University of
< Reading

The CAFS system today and tomorrow

Article

Accepted Version

Haworth, G. M. ORCID: https://orcid.org/0000-0001-9896-1448
(1985) The CAFS system today and tomorrow. ICL Technical
Journal, 4 (4). pp. 365-392. ISSN 0142-1557 Available at
https://centaur.reading.ac.uk/4573/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

Publisher: ICL

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

iCl

TECHNICAL

JOURNAL

Volume 4 Issue 4
November 1985

Foreword

On the 21st April 1985 it was announced that the Queen’s Award for
Technological Achievement had been presented to ICL in recognition of the
successful innovation represented by the development of CAFS-ISP.

The problem of accessing large amounts of data in a structured manner, so as
to present usable information within a reasonable time, began to be recognised
as early as 1962. The CAFS system is a combined hardware and software
solution to this problem. Additionally, it is especially well positioned because
throughout the development there has been a clear understanding that any
technological breakthroughs achieved in solving the problem must fit into the
real world of existing customer data and equipment.

The CAFS-ISP product clearly represents a breakthrough worthy of the
Queen’s Award, and as such is one of the unique technological advances in the
data-processing industry today. As a vehicle it is just now being recognised by
other organisations trying to provide comparable data-access capabilities.

This issue of the ICL Technical Journal reviews the history of the development
of CAFS from the first recognition and formalisation of the problem through
to the evolution of the physical solution, and also the history of the supporting
software. In addition it illustrates the use of the product in the real world,
showing how this has extended from the original closely defined problem of
data access to include the processing of text and other forms of information by
real users to solve real problems.

Asa W. Lanum
Director and General Manager, ICL Applied Systems

ICL Technical Journal November 1985 351

The CAFS system today and tomorrow

G.McC. Haworth
ICL Management Support Business Centre, Reading, Berkshire

Abstract

The CAFS search engine is a real machine in a virtual machine world; it
is the hardware component of ICL's CAFS system. The paper is an
introduction and prelude to the set of papers in this volume on CAFS
applications. It defines the CAFS system and its context together with the
function of its hardware and software components. It examines CAFS'
role in the broad context of application development and information
systems; it highlights some techniques and applications which exploit
the CAFS system. Finally, it concludes with some suggestions for
possible further developments.

‘Search out thy wit for secret policies
And we will make thee famous through the world’
Henry VI, 1.3

1 Foundations

The late 1960s saw ICL’s leading architects designing the new range of
computer systems that was to become the 2900 Series. Specifically, those
responsible for the operating system were required to:

— provide a cost-effective environment for developing and running
applications

— adopt an architecture to fulfil changing requirements and exploit new
technological opportunities.

From the start, the designers acknowledged the rapid and accelerating
process of innovation which characterises the IT industry. They recognised
that the common computing processes would migrate from application
software via system software and microcode to special-purpose hardware.
The result based on the twin concepts of the virtual machine and the
procedure call was the virtual machine environment, VME.

File searching is clearly a common process and was identified as such in 1969.
Maintained file-projection indexes and data infrastructure are not always
appropriate or cost-effective for data-retrieval. Research in this area pro-
duced the CAFS.800 search engine and development led to the CAFS-ISP

ICL Technical Journal November 1985 365

—
languages ,forms, viewdata MMI
QuickBuild packages applications
e and tools
the
relational CAFS system
cso | ol system software
QM RCI
DDS 1DMS
VME base
model and _< RECMAN lRAMsI software
control
MAMPHY
Ll 1 | | R |
CAFS system
CAFS - ISP hardware

corporate
IDMS (X) data
tiles assets

PDS

- ___/)
Fig. 1 The CAFS system in context)
product’. The integration of CAFS-ISP into the VME virtual machine

environment is evidence of the robust architectural foundations laid down at
the outset.

2 The CAFS system

Initial success with CAFS.800?"° demonstrated the effectiveness of the
hardware approach to file searching. It achieved a quantum leap in
performance, searching at ‘disc-speeds’ and transferring a major part of the
normal mainframe load from the central processor to the peripheral CAFS.
engines.

366 ICL Technical Journal November 1985

ICL set out to incorporate CAFS as a standard subsystem within VME. An
engine specification similar to that of CAFS.800 was combined with synergy
requirements as follows:

— retrieve records satisfying criteria expressed as a combination of Boolean
logic and threshold functions

— calculate during the search such derived data as are commonly required

return a ‘projected’ set of hit records

search existing data, whether stored in files or databases

co-exist with current hardware and current workloads

operate below existing or industry-standard interfaces

The programme resulted in what is now called the CAFS system. This is
defined here and currently comprises five elements, one hardware and four
software, as follows:

the CAFS-ISP hardware search engine, here abbreviated to ‘CAFS’
the VME CAFS search option, CSO

the direct CAFS interface, DCI

— the relational system:

Querymaster for ad hoc and production data queries

the relational CAFS interface, RCI, an extension of Cobol

|

Fig. 1 shows the CAFS system in its context of target data, VME support and
application software.

For the sake of brevity, it is convenient to use rather a large number of
abbreviations in describing the system and its functions. These are explained
when first introduced and listed in the glossary at the end of the paper.

2.1 CAFS engine

This is attached to a disc control module (DCM), through which data not
being searched by CAFS passes directly as normally. The engine consists of
five main components, as shown in Fig. 2:

— the logical format unit (LFU)
— the key channels (KCs)

select
L KC | SEU
(i R hit
u i P | records
RU S
project

Fig. 2 The CAFS engine

ICL Technical Journal November 1985 367

— the search evaluation unit (SEU)
— the retrieval unit (RU)
— the retrieval processor (RP)

2.1.1 Logical format unit: The LFU provides input to the other components,
advising them where to find relevant fields in the records. It has been given
information about the data-file’s logical block and record formats. It
examines the incoming data stream, identifies starts and ends of records and
fields and in some cases examines the content of the record.

type data data e type
of SIF identifier | length of SIF

Fig. 3 The self-identifying format for data

A record that can be searched by CAFS has a fixed-length part followed
perhaps by a variable-length part. The latter may be a string, an array of
fixed-length fields or data in self-identifying format (SIF). The unit picks out
the appropriate types of data stored in this last format, illustrated above.

2.1.2 Key channels: The search criterion, i.e. the set of conditions that a
record must satisfy to qualify as a ‘hit’, is of the general form

logical condition (LC) & {interfield comparisons} (IFC)
for example:

(LC) age<30 & 2 from [experience = insurance, banking, audit] &
(IFC) achievement > target

LC combines Boolean and quorum terms using the Boolean operators
‘AND’, ‘OR’ and ‘NOT’; the terms are evaluated from the results of
component atomic conditions of the form:

FIELD masked by MASK is in RELATION to LITERAL
v_vhere the relationship is =, #, >, <, > or <

The example above features one Boolean and one quorum term. The Boolean
term has one atomic condition; the quorum term has three.

Two features add to the CAFS functionality. First, CAFS can detect whether
records satisfy nominated subconditions within LC. Secondly, CAFS can
mask a field to ignore unknown or irrelevant parts of the field; this endows it
with a powerful fuzzy-matching capability.

In evaluating the cbmplete criterion, the key channels and search evaluation
unit deal with LC and the back-end retrieval processor deals with IFC.

368 - ICL Technical Journal November 1985

A battery of 16 key channels performs the first part of evaluating LC; not all
will be needed in every case. Each channel examines one atomic condition
and signals in parallel with the others and via three bit-stores whether their
masked field contains value(s) less than, equal to or greater than their literal.

None of the bit-stores will be set if the field does not exist, one will be set for a
single-valued item and any number will be set according to the content of a
multivalued field. For example, the text item ‘QUICK BROWN FOX’ in SIF
format when compared with FOX will use the VME EBCDIC collating
sequence to signal BROWN < FOX, FOX =FOX and QUICK > FOX.

The software surrounding CAFS uses some KCs; VME for example uses one.
The LC can therefore involve a maximum of 12—15 atomic conditions.

2.1.3 Search evaluation unit: The SEU declares whether the record satisfies
LC as well as the nominated subconditions within LC. It has a battery of 16
search evaluation processors (SEPs), programmed to operate in concert to
indicate in a ‘task word” whether the condition LC and/or the nominated
subconditions are true or false. They are assisted in this task by two further
subunits as illustrated in Fig. 4. The quorum processor (QP) evaluates all,
possibly weighted, quorum expressions. The select processor (SP) broadcasts
the QP results and interim SEP results to the SEPs.

—

Finally, the SEU increments counts of records satisfying the LC condition
and the nominated subconditions by examining the task word.

= = =

|
HARRRRRRTHY

KCs SEPs QP

SP

Fig. 4 The selection evaluation unit

ICL Technical Journal November 1985 369

2.1.4 Retrieval unit. This unit is told by the LFU which bytes of the record to
retrieve as if that record had satisfied the LC. It stores retrieved records in the
retrieval processor’s (RP’s) 32 kbyte store for analysis. The record is
subsequently prefixed by an identifier, length and task word if it satisfies LC
and discarded if it does not.

The RU also notes the end of a logical block of data in the RP store for
checkpointing purposes.

2.1.5 Retrieval processor: Up to this stage, the CAFS engine works as a
strictly synchronous pipeline processor. The RP’s activity, however, is store-
buffered as described above. This allows the front end of the CAFS engine in
an extreme case to work thousands of records ahead of an RP examining a
physical cluster of records satisfying LC.

The RP has two roles. One is to calculate data derived from the file search as
a whole; the second is to be the final arbiter about passing data back to the
host mainframe. These are separable functions; the RP, after returning a
nominated number of records to the mainframe, can cease to retrieve but
continue to analyse the whole file.

The RP may calculate a number of functions in a user-determined sequence.
It evaluates the set of interfield comparisons constituting IFC. It computes
the maxima, minima and totals of values in specified fields. At any point in
this sequence, the record could be rejected as a candidate for passing back to
the mainframe.

The data-delivery rate of current discs limits CAFS search speed except in
high-hit-rate situations where the load on the retrieval processor can become
a limiting factor. Record reduction is done by the RU in parallel with record
selection but handling hit records and evaluating functions take time.

In summary, and in relational database terms, the key channel and search
evaluation units jointly perform the SELECT operation and the retrieval unit
performs the PROJECT operation.

It can be seen that the CAFS engine employs powerful, parallel and purpose-
built hardware focused on a common task previously done by conventional
von Neumann software.

The elapsed times of tasks unassisted by CAFS have been improved by
factors typically of 10-100 when CAFS was introduced. At the same time,
much if not almost all the work has been transferred from the central
processor to the CAFS engine, as was intended; in one verified case, 99-94%
of the mainframe load was removed.

Appendix 1 gives a more detailed model of the search and retrieval
performance of the CAFS engine together with information showing how the

370 ICL Technical Journal November 1985

objective of coexistence has been met. The first ICLCUA report® includes the
results of the first CAFS performance tests.

The following four sections describe the software interfaces to the CAFS
engine which enable the prospective user to tap the search power of the
hardware.

2.2 CAFS search option

The objective of this software is to enable existing programs to use CAFS’
search power without requiring any change to the code. Such programs will
be ones which we do not wish to or cannot change. The former category
includes operational programs which have been well run-in, low-priority
‘one-offs’ as well as the year-end undocumented antique of apocryphal
importance and complexity. The latter category includes packages and
applications generated by QuickBuild.

CSO is addressed to the classic batch suite of Cobol and Cobol-like programs
which select records from a file using a known criterion and process the ‘hit’
records.

CSO allows selection on the basis of a Boolean-only criterion; quorum logic
and interfield comparison cannot be used to eliminate records. Further, CSO
cannot be used by the other three software interfaces to CAFS.

The CSO interface is a single system control language (SCL) command
SET_CAFS_CRITERIA (STCC)” with parameters for defining the relevant
record format(s) and the selection criterion. This causes selection intelligence
and CAFS instructions to be interposed (Fig. 5) at record-access method
(RAM) level between the target data file and the program.

For example, suppose a program ISSUEDEMAND processes a file
MYMASTER containing records of several different types, each starting with
a four-character field, TYPE. The program is only interested in records
where:

TYPE =4 and AMOUNT_OWING = £300 000.00
The following SCL boosts the performance of ISSUEDEMAND:

ASSIGN_FILE (MYMASTER, MAINFILE, LEVEL = C)
STCC (LNAME = MAINFILE,
ITEMS =TYPE (1:4) & AMOUNT_OWING (9:9),
CONDITION = (TYPE EQ 4) and
(AMOUNT_OWING GE 300000)”)
ISSUEDEMAND

ISSUEDEMAND continues to evaluate returned records as normally

ICL Technical Journai November 1985 371

because it has not been changed in any way. It finds that each record is a hit
and that the file appears to be only 0-001% or whatever of its previous size.
The program completes its task a great deal sooner than before.

before CSO after C50
program ’ program
/\ SCL ———a= | CAFS RAM
L1 ITI L1l
CAFS - ISP
rrrTvrvsrnd
data

S

Fig. 5 Before and after CSO

The reduction in elapsed time and use of system resources is governed
entirely by the hit rate on the file; the smaller the hit rate, the greater is the
improvement. CSO users would normally expect to see a considerable
improvement in performance, and with an interface consisting of one SCL
command it is not difficult to try a number of experiments.

2.3 Direct CAFS interface

The direct CAFS interface (DCI) is the only software interface with the
objective of providing all the facilities of the CAFS engine to the user. It does
so via the standard VME procedure call, which is almost universal and
independent of the host language used. Character-string parameters in high-
level syntax are passed from user-software to DCI at runtime and fully
validated®®,

The other three software interfaces tailor CAFS’ functionality to the needs of

372 ICL Technical Journal November 1985

their respective users for the sake of simplicity. For example, only DCI
provides quorum evaluation, management of multiple types of SIF data, full
subcondition counting and access to the full range of CAFS’ RP facilities.
DCI is therefore ‘the closest approach to the original sound’ and logistically
the best way to gain hands-on experience of the CAFS engine itself.

DCI is the interface for high-level language programmers, for those not
requiring the high-level relational CAFS interface and for the most
sophisticated CAFS applications, possibly requiring the highest performance.

In addition to providing a procedural interface to CAFS, DCI provides
facilities in the following categories:

— file management: open, read and close file

- TP transaction management: save, restore, end phase etc.
— text management: SIF to/from legible conversion, trailers
- DCI package runtime control: checks and diagnostics

The minimum sequence of DCI tasks, not using CAFS RP functions, will:

— open a file for CAFS searching

— define the target record’s format and retrieval requirements
— define the search criterion LC, IFC being null

— read the next retrieved record

- close the file being CAFS searched.

Three criteria using three subconditions indicate the range of DCT’s selection
capability:

C1 =FEATURE EQ ‘dglazing’
C2=FEATURE EQ ‘garage’
C3=FEATURE EQ ‘gardens’

— Houses below £50 000 in Finetown with two of the three features:
PRICE LT 50000 and TOWN EQ ‘FINETOWN' AND QUORUM
THRESHOLD 1 Cl C2 C3

— Must have garage and double-glazing: anything near Crewe or a Cheshire

house not in Shambletown:
C1 AND C2 AND (POSTCODE EQ ‘CW! OR
(TYPE EQ 1 AND COUNTY EQ ‘Cheshire’ AND TOWN NE
‘SHAMBLETOWN))

- How many properties have double-glazing or garage or garden?

Define LC=C1 AND C2 AND C3 AND FALSE to reject all records
in RU
Request counts on the three subconditions C1, C2 and C3

DCI needs CAFS to access data, in contrast to the relational system which
uses both CAFS and non-CAFS modes of data access. It addresses only

ICL Technical Journal November 1985 373

record manager (RECMAN) files but it is ICL’s intention to extend it to
address IDMS databases.

To date, DCI has been used from Application Master, Reportmaster,
Querymaster, Cobol, Fortran77, Pascal, RPG2, SCL, Algol68 and from
Filetab and Rapport.

2.4 Relational system

In contrast to the two CAFS interfaces so far described, ICL’s relational
system was not designed especially for CAFS. Its objectives and methods
were established!® in the knowledge of parallel work on data models and
CAFS.800 but before the appearance of the current CAFS engine. A common
emphasis on data retrieval and the ability to search existing data provided the
basis for the successful integration of the relational CAFS engine and the
relational software. The results obtained should encourage ICL’s customers
to bring the power of CAFS to their existing and developing systems.

ICL’s complete relational system is provided as three separate products; these
are the personal database system PDS, the end-user query language Query-
master (QM) and the relational CAFS interface (RCI), a Cobol language
extension.

PDS is classified here as part of the CAFS context rather than part of the
CAFS system. PDS data is searchable by CAFS but the PDS software itself
does not include CAFS-search capability. QM and RCI make automatic and
transparent use of CAFS as appropriate.

The objectives of ICL’s relational system were:

— to widen the community of data users

— to mesh with other data management products and preferred system
development methodologies

— to retain the flexibility to exploit new techniques.

The aim of providing effective access to a wider community implies that the
data should be presented to users in a simple and uniform way and that the
special knowledge required of the user should be reduced to a minimum.
Low-level details, for example of data storage, should be of interest only to
the small minority responsible for providing a relational data-access platform
to the majority. Keeping detailed information in place is essential in the
division of labour necessary in any organisation. Here, to provide read-access
to data, it is only the senior analyst/programmers and query-service pro-
viders who work below the relational level with more intimate details of data
storage.

The relational system data model presented to the users includes a tabular

374 ICL Technical Journal November 1985

data structure without user-visible navigation links between tables. The
tables presented to the end-user or the Cobol programmer are the results of
using the relational operators SELECT, PROJECT and JOIN. This data
model conforms with Ted Codd’s restated definition of a relational
database'!. It also adopts a duality principle by allowing programming uses
of the relational interface to be tested out interactively.

The data model is enriched by knowledge of the inter-relationships between
the entities represented by the tables of data'?:!3, It is therefore not necessary
for the Querymaster user to join tables explicitly unless there is some choice
or ambiguity about the inter-relationship of one table with another. This
results in shorter queries and less risk of user confusion. RCI users enjoy
analogous benefits.

The relational products intended for use with shared data are designed to
integrate with and work off the data dictionary system DDS. Data dictionary
systems are increasingly being regarded as necessary control centres model-
ling both the using organisation and its systems development. DDS provides
documentation on the accessibility of data by groups of users and avoids the
need to duplicate information on the format or storage of data. In the case of
CAFS, new dictionary definitions have been introduced to document the
encoding of text data in CAFS SIF format and to control CAFS searching of
IDMS areas.

The relational system addresses existing data in both IDMS and RECMAN
formats; here, therefore, a high-level definition of a logical database has been
coupled with a Codasyl (Conference on data systems languages) definition of
a physical database and the resulting system enjoys the complementary
benefits of the relational and Codasyl approaches.

It is part of the marketing mythology in the industry that the Codasyl and
relational approaches to data management are in conflict; in fact they address
different levels of database definition, as noted above and illustrated in Fig. 6,
and fit well together, as this work has shown. The theory of update logistics
and semantics at the relational level is incomplete; ICL has therefore retained
the Codasyl standards for update and data-integrity enforcement.

The technological flexibility of the relational system is amply demonstrated
by the integration of CAFS support and by subsequent developments such as
the interface to graphics facilities on a workstation.

The design of the CAFS support for the relational system had to balance the
great benefits offered by CAFS against the preservation of a simple and
consistent view of data wherever these came into conflict. Every function
offered by the system is supported whether CAFS is available or not in order
to simplify the user interface. The system maps the large variety of Cobol data
types to a smaller range of relational data types, regardless of the CAFS
engine’s ability to handle the physical data.

ICL Technical Journal November 1985 375

logical database relational database

tables rows | items

CAFS system software relational software

aM RCI
system software physical database
RECMAN IDMS (%)
| I T N O N N I |
CAFS -1SP relational hardware

physical database
RECMAN (PDS)
10MS (X)

M

Fig. 8 Physical and logical databases

In practice, a major part of the CAFS functionality has been exploited in
supporting the relational model. Comparisons are supported on all data
types and the ability to handle the SIF format has been made available in its
single most valuable manifestion — word-searching of free text with fuzzy

376 ICL Technical Journal November 1985

matching. The quorum capability of CAFS has not been made available
directly as it does not fit easily with the implicit approach to the specification
of joins. The CAFS retrieval processor is employed to count and make
interfield comparisons. The combined use of (partial) primary key selection
and CAFS searching is the most important performance optimisation
introduced by the RECMAN CAFS software; it is faithfully exploited by the
relational system.

In the IDMS context, the relational system and the IDMS database manager
co-operate to perform the necessary selection and retrieval. The user’s
independence from the choice of RECMAN or IDMS data storage has been
preserved. The introduction of CAFS support has not altered the form in
which end users pose their enquiries except for the provision of word-
searching and fuzzy matching.

The availability of CAFS influenced the relational system’s rules for opti-
mised data retrieval. The system looks for the best ‘opening move’, as most
enquiries allow no choice of navigation path after selecting the first record
type. This is a good approach where hit rates are small; the optimiser does not
have volumetric information on which to base its choice, but users can give
specific advice on the ‘opening move’ where this is appropriate.

The relational system on the whole uses designed-in data infrastructure such
as record keys and IDMS sets and indexes. It supplements these data access
techniques by using CAFS for serial or partly keyed scans whenever possible.
Both access optimisation and CAFS exploitation are rule-based stratégies
and are defined in detail in the product manuals**!3,

2.4.1 Querymaster: Querymaster provides a wide range of users with an
online relational query service to shared data, typically an IDMS database
with additional RECMAN files. The user conducts a dialogue with the
product to select a query view; within that query view, the user can explore
the availability of data and select and retrieve data by means of enquiries in a
simple language. The product displays and prints tabular data, stores
temporary results, sorts and provides summary information such as totals at
required control breaks.

The user’s task is much simplified since Querymaster selects the navigation
path and resolves names to decide which record types are to be accessed, how
they are to be joined and where CAFS is to be used. A query is presented as a
simply structured command with data selection conditions following the
keyword ‘WHERE’, e.g..

LIST CUST-NAME, ORDER-NO, ORDER-DATE, QUANTITY,
PRODUCT-DESC WHERE COUNTY STARTSWITH ‘LANC’
AND ORDER-DATE =1.10.84 TO 31.10.84

The query view is created by the VME command CREATE_QUERY_VIEW

ICL Technical Journal November 1985 377

from a definition in a DDS data dictionary. When the shared data is fully
described in DDS, the task of creating and documenting a new query view is
reduced to the selection of data to be viewed and the tailoring of that view to
the particular requirements of its users.

Querymaster supports the online nature of enquiry not only with CAFS but
also with comprehensive ‘help’ facilities and parameterised macros for the
significant proportion of repeatedly used ‘production’ queries.

The combination of Querymaster and CAFS, as illustrated by Corbin'S,
enables end-users across a wide ability spectrum to express their data-
retrieval requirements and satisfy their substantial latent demand for timely
information.

2.4.2 Relational CAFS interface: RCI is a Cobol language extension,
providing both a program interface to CAFS and a read-only relational
interface to data. RCI looks like a serial-file handler to the programmer who
is presented with relational views (qv SQL) of the data. Behind the relational
interface, RCI is using the standard SELECT, PROJECT and JOIN
operators to compose these relational views.

The principal objectives of RCI were to provide:

- a transparent Cobol interface to CAFS

— a read-only relational interface to IDMS/RECMAN data

— value-based privacy to add to Codasyl’s item-based privacy

- additional program/data independence for simpler maintenance
— simplified programming and higher levels of productivity

— selection on and processing of text fields

The Cobol programmer manipulates the data views through four new verbs
provided by the Cobol system:

START creates an instance of the view, fixing selection parameters

READ delivers the next record of the view instance

SAVE preserves the state of a view instance at the end of a TP
phase

RESTORE restores the view instance state at the start of next TP phase

The data environment of an RCI-enhanced Cobol module includes a set of
relational views known as an application view and defined in DDS, The latter
is analogous to Querymaster’'s query view and can be tested using
Querymaster.

Other features of RCI are common to Querymaster and have been covered
above in the section on the relational system.

378 ICL Technical Journal November 1985

3 The CAFS context

Fig. 1 illustrates the wider system of which the CAFS subsystem is a part. The
four elements of this are:

— the operating system: VME

— the physical data-management systems: PDS, RECMAN & IDMS

— the required man-machine interfaces (MMIs): languages, forms, Viewdata
- the system-development control mechanism: DDS

VME provides support for the CAFS system by managing resources at the
record (RECMAN) and physical magnetic media (MAMPHY) levels. VME
also provides job control, operator control and monitoring facilities related
to CAFS.

An important synergy objective for the CAFS system was that it should
address existing data on files and databases. Physical data on VME is held in
personal databases (PDS), RECMAN files and IDMS/IDMSX Codasyl-
standard databases.

PDS databases are in fact implemented in a published format over a set of
index-sequential (ISAM) files. PDS users can deploy CAFS on PDS-held
data by using DCI or, via a DDS-held retrodefinition of the files, the
relational system.

The range of CAFS-searchable standard file types includes the most common
ones including serial, ordered serial, index sequential and hash random but
does not include files containing spanned records or nonembedded keys. The
primary key of an ISAM file can be used to focus a CAFS search to a small
range within the file. This facility implies that the primary key should be
chosen not only to distinguish one record from another but also to provide
the most useful physical record clustering within the file.

IDMS databases are made CAFS-searchable on an area-by-area basis. The
relevant areas are reformatted in a single-pass process by resequencing the
order of information within each page. CAFS’ projection facility is used to
convert physical IDMS records into subrecords as defined in the IDMS
subschema; there is therefore a strong argument for tailoring subschemas to
anticipated CAFS searches.

Computer systems are today being made available to a wider range of users
than ever before. This has raised the relative importance of the man-machine
interface in the considerations of system designers. CAFS facilities have been
provided below the three key interfaces of conventional language, forms and
viewdata.

Finally, it is commonly recognised today that the activities of system
development need to be co-ordinated around a central model of the host

ICL Technical Journal November 1985 379

organisation and its computer systems. The data dictionary system (DDS)!’
continues to be the key ICL component for modelling and controlling all
phases of such development, driving the use of all the products in the CAFS
systems and adjacent to it; the preceding discussion of the relational system
gives a good example of its role.

4 CAFS exploitation

At the moment, the number of CAFS engines ordered runs well into four
figures. CAFS-capable systems can be found in all sectors of the market
served by 2900 and Series 39 mainframe computers; no one sector of central
or local government, public utilities, health, manufacturing, retail, insurance,
education, police or defence dominates the others, nor does any single type of
application dominate. There are simultaneous trends to extend the usefulness
of existing systems, perform research and analysis online, create end-user
services and enhance searching in operational systems — in line with the four
areas of activity targetted by the four software interfaces CSO, DCI, QM and
RCI. The escalation of this activity confirms the original premise that data
searching is an unavoidable computing process of fundamental importance.

The application papers which follow in this issue examine specific systems
which have been developed. The following notes cross-reference these
applications, introduce others and highlight some useful techniques for
CAFS exploitation. The second ICLCUA CAFS User Group report!®? is
another useful source of application examples and techniques.

4.1 Using the CAFS search option

CSO can be used in conjunction with Cobol programs and with the
QuickBuild components Application Master (AM) and Reportmaster (RM)
which open files in Cobol style.

It is not necessary that the selection condition employed in the Cobol
program should be expressible in CSO terms. As CSO acts as a primary filter,
it is only necessary that the CSO condition should be identical to or weaker
than the program condition. If this is not so, use of CSO will not pass all hit
records to the program and will implicitly change the role and the output of
the program. Where the CSO condition is a weakened form, the program will
probably reject some of the records it receives. An extreme example is where
EISO is only used to retrieve records of the right type from a multirecord-type
e;

4.2 Using the direct CAFS interface
This section is confined to DClI-specific techniques for exploiting CAFS. It

focuses on DCI’s role with regard to research activity, weak typing, text,
quorum searching, data profiling and software packages.

380 ICL Technical Journal November 1985

Burnard'® and Walker?° describe research activities in the arts and sciences
which have been facilitated by DCI/CAFS. In both cases, investigations
previously conducted in a batch offline stop-start mode are now being
completed online. Researchers are now interacting with their data, continu-
ally testing and refining their hypotheses in a more creative environment.
Clear evidence is available that CAFS is not just speeding up the logistics of
research work but making it more penetrative and productive.

Research work is not of course an academic monopoly; in an increasingly
competitive world, all organisations are seeking to use their resources more
effectively. The ability to manage large volumes of semistructured data is a
key asset in this context and is assisted by the next technique to be discussed.

The CAFS-searchable self-identifying data format (SIF) provides a latebind-
ing mechanism whereby we can defer typing data too strongly at the data-
modelling stage. For example, consider the hierarchy of object categories in
Fig. 7.

organisations

suppliers clients
preferred backup Europe key countries world
major minor

Fig. 7 A hierarchy of object categories

The categories vary from generic to specific as we move down the tree, a data
model which preserves more meaning than the normal single-level entity
model. Given another perspective in the model, the hierarchy becomes part of
an object lattice. The data model supports queries which will vary from
generic to specific; a mechanism which can type the data to suit the query in
hand at runtime is clearly desirable.

SIF data, as the name implies, precedes each item of data with an identifier;
data is no longer strongly typed by position. CAFS can mask the identifier
just as it can mask the data values; it can ignore irrelevant or over-specific
aspects of the categorisation. By a suitable binary choice of identifiers, specific
categories can be converted into generic categories by CAFS masking,

Text management is one area in which varieties of ‘data’ will naturally occur.
DCT’s ability to search text is already being fully exploited and is described in
detail elsewhere!8-19:2!

We examine now the uses of quorum searching. Whereas Boolean selection is

ICL Technical Journal November 1985 381

for exact data matching, quorum selection is for speculative searching. A
defined but variable threshold allows records to qualify as sufficiently
interesting on the basis of their proximity to some ideal target. Different
factors can be weighted to reflect their relative importance. Boolean selection
is appropriate when the data is determined by the selection criterion; quorum
selection is better when the selection criterion is determined by the data.

For example, a personnel department will be seeking the best available
candidate; a recruitment consultancy will respond with a shortlist of credible
candidates; a detective is concentrating on the most likely suspects; a
company naming a new product chooses a name which cannot be confused
with those of its competitors’ products; an inventor seeks out patents which
are adjacent to the topic of his invention. Again, quorum selection is
preferable to Boolean selection if the input data for the selection criterion is
unreliable.

Quorum evaluation incidentally illustrates the necessity of searching; it is a
calculation which cannot in general be supported by file indexes.

DCIT helps the user to infer some facts from a mass of detailed data. CAFS’
ability to accumulate a number of counts can be used to profile the values of a
particular data item, to demonstrate the shape of the data. A distribution
function can be built up by one or more CAFS scans; the results can then be
displayed, say via Querymaster, in histogram, pie-chart or some other
preferred form of management graphics. A subsequent interaction might
focus on some sector of the distribution in search of greater detail; users
might include market researchers, quality-control engineers and statisticians.

Turning now to the software industry, a number of software houses are
actively working to interface their packages to CAFS via DCI. It supports
fully dynamic data-management tools and has low runtime overheads.
Logica with Rapport are the first to bring a CAFS version of their product to
market; others are in the pipeline.

Where packages have not been developed to exploit DCI implicitly, the user
may still have the opportunity to do so if the product is an ‘open’ one with
user procedures. The QuickBuild components Application Master,
Reportmaster and Querymaster all come in this category; they can call DCI
modules direct as well as using RCI via Cobol. The two CAFS interfaces QM
and DCI can be usefully combined together to give both a relational interface
and full CAFS selection capability.

4.3 Using Querymaster
Corbin’s paper'® describes the experience of one large user in setting up and
using an end-user service. Although computer literacy is on the increase, the
introduction of end-user computing in an organisation may involve a change
of culture, attitudes, strategy and procedures.

382 ICL Technical Journal November 1985

There is a clear trend to providing higher and higher levels of management
and decisionmaking with direct IT support. Data processing (DP) depart-
ments are delivering support systems to operational staff, professional IT
workers and the middle if not the top ranks of management.

The availability of production and ad hoc query facilities is a key component
of this system provision. Querymaster supported by CAFS facilitates in situ
enquiry on core corporate data, data extraction from core data to informa-
tion centres and enquiry within an information centre.

The Querymaster documentation clearly defines the ‘queryview controller’
role of the individual responsible for setting up one or more end-user query
services. His use of such queryview-tailoring facilities as subsetting, renaming
and macros can help end-users significantly.

Experience at Southern Water'® shows its staff adding use of the query
service to their regular work pattern. Where query requirements can be
covered by a number of predefined macros, the site might consider integrat-
ing that query activity with existing TP services through use of RCL

DP departments will find that good core systems attract peripheral data use
of an occasional or ad hoc nature. The profile of data use may even change.
They will also find that the provision of ready data access highlights the
quality of the existing data or the lack of it; the importance of this most
intangible of corporate resources will be very obvious.

4.4 Using the relational CAFS interface

RCI presents serial files to a Cobol program in the same way as Querymaster
presents tables of information to the end user.

RCI can therefore be used simply to boost the performance of programs
which are already searching in serial fashion. This is similar in style to CSO’s
use except that a simple transformation of the code is required, substituting
RCI calls for the existing Cobol calls.

RCI can provide single-stream input from multiple files as required by such
products as Reportmaster (RM). It can select on text at word level without
the Cobol program needing to recognise this new format. It can simplify the
read-only manipulation of IDMS data, substituting a serial-file interface for
Codasyl DML (data-manipulation language) and its implicit and sometimes
difficult currency concept.

The Viewdata interface is perhaps the most attractive interface to computer
systems for the general public; it has a directive screen format in familiar
colour television packaging. Viewdata applications on ICL mainframes use
the Bulletin TP/Cobol application product.

ICL Technical Journal November 1985 383

Berkshire County Council were the first to couple Viewdata and CAFS’
search power using RCI; they have provided the public with a CAFS-based
library catalogue searchable from some ten terminals in Reading’s new
central library, replacing constrained searching by author, subject or title by
free matching on title. Berkshire demonstrated the value of the Query-
master/RCI duality; they prototyped the program’s relational interface with
QM and successfully ran the system three working days after taking receipt of
RCL

The deliberate similarities between QM and RCI have another benefit. As the
pattern of ad hoc and production enquiry identifies itself, a QM service can be
partially replaced by a screen-based production query service using RCI. This
has usability and operational benefits in that form-filling is simpler than the
QM language syntax and the TP environment is more closely controlled than
the MAC environment.

RCT has raised the level of the interface between program and data, with three
distinct effects. It has enabled programmers to get their programs right
earlier; it has removed sources of error, replacing program-coding by a DDS-
definition process, and it has increased the independence between program
and data, insulating code from such changes as a migration from files to
database or vice versa. It has also brought discernible productivity improve-
ments by taking on the common chores of data manipulation which have to
date been the lot of all programmers.

A major and skilled site, estimating a telephone-directory enquiry system as a
2 man-year project, completed the work in 13 man-days by combining
fourth-generation QuickBuild MMI techniques with RCI/CAFS.

4.5 System synthesis

A wide range of design considerations have been described
elsewhere®!8:21:22 This section therefore confines itself to the framework for
information system analysis and design.

A suitable framework will include a methodology and will support the use of
a range of development tools. The development process will identify a
number of phases, for example:

IT strategy, system prioritisation, business system specification, busi-
ness requirements specification, design, implementation, testing, tran-
sition, live running, maintenance.
Each phase will have defined input, output, decision points and criteria
against which to optimise; most importantly, there will be criteria defining
whether to proceed, double back or abandon the development process.
Given a clear framework, it should be clear where CAFS-related decisions

384 ICL Technical Journal November 1985

need to be made. Although different methodologies differ even in their
naming and bounding of the above phases, some comments can be made.
Note particularly that it is always possible to lose the clarity of the phased
approach by making low-level decisions too early.

In the CAFS context, the business-system specification giving the high-level
definition of the system’s scope can be more ambitious. A broad range of
medium-priority requirements will be supported without major design effort.
In the business-requirements specification, CAFS will improve the feasible
performance targets that can be defined. Finally, CAFS simplifies the design
process by removing the need for some of the data infrastructure with
consequent benefits for the remaining phases.

5 Future directions

The CAFS system can be developed in many ways. This section is the
author’s personal view of the options available.

On the hardware front, it is reasonable to assume that future implemen-
tations of the current CAFS engine will keep pace with disc and data-input
technology, taking advantage of VLSI and more powerful constituent
microprocessors. As the balance of system costs changes, it is possible that
CAFS capability could migrate further from the system centre, from the disc
control module to the disc drive itself.

CAFS microcode improvements have already come through in the product.
5.1 Further integration

A likely feature of ICL’s product development will be the further integration
between the components of the CAFS system and between the CAFS system
and its environment. Already, VME has extended the range of CAFS-
searchable files and improved coexistence between CAFS and TP activity;
both IDMS and Querymaster have been further tuned to facilitate CAFS
searches. ICL’s intention is that DCI will be supported by DDS and extended
to IDMS data; in the wake of DCI, the software industry is integrating a
number of packages with CAFS.

The further integration of indexing and CAFS-searching techniques is an
interesting prospect, covered in detail elsewhere?!:23:24, A ‘secondary index’
or ‘coarse index’, a search cell index rather than a record index, focuses CAFS
searching onto relevant subsections of a file. This technique has already been
essential on major projects with large files>* and could usefully be made
generally available as a development of VME’s RECMAN facilities. Tagg?*
models the performance impact of secondary indexing.

Knowledge-engineering technology will have an increasing role to play in the
future CAFS system. Pilot systems have been developed using Adviser for

ICL Technical Journal November 1985 385

performance sizing and end-user guidance. In the latter case, a dialogue with
the user leads to the generation of the appropriate Querymaster command.

5.2 Text and office

The CAFS engine was designed with both data and text in mind. Query-
master and RCI handle elementary text on a small scale while DCI provides
more comprehensive text-manipulation facilities. CAFS-exploiting ‘text’
tools and applications have not yet surfaced, although Kay?? gives an
indication of the possibilities.

CAFS development will continue in the context of future international
standards on character-representation and text management.

5.3 Relational database engine

The current CAFS engine performs selection and projection on physical
records or relational tables. Babb?® has shown how further specialised
hardware can be developed to perform these operations on logical records or
general relational views. The hardware simulates joining data by performing
selection on a virtual join.

International standards are crystallising at the Structured Query Language
(SQL) level; SQL is likely to be more useful as a meeting point for the
computer industry than as a language for computer users. The definition of
standards in this and other areas encourages the development of customised
hardware systems to support those interfaces.

6 Summary and conclusions

This paper has defined ICL’s current CAFS system, has described the
functionality of its hardware and software components and has shown how
they work together and in the context of the VME environment. It has given
some indication of the way the software interfaces are exploited, as a prelude
to the other articles in this volume.

CAFS successfully performs the generic process of data searching with data-
driven parallel hardware. Encouraged by the story so far, the author has
hazarded an opinion of CAFS future development.

We live in an age of increasing hardware design capability. With increased
customisation, we may look forward to the classic general-purpose von
Neumann mainframe being replaced by open systems of specialised
hardware-based servers. The CAFS system is an example of such a server.

Acknowledgment

In my turn, I acknowledge with pleasure the significant efforts of past and

386 ICL Technical Journal November 1985

present colleagues whose combined skills have produced the CAFS system. I
thank Tom Lake, now of Intercept Systems, for his first-hand insights into the
architecture of ICL’s relational software and the ICLCUA(UK) CAFS
Working Party for stimulating discussions over the past four years. Finally, I
thank Jack Howlett for his comments on this paper but claim sole credit for
any remaining errors and omissions.

References

1 CARMICHAEL, J.W.S.: ‘History of the ICL content-addressable file store (CAFS), ICL
Tech. J., 1985, 4 (4), 352-357.

2 SCARROTT, G.G.: ‘Wind of change’, ICL Tech. J., 1978, 1 (1), 35-49.

3 MALLER, V.A.J: ‘The content addressable file store — CAFS’, ICL Tech. J., 1979, 1 (3),
265-279.

4 CARMICHAEL, J.W.S.: ‘Personnel on CAFS: a case study’, ICL Tech. J., 1981, 2 (3),
244-252.

5 CROCKFORD, L.E. ‘Associative data management system’, ICL Tech. J., 1982, 3 (1),
82-96.

6 ICL Computer Users Association (UK) CAFS SIG: ‘Exploiting CAFS-ISP’, Working
Party Report, July 1984 (2nd Amended Reprint, July 1985), ICLCUA (UK), PO Box 42,
Bracknell, Berks. RG12 2LQ, UK.

7 ‘VME programmer’s guide’, ICL Technical Publication R00475/01, 1985,

8 ‘Direct CAFS Interface programming guide (DCL100), ICL Technical Publication
R00421/01, 1985.

9 ‘Direct CAFS Interface reference card (DCL100), ICL Technical Publication R00431/01,
1985.

10 HUTT, A.T.E: ‘History of the CAFS relational software’, ICL Tech. J., 1985, 4 (4), 358-364.

11 CODD, E.F: ‘Relational database: a practical foundation for productivity’ (1981 ACM
Turing Award Lecture), CACM, 1982, 25 (2), Feb.

12 CODD, E.F.: ‘Extending the database relational model to capture more meaning’, ACM
Trans. Database Syst., 1979, 4 (4), 397-434,

13 BABB, E.: ‘Joined normal form: a storage encoding for relational databases’, ACM Trans.
Database Syst., 1982, 7 (4), 588-614.

14 ‘Using DDS to prepare a query view (QM.250), ICL Technical Publication R00434/01,
1985. :

15 *The Relational CAFS Interface: user guide (RCL100), ICL Technical Publication
R00251/01, 1985.

16 CORBIN, C.E.H.: ‘Creating an end-user CAFS service’, ICLTech. J., 1985, 4 (4), 441-454.

17 ‘Data Dictionary System: the DDS model (DDS.700), ICL Technical Publication
R00408/01, 1985,

18 ICL Computer Users Association (UK) CAFS SIG: ‘CAFS in action’, Nov 1985, ICLCUA
(UK), PO Box 42, Bracknell, Berks. RG12 2LQ, UK.

19 BURNARD, L.. “CAFS and text: the view from academia’, ICL Tech. J., 1985, 4 (4),
468-482.

20 WALKER, D.: ‘Secrets of the sky: the IRAS data at Queen Mary College’, ICL Tech. J.,
1985, 4 (4), 483-488. .

21 TAGG, R.M.: ‘CAFS-ISP: issues for the application designer’, ICL Tech. J., 1985, 4 (4),
402-418.)

22 ‘CAFS exploitation — a practical guide’, ICL Technical Publication R30053/01, 1985.

23 KAY, M.H.: ‘Textmaster — a document-retrieval system using CAFS-ISP’, ICL Tech. J.,
19885, 4 (4), 455-467.

24 WILES, P.R.: ‘Using secondary indexes for large CAFS databases’, ICLTech. J., 1985, 4 (4),
419-440.

25

BABB, E.: ‘CAFS file-correlation unit’, ICL Tech. J., 1985, 4 (4), 489-503.

ICL Technical Journal November 1985 387

Bibliography

1 ‘IDMS part 2: database establishment (IDMS.400/TDMSX.400), ICL Technical Publica-
tion R00154/03 (3rd Amended Reprint), 1985.

2 ‘IDMS part 3: using a database (IDMS.400/IDMSX.400), ICL Technical Publication
R00155/03 (3rd Amended Reprint), 1985.

3 ‘IDMS part 4: database programming (IDMS.400/IDMSX.400)", ICL Technical Public-
ation R00156/03 (3rd Amended Reprint), 1985.

4 ‘IDMS part 5: database design (IDMS.400/IDMSX.400), ICL Technical Publication
R00153/03 (3rd Amended Reprint), 1985, f

5 ‘Using Querymaster (QM.250)", ICL Technical Publication R00433/01, 1985.

6 ‘Running Querymaster in VME (QM.250), ICL Technical Publication R00435/01, 1985.
7 ‘Querymaster (QM.250) user’s reference card’, ICL Technical Publication R00436/01, 1985.
Appendix 1

Connectivity, coexistence and performance

The trend has been to increase mainframe to disc channel connectivity. This
increases the accessibility of the data and reduces the performance-
interference between separate processes. Greater mainframe-CAFS connect-
ivity also implies that a major search task can be syndicated to a larger
battery of CAFS engines working in concert; ten engines can search about 25
Mbytes/s.

The CAFS engine attaches to the DCM on 2966-family machines (2953, 2957,
2958, 2966 and 2988) and on Series 39. Single-OCP 2900s can connect to six
CAFS engines; dual and superdual configurations can connect to eight
engines. On Series 39, the connectivity is greater. Single-node Level 30s can
connect to 36 CAFS engines and Level 80s to 72.

The Series 39 DCM is the high-speed disc controller (HSDC) and connects to
one CAFS engine. On the 2900, the DCU/2 disc-control unit and more
commonly the decision support controller (DSC) unit connect to two CAFS-
compatable DCM:s.

The maximum disc-drive strings on the various controllers are:

— HSDC: 8*FDS 300 or 4*FDS 2500 or 16 MDSS ‘retained’ drives
MDSS drives are EDS 80s, FDS 160s or FDS 640s

- DCU/2 DCM: 16 MDSS drives

— DSC DCM: 32 MDSS drives

We have already seen that some of the synergy and coexistence objectives are
being met. CAFS attaches to standard DCMs working with standard discs. It
is also the case that CAFS searches most standard RECMAN files, PDS
databases and IDMS databases. In the case of IDMS, a single-pass reformat
procedure sets up areas of the database for CAFS searching.

Coexistence objectives also require that a ‘long’ CAFS search should be

388 ICL Technical Journal November 1985

interruptible by a ‘short’ transaction processing task. It would probably be
undesirable for a single-record fetch to queue behind a 40-track full-cylinder
CAFS scan on an FDS 640. VME therefore fragments CAFS searches, each
fragment searching consecutive blocks on a disc-cylinder and being no longer
than a system-parameter defined number of tracks.

On 2966s etc., the maximum-fragment parameter default of ten tracks can be
changed at system setup time to any value. The value must be chosen to
balance the needs of the existing workload against the need to exploit CAFS
searching.

On Series 39, multiblock fetches and CAFS searches travel second class;
single block fetches travel first class. The HSDC exercises the right to pre-
empt long tasks on the disc channel when a short task arrives. Given this
degree of HSDC intelligence, the maximum-fragment parameter is
unnecessary.

CAFS can search data at some 3:6 Mbytes/s, outrunning the delivery rate of
the fastest FDS 2500 drives. In practice, therefore, the following parameters
always affect the data search speed of a CAFS engine:

- DS: the maximum formatted-data delivery rate of the disc drive

— BF: the blocking factor; block-size choice effect on delivery rate

— FF: the fragment factor; governed by the temporal dissection of the CAFS
search into search fragments

— PF: packing factor; the proportion of the data blocks occupied by the
records relevant to the CAFS search.

The basic upper limit on searching speed is therefore:

file search rate < DS*BF*FF Mbytes/s
data search rate <DS*BF*FF*PF Mbytes/s

Other factors such as disc head movement, rotational latency, file fragmenta-

. tion, buffer management and process multiplexing all subtract from the data
rate as perceived by the application program or the end user. Note, however,
that these aspects of performances are standard and preceded the introduc-
tion of CAFS,

" The disc speeds DS of the drives are 1:17696 Mbytes/s (MDSS), 2:22910
Mbytes/s (FDS 300) and 2:83277 Mbytes/s (FDS 2500).

The blocking factor BF is also specific to the drive concerned. Below are
listed BFs for the three drives where the block size is chosen as N kbytes or as
a maximal value for that number of blocks/track:

Blocking factors are more significant on the faster drives and the best block
sizes vary from drive to drive.

ICL Technical Journal November 1985 389

MDSS disc drives

Block size, Blocks/ Bytes/ Blocking
bytes track track factor
2048 9 18432 0939641
3072 6 18432 0-939641
4096 4 16384 0-835237
6144 3 18432 0-939641
9216 2 18432 0-939641*
18432 1 18432 0939641
2057 9 18513 0943770
3155 6 18930 0965029
4801 4 19204 0978997
6447 3 19341 0-985981
9739 2 19478 0992965
19616 1 19616 1-000000
FDS 300 disc drives
Block size, Blocks/ Bytes/ Blocking
bytes track track factor
2048 15 30720 0-804525
3072 10 30720 0-804525
4096 8 32768 0-858160
6144 5 30720 0-804525
9216 4 36864 0-965431*
18432 2 36 864 0965431
2100 15 31500 0-824953
3412 10 34120 0893568
4404 8 35232 0922690
7316 5 36 580 0957993
9300 4 37200 0974230
19092 2 38184 1-000000

FDS 2500 disc drives

Block size, Blocks/ Bytes/ Blocking
bytes, track track factor
2048 18 36 864 0-785142
3072 13 39936 0-850570
4096 10 40960 0-872380
6144 7 43008 0-915999*
9216 e 36864 0-785142
18432 2 36864 0785142
2164 18 38952 0829613
3188 13 41444 0-882688
4276 10 42760 0910717
6356 7 44492 0947606
11476 4 45904 - 0977679
23476 2 46952 1-000000

ICL Technical Journal November 1985

The fragment factor (FF) reflects the fact that the CAFS search is fragmented
by VME. The interfragment overhead is typically two disc revolutions or
some 33 ms:

FF =(max fragment size)/(max fragment size + 2)

Taking into account the parameters DS, BF and FF and adopting the
asterisked block sizes, we can calculate ‘typical’ effective CAFS file search
speeds as 0922 Mbytes/s (MDSS), 1:793 Mbytes/s (FDS 300) and 2:290
Mbytes/s (FDS 2500).

The Iast parameter to be discussed is the data packing factor PF. Data is not
usually 100% packed in a file for many reasons. Varieties of red-tape
accompany the object data, several record types may coexist in a file and
dynamic data should be packed at lower densities to avoid overflow.

Low packing densities have a proportionate effect on the data search rate of
CAFS, but this does not mean that they subtract from the value of CAFS.
Unused file space and non-target data types are the first examples of CAFS’
effectiveness in filtering out disc space which is irrelevant to the search and to
any subsequent processing.

The Series 39 figures below indicate retrieval processor times for various
tasks. In the worst case of short records and a high hit rate, the RP
component of CAFS will not keep pace with the search rate at the CAFS
front end.

130 ps = overhead per hit record (260 pus on 2966s etc.)
(L+ 8)/3:5 us = output transfer time for the L-byte record
87 us = overhead per function call
200 ps =function adding totalling on an 8-byte field
250 ps = function comparing two 2-byte fields
500 ps = function comparing two 20-byte fields

When the high hit rate is a local phenomenon, a cluster of records satisfying
the LC condition, the buffering within CAFS helps to maintain the output
performance of the engine.

Appendix 2
Glossary of abbreviations

ADRAM alien data record access method

AM Application Master

AV application view (RCI)

AVM application virtual machine

BF blocking factor

CAFS content-addressable file store

Codasyl Conference on data systems languages

ICL Technical Journal November 1985 391

CSO VME CAFS search option

DCI direct CAFS interface

DCM disc control module

DCU/2 disc control unit

DDS data dictionary system

DML data manipulation language (Codasyl, IDMS)
DS disc speed

DSC decision support controller

EDS exchangeable-disc store

FDS fixed-disc store

FF fragment factor

HSDC high-speed disc controller
ICLCUA ICL Computer Users’ Association
IDMS integrated data management system
IFC interfield comparisons

ISAM index sequential access method
ISP information search processor

KC key channel

LE logical condition

LFU logical format unit

MAMPHY physical magnetic media

MIP misleading index of performance
MMI man-machine interface

OCP order code processor

PDS personal database system

PF packing factor

PLI programming language instruction
oM Querymaster

QP quorum processor

RAM record access method

RCI relational CAFS interface
RECMAN record manager

RM Reportmaster

RP retrieval processor

RSI restricted system interface

RU retrieval unit

RV relational view (RCI)

SCL system control language

SEP search evaluation processor

SEU search evaluation unit

SIF self-identifying format

SP select processor

SQL Structured Query Language
STCC SET-CAFS-CRITERIA (SCL for CSO)
SV system version (software set)

TNF third normal form

TPMS transaction processing management system
VME virtual machine environment

392 ICL Technical Journal November 1985

