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Myostatin controls energy metabolism 

SUMMARY  

Myostatin (Mstn) participates in the regulation of skeletal muscle size and emerges as a reg-

ulator of muscle metabolism. We here hypothesized that lack of myostatin profoundly de-

presses oxidative phosphorylation dependent muscle function. For this extent, we explored 

Mstn
-/-

 mice as a model for the constitutive absence of myostatin and AAV-mediated over-

expression of myostatin propeptide as a model of myostatin blockade in adult wildtype 

mice. We show that muscles from Mstn
-/-

 mice, although larger and stronger, fatigue ex-

tremely rapidly. Myostatin deficiency shifts muscle from aerobic towards anaerobic energy 

metabolism as evidenced by decreased mitochondrial respiration, reduced expression of 

PPAR transcriptional regulators, increased enolase activity, and exercise induced lactic acido-

sis. In consequence, constitutively reduced myostatin signaling diminishes exercise capacity, 

while the hypermuscular state of Mstn
-/- 

mice increases oxygen consumption and the energy 

cost of running. We wondered whether these results are the mere consequence of the con-

genital fiber-type switch towards a glycolytic phenotype of constitutive Mstn
-/-

 mice. Hence 

we over-expressed myostatin propeptide in adult mice, which did not affect fiber-type dis-

tribution, while nonetheless causing increased muscle fatigability, diminished exercise ca-

pacity and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that 

myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus reg-

ulating the delicate balance between muscle mass, muscle force, energy metabolism and 

endurance capacity. 
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INTRODUCTION 

Skeletal muscle has inbuilt control mechanisms to prevent overgrowth, which are executed 

at least in part by secreted molecules of the transforming growth factor-β (TGF-β) family, the 

most important being myostatin (Mstn). Suppression of myostatin signaling stimulates mus-

cle growth, however, the functional benefits arising from myostatin deficiency remain under 

debate, because the larger muscles of myostatin knockout mice lose specific force (4, 28, 34, 

40). On the other hand, a heterozygous Mstn-mutation in racing dogs (whippets) increases 

performance in short distance races (37), which could be explained by a fiber-type conver-

sion from oxidative to glycolytic phenotype. Previous work suggested that such profound 

fiber-type conversion in the absence of myostatin negatively alters muscle exercise behavior, 

fatigability and muscle mitochondrial function (6, 15, 18, 29, 39, 42). However, a direct effect 

of myostatin on muscle metabolism has not yet conclusively been established despite in-

creasing evidence for the impact of TGF-β/Smad signaling on energy homeostasis (9, 13, 32, 

47). Moreover, the question remains open, whether previously observed metabolic and 

functional changes are the mere consequence of congenital fiber-type conversion following 

constitutive lack of myostatin or whether myostatin regulates muscle metabolism directly. 

Here we hypothesized myostatin to regulate oxidative phosphorylation dependent muscle 

function and that this would be independent of the muscle fiber-type composition. We first 

investigated in detail the muscle contractile, metabolic and functional characteristics of con-

stitutive Mstn
-/-

 mice and found a profound deficit of aerobic exercise capacity. We then 

compared this phenotype to the effect of myostatin blockade in adult muscle and likewise 

found an increased fatigability and reduced capacity for aerobic exercise following overex-

pression of myostatin propeptide despite an unchanged fiber-type composition. These data 

and the role of myostatin in the regulation of Peroxisome Proliferator-Activated Receptor 

(PPAR) transcriptional activators comprehensively illustrate the importance of myostatin as a 

pivotal factor balancing size and strength of skeletal muscle against endurance through ad-

aptation of its energy metabolism. 
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RESULTS  

Decreased endurance exercise capacity and voluntary locomotor activity in myostatin defi-

ciency 

An index for endurance exercise capacity is the maximal oxygen uptake per body weight 

(VO2max [ml O2/min/kg]), which was determined by running on a treadmill at incremental 

speeds in a metabolic cage. Initially, the oxygen uptake is proportional to the running speed 

but levels off at a plateau, the so-called VO2max, beyond which no further increase is possi-

ble. Nevertheless, running velocity can still increase beyond the speed at VO2max to reach 

the maximal velocity (vPeak [m/min]) before exhaustion of the animals. VO2max of Mstn
-/-

 

mice was reduced by 10% (p=0.004; Figure 1A) and a similar tendency was shown for vPeak 

in comparison with Mstn
+/+

 mice (p=0.13; Figure 1B), while heterozygous Mstn
+/-

 mice had an 

intermediate phenotype. Hence, such decreased oxygen consumption in vivo parallels the 

decreased oxidative phosphorylation rates in vitro (Figure 2G). However, absolute VO2max 

[ml/min] of Mstn
-/-

 mice was increased by 14% (p=0.004; Figure 1C) owing to a respective 

20% and 24% increase of total and lean body mass (p<0.01; data not shown). In conse-

quence, the energy cost of running (running economy at 13 m/min) was increased by 15% in 

Mstn
-/-

 as compared to Mstn
+/+

 mice (p=0.01; Figure 1D).  

“Critical Speed” accurately reflects the capacity for aerobic exercise and is based on the pro-

portional relationship between distance run and time to exhaustion at different velocities 

(8). Mstn
-/-

 mice became exhausted more rapidly, resulting in a 30% lower Critical Speed as 

compared with Mstn
+/+

 mice (15.9±1.2 vs 22.9±1.2 m/min, p<0.001; Figure 1E). These find-

ings provide further evidence that the double muscle phenotype we observed in Mstn
-/-

 mice 

(16.4±0.3 vs 8.4±0.2 mg for soleus muscle, as compared to Mstn
+/+

 mice, p<0.001; similar 

observations were made for others hind limb muscles) cannot compensate for inefficient 

energy metabolism to maintain endurance capacity. The “Respiratory Exchange Ratio” (RER), 

CO2eliminated/O2consumed, indicates the type of fuel being metabolized to supply the body with 

energy. Resting and maximal RER were slightly increased in Mstn
+/-

 mice and even further 

increased in Mstn
-/-

 mice as compared with wildtype animals (Figure 1F). This implicates a 

preference for glycolysis over fatty acid oxidation, which is considered to be disadvanta-

geous for endurance exercise (46). 



Myostatin controls energy metabolism 

In order to evaluate the impact of decreased endurance capacity on voluntary locomotion, 

total night-time activity was measured and revealed no significant difference between Mstn
-

/-
 and Mstn

+/+
 mice, although we observed a trend towards lower total locomotor activity in 

myostatin deficiency (1,792±279 counts/12 hours and 2,333 ±255 counts/12 hours respec-

tively, p=0.16). However, upon a metabolic challenge consisting of food deprivation, Mstn
-/-

 

mice failed to increase their locomotor activity as compared to the marked increase seen in 

Mstn
+/+

 mice (Figure 1G), which further demonstrates that myostatin deficiency impairs lo-

comotion. 

Profound fatigability of myostatin deficient skeletal muscle 

In order to assess the contribution of skeletal muscle fatigability to the decrease of endur-

ance capacity in Mstn
-/-

 mice, we next determined how muscle force was maintained upon 

repetitive stimulation. Soleus muscle from Mstn
-/-

 mice fatigued far more rapidly following 

repetitive stimulation (t[30% Po] = 72 s) as compared to Mstn
+/+

 soleus (t[30% Po] = 100 s; 

p<0.001), while heterozygous Mstn
+/-

 muscle had an intermediate phenotype (Figure 2A). 

Remarkably, myostatin deficient muscle, despite being about twice as strong at the begin-

ning of the experiment (389±11 vs 233±5 mN for soleus absolute maximal tetanic force P0, 

as compared to Mstn
+/+

 mice, p<0.001), fatigued so rapidly that absolute maximal force 

dropped to Mstn
+/+

 levels after 3 min of repetitive tetanic stimulation (Figure 2B). This rapid 

force decline caused the specific force of Mstn
-/-

 muscles to decrease from 91% at the start 

to 59% at the end of the fatigue protocol in comparison to Mstn
+/+

 muscles (p=0.04 and 

p<0.001 respectively; Figure 2C). Interestingly, similar results were found for the fast glyco-

lytic extensor digitorum longus muscle (EDL, -21% concerning the fatigue index in Mstn
-/- 

vs 

Mstn
+/+

) as well as for the entire posterior lower leg compartment (fatigue index was de-

creased by 48% in Mstn
-/-

 vs Mstn
+/+

), for which measurements were performed in situ to 

maintain blood perfusion during the stimulation protocol (data not shown). 

Increased glycolysis and decreased mitochondrial respiration rates in myostatin deficiency 

To investigate whether increased muscle fatigability in the absence of myostatin resulted 

from increased anaerobic glucose metabolism-induced muscle acidosis, we determined se-

rum lactate levels after exhaustive treadmill exercise. In Mstn
-/-

 mice, serum lactate was al-

ready elevated at resting state and increased disproportionately to 12.1±1.1 mmol/l at 5 min 

post exercise as compared to 5.1±0.4 mmol/l in controls (p<0.001; Figure 2D). The elevated 
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serum lactate in myostatin deficient mice concurred with an increased enzymatic activity of 

enolase (Figure 2E), a key component of glycolysis. To determine whether lactate accumula-

tion resulted from defective oxidative phosphorylation (OXPHOS), we investigated mito-

chondrial respiration rates in situ for OXPHOS complexes I, II and IV. Mstn
+/+

 muscles re-

vealed higher respiration rates for the predominantly oxidative soleus muscle as compared 

with the predominantly glycolytic EDL muscle (Figure 2G). Remarkably, the absence of myo-

statin decreased OXPHOS rates of the soleus muscle to the level of Mstn
+/+

 EDL muscles, and 

Mstn
-/-

 EDL further lost OXPHOS activity of up to 42% (Figure 2G). It is unlikely that such 

OXPHOS reduction was merely due to mitochondrial depletion, because complex I (CxI) ac-

tivity remained unaltered. The CxII/CxI and CxIV/CxI ratios decreased in myostatin deficient 

muscle, which might be an indicator for qualitative changes in the assembly of the cyto-

chrome c oxidase (complex IV) and of the entirely nuclear encoded succinate dehydrogenase 

(complex II), (Figure 2F). In fact, the biochemical profile of mitochondria from Mstn
-/-

 soleus 

muscle resembled that of Mstn
+/+

 EDL mitochondria and suggested a shift of mitochondrial 

qualities from the "slow oxidative" to the "fast glycolytic" type. This shift in metabolic activi-

ty was accompanied by a profound conversion of the contractile phenotype of Mstn
-/-

 soleus 

muscle away from slow/oxidative myosin heavy chain type 1 (MHC-1) towards fast/glycolytic 

MHC-2x/MHC-2b (Figures 3A-C). In line with these observations are the findings that the 

Km(ADP) in resting soleus muscle was much higher than that for EDL muscle (Figure 2H). 

Km(ADP) was decreased by addition of creatine, in both EDL and soleus muscle demonstrat-

ing the coupling between mitochondrial creatine kinase and the adenine nucleotide trans-

locase. Absence of myostatin lowered the Km(ADP) of the soleus muscle towards the level of 

the fast glycolytic EDL muscle, and the Km(ADP) of Mstn
-/-

 EDL decreased even further (Figure 

2H). 

Decreased expression of PPAR transcription factors in myostatin deficient muscle 

We next aimed to gain insight into the molecular mechanism of the metabolic dysregulation 

observed in myostatin deficiency. We hypothesized that myostatin might act in a signaling 

cascade upstream of PPAR transcriptional regulators because inactivation of myostatin as 

well as of Pparβ/δ (43) both resulted in a similar loss of the oxidative phenotype. In wildtype 

mice, as expected, Pparb/d, Ppara and Pparg mRNA expression levels were 2-3 times higher 

in the predominantly oxidative soleus muscle than in the predominantly glycolytic EDL mus-
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cle. As predicted, PPAR mRNA levels in the soleus muscle of Mstn
-/-

 mice (Figure 3D) fell to 

about the level seen in Mstn
+/+

 EDL muscle (Figure 3E), while in the EDL muscle of Mstn
-/-

 

mice fell below the already low values found in Mstn
+/+

 EDL, although this was statistically 

significant only for Ppara (Figure 3E). Together, these results suggest that myostatin may 

promote high oxidative metabolism in skeletal muscle via PPAR signaling. 

Myostatin blockade by AAV-propeptide in adult mice increases fatigability 

To determine the role of myostatin on energy dependent muscle function during adulthood, 

we over-expressed myostatin propeptide using AAV as expression vectors. Injection of 

AAV2/8-propeptide into the femoral artery led to robust transgene expression (Figure 4A) 

and slight increase of the lower leg muscle weight (Figure 4B). Importantly, soleus muscle 

fatigued more rapidly after propeptide treatment (Figure 4D), despite only minimal changes 

of absolute maximal and specific force at the start of the fatigue protocol (Figure 4D) and an 

unaltered fiber-type composition (Figure 4C). Interestingly, mRNA levels of Pparb/d and 

Pgc1a transcripts were reduced (Figure 4E), suggesting changes in the regulation of oxidative 

metabolism independent of muscle fiber-type composition. Moreover, myostatin propeptide 

treatment diminished exercise capacity six months after systemic intravenous treatment 

with myostatin AAV2/8-propeptide (Figures 4F and 4G), despite similar body weights 

(24.1±0.7 g vs 24.4±0.6 g for mice treated with PBS vs AAV2/8-propeptide, respectively; 

p=0.79). Hence we were able to show that myostatin blockade in adult wildtype mice caused 

a similar deficit in aerobic muscle properties as shown for Mstn
-/-

 mice and that these effects 

were independent of muscle fiber-type composition. 
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DISCUSSION 

Myostatin exerts a dual function on skeletal muscle as it limits its size while promoting oxi-

dative properties. We here show that myostatin acts to economize muscle energy expendi-

ture, because smaller muscle requires less oxygen during exercise. The higher OXPHOS activ-

ity and lower respiratory exchange ratio point towards increased fatty acid consumption as a 

preferred fuel in the presence of myostatin and suggests higher energy efficiency as com-

pared with the energetically less efficient glycolysis in states of myostatin deficiency. The 

emerging property of myostatin to save fuel combined with a simultaneous increase in run-

ning endurance and maximal running velocity might explain the high conservation of myo-

statin during evolution and the rare occurrence of myostatin mutations. The comparison of 

muscle physiology between hypermuscular myostatin knockout and wildtype mice sheds 

light on the fact that myostatin deficient muscle confers little functional advantage over 

wildtype muscle due to its rapid fatigability. We have demonstrated that the fatigability and 

diminished capacity for forced and voluntary locomotor activities seen in Mstn
-/-

 described 

by us and others (18, 29, 39, 42) goes in parallel with a reduction of muscle OXPHOS activi-

ties. Interestingly, recent in vivo investigations using 
31

P-Magnetic Resonance Spectroscopy 

(MRS) supports our findings as the relative contribution of oxidative ATP production to total 

ATP turnover was reduced following repeated isometric contractions of Mstn
-/-

 muscles, 

whereas the ATP cost of contraction was increased (15). Thus, muscle strength due to myo-

statin deficiency comes at the cost of exercise intolerance, which is often seen in patients 

with mitochondrial disorders such as MELAS or MERRF syndrome (24). Interestingly, muscle 

cramps are frequently observed in whippet dogs with Mstn mutation (37). Moreover, “dou-

ble muscle cattle”, several breeds of which have been identified to carry Mstn mutations 

(17, 30), are prone to exercise induced lactic acidosis and severe rhabdomyolysis (20, 21).  

However, a number of questions result from our work. We ask, whether the observed de-

crease in oxidative metabolism and energy dependent muscle function might be an indirect 

effect and a consequence of the profound congenital fiber-type change that is typically 

found in the constitutive absence of myostatin. We thus blocked myostatin in adult wildtype 

mice using myostatin propeptide, which did not affect fiber-type composition. This is in 

agreement with previous studies following blockade of myostatin or its activin IIB receptor 

(ActRIIB) signaling (3, 11, 12, 36). Importantly, treatment with soluble ActRIIB-Fc to block 
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myostatin and homologues signaling factors caused an mRNA expression profile away from 

oxidative metabolism (41). Supporting the hypothesis that myostatin regulates oxidative 

metabolism independently of muscle fiber composition, we here found that treatment with 

myostatin propeptide caused muscle fatigability and decreased aerobic exercise capacity.  

We show that myostatin deficiency has an influence on the expression of Ppar-α/β/γ tran-

scription factors, which control metabolic properties but not muscle mass (43, 45). This indi-

cates that myostatin may control the muscle oxidative phenotype notably via PPAR activity. 

Indeed, downstream targets of Ppar-β such as Pgc1-α and Cox4 were down-regulated in 

Mstn
-/-

 mice (26). Furthermore, knockout of Pparb, similar to the findings in Mstn
-/-

 mice, 

reduced oxidative properties of skeletal muscle (43). Importantly, we here show, that myo-

statin blockade in adult mice following overexpression of myostatin propeptide also reduced 

expression of Pparb and Pgc1a, supporting the hypothesis that myostatin directly regulates 

oxidative metabolism. However, the exact molecular mechanism remains to be elucidated as 

yet little is known about direct molecular targets of myostatin signaling.  

Interestingly, distinct but complementary effects on the metabolic profile of obese insulin-

resistant mice occur when Ppar-β is activated and myostatin inhibited (7). Moreover, work 

on myostatin-mediated effects through AMPK (23, 44, 48) raise a number of questions con-

cerning mediators and signaling pathways implicated on muscular metabolic effects of myo-

statin. It would be of interest to substantiate these findings by an analysis of the muscle mi-

croRNA network as this was recently shown to control metabolism via nuclear receptors 

such as PPARs (14). 

A further question concerns the problem, whether muscle hypertrophy following lack of my-

ostatin changes the oxidative muscle metabolism. In fact, we previously have shown that 

long-term exercise improved contractile and metabolic features of Mstn
-/-

 mice, however, 

these improvements were associated with a loss of muscle hypertrophy (28). These results 

suggest that regulation of muscle size and metabolic phenotype by myostatin are linked. It 

remains to be determined, however, whether the regulation of both processes can be disso-

ciated from each other. 

Can we generalize the conclusion of our work that lack or blockade of myostatin always neg-

atively affects aerobic muscle function? It is important to note that previous work demon-

strated a beneficial effect of myostatin blockade during ageing (38). It is quite likely that my-
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ostatin blockade in conditions of muscle atrophy through pathological up-regulation of myo-

statin (e.g. in sarcopenia, cardiac and tumor cachexia), might outweigh the negative effect 

on muscle metabolism by far (19, 27, 49). Similarly, myostatin blockade improved running 

performance in obese and insulin resistant (ob/ob) mice (7). Again, benefits on insulin signal-

ing and glucose metabolism may largely outweigh potential negative effects on muscle oxi-

dative metabolism, especially if combined with a Ppar-β agonist. It should be noted that 

treatment of adult mice under high fat diet with soluble ActRIIB did not alter fat mass and 

glucose metabolism (33), whereas treatment of obese and insulin resistant mice (ob/ob) 

with anti-myostatin antibodies improved glucose homeostasis and glucose tolerance (7). In 

fact, the metabolic changes following myostatin blockade could be beneficial for patients 

with insulin resistance, and recently it was shown that AAV-propeptide overexpression me-

diated higher glucose uptake in skeletal muscle, which is likely mediated by an up-regulation 

of membrane glucose transporters (12). Thus, further work is required to define under which 

circumstances myostatin blockade could exert beneficial effects to combat insulin resistance 

and overweight. 

In conclusion, our results suggest that myostatin increases oxidative metabolism of skeletal 

muscle thereby improving exercise endurance. These fundamental functions of myostatin 

should be taken into account when developing therapies based on myostatin blockade. Fur-

ther investigations are required to answer the question whether emerging therapies based 

on PPAR agonists might be able to prevent adverse effects of myostatin blockade on the oxi-

dative metabolism and exercise tolerance. 
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Methods 

Animals 

Mstn
+/+

, Mstn
+/-

 and Mstn
-/-

 mice, on a C57BL/6J background (31), were bred using a hetero-

zygous mating system in the animal facility of CERFE (Evry, France) and kept according to 

institutional guidelines. Investigations on mice (from 2 to 6 months old) were carried out 

under the laboratory and animal facility licenses A75-13-11 and A91-228-107. Partly, 

C57BL/6J control mice (Mstn
+/+

) were purchased from Charles River (France). Body mass 

composition (lean tissue mass, fat mass, free water and total water content) was analyzed 

using an Echo Medical systems’ EchoMRI (Whole Body Composition Analyzers, EchoMRI, 

Houston, USA). 

Evaluation of exercise performance  

[A] Evaluation of the Critical Speed 

The Critical Speed (CSp) defines the proportional relationship between distance run and time 

to exhaustion at different velocities. Mice were exercised on a 10.6 x 30 cm double-lane 

treadmill (LE 8709, Bioseb, Chaville, France) as published (8).
 
The protocol consisted of four 

runs at various speeds (between 20 and 80 cm/s according to individual motor capacity, one 

run per day) leading to exhaustion between 3 and 45 min. CSp is based on the hyperbolic 

relationship between speed and time to fatigue during separate bouts of exhaustive runs 

performed at different speeds. Therefore, CSp was calculated from the slope
 
(a) of the re-

gression line, plotting the
 
distance (y) versus the time to exhaustion (x) from the four runs, 

according
 
to the equation y = ax + b (b being the anaerobic distance capacity). 

[B] Blood lactate assessment during exhaustive exercise 

Lactate concentration was determined in blood samples (5 μl) collected from the tip of the 

tail using a Lactate pro LT device (Arkray Inc., Kyoto, Japan) at the time points 0 and 5 min 

after treadmill running-induced exhaustion. Exhaustion was defined as the time point at 

which mice could not run anymore and stayed on the grid despite repeated electric stimula-

tion. The running test started at the lowest speed of 5 cm/s to allow a warm-up and was 

increased by 1 cm/s every 30 seconds until exhaustion. 

[C] Measurement of maximal oxygen consumption 

An index of endurance exercise capacity is the maximal oxygen uptake per body weight 
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(VO2max). Initially, oxygen uptake is proportional to the running speed, and this relationship 

peaks at a plateau, the so-called VO2max. Oxygen consumption was measured by means of a 

rapid-flow, open-circuit indirect calorimeter fitted with a one-lane motorized treadmill (Co-

lumbus Instrument, Columbus, OH) as published (25). The single-lane test treadmill was 

placed in a metabolic chamber. Ambient air was flushed through the chamber at a rate of 

0.66 l/min, and gas samples were extracted to measure oxygen content (Oxymax, Columbus 

instrument, Columbus, OH). Gas samples were dried, measured every 15 s and oxygen con-

sumption (VO2) was calculated using Oxymax software. The gas analyzers were calibrated 

with standardized gas mixtures before every test session (Air Products, Paris, France), as 

recommended by the manufacturer. The test described below provided a measure of 

VO2max, defined as the highest oxygen consumption attained during the testing protocol. 

The velocity attained by the mouse at this VO2max was then considered as the vVO2max. The 

maximal velocity (vPeak) was measured at the end of the test. 

[D] Incremental test load 

Mice were treadmill exercised on with adjustable belt speed (0-99.9 m/min) and electric 

shock bars (0-2 mA) at the rear of the belt to provide a stimulus encouraging each mouse to 

run. Over a one week period, the mice were familiarized with the treadmill through the 

completion of four 10 min running sessions from 0 to 9 m/min. The mice subsequently per-

formed an incremental exercise test, without slope. The exercise intensity was increased by 

3 m/min
 
(starting from 10 m/min) every 3 min, and the exercise continued until exhaustion. 

Measurement of voluntary locomotion 

Total voluntary locomotor activities were determined in individual cages with bedding, food 

and water (Labmaster, TSE Systems GmbH). Animals were acclimated in individual cages for 

48 hours before experimental measurements. Each cage was embedded in a frame with an 

infrared light beam-based activity monitoring system, allowing measurement of total loco-

motor activity. Data were collected in intervals of 40 minutes during the whole experiment 

and the activity level was recorded as the number of beam interruptions per 40 min. Mice 

had access to food and water ad libitum except for the 24 hours fasting in order to stimulate 

locomotor activity of mice. 

Measurement of contractile properties 
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The contractile properties of extensor digitorum longus (EDL) and soleus muscles were stud-

ied in vitro according to previously published protocols (2). Muscles were soaked in an oxy-

genated Tyrode solution (95% O2 and 5% CO2) containing 58.5 mM NaCl, 24 mM NaHCO3, 5.4 

mM KCl, 1.2 mM KH2PO4, 1.8 mM CaCl2, 1 mM MgSO4 and 10 mM glucose (pH7.4) and main-

tained at a temperature of 22°C. One muscle tendon was attached to a lever arm of a ser-

vomotor system (300B, Dual-Mode Lever, Aurora). After equilibration (30 min), field electri-

cal stimulation was delivered through electrodes running parallel to the muscle. Pulses of 1 

ms were generated by a high power stimulator (701B, Aurora). Absolute maximal isometric 

tetanic force (P0) was measured during tetanic contractions (frequency of 50-100 Hz, train of 

stimulation of 1,500 ms for soleus and 750 ms for EDL). The muscle length was adjusted to 

an optimum (L0) that produced P0. Specific maximal isometric force (sP0) was calculated by 

dividing the force by the estimated cross-sectional area (CSA) of the muscle. Assuming mus-

cles have a cylindrical shape and a density of 1.06 mg/mm
3
, the CSA corresponds to the vol-

ume of the muscle divided by its fiber length (Lf). The Lf to L0 ratio of 0.70 (soleus) or 0.45 

(EDL) was used to calculate Lf. Maximal power (Pmax) was determined from force-velocity 

data that were obtained by eliciting contractions (train of 1,000 ms, 150 Hz) at 3-5 different 

afterloads (10-40% P0). Specific Pmax (sPmax) was calculated by dividing Pmax by muscle 

weight. Fatigue resistance was then determined after a 5 min rest period. The muscles were 

stimulated at 75 Hz during 500 ms, every two second, for 3 min. The time taken for initial 

force to fall by 50% (EDL) or 30% (soleus) was then measured. All data were recorded and 

analyzed on a microcomputer, using the PowerLab system (4SP, AD Instruments) and soft-

ware (Chart 4, ADInstruments). 

The isometric contractile properties of gastrocnemius (+soleus) were studied in situ as previ-

ously described (22). Mice were anesthetized (pentobarbitone sodium, 50 mg/kg). Supple-

mental doses were given as required to maintain deep anesthesia throughout the experi-

ments. The foot was fixed with clamp and the knee was immobilized using stainless steel 

pins. The distal tendon of the plantaris muscle was cut. The Achilles tendon was attached to 

an isometric force transducer (Harvard). Great care was taken to ensure that the blood and 

nerve supply remained intact during surgery. The sciatic nerves were severed proximally and 

stimulated distally by a bipolar silver electrode using supra-maximal square wave pulses of 

0.1 ms duration. All isometric measurements were made at an initial muscle length of L0. 
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Force productions in response to tetanic stimulations (P0) were successively recorded (pulse 

frequency from 50 to 150 Hz, train duration of 500 ms), at least 1 min was allowed between 

each contractions. The muscle mass (m) was measured to calculate sP0. Fatigue resistance 

was then determined after a 5 min rest period. The muscle was stimulated during 500 ms at 

100 Hz, every 2 s, for 3 min. The duration corresponding to a force decreased by 50% was 

noted. After contractile measurements, the animals were killed with an overdose of pento-

barbitone. Muscles were then weighed, frozen in liquid nitrogen or in isopentane pre-cooled 

in liquid nitrogen and stored at -80°C until histology or biochemical analyses. 

Mitochondrial respiration and cytosolic enzyme measurements 

[A] Measurement of OXPHOS activity 

The mitochondrial respiration was studied in vitro in saponin-skinned
 
fibers. Briefly, fibers 

were separated under a binocular microscope
 
in solution S at 4°C (see below) and permea-

bilized in solution
 
S with 50 µg/ml of saponin for 30 min. After being placed

 
10 min in solu-

tion R (see below) to wash out adenine nucleotides
 
and creatine phosphate, skinned sepa-

rated fibers were transferred
 
into a 3 ml water-jacketed oxygraphic cell (Strathkelvin Instru-

ments,
 
Glasgow, UK) equipped with a Clark electrode, as previously

 
described (5), under con-

tinuous stirring. Solutions R and S contained the following: 2.77
 
mM CaK2EGTA, 7.23 mM 

K2EGTA (100 nM free Ca
2+

), 1 mM free Mg
2+

, 20 mM taurine, 0.5 mM DTT, 50 mM potassi-

um-methane
 
sulfonate (160 mM ionic strength), and 20 mM imidazole (pH 7.1).

 
Solution S 

also contained 5.7 mM Na2ATP, 15 mM creatine-phosphate,
 
while solution R contained 5 

mM glutamate, 2 mM malate, 3 mM
 
phosphate, and 2 mg/ml FA free bovine serum. After 

the experiments,
 
fibers were harvested and dried, and respiration rates were

 
expressed as 

micromoles of O2 per minute per gram dry weight.
 
Solution R

–
 was similar to solution R with-

out substrates
 
and was used to determined maximal VO2

 
rates for different substrates 

[B] Measurement of the maximal muscular oxidative capacities 

After the determination of the basal respiration rate V0,
 
the maximal fiber respiration rate 

was measured at 22°C in the presence
 
of a saturating (2 mM) ADP concentration as phos-

phate acceptor and
 
glutamate-malate as mitochondrial substrates (VGM). The acceptor con-

trol ratio was VGM/V0 and represented the
 
degree of coupling between oxidation and phos-

phorylation. 

[C] Measurement of the respiratory chain complexes 
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When VGM was recorded, electron flow
 
goes through complexes I, II, III, and IV. Then 4 min 

after this
 
VGM measurement, the complex I was

 
blocked with amytal (2 mM), and then com-

plex II was stimulated
 
with succinate (25 mM). In these conditions, mitochondrial respiration

 

was effected by complexes II, III, and IV (VS). After that, N,N,N',N'-tetramethyl-p-

phenylenediamine
 
dihydrochloride (TMPD, 0.5 mM) and ascorbate (0.5 mM) were added

 
as 

an artificial electron donor to cytochrome C. In these conditions,
 
cytochrome C oxidase 

(complex IV) was studied as an isolated
 
step of respiratory chain (VTMPD).

 
The ratios VS/VGM

 

and VTMPD/VGM
 
allow exploration of complexes I, II, and IV. 

[D] Measurement of enolase activity 

Enolase activity was determined in extracts from frozen cryostat sections using a coupled 

enzyme assay (35). 

Immunostaining and SDS-PAGE 

For MHC-immunohistochemistry, primary antibodies were: MHC-1 (hybridoma#BA-D5, 

Deutsche Sammlung von Mikroorganismen und Zellkulturen DSMZ), MHC-2a (hybrido-

ma#SC-71, DSMZ), MHC-2x (hybridoma#6H1, Developmental Studies Hybridoma Bank) and 

MHC-2b (hybridoma#BF-F3, DSMZ). Briefly, frozen unfixed 10 µm sections were blocked 1 h 

in PBS plus 1% BSA, 1% sheep serum, 0.01% Triton X-100 and 0.001% sodium azide. Sections 

were then incubated overnight with primary antibodies against laminin (Dako) and MHC 

isoforms. After washes in PBS, sections were incubated 1 h with secondary antibodies. Slides 

were finally mounted in Fluoromont (Southern Biotech). Morphometric analyses were made 

on whole soleus muscles. Images were captured using a digital camera (Hamamatsu ORCA-

AG) attached to a motorized fluorescence microscope (Zeiss AxioImager.Z1), and morpho-

metric analyses were made using the software MetaMorph 7.5 (Molecular Devices). 

For MHC gel electrophoresis, the muscles were extracted on ice for 60 minutes in 4 volumes 

of extracting buffer (pH 6.5) as previously described (10). Following centrifugation, the su-

pernatants were diluted 1:1 (v/v) with glycerol and stored at -20 °C. MHC isoforms (MHC-1, 

MHC-2a, MHC-2x, MHC-2b) were separated on 8% polyacrylamide gels which were made in 

the Bio-Rad mini-Protean II Dual slab cell system as described previously (1). The gels were 

run for 31 hours at a constant voltage of 72 V at 4°C. Following migration, the gels were sil-

ver stained. The positions of the different MHC bands were confirmed by Western blotting 
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using antibodies directed against different MHC isoforms. The gels were scanned using a 

video acquisition system. 

 

Production and injection of AAV-propeptide for adult myostatin blockade 

The myostatin propeptide construct, prepared by PCR amplification of C57BL/6J cDNA, using 

the primers 5'-CCG CTC GAG ATG ATG CAA AAA CTG CAA ATG-3' and 5'-CCG GGA TCC CTA 

TTA GTC TCT CCG GGA CCT CTT-3', was introduced into an AAV-2-based vector between the 

2 inverted terminal repeats and under the control of the cytomegaly virus promoter using 

the XhoI and BamHI sites. The AAV myostatin propeptide was produced in human embryonic 

kidney 293 cells by the triple-transfection method using the calcium phosphate precipitation 

technique with both the pAAV2 propeptide plasmid, the pXX6 plasmid coding for the adeno-

viral sequences essential for AAV production, and the pRepCAp plasmid coding for AAV8 

capsid. The virus was then purified by 2 cycles of cesium chloride gradient centrifugation and 

concentrated by dialysis. The final viral preparations were kept in PBS solution at -80°C. The 

particle titer (number of viral genomes) was determined by a quantitative PCR. 

The detailed procedure for intra-arterial injection was previously described (16). Briefly, 

anesthetized 2-month-old C57BL/6J wildtype male mice underwent femoral artery and vein 

isolation of the right hind limb. After clamping the femoral vein and two collaterals, a cathe-

ter was introduced into the femoral artery and the AAV preparation (2.5 x 10
12

 vg per injec-

tion) was injected in a volume of 1 ml per 20 g of body weight at a rate of 100 µl/s. Thereaf-

ter, the left hind limb was processed in the same manner and injected with a same volume 

of PBS. For systemic delivery, 1 x 10
13

 vg of AAV2/8-myostatin propeptide was injected into 

the retro-orbital sinus or with PBS for controls. 

RT-qPCR 

Total RNA was extracted from frozen muscle after pulverization in liquid nitrogen and from 

cultured C2C12 cell pellets with the TRIzol® (Invitrogen) extraction protocol. 2.25 µg total RNA 

were reversely transcribed using the Thermoscript® RT-PCR System (Invitrogen) with random 

hexamers in 60 µl reaction volume of which we used 4 µl for each subsequent qPCR-reaction 

and 2 µl of a 1:10 dilution for the 18S reference gene. We used the following oligonucleotide 

primers for qPCR: 18S rRNA (reference gene): (F) 5’-CAT TCG AAC GTC TGC CCT ATC-3’, (R) 5’-

CTC CCT CTC CGG AAT CGA AC-3’; Ppara: (F) 5’-GGG CAA GAG AAT CCA CGA AG-3’, (R) 5’-CGT 



Myostatin controls energy metabolism 

CTT CTC GGC CAT ACA CA-3’; Pparb/d: (F) 5’-AGC CAC AAC GCA CCC TTT-3’, (R) 5’-CGG TAG 

AAC ACG TGC ACA CT-3’; Pparg: (F) 5’-CGA GTC TGT GGG GAT AAA GC-3’, (R) 5’-GGA TCC 

GGC AGT TAA GAT CA-3’; Pgc1a: (F) 5’-GAA AGG GCC AAA CAG AGA GA-3’, (R) 5’-GTA AAT 

CAC ACG GCG CTC TT-3’. The qPCR for each sample was run with the SYBR Green® protocol 

(Applied Biosystems) in triplicate on an ABI PRISM 7700 sequence detection system (Applied 

Biosystems) with a hotstart Taq polymerase. A 10 min denaturation step at 94
o
C was fol-

lowed by 45 cycles of denaturation at 94
o
C for 10 s and annealing/extension at 60

o
C for 30 s. 

Before sample analysis we had determined for each gene the PCR efficiencies with a stand-

ard dilution series (10
0
-10

7 
copies/µl), which subsequently enabled us to calculate the copy 

numbers from the Ct values, using the -ΔΔCt method. 

Statistical analysis 

Data were analyzed using either one-way ANOVA, followed by Tukey post-hoc test, or 

paired/unpaired Student's t tests. Values are presented as means ± SEM. The significance 

level was set at p<0.05. 
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FIGURE LEGENDS 

Figure 1: Global motor activity and energy expenditure of adult Mstn
-/-

, Mstn
+/-

, and 

Mstn
+/+

 mice. (A) Maximal oxygen uptake (VO2max) normalized to body weight. (B) Peak 

running velocity reached after sequential increase of treadmill speed (vPeak). (C) Whole 

body absolute maximal oxygen consumption. (D) Energetic cost of running measured as oxy-

gen consumption per distance run at 13 m/min running speed. (E) The plot depicts the pro-

portional relationship between distance run (y-axis) and time to exhaustion (x-axis) at differ-

ent velocities. The regression lines together with regression equations indicate the critical 

speed. (F) Respiratory Exchange Ratio (RER) at rest and at vPeak. (G) Effects of 24 h food 

restriction (dashed line) or free feeding (plain line) on total activity (beam interruptions/40 

min). Values are shown as means±SEM. Number (n) of mice examined: n=6 Mstn
+/-

; n>8 

Mstn
-/-

 and Mstn
+/+

. 

 

Figure 2: Effect of myostatin deficiency on muscle force and metabolic properties. (A-C) 

Studies of muscle fatigue and force in the soleus muscles from 4-months-old female 

Mstn
+/+

, Mstn
+/-

 and Mstn
-/-

 mice. (A) Fatigue index of the soleus muscles given as the time 

[s] during which the force had declined by 30% (T[30%P0]). (B) Force recordings during the fa-

tigue protocol over 180 s. (C) Specific force at the beginning and at the end of the fatigue 

protocol. (D-H) Metabolic measurements before and after exercise. (D) Serum lactate levels 

at rest and 5 min after exhaustive running exercise. (E) Enolase enzymatic activity of the so-

leus muscle. (F) Ratios of respiration rates of mitochondrial complexes of soleus and EDL 

muscles. (G) Mitochondrial respiration rates for complexes I, II and IV of soleus and EDL 

muscles. (H) Km for ADP and ADP+creatine of soleus and EDL muscles. Values are shown as 

means±SEM. Number (n) of muscles analyzed: n≥6 for each genotype. 

 

Figure 3: Effect of myostatin deficiency on myofiber-type composition (A-C) and expression 

of PPAR transcription factors (D-E). (A) Images of fiber-type composition of soleus muscle 

from Mstn
-/-

 mice and Mstn
+/+

 mice. Immunohistochemistry was performed to depict MHC-1 

fibers (green), MHC-2a fibers (purple), MHC-1/2a hybrid fibers (orange), non-stained MHC2x 

or MHC2b fibers (black) and laminin (blue). (B) Relative fiber-type distribution from entire 
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transverse sections of the soleus muscle following immunostaining described above. (C) SDS-

PAGE electrophoresis of MHC isoforms shows an additional band of MHC-2b expression in 

Mstn
-/-

 mice. (D-E) Relative Ppara, Pparb/d and Pparg mRNA copy numbers in the soleus 

muscle (D) and EDL muscle (E) from Mstn
+/+

 mice and Mstn
-/-

 mice as expressed per 10
6
 18S 

rRNA copies. Values are shown as means±SEM. Number (n) of muscles analyzed: n≥5 for 

each genotype. 

 

Figure 4: Muscular and systemic effects of AAV-propeptide-mediated adult myostatin 

blockade. (A-E) Functional, morphometric and metabolic analysis of the hind limb muscles 

one month after injection of AAV2/8-myostatin-propeptide or PBS into femoral arteries of 

2-months-old C57BL/6J mice. (A) RT-PCR depicting exogenous myostatin-propeptide expres-

sion only after AAV2/8 transfection (lane 1: molecular weight marker; lanes 2-6: individual 

muscles). (B) Wet weights for soleus, extensor digitorum longus (EDL), plantaris and tibialis 

anterior (TA) muscles. (C) Soleus relative myofiber-type distribution. (D) Fatigue index (left) 

and specific tetanic force (right) of the soleus muscle at the beginning and at the end of the 

fatigue protocol. (E) Relative Pparb/d and Pgc1a mRNA copy numbers in the TA muscle. (F-

G) Exercise capacity of C57BL/6J mice treated systemically (i.v) with AAV2/8-myostatin-

propeptide or PBS. (F) Effect of AAV2/8-myostatin-propeptide on critical speed before and 6 

months after systemic application. (G) The plot depicts the proportional relationship be-

tween distance run (y-axis) and time to exhaustion (x-axis) at different velocities. The slope 

of the regression line indicates the Critical Speed. Values are shown as means±SEM. Number 

(n) of muscles or mice examined: n=4-6. 
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