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ScienceDirect
Our review looks at pollinator conservation and highlights the

differences in approach between managing for pollination

services and preserving pollinator diversity. We argue that

ecosystem service management does not equal biodiversity

conservation, and that maintaining species diversity is crucial in

providing ecosystem resilience in the face of future

environmental change. Management and policy measures

therefore need to focus on species not just in human dominated

landscapes but need to benefit wider diversity of species

including those in specialised habitats. We argue that only by

adopting a holistic ecosystem approach we can ensure the

conservation and sustainable use of biodiversity and

ecosystem services in the long-term.
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Introduction
Society requires ecosystems to be managed for many

purposes with priorities varying depending on location,

historical use, local and international demands, regula-

tions and governance. There is, however, a long history of

conflict between wildlife conservation and food produc-

tion, as historically these were often viewed as incompat-

ible goals of land management. Over recent decades there

has been a strong move to try and reconcile these goals,
www.sciencedirect.com 
coupled with a better understanding that landscapes can

be multifunctional in their in uses. The establishment

and development of ecosystem service frameworks (e.g.

MEA, IPBES [1,2]) have helped conceptualise and oper-

ationalise approaches to managing ecosystems to meet

different societal needs [1,2]. These frameworks recog-

nise that biodiversity underpins all ecosystem services

and that food production and biodiversity conservation

are individual services in their own right, and specifically

include conservation as an explicit cultural services which

recognises the intrinsic value of biodiversity per se.

The ecosystem approach developed by the Convention

on Biological Diversity is a strategy for the integrated

management of land, water and living resources that

promotes conservation and sustainable use in an equita-

ble way [3]. Applying the ecosystem approach in its full

sense can readily reconcile potential conflicts between

conservation and other human activities. However, a

recent trend by policymakers and researchers of using

ecosystem services as a (partial) surrogate for biodiversity

conservation (e.g. EU Biodiversity strategy to 2020 [4])

poses potentially serious problems for conservation if

these services are provided by small suites of relatively

resilient species. Therefore managing for services alone

may only benefit widespread, common species which are

usually not of great concern to conservation.

Here we use pollinators and pollination services to illus-

trate the risks of naively substituting ecosystem service

management for biodiversity conservation, and argue that

adopting a holistic ecosystem approach, is a more viable

strategy for ensuring the conservation and sustainable use

of biodiversity and ecosystem services in the long-term.

Using real world examples, we highlight the different

pathways to achieving resilient ecosystems which integrate

both biodiversity conservation and ecosystem services.

Few pollinator species have an obvious
importance for the delivery of pollination
services
Several studies demonstrate that wild pollinator diversity

(particularly in bees) has declined globally over recent

decades [5,6,7��]. Concerns over these declines however

seem to mainly focus on how reduction in pollinator abun-

dance limits crop yield and its implications for global food

security [8]. A recent study has shown that approximately
Current Opinion in Insect Science 2015, 12:93–101
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94 Insect conservation
80% of global pollination services are carried out by around

2% of pollinator species [9��]. Even when considering all

species visiting crop flowers, however infrequently, these

only make up a small proportion of the more than

20 000 species of bees that exist worldwide [9��,10] and

the vast majority of bee species currently have no direct

economic importance (Figure 1). This is not really surpris-

ing because of spatio-temporal mismatches between the

foraging range of many bee species and the location or

flowering time of the crop. Furthermore although a majori-

ty of crop species benefit from pollination services [11],

these plants represent only a small fraction of flowering

plant biodiversity and are thus unlikely to cover the forag-

ing needs of many pollinator species (Figure 1). While a

number of species with no direct importance for pollination

are needed to sustain nesting and alternative flower

resources of crop pollinators (see following sections), many

other species are unlikely to have any direct or indirect role

on ecosystem service provision. An extreme but illustrative

example that combines all these traits, is the bumblebee

species Bombus gerstaeckeri, which forages exclusively on

monkshoods (Aconitum spp.) in the subalpine zone of

European mountain ranges [12], playing no direct role in

crop pollination. Furthermore, a significant proportion of

all bees are brood parasites on other bees, that is, clepto-

parasitic or cuckoo bees [13–15]. Because these bees lay

their eggs in brood cells produced by other bee species,

they do not collect pollen themselves, do not store nectar,

and are therefore rarely observed on crops (but see [16]).

The rate of parasitism within agricultural landscapes can be

quite high (e.g. 79–92%, see [17]), with many species

recognised as important for crop pollination being para-

sitised (e.g. B. terrestris). Studies comparing the foraging

behaviour of host species with and without the presence of

a parasitic bee species are lacking (but see [18]) but are
Figure 1
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necessary to understand the impact of parasites on polli-

nation services.

Pollinators connect crop plants to natural
ecosystems
Pollinator species rarely rely solely on a single plant species

for both food and nesting resources; neither are all flower

visitors effective pollinators. All crop pollinators (dominant

or not) depend on diverse plant species often provided by

(semi-) natural habitats, and few species are found in

abundance far away from natural habitat [19,20]. One of

the main reasons for such dependence on diverse natural

habitat is the provision of the diverse set of nesting

resources (e.g. shrubs and trees, bare soil free from pesti-

cides), which are typically unavailable within intensively

managed crop fields [21�]. Since the flowering period of a

single plant species is often short in comparison to the

activity period of pollinators [22], pollinators depend on a

range of plants which are more readily provided in (semi-)

natural habitats than in intensively managed landscapes.

Pollinators both influence and are influenced by a range of

other domesticated and wild species. Species that do not

pollinate crops may play critical roles in natural ecosys-

tems by ensuring seed and fruit set thus sustaining

diversity of plants and higher trophic levels. For example,

in Brazil Xylocopa ordinaria, an important pollinator of

passionflowers has a wild native plant of the savannas of

South America (the dioucious Pera glabrata) as main nest

resource [23]. In another important bioma from South

America, the Caatinga, other Xylocopa species (which

pollinate passionflowers, blueberries, greenhouse toma-

toes and melons) depend on Commiphora leptophloeos, a

key species for the conservation of a vast number of native

bees, for nesting [24], and on many other native plant
Bees for which crops
are preferred host

plant speciesBees that
occasionally visit

crop plants
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Pollinator conservation Senapathi et al. 95
species for pollen and nectar when passionflowers are not

blossoming [25].

Some bee species engage in nectar and pollen robbing

behaviour, leading to perceived negative impacts on crop

pollination and plant reproduction. For example, a few

species of stingless bees have frequently been reported to

damage crops in South and Central America including

cutting flower buds and flowers and scarring fruit, with

potential negative effects on yield (e.g. [26]), thereby

rendering the ecosystem service argument insufficient for

their preservation. However, in most cases nectar robbers

remove nectar by piercing or biting into the corolla of a

flower, or even without damaging the flower (nectar

thieves, sensu [27]). Moreover, recent evidence suggests

that nectar robbing may sometimes be beneficial to plant

reproduction, as after visiting a flower with less nectar,

pollinators usually fly greater distances between flowers

[28–30]. This behaviour can decrease self-pollination and

increase pollen flow [31,32] leading to higher outcrossing,

and consequently, to greater seed set [33].

In addition to the above interactions, pollinators’ abun-

dance and behaviour may be affected by indirect ecological

interactions with many non-pollinator species from differ-

ent trophic guilds, such as predators and parasitoids
Figure 2
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(Figure 2); as well as leaf herbivores and soil fungi and

bacteria that affect plant biomass, architecture and physi-

ology (e.g. [34]). In summary, crop and natural systems can

influence each other in multiple indirect ways, many of

which remain understudied.

Species diversity and its implications for
resilience to environmental change
There is increasing evidence that several species and

groups of pollinators and the plants they pollinate are

negatively affected by environmental change in many

locations in the world. These pressures include climate

change [35,36], agricultural intensification [37,38,39��],
diseases, pests and pathogens [40] and invasive species

[41,42]. Management strategies therefore need to focus

not just on current issues but consider the response and

resilience of these systems to future environmental con-

ditions including possible ecological shocks. Response

diversity, defined as the range of reactions to environ-

mental change among species contributing to the same

ecosystem function, is critical to resilience, particularly

during periods of ecosystem reorganisation and recovery

after disturbance [43]. Low response diversity can cause

whole functional groups to go extinct or make systems

ecologically insignificant as a result of environmental

change [43]. Biological diversity appears to enhance
inator
 nectar robbers);
redators

al resource
pecies

t crop
species

Non-crop
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the resilience of desirable ecosystem states [44]: Greater

diversity of species can cause functional redundancy,

where several species can contribute in a similar way to

ecosystem function [45], and loss of some dominant

species can be ameliorated by the presence of other rare

species. While as yet this concept remains understudied

in pollinator communities, studies in other ecological

systems [45,46] strengthen the argument that diversity

is required for functional redundancy and resilience to

change.

Not all species of pollinators respond equally to environ-

mental stresses, with both winners (mostly species that

are generalist in their habitat or food needs) as well as

losers (often specialists) emerging from environmental

changes [47]. For example a study in the highly endemic

cape floristic region of South Africa showed that climate

change-induced impacts on species ranges varied from

range expansions of 5–50% for two species of bees, to

substantial range contractions, between 32% and 99%, in

another six species [48]. Seasonal shifts within [49] and

across species [50,51] have also been detected in regions

with distinct seasons and may simulate species turnover

when local climatic conditions change. While the loss of

specialist species due to environmental change may not

have direct impacts on crop pollinator community, it

entails lower rates of ecosystem processes, and some

functions performed by specialists may not be carried

out at all [43], potentially leading to greater biodiversity

loss and ecosystem instability in the long run.

The non-economic value of pollinators and the
services they provide
As mentioned above, pollinator species that do not visit

crops may play critical roles in natural ecosystems by

ensuring wild plant seed and fruit set, thus sustaining

wider biodiversity throughout trophic webs. Eighty-sev-

en per cent of all flowering plants are animal pollinated

[52], with bees being considered the most important

group of pollinators. While the economic value of crop

pollination and other ecosystem services is undisputed,

the importance of the wider diversity of pollinators that

provide resilience to ecosystems via indirect services

cannot be quantified in solely economic terms. Humans

have also placed cultural importance on biodiversity for

thousands of years and current research indicates that

biodiversity and human health are intricately linked via

cultural pathways [53]. Therefore, non-economic and

moral arguments can be strongly made for the conserva-

tion of wider diversity. That this can be an effective

approach is illustrated by the growing sales of seed

mixtures for bees and civilian initiatives to plant wild-

flowers in towns and cities in north-western Europe

(anecdotal evidence) as well as increased media and

public awareness on the plight of pollinators. The general

public buying or supporting these pollinator enhance-

ment instruments do so because of cultural values and
Current Opinion in Insect Science 2015, 12:93–101 
moral arguments that nature has intrinsic value and needs

to be protected and conserved.

Minimising trade-offs between pollination and
conservation
As shown in previous sections, the most widespread

generalist pollinator species (amongst which are many

crop pollinators) are connected to a large range of other

species. This means that if the quality/composition of the

surrounding environment declines this will affect the

abundance of pollinators and pollination. Therefore,

managing systems for conservation of pollination services

alone, will target fewer species and have very different

outcomes when compared to managing for conservation

of pollinator diversity. Whilst having no intervention

measures may result in having low pollinator diversity

as well as low services (Figure 3A); measures targeted at

enhancing services (such as utilising managed pollinators

to overcome pollination deficit, simple agri-environment

schemes like hedgerow management and flower rich

margins, and utilisation of mass flowering crops [21�]),
only benefit a small suite of species, resulting in low

pollinator diversity (Figure 3B). Evidence from biodiver-

sity-ecosystem functioning studies [54] suggests that

measures that succeed in boosting pollinator diversity

(Figure 3C) automatically enhance delivery of pollination

service. Nevertheless there is a trade-off between man-

aging for pollinator conservation and pollination services

because most measures targeting pollinator diversity

compete for space with the cultivation of insect-pollinat-

ed crops. Modest increases in mostly common species can

often be obtained by extensifying agricultural manage-

ment [55]. High pollinator diversity or conservation of

threatened species generally requires measures such as

establishment of diverse wildflower strips, maintenance

or enhancement of species-rich grasslands or cultivation

of economically non-profitable crops (in Europe for ex-

ample, red clover Trifolium pratense or sainfoin Onobrychis
viciifolia). Threatened pollinator species can effectively

be conserved even in intensively managed farmland [56]

but this is most likely limited to species foraging on host

plants that can persist under the conditions prevailing in

contemporary agricultural landscapes and/or that use nest

sites that are available in such landscapes. This suggests

that the more adapted pollinator species are to non-

agricultural habitats, the stronger conservation measures

will compete for space with insect-pollinated crops.

The exact nature of the trade-off between delivery of

pollination services on one hand and conservation of

threatened species or high pollinator diversity on the

other hand is unknown, but it probably follows a typical

production–possibility frontier as shown in orange in

Figure 3. Different measures may enhance pollination

and conservation to different extents in different ways.

For example, simple agri-environment schemes that

extensify farm management enhance dominant pollinators
www.sciencedirect.com
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Figure 3

(a)

No interventions Protected areas,
High Nature Value Farmland

Provision of
nesting

resources

Provision of
foraging

resources

Improved
habitat

heterogeneity

Improving
Urban Green

spaces

Integrated
Pest

Management

Simple agri-
environment

schemes,
Managed

Pollinators, Mass-
flowering crops,

Hedgerow
management

High

High

Low

Management for pollinator conservation

M
an

ag
em

en
t f

or
 p

ol
lin

at
io

n 
se

rv
ic

es

(b)
(d)

?

?

?

(c)

Current Opinion in Insect Science 

Schematic showing examples of trade-offs between management for pollination services versus management for pollinator conservation. A, B, C

and D represent low diversity–low services (loss–loss), low diversity–high service (loss–win), high diversity–low service (win–loss) and high

diversity–high service (win–win) scenarios respectively. The arrows depict pathways and management measures by which we can move from one

scenario to another and these are explained further in the text.
but not threatened species [9��] and benefits will therefore

be primarily restricted to pollination service delivery,

although concrete evidence for that is mostly lacking.

There is also increased awareness of the positive effect

of habitat heterogeneity on pollinator numbers and diver-

sity [57�] (such as those brought about by application of

agri-environmental schemes), which could improve polli-

nation services to a number of economically important

crops while simultaneously enhancing local biodiversity

[58–61]. However, such win-win situations might be re-

stricted to highly transformed landscapes (e.g. intensively

managed northwest European landscapes). In such land-

scapes, the decline of the pollen host plants of species has

been identified as the key driver of population decline of

bee species [62] suggesting that more emphasis on provi-

sioning of specific foraging and nesting resources might go

a long way in enhancing pollinator biodiversity, including

even threatened species. Recently, there has also been a

focus on the role played by urban landscapes to support
www.sciencedirect.com 
higher diversity of pollinator species [63�] with examples of

positive impacts on pollinators found in a several cities

across the World, including those in USA [64], Brazil

[65,66], South Africa [67] and Europe [68]. The overall

challenge, however, is to design and incentivise measures

that optimise both pollination service delivery and en-

hance biodiversity conservation (Figure 3D) and that

would remain stable not just under current conditions

but could withstand future environmental perturbations.

In any case, more attention should be given to measures

to conserve rare or endemic species that might occur in

more natural landscapes or specialised habitats such as

dunes or mountain grasslands. Most existing initiatives to

enhance pollinators and the studies supporting them, only

focus on landscapes of high anthropogenic use. Strategies

are needed to make sure that also in the future people can

appreciate the beauty and fascinating life history of

species such as the aforementioned B. gerstaeckeri. In
Current Opinion in Insect Science 2015, 12:93–101



98 Insect conservation
addition, actions aiming to conserve solely dominant

pollinators should not ignore the wider diversity and

landscapes which sustains these species: The focus needs

to include conservation of plants that, while not econom-

ically important, are required to conserve biodiversity in

its entirety. This is likely to have benefits for many other

ecosystem services that are affected by biodiversity, as

well as sustaining species that have solely cultural/spiri-

tual/moral values (i.e. actions that consider the concept of

ecosystem service as whole). This would guarantee a win–
win situation, by conserving wider biodiversity whilst

providing a suite of species capable of crop pollination

in vast regions today and for the future.

Pathways to delivering sustainability for
pollinators and pollination services
Systems to actively deliver sustainable conservation for

both pollinators and pollination services are presently

lacking. Although farmers increasingly recognise the
Figure 4
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benefits of pollination services, national and regional

government policy designed to support pollinator diver-

sity provides limited incentives for them to support

pollinators that do not provide services [69]. In the

absence of specific incentives, farmers have little moti-

vation to provide interventions on land that is not adja-

cent to fields that will benefit from pollination services

[23] or to support non-crop pollinating species. Further-

more, many on-farm agri-environment measures support

pollinators as a beneficial side-effect more than an overt,

targeted objective [70]. These shortcomings highlight the

potentially pivotal role in more classical conservation

actions such as protected areas and dedicated species-

specific conservation action that are often focused on

more intrinsic goals. However, these measures, even in

areas far from agricultural habitats, may still be affected,

positively or negatively, by broader policies such as water

quality management or land development regulations.

Indeed many policies that affect pollinators and wider
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 high and low diversity showing the resulting trade-offs and outputs.
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biodiversity do not explicitly acknowledge them, focusing

instead on food security, public health or development

targets [69].

Reconciling these varied objectives within existing policy

will likely benefit from a more targeted approach that

optimises the placement and duration of measures to

support wider pollinator diversity. This is likely to be

expensive and complex to administer under current sys-

tems which are not designed around an ecosystems ap-

proach. An alternative system could be payments for

ecosystem services (PES) schemes that paid producers

based upon the measurable production of pollinators and

pollination services. However, both pollinators and polli-

nation services can be difficult and costly to monitor [71�].
Perhaps the most comprehensive solution would be to

consider trade-offs in multiple dimensions (environmen-

tal, economic and social) using multi-criteria cost–benefit

analyses that use different dimensional indexes [72]

rather than focusing solely on economic benefit. Weight-

ing within these indices can be used to emphasise certain

objectives (benefits to endangered species, economic

benefits to low income areas, among others) within each

dimension. Using this framework, policy developed to

explicitly consider and monitor trade-offs, may not

necessarily maximise any one objective but could pro-

vide sustainable benefits to a number of objectives

simultaneously, resulting in more desirable, win–win

activities. This paradigm is illustrated in Figure 4. In

order to fully achieve this framework, it will be essential

that policy makers and scientists take a more holistic

view of the issues surrounding biodiversity conservation

rather than simply reframing an ecological issue as an

economic one.

Conclusion
� Only few species of pollinators have a direct and easily

recognised economic importance. However, it is

possible that pollinator species richness may create

resilience to losses of current dominant species

� The vast numbers of pollinator species with no

economic value are essential to guarantee the optimal

functioning of ecosystems.

� The economic argument is inadequate as a sole reason

for implementing management measures and we need

to consider the biological, cultural and moral arguments

for the conservation of wider diversity.

� Practices aimed at conserving only a limited number of

species need to consider the vast number of ecological

partners that sustain such species presence and

influence their efficiency as pollinators.

� Management and policy measures need to focus on

species not just in human dominated landscapes but

need to benefit wider diversity of species including

those in specialised habitats.

� Specific practices targeted at endangered and rare

species are needed to not just guarantee the habitat
www.sciencedirect.com 
requirements of a wider diversity of species, but for

intrinsic biodiversity value.

� A more holistic approach to management, which

recognises and measures biodiversity, economic and

social impacts, will be required if policy is to provide

true win–win situations
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