⁴⁰ ; 5*10 ⁴ 5
L45	(α 5 M Hornies) Pr comm (25/6/61). This hactors (2, 5/10 (β V 10
	M. LAL
L12*	UMT 20[9] - "Decimal Expansions of Mersenne Primes", MC v22 (1968) p232
	and zolog a bootman zapanorono en neroonna ri meo , ne rez (zoro, per-
	F. LANDRY
L20	"Aux Mathematicians de toutes les parties du monde; communications sur
	la decomposition des nombres en leurs facteurs simples",
	Paris (1867) p8
L19	"Decomposition des Nombres 2 ⁿ + 1 en leurs Facteurs Premiers",
	Paris (1869) pp6-7
	Le LASSEUR De SANZY
L25	Bullettino di Bibliografia e di Storia delle Scienze Matematiche e
	Fisiche (Boncompagni) v11 (1878) pp788-9
1.01	A. M. LEGENDRE
L21	"Essai sur la Théorie des Nombres" 3rd Ed. Paris (1830) v1 pp228-9

L21 "Essai sur la Théorie des Nombres" 3rd Ed. Paris (1830) v1 pp228-9

	D. H. LEHMER
L39	"A Cross-Division Process and its Application to the Extraction of
	Roots", American Mathematical Monthly v33 (1926) pp198-206
L1	"Note on the Mersenne Number 2^{139} -1", BAMS v32 (1926) p522
L11	"Tests for primality by the converse of Fermat's theorem", BAMS v33
	(1927) pp327-40
1.2.2	
L33	"A Further Note on the Converse of Fermat's Theorem", BAMS v34
	(1928) pp54-6
L37	"The Mechanical Combination of Linear Forms", Amer. Math. Monthly v35
	(1928) pp114-121
L24	"An Extended Theory of Lucas' Functions", Ann. Maths. v31 (1930) pp419-48
L41	"On the Factorization of Lucas' Functions", Tohoku Mathematical Journal
- 11	v34 (1931) pp1-7
L26	"Sur Le Nombre 2 ²⁵⁷ -1", Sphinx v1 (1931) pp31-2
	Sur Le Nombre 200-1, Sprink VI (1931) pp31-2
L27	"Sur Le Nombre 2 ¹⁴⁹ -1", Sphinx v1 (1931) pp163-5
L2	"Note on Mersenne Numbers", BAMS v38 (1932) pp383-4
L10	"A number theoretic machine", BAMS v38 (1932) p635
L7	"Some New Factorizations of 2 ⁿ + 1", BAMS v39 (1933) pp105-8
L28	"A photo-electric number sieve", Amer. Math. Monthly v40 (1933) pp401-6
L22	"A machine for combining sets of linear congruences", Mathematische
	Annalen v109 (1934) pp661-7
L8	
LO	"On Lucas' Test for the Primality of Mersenne's Numbers", J. London
	Math. Soc. v10 (1935) pp162-5
L36	"On the Converse of Fermat's Theorem", Amer. Math. Monthly v43 (1936)
	pp347-54
L6	"On the Factors of $2^{n} \pm 1$ ", BAMS v53 (1947) pp164-7. MR8p441.
L43	"On the Converse of Fermat's Theorem, II", Amer. Math. Monthly v56
	(1949) pp300-9. MR10p681
L3	"Recent Discoveries of Large Primes", MTAC v6 (1952) p61 N131
L4	"A New Mersenne Prime", MTAC v6 (1952) p205
L5	"Two New Mersenne Primes", MTAC v7 (1952) p72
L9	"Computer Technology applied to the Theory of Numbers": MAA Studies in
LJ	
	Mathematics v6 (1969) pp117-151, Prentice Hall. MR40#84.
L23	"The economics of Number Theoretic Computation", from "Computers in
	Number Theory" by A O L Atkin & B J Birch, Academic Press (1971)
	pp1-9. MR 47 #3285.
L44	Corrigendum to [L36] & [L43], MC v25 (1971) pp943-4. MR53#4461.
L31	"Exploitation of Parallelism in Number Theoretic and Combinatorial
	Computation", Proc. 6th Manitoba Conference on Numerical Math.
	(1976) pp95-111. MR 58 #27706.
L46	"On Fermat's Quotient, Base Two", MC v36 (1981) pp289-90
LHU	on remained 3 quotient, base two, Mc V30 (1301) pp203-30
1.40	D. N. LEHMER
L42	"On the Multiplication of Large Numbers", American Mathematical Monthly
	v30 (1923) pp67-70
L34	"Hunting big-game in the theory of numbers", Scripta Mathematica v1
	(1933) pp229-235

	F. E. A. LUCAS
L29*	Comptes Rendus v82 (1875) ? p1305
L30*	Comptes Rendus v83 (1876) ? p68
L16	"Note sur l'application des series recurrentes a la recherche de la loi
	de distribution des nombres premiers", Comptes Rendus v82 (1876)
	pp165-7
L15*	"Sur la theorie des nombres premiers", Turin (1876) esp pl1
L35	Comptes Rendus de l'Association de Francaise pour l'avancement des
	sciences, v6 (1877) pp159-67
L17*	Bulletino d. Bibliografia e d. Storia (Boncompagni) v10 (1877) pp129-193
L14	"Théorie des Fonctions Numériques Simplement Periodiques", American J.
	Math. v1 (1878) pp184-240, 289-231
L32	"Theoremes D'Arithmetique", Atti. R. Ac. Sc. Torino v13 (1877-8)
	pp271-84
L18	Recreations Mathematiques v2 (1883) pp230-5
L38	"Sur Le Neuvieme Nombre Parfait", Mathesis v7 (1887) pp45-6
L40	"Sur Les Nombres Parfaits", Mathesis v10 (1890) pp74-6
L13	"Théorie des Nombres" Paris (1891) v1 p376 & pp424-5
	A. R. G. MACDIVITT
M4	"The most recently discovered prime number", Maths. Gaz. v63 (1979)
	pp268-70
	T. E. MASON
M7	BAMS v21 (1914) p68
M8	"Mechanical Device for Testing Mersenne Numbers for Primes",
	Proc. Indiana Acad. Sci. (1914) p429-31
	J. McDONNELL
M1	"On Mersenne's Primes", Proc. London Math. Soc. s2 v12 (1913) p.xvii
M1 0	S. K. McGROGAN
M12	(& C L Noll): Letter confirming M ₈₆₂₄₃ prime, Scientific American
	v248 no3 (March 1983) p11
	N. D. MCWHIRTER
MO	The Guinness Book of Records, Editions 12 - 16 (1965 - 1969)
M9	The Guinness book of Records, Editions 12 - 16 (1965 - 1969)
	M. MERSENNE
M3	"Cogitata Physico Mathematica", Parisiis (1644) Praefatio Generalis No.19
M6	"Novarum Observationum Physico-Mathematicarum", Tomus III, Parisiis
MO	(1647) Cap.21 p182
	(1047) Cap.21 p182
	N. METROPOLIS
M11	(J Howlett & G-C Rota): "A History of Computing in the Twentieth
1111	Century", Academic Press (1980)
	G. L. MILLER
M10	"Riemann's Hypothesis and Tests for Primality", J. of Computer and System
1110	Sciences v13 (1976) pp300-17. MR58#470a.
	00101003 110 (15/0) pp000 1/. PR(00#700.
	J. C. P. MILLER
M2	(& D J Wheeler): "Large Prime Numbers", Nature v168 (1951) p838
M5	"Large Primes", Eureka No.14 (1951) pp10-11. MR13p436.
0.000	The Grand Louise of English distance (FEE) FEE FEE LUISEF (1)

T. NAUR

1011120000	I. NAUK
N18	"Integer Factorization", DAIMI PB-144, ISSN 0105-8517 (May 1982)
N19	Pr Comm (14/10/1982): review and M ₁₉₃ primality-proofs
N20	Pr Comm (27/10/1982): M ₁₇₃ and M ₂₂₃ proofs
NZ U	Pr comm (27/10/1982). M173 and M223 proors
	H. L. NELSON
N12	Pr Comm to D C Shanks (7/6/1979): the deposition in the MC UMT file of
	CRAY/1 results for p < 50024
N1	"Multi-Precise Arithmetic on a Vector Processor, or how we found the 27th
	Mersenne Prime", IEEE COMPCON Proceedings (San Francisco) (1980)
	pp265-9
NO	
N2	Pr Comm (3/9/1980): residues for p < 4424
N3	Pr Comm (18/9/1980): 10 residues, 4450 < p < 6908
N9	Pr Comm (10/1/1981): Noll's confirmation of M ₄₄₄₉₇
N11	Pr Comm (24/6/1981): residues for 42018 < p < 42350
N13	Pr Comm (24/12/1981): some residues, 24048 < p < 30678
N17	Pr Comm (6/4/1982): M_p -NZLRS for p = 65537, 65539, 131071
N14	Pr Comm (19/4/1982): additions/corrections to [N12]
N15	Pr Comm (4/5/1982): discussion of errors in [N12]
N21	Pr Comm (28/10/1982): Slowinski finds M ₈₆₂₄₃ prime
	UOL TO T
N22	Pr Comm (2/12/1982): CRAY/1 M ₈₆₂₄₃ computation details
N23	Pr Comm (21/12/1982): Noll's CYBER-205 confirms M ₈₆₂₄₃
N25	Pr Comm (7/12/1983): Slowinski's M ₁₃₂₀₄₉ computation
N26	Pr Comm (28/3/1984): Nelson's 11/3/1984 'M ₁₃₂₀₄₉ prime' confirmation
NL U	132049 pi me contrinación
	M. H. A. NEWMAN
N16	"Some routines involving large integers", Proc. of Cambridge conference
	on automatic calculating machines (June 22-25, 1949), pp69-70
	on automatic carculating machines (oune 22 23, 1343), ppos 70
	R. NIEWIADOMSKI
N8	
N8	R. NIEWIADOMSKI Note 4202, L'Intermediaire des Math. v20 (1913) p78
N8	Note 4202, L'Intermediaire des Math. v20 (1913) p78
	Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL
N8 N6	Note 4202, L'Intermediaire des Math. v20 (1913) p78
	Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL
N6	Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5
	Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6
N6 N5	Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6
N6	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5	Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6
N6 N5 N4	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24 O2	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24 O2	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24 O2	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24 O2	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pq4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24 O2 O1	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pq4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24 O2	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pq4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24 O2 O1	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24 O2 O1	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24 O2 O1	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>
N6 N5 N4 N7 N10 N24 02 01 P11*	<pre>Note 4202, L'Intermediaire des Math. v20 (1913) p78 C. L. NOLL "Discovering the 26th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) pp4-5 (& L A Nickel) "The 25th Mersenne Prime", Dr. Dobb's Journal v4 Iss6 (1979) p6 Pr Comm (6/10/1980): residues for 21000</pre>

	1.	M. PERVOUCHINE
P13*		Melanges Math. et Astron. tires du Bull. de l'Acad. d. Sci. de St. Petersbourg v6 (1881-8) p553
P14		"Sur un nouveau nombre premier", Bull. Acad. d. Sc. St. Petersbourg s4 v31 (1887) cols 532-3
P16*		"Memoires Russes de L'Academie" (Zapiski Imperatorskoi Akademii) v48
	J.	PLANA
P12*		Memoria della Reale Accadem. della Scienze, Torino s2 v20 (1863) p130
	Η.	C. POCKLINGTON
P17		"The Determination of the Prime or Composite Nature of Large Numbers by Fermat's Theorem", Proc. Cambridge Phil. Soc. v18 (1914-6) pp29-30
D 00	J.	M. POLLARD
P20		"An Algorithm for Testing the Primality of any Integer", Bull. London Math. Soc. v3 (1971) pp337-40. MR 45# 3314.
P21		"Theorems on factorization and primality testing", Proc. Camb. Phil. Soc. v76 (1974) pp521-8
P22		"A Monte Carlo Method for Factorization", BIT v15 (1975) pp331-4. MR50#6992.
	C.	POMERANCE
P24		"Recent Developments in Primality Testing", Mathematical Intelligencer v3 no3 (1981) pp97-105. MR 83 h:10015.
P25		"The Search for Prime Numbers", Scientific American v247 no6 (Dec. 1982) pp122-130
P26		(Selfridge & Wagstaff) "The Pseudoprimes to 25.10 ⁹ " MC v35 (1980) pp1003-1026
P27		"Are there any counterexamples to the Baillie-PSW primality test?", 'Dopo Le Parole' (16/5/1984), edited and available from J K Lenstra, Amsterdam
	P	POULET
Ρ7	Γ.	Sphinx-Oedipe v18 (1923) p64
	R.	E. POWERS
P15		Note 6, BAMS v18 (1911-2) p162
P9 P8 *		American Math. Monthly v18 (1911) pp195-7 Sphinx-Oedipe v8 (1913) pp49-50
P10		"A Mersenne Prime", BAMS v20 (1914) p531
P2		"On Mersenne's Numbers", Proc. London Math. Soc. s2 v13 (1914) p.xxxix
P6 *		Sphinx-Oedipe v9 (1914) pp105-8
P1		"Certain Composite Mersenne's Numbers", Proc. London Math. Soc. s2 v15 (1916) p.xxii
P3 P23		"Note on a Mersenne Number", BAMS v40 (1934) p883 "Sur les Nombres de Mersenne", Sphinx (Bruxelles) v5 (1935) pp57-8
25	۷.	R. PRATT
Ρ5		"Every Prime has a succinct certificate": SIAM J. of Computing v4 (1975) pp214-220
	Μ.	E. PROTH
P18		"Théorèmes sur les nombres premiers", Comptes Rendus Acad. Sci. Paris

70

v87 (1878) p926

R9	۷.	RAMESAM "Note on Mersenne's Number 2 ⁷¹ -1", Journal of the Indian Math. Soc. v4
		(1912) p56
	C.	REID
R7		"Perfect Numbers", Scientific American v188 No3 (March 1953) pp84-6
	Κ.	G. REUSCHLE
R8 *		"Mathematische Abhandlungen, enthaltend neue zahlen-theoretische Tabellen sammt einer dieselben betreffenden Correspondenz mit dem verewigten C. G. J. Jacobi", Stuttgart (1856) 61pp, esp. pp21-2, 42-53
		DIFCE
R5	Η.	RIESEL "A New Mersenne Prime", MTAC v12 (1958) p60
R1		"Mersenne Numbers", MTAC v12 (1958) pp207-13. MR 21# 657.
R4		"All Factors q < 10 ⁸ in all Mersenne Numbers 2 ^p -1, p Prime < 10 ⁴ ", MC v16 (1962) pp478-482. MR 27# 2462. Corrected MC v17 (1963) p486.
R6		"En Bok om Primtal" Studentlitteratur (1968) esp. pp44-65. MR42#4507.
R12		"En Bok om Primtal, Uppdateringar och Korrektioner" (Oct. 1979).
R13		MR 58# 10681. Pr Comm (30/10/1980): details of his computation
R13 R14		Pr Comm (30/10/1980): details of his computation Pr Comm (6/12/1980): largest-known composite M _n
		r comme (o, 12, 1900). Talgese known composite np
	R.	M. ROBINSON
R2		"Mersenne & Fermat Numbers", PAMS v5 (1954) pp842-6. MR16p335.
R3		"Some Factorizations of Numbers of the Form 2 ⁿ <u>+</u> 1", MTAC v11 (1957) pp265-8. MR 20# 832.
R11		"The Converse of Fermat's Theorem", Amer. Math. Monthly v64 (1957) pp703-10. MR 20# 4520.
R10		Pr Comm (26/8/1980)
S8	U.	SCHEFFLER & R. ONDREJKA "The Numerical Evaluation of the Eighteenth Perfect Number", MC v14
50		(1960) pp199-200. MR22#3093.
	Α.	SCHINZEL
S9		"A Remark on a paper of Bateman and Horn", MC v17 (1963) pp 445-7.
		MR 27 #3609.
	R.	C. SCHROEPEPEL
S28		Pr Comm ($6/01/90$): earlier date for Brillhart's M_{139} factorisation
c10	J.	L. SCHONFELDER & J. T. THOMASON
S18		"Arbitrary Precision Arithmetic in Algol 68", Software - Practice and Experience v9 (1979) pp173-82
		Experience va (19/3) pp1/3 02
	SC	IENTIFIC AMERICAN
S24		" $2^{19,937}$ is Prime", Science & the Citizen Column, v224 no6 (June 1971) p56
S4		"Onward and Upward", Science & the Citizen Column, v240 no1
\$13		(January 1979) p67 Appouncement of Primes Manuel & Manuel Mantin Cardner
213		ADDUDCEMENT OF VOIMOS Messes & Missies Martin Lardnor

S13 Announcement of Primes M₂₃₂₀₉ & M₄₄₄₉₇, Martin Gardner, v241 no2 (Sept. 1979) p26

1	Ρ.	SEELHOFF
S14		"Ueber die vollkommenen Zahlen, insbesondere uber die bis jetzt zweifelhaften Falle 2 ⁴⁰ (2 ⁴¹ -1), 2 ⁴⁶ (2 ⁴⁷ -1) und 2 ⁵² (2 ⁵³ -1)", Archiv fur Math. und Phys. s2 v2 (1885) pp327-9
S12		"Die neunte vollkommene Zahl", Zeitschrift fur Math. und Phys. v31 (1886) pp174-8
S15		"Untersuchung der Zahl 2 ³⁷ -1", Archiv fur Math. und Phys. s2 v5 (1887) pp221-3
\$5	J.	L. SELFRIDGE Errata to [R1] MC v13 (1959) p142
\$3		(& A Hurwitz): "Fermat Numbers and Mersenne Numbers", MC v18 (1964) pp146-8. MR 28 #2991.
S7		<pre>(& R K Guy): "Primality Testing on Small Machines" - Research Paper No 121 (1971) - Dept. of Mathematics, University of Calgary, Canada. MR47#8407.</pre>
	C.	SERVAIS
S16		"Sur les Nombres Parfaits", Mathesis v7 (1887) pp228-30
	D.	C. SHANKS
S2		"Solved & Unsolved Problems in Number Theory" Volume 1 - Spartan Books (1962); MR 28 #3952. 2nd Edition, Chelsea (1978); MR 80e :10003.
S6		3rd Edition (1985). (& S Kravitz): "On the Distribution of Mersenne Divisors", MC v21 (1967)
S19		pp97-101. MR 36# 3717. "Class number, a theory of factorization, and genera", Amer. Maths. Soc.
		Proc. Sympos. Pure Maths v20 pp415-40, Number Theory Institute (1969). MR47#4932.
S23		Pr Comm (28/10/1981): Nelson's results 24000 < p < 31000
S10 S17	W.	SIERPINSKI "A Selection of Problems in the Theory of Numbers", Pergamon (1964) "Elementary Theory of Numbers", Hafner (1964)
S1	D.	A. SLOWINSKI "Searching For the 27th Mersenne Prime", J. Recreational Math. v11 (1978-9) pp258-61. MR80g:10013.
	Н.	V. SMITH
S11		"The 25th (known) perfect number", Mathematical Gazette v63 (1979) p271
S20	R.	M. SOLOVAY & V. STRASSEN "A Fast Monte-Carlo Test for Primality", SIAM J. Computing, v6 (1977)
S22		pp84-5. MR 55 #2732. Corrigendum to [S20], SIAM J. Computing, v7 (1978) p118. MR 57 #5885.
S21	E.	<pre>STORCHI "Alcuni criteri di divisibilita per i numeri di Mersenne e il carattere 6^{CO}, 12^{mO}, 24^{mO}, 48^{mO}, dell'intero 2", Bolletino della Unione Matematica Italiana, v10 (1955) pp363-75. MR17p127</pre>
12.24	Η.	SUYAMA
S25		"Some new factors for numbers of the form 2 ⁿ <u>+</u> 1", Abstracts of the AMS v3 no3 (1982) p257, 82T-10-230
S26		"Some new factors for numbers of the form 2 ⁿ ± 1, II", Abstracts of the AMS v4 no2 (1983) p195, 83T-10-57
S27		"Some new factors for numbers of the form 2 ⁿ ± 1, III", Abstracts of the AMS v4 no3 (1983) p294, 83T-10-207

T4 * T5 *	H. TARRY Sphinx-Oedipe v6 (1911) p192 Sphinx-Oedipe v7 (1912) p15 (or 17?)
T10 T11 T12	<pre>J. T. THOMASON Pr Comm (1/2/1981): 5 original-M_p factorisations confirmed Pr Comm (4/2/1981): E_p and decimal/octal residues Pr Comm (22/6/1981): M₂₃₉'s factors and Lucas-residues</pre>
T14	TIME Magazine "Cracking a Record Number" v123 no7 (13/2/1984) p54
T8 T9	The TIMES (London) "Prime Number Record Broken", The TIMES (17/11/78) p9 column 4 "Prime Number", The TIMES (23/11/78) p19 column 4
Τ7	J. TOUCHARD "On Prime Numbers & Perfect Numbers", Scripta Mathematica v19 (1953) pp35-9. MR14p1063.
	J. TRAVERS
Т3	"Perfect Numbers", Mathematical Gazette v23 (1939) p302
T1	B. TUCKERMAN "The 24th Mersenne Prime", Proc. Nat. Acad. Sci. USA v68 (1971)
Т2	pp2319-20. MR 45# 166. Corrigendum to [G1], MC v31 (1977) p1051. MR 56 #233.
T6	Pr Comm (28/8/1980): residues for 12142 < p < 21000
	A. M. TURING
T13	"Checking a large routine", Proc. of Cambridge conference on automatic calculating machines (June 22-25, 1949), pp67-8
112	H. S. UHLER "A New Result Concerning a Mersenne Number", MTAC v1 (1943-5) p333
U2 U3	"A New Result Concerning a Mersenne Number", MTAC v1 (1943-5) p333 "A New Result Concerning a Mersenne Number", MTAC v1 (1943-5) p404
U1	"First Proof that the Mersenne Number M ₁₅₇ is Composite", Proc. Nat. Acad. Sci. v30 (1944) pp314-6. MR6p57.
U4	"Note on the Mersenne Numbers $\rm M_{157}$ and $\rm M_{167}$ ", BAMS v52 (1946) p178. MR7p273.
U8	"A New Result Concerning a Mersenne Number", MTAC v2 (1946-7) p94. MR7p413.
U6	"On Mersenne's Number M ₁₉₉ and Lucas's Sequences", BAMS v53 (1947) pp163-4. MR 8 p368.
U7	"On Mersenne's Number M ₂₂₇ and Cognate Data", BAMS v54 (1948) pp378-80. MR 9 p410.
U5	"On all of Mersenne's Numbers Particularly M ₁₉₃ ", Proc. Nat. Acad. Sci. v34 (1948) p102-3. MR 9 p410.
U9	"A Brief History of the Investigations on Mersenne Numbers and the latest immense primes", Scripta Mathematica v18 (1952) pp122-31. MR 14 p343.
U10	"On the 16th and 17th Perfect Numbers", Scripta Mathematica v19 (1953) pp128-131. MR15p199.
U11	"Full Values of the First Seventeen Perfect Numbers", Scripta Mathematica v20 (1954) p240. MR16p447.

73

G. VALENTIN

"Einige Bemerkungen uber vollkommene Zahlen", Archiv. Math. Phys. s2 v4 (1886) pp100-3

	S. S. WAGSTAFF, Jr.
W8	Pr Comm (21/1/1981): table of M_p -factors < 2 ³⁵ for 17,000 < p < 50,000
W12	Pr Comm (2/2/1982): "Divisors of Mersenne Numbers";
	$2^{31} < M_p - f_1 < 2^{35}$ for 20,000 5
W13	Pr Comm (27/7/1982): M ₁₉₃ factorised by two prps
W14	"Divisors of Mersenne Numbers", MC v40 (1983) pp385-97
	all a land of the best cars been and the best state of the best st
	Le Roy J. WARREN
W11	(& H G Bray): "On the Square-Freeness of Fermat and Mersenne Numbers",
	Pacific J. of Maths. v22 (1967) pp563-4
	A. E. WESTERN
W2	"Some criteria for the residues of 8th & other powers" - Proc. London
	Math. Soc. s2 (1911) pp244-272
W3	"On Lucas's and Pepin's Tests for the Primeness of Mersenne's Numbers",
	J. London Math. Soc. v7 (1932) pp130-7
	D. J. WHEELER
W7	Pr Comm (6/10/1980): ILLIAC I and M ₈₁₉₁ Lucas-test
	T. WILCOX
W4	Corrigendum to [L3], MC v19 (1965) p175
	De WINSHEIM
W5 *	Novi Comm. Ac. Petrop. v2 (1751) ad annum 1749, mem., 68-99
	H. J. WOODALL
W6	"Note on a Mersenne Number", BAMS v17 (1910-1) p540
W1	"Mersenne's Numbers", Memoirs & Proceedings of the Manchester Literary
	and Philosophical Society, v56 (1911-12) No 1 pp5-8
	E. M. WRIGHT
W9	"The Calculation of Large Primes", The Mathematical Gazette v37 (1953)
	pp104-6. MR14p1063.
1110	M. C. WUNDERLICH
W10	"A running time analysis of Brillhart's continued fraction factoring
	method", Lecture Notes in Mathematics, 751, Springer (1979),
	pp328-42. Proc. of Southern Illinois Conference at Carbondale.
	MR81f:10011

S. YATES

Y1

Pr Comm (19/12/88): 876 titanic primes > 10^{999} .

V1

17 KEYWORDS

Adleman, Leonard M AMS, American Mathematical Society Archibald, Raymond Clare Atkin, Oliver L BAAS, British Association for the Advancement of Science Baillie, Robert: M₂₅₇-f₂ Ball, Walter William Rouse BAMS, "Bulletin of the American Mathematical Society" Barker, Charles B Bateman, Paul Trevier Beeler, M Beiler, Albert H Berg, Murray Bickmore, C E BIT, "Nordisk tidskrift for Informationsbehandling" Bowgen, Grant: ICL DAP Bray, H G Brent, Richard Peirce Brillhart, John David Carmichael, Robert Daniel Cataldi, Pietro Antonio (1550? - 1626)Christie, R W D Cohen, Edward L Cohen, H Cole, Frank Nelson (1861 - 1927)Colquitt, Walter N Computer AMDAHL 470/V7: gv Williams BESK: M3217 [R5] CDC 6500: CDC 7600: M₂₅₇-f₁ CDC CYBER-174: M21701 & M23209 CDC CYBER-205: M₈₆₂₄₃ confirmation CRAY/1: M44497, M86243 CRAY/1S: M251 CRAY-XMP: M132049, M216091 DEC EDSAC: EPOC: Extended-Precision Operand Computer IBM 360/91: M19937 [T1] IBM 650 IBM 701: M₁₀₉-f₁ & M₁₅₇-f₁ [R3], [B2] IBM 704: M₁₀₁ IBM 709 IBM 7090 IBM 7094: M103 & M163 ICL 2900 DAP: LR confirmations ILLIAC-I: M8191 ILLIAC-II: M9689, M9941 & M11213

Computer (continued): MATHILDA MU1: [N16] MZ-80C: 8-bit micro (Suyama) [B17] NEC SX-2/400: M110503 power: #12 SWAC: 5 prime Mp Continued Fraction factorisation method (cf): early-abort technique (cf-ea) results: M₁₃₇, M₁₃₉, M₁₄₉, M₁₉₁, M₁₉₃, M₂₂₃ Cunningham, Allan Joseph Champneys (1842 - 1928)Cunningham Project [B17] Curtze, Maximilian Davis, James A: M₂₁₁, M₂₅₁ Dickson, Leonard Eugene (1874 - 1954)Drake, Stillman ecm: elliptic curve (factorisation) method EDSAC: Ehrman, John R Elliptic Curve factorisation method (ecm) ENIAC: Electronic Numerical Integrator and Computer qv Computer EPOC: Extended-Precision Operand Computer Euclid Euler, Leonhard (1707 - 1783) $f_1 = 2p+1$ observation M₁₃₁, M₁₇₉, M₁₉₁, M₂₃₉, M₂₅₁ Factorisation techniques cf: continued fractions ecm: elliptic curve mp-qs: multiple-polynomial qs qs: quadratic sieve rho: monte-carlo td: trial division Fast Fermat-Number Transform Fauguembergue, E Fermat, Pierre de (1601? - 1665)fermatian little theorem method of infinite descent number theory Ferrier, A FFNT, see Fast Fermat-Number Transform Frenicle de Bessy, Bernhard (ca 1602-1675) Gabard, Emilien Gardner, Martin Georgia Cracker, qv EPOC Gerardin, Robert André Patrice (1879-19)

76

Gerardin, Robert André Patrice (1879-19) Gillies, Donald B Golubev, V A Good, Irving John Hall, Jeremy A Hardy, Godfrey Harold (1877 - 1947)Haworth, Guy M^CCrossan Heath, Thomas Little (1861 - 1940)Holdridge, Diane: M₂₁₁, M₂₅₁ Holmes, Stephen M Holte, R Hudelot, Jules Hurwitz, Alexander Isemonger, K R Johnson, Gerald D Jones, J P Judd, J S Karst, Edgar Keller, W Knuth, Donald Ervin Kraft, George Wolfgang Kraitchik, Maurice Borisovich Kravitz, Sidney Krieger, S I Kronsjo, Lydia I Lake, Tom W Lal, Mohan Landry, Fortune Le Lasseur Legendre, Adrien Marie (1752 - 1833)Lehmer, Derrick Henry Lehmer, Derrick Norman (1867 - 1938)Lenstra, Hendrik W, Jr. Lucas, Francois Edouard Anatole (1842-1891) Macdivitt, A R G Machines see computers sieves Mason, Thomas E MATHILDA, qv Computers MC, "Mathematics of Computation" MC UMT, MC Unpublished maths. table McDonnell, J McGrogan, Stephen K McWhirter, Norris D

Metropolis, N Miller, Gary Lee Miller, Jeffrey Charles Percy (1906 - 1981)Monte-Carlo methods factorisation primality-testing Morrison, Michael Allan MR, "Mathematical Reviews" MTAC, "Mathematical Tables and Aids to Computation", now "Mathematics of Computation" Naur, Thorkil Nelson, Harry L Newman, M H A Nickel, Laura Ann Niewiadomski, R Noll, Curt Landon Numerology Ondrejka, Rudolf Ore, Oystein PAMS, Proceedings of the American Mathematical Society Pauli, J W Penk, Michael: M₂₅₇-f₁ Pepin, P Pervouchine, Ivan Mikheevich Plana, J Pocklington, H C Pollard, John M p-1 factorisation algorithm M₁₇₃-f₃, M₁₉₁-f₄, M₂₅₇-f₂ rho (Monte-Carlo) factorisation algorithm M₁₉₉-f₁, M₂₂₇-f₁, M₂₂₉-f₃, M₂₅₇-f₁ Pomerance, Carl Poulet, P Powers, Ralph Ernest (1875 - 1952)biography Pp: see Pollard's p-1 method Pratt, Vaughan Ronald Primality testing Fermat's theorem converse Monte-Carlo Proth, M E Quadratic Sieve method multiple-polynomial technique results: M₂₁₁, M₂₅₁ Ramesam, V Reid, Constance Reuschle, K G rho: Pollard's Monte-Carlo method results: M₁₉₉-f₁, M₂₂₇-f₁, M₂₂₉-f₃, M₂₅₇-f₁ Rickert, Neil W

78

Ramesam, V Reid, Constance Reuschle, K G rho: Pollard's Monte-Carlo method results: M₁₉₉-f₁, M₂₂₇-f₁, M₂₂₉-f₃, M₂₅₇-f₁ Rickert, Neil W Riesel, Hans Robinson, Raphael Mitchel Rumely, Robert S Scheffler, D Schinzel, Andrzej Schonfelder, J L Schroepepel, Richard C: see Tuckerman & M19937 Seelhoff, P Selfridge, John Lewis Servais, C Shanks, Daniel Charles Sierpinski, Waclaw Sieves Bicycle-Chain (1927): DLS127 (1965) **DLS157** Photoelectric (1932): M79 'ROM'-based: Williams' Shift-register: Simmons, Gustavus J Slowinski, David Allen Smith, H V Solovay, Robert Martin Speciner, Michael: see Tuckerman & M19937 Storchi, Edoardo Strassen, Volker Suyama, Hiromi SWAC: Standards Western Automatic Computer M521, M607, M1279, M2203 & M2281 primes Tarry, H Thomason, John T Touchard, Jacques Travers, J Tuckerman, Bryant Uhler, Horace Scudder UMT, Unpublished Mathematical Table, see MC Valentin, G