3-5-man chess: Maximals and mzugs

Article

Published Version


It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.

Published version at: http://ticc.uvt.nl/icga/journal/contents/content24-4.htm#3-5-MAN CHESS

Publisher: The International Computer Games Association

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
NOTE

3-5-MAN CHESS: MAXIMALS AND MZUGS

G.M. C. Haworth1, P. Karrer2, J.A. Tamplin3 and C. Wirth4

UK, Switzerland and USA

ABSTRACT

This note reports the combined results of several initiatives in creating and surveying complete suites of endgame tables (EGTs) to the Depth to Mate (DTM) and Depth to Conversion (DTC) metrics. Data on percentage results, maximals and mutual zugzwangs, mzugs, has been filed and made available on the web, as have the DTM EGTs.

1. INTRODUCTION

Nalimov and Wirth independently, and essentially contemporaneously, have completed suites of 3-to-5-man EGTs respectively to the Depth to Mate (DTM) and Depth to Conversion (DTC) metrics (Wirth and Nievergelt, 1999; Nalimov, Haworth and Heinz, 2000, 2001; Wirth, 2000; Hyatt, 2001; Lincke, 2001a; Tamplin, 2001a).

Karrer (2000) has mined Nalimov’s EGTs to produce complete lists of:

- maxDTM positions and data: 1-0 and 0-1, wtm and btm,
- maxDTM and all mutual zugzwangs: three types, positions and data.

Wirth (2000) produced the analogous DTC data and also calculated the percentage results, 1-0, draw and 0-1, wtm and btm. As he provided the number of positions won in a specific number of plies (Lincke, 2001b), quick wins based on tactical devices may be discounted as required from these percentages. Because Wirth eliminates from his EGTs duplicates of positions with two Kings on a long diagonal, his percentage statistics are marginally more accurate than Nalimov’s. Both, for reasons of comparability, discount only those unreachable positions where the side-not-to-move is in check.

Tamplin and Haworth correlated the mzug data to confirm that the sets of positions had indeed been twinsourced. Tamplin (2001a) provides, with the assistance of the Lincke (2001a) site, an excellent query service to both the DTC and DTM EGTs and files of endgame data, including the data discussed here.

2. MAXIMAL DATA

The large table of maximal results is published on the web (Tamplin, 2001a) rather than here. It includes for both the DTC and DTM metrics, the maxDTM figures (1-0 and 0-1, wtm and btm) and the %-win statistics derived from Wirth’s data. Some observations follow.

Independent maxDTM results by Rasmussen (2000) agreed completely with Nalimov’s and Karrer’s data. Thompson’s original and comprehensive set of 5-man EGTs (Thompson, 2000; Tamplin, 2001b) minimax the DTC of the next btm position rather than strictly optimising the next conversion to a subgame: the weaker side sometimes captures voluntarily as a human player might do. The inconsequential difference is that his maxDTC is just one less than Wirth’s for KRKNP, KRRKN and KBNKP. Thompson (2001) now minimaxes the current DTC by minimaxing the number of men on the board first.

1 33, Alexandra Rd., Reading, Berkshire, UK RG1 5PG. email: guy.haworth@icl.com
2 Plattenstrasse 80, CH-8032 Zurich, Switzerland: pkarrer@active.ch
3 4116, Manson Ave, Smyrna, GA, 30082-3723, USA. email: jat@jaet.org
4 IN4OUT interactive ag, In Boeden 139, CH-8046 Zurich, Switzerland. email: christoph.wirth@in4out.com
Note that, when minimising DTC, the stronger side may unnaturally force-sacrifice surplus force. This occurs for example in KQQQK and KQBKNK, and was seen in Game 4 of the DEEP FRTZ – DEEP JUNIOR match in 2001. Wirth used the existing ETH(Zürich) software RETROENGINE which assumed that captures are made by the winner. Where this need not be so as in wKc3Rb4c2/bKa1+w, Wirth’s depths in plies are one ply too great: some maxDTCs and counts of maxDTC positions are affected (Tamplin, 2001c). Further, DTC measured in winner’s moves can rate moves equi-optimal whose depths differ by one ply. An example is wKc5Rb4c2/bKa1Na7a8 (Thompson, 2001) where Ra4+ and Kd4/5/6 are rated alongside Ra2+.

3. MUTUAL ZUGZWANGS

A reciprocal or mutual zugzwang, mzug, in chess is a position where, ironically, each side could get a better result in theory if it were the other side’s turn to move. There are three types of mzug:

- **ww** = /1-0 a ‘White win’ mzug ... the position is a wtm draw and a btm win for White
- **bw** 0-1/= a ‘Black win’ mzug ... the position is a wtm win for Black and a btm draw
- **fp** 0-1/1-0 a ‘full point’ mzug ... the side that has to move loses.

They are relatively rare and the mzug is a running theme in the composition of endgame studies (Roycroft, 1972; Nunn, 1992, 1994, 1995; Beasley and Whitworth, 1996; Elkies, 1998a; Beasley, 2000). Many counts of mzugs by Rasmussen (1991-2000) have already been published in the endgame quarterly *EG*: they confirm and are confirmed by the data here.

3.1 The Results

Karrer (2000) scanned Nalimov’s 3-to-5-man EGTs (Hyatt, 2001; Tamplin, 2001a) for mzug positions, giving:

- a list of distinct mzugs together with statistics about counts and maxDTM depths
  n.b. for a full-point mzug, the depth is taken to be the sum of the wtm and btm depths
- a list of the distinct maxDTM mzugs

The lists were then passed via Haworth to workers in this field including Elkies, Rasmussen, Roycroft, Tamplin and Wirth. Haworth collated the resulting statistics, confirming full agreement between the data of Karrer, Wirth and Rasmussen, and identifying mzugs which were maximal in both DTC and DTM terms.

---

5 DJ-DF, r7/8/5R2/2k5/8/3R1K2/6P1/8 w: 70. Rc6+ Kb5 71. Rc5+ Kb4 72. Rb5+ Kc4 73. Rd4+ Kc3 74. Rc5+ K×d4
6 To date, Tamplin (2001c) has identified this second inconsequential maxDTC ‘1 out’ difference for KQ(B/N/Q/R)K, KRRK, KQQKN, KQRKR, KRRK(N/Q), KBBBK, KQ(BN/RB/RN)K and KR(BN/RR)K.
Table 1: 3-5 man data on mutual zugzwangs.

Tamplin (2001a) confirmed that the scans of DTC and DTM tables had yielded exactly the same sets of muzzs of each type, further comprehensive evidence in itself of the integrity of the EGIs.
Table 2: Sample maximal mutual zugzwangs of the three types.

<table>
<thead>
<tr>
<th>Endgame</th>
<th>type</th>
<th>de</th>
<th>dm</th>
<th>a maximal mzug</th>
</tr>
</thead>
</table>

Some explanatory notes, which also apply to the associated website (Tamplin, 2001a) are appropriate:

- **White has at least as many men as Black:** the men are listed in the standard K-Q-R-B-N-P order and endgames are listed in alphabetical order.
- **with one exception, all positions are essentially unique, i.e., they cannot be transformed into another listed position by board transformation or by switching colours. The exception is that in symmetric endings, only KPKP here, the set of bw muzgs is acknowledged even though it is transformed by colour-reversal into the set of ww muzgs. The brackets in Table 1 highlight this equivalence.**
- **depths are in winner’s moves.** In Table 2, c, m and cm denote a maxDTC, maxDTM and maxDTC-&-maxDTC position number for bw, bw and bp denote the three types of muzg as above.**
• a/the maxDTC mzug with the greatest DTM depth has been cited. A maxDTM mzug with the greatest DTC depth has also been cited if different, as it is in 18 cases. \( dx \) is the depth in metric \( DTX \).the positions are in canonical form in the sense that:

the wK is confined to a-d for endgames with Pawns, and to a1-d1-d4 for endgames without Pawns if there are no Pawns and the wK is on a1-d4, the bK is confined to a1-h8 if both Kings are on a1-h8, only one position is counted where there are two equivalent ones.

• As is usual, the statistics of Table 1 may include unreachable positions in which the side-not-to-move is not in check. Elkies (2000b) and van der Heijden (2000) have both pointed out such positions:

   KBPKP: 8/8/8/1p6/1k6/1P6/BK6

Figures 1-8 illustrate the deepest mzugs of different types. Some facts, snapshots and curiosities:

   KNNKP q.v. Figure 1: a maxDTC/M 3-to-5-man mzug with \( dc = dm = 105 \) moves.
   KNPKP q.v. Figure 2: max fp mzug with (wtm) \( dc = 1 \) and \( dm = 17 \), (btm) \( dc = 13 \) and \( dm = 28 \).
   KQPKQ q.v. Figure 3: max KQPKQ mzug with \( dc = 91 \) and \( dm = 102 \).
   KBNKN q.v. Figure 4: max KBNKN mzug with \( dc = 67 \) and \( dm = 97 \).
   KRPKP q.v. Figure 5: the maxDTC/M type-2 mzug with \( dc = 63 \) and \( dm = 91 \).
   KP1KP only fp mzugs not having Pawns on both sides: one maxDTC, the other maxDTM.
   KNPKP q.v. Figure 8; ‘Le Trébuchet’, the KP1KP model for 15 of the 33 4-5-man full-point mzugs

All the 4-5-man full-point mzugs feature at least two Pawns: the 6-man rk1N4/n2K4/P7/8/8/8/8/8 (Elkies, 2000b) needs only one and the 7-man 8/8/8/8/2N5/1N6/r1n5/1b1k1K2 needs none\(^7\) (Elkies, 1998b). The likelihood is that there are no pawnless 6-man fp mzugs (Elkies, 2000a).

For a given endgame and type of mzug, \( ZC \) and \( ZM \) are the sets of maxDTC and maxDTM mzugs respectively. Curiously, \( ZC \) and \( ZM \) are either disjoint, identical or one is a subset of the other. There is no end-game for which \( ZC - ZM \neq \emptyset \) and \( ZM - ZC \neq \emptyset \):

\[
\begin{align*}
ZC \cap ZM &= \emptyset \quad \text{KBKNP} \text{ wW}, \text{KBNKR} \text{ wW}, \text{KBKP} \text{ wW}, \text{KBPK} \text{ bW}, \text{KBPP} \text{ wW}, \\
& \quad \text{KNNKP} \text{ bW}, \text{KNKN} \text{ bw}, \text{KNKP} \text{ wW}, \text{KNKK} \text{ wW}, \text{KQPK} \text{ wW} \text{ and so bW}, \\
& \quad \text{KPKP} \text{ wW}, \text{KPPKP} \text{ wW}, \text{bb} \text{ and fP}, \text{KPPKP} \text{ fP} \text{ and KQBQ} \text{ wW}.
\end{align*}
\]

\[
\begin{align*}
ZC \subset ZM \quad & \text{KNPK} \text{ wW (1-2)}, \text{KPPKN} \text{ wW (1-2) and bw (11-15), KRRKN} \text{ wW (1-2) and} \\
& \text{KRPKP} \text{ wW (1-2)}. \\
ZC \supset ZM \quad & \text{KBKP} \text{ wW (3-1), KBKPQ} \text{ bw (2-1), KNKP} \text{ wW (3-1), KNPKPQ} \text{ bw (6-1),} \\
& \text{KPKP fP (15-1), KPPKP wW (6-1), KRKPQ wW (6-4), KRPPKN wW (4-1),} \\
& \text{KRKPQ wW (2-1) and KRPKP wW (2-1).}
\end{align*}
\]

The following 55 2-to-4-man and 3-2 endgames have no mzugs:

\[
\begin{align*}
& \text{KBKK, KBBKB, KB, KBKBN, KBN, KK, KN, KNN, KNNK, KNNKB, KQKB, KQKBK/N/P/R,} \\
& \text{KQ, KQKB/N/P/Q/R, KQNC, KQNCB/N/P/R, KQPP, KQPPB/N/P, KQQK, KQQKB/N/P/Q/R, KQK,} \\
& \text{KQKBN/P/R, KR, KRRK, KRRK, KRRK, KRRKN/P/R.}
\end{align*}
\]

The only 4-1 endgames with mzugs are KBPPK, KNPPK and KPPPQ, echoing the fact that the only 3-1 endgames with mzugs are KBKP, KNPK and KPPP.

4. SUMMARY

This note records the achievement of Karrer, Nalimov and Wirth whose combined work has created a definitive survey of the 3-5-man chess domain. Their work sets an example and provides a basis for further workers to respond to Van der Heijden’s challenge (2001) to mine this data for the interesting study-like positions.

\(^7\) White (to move) can do no better than mobilise Black with 1. Kf2, Kg1/2 or Nc5. Black (to move) allows mates in 1.
Thanks go first of course to Nalimov, and also to Rasmussen and Thompson who provided third and fourth independent sources of data. Our thanks also go to Roycroft who provided access to Rasmussen’s contributions in past copies of EG.

5. REFERENCES


