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ON UNIVERSAL AND PERIODIC β-EXPANSIONS, AND THE HAUSDORFF
DIMENSION OF THE SET OF ALL EXPANSIONS

SIMON BAKER

ABSTRACT. In this paper we study the topology of a set naturally arising from the study of β-
expansions. After proving several elementary results for this set we study the case when our base
is Pisot. In this case we give necessary and sufficient conditions for this set to be finite. This
finiteness property will allow us to generalise a theorem due to Schmidt and will provide the
motivation for sufficient conditions under which the growth rate and Hausdorff dimension of the
set of β-expansions are equal and explicitly calculable.

1. INTRODUCTION

Let m ∈ N, β ∈ (1,m + 1] and Iβ,m = [0, m
β−1 ]. We call a sequence (εi)

∞
i=1 ∈ {0, . . . ,m}N a

β-expansion for x if
∞∑
i=1

εi
βi

= x.

It is a simple exercise to show that x has a β-expansion if and only if x ∈ Iβ,m. For x ∈ Iβ,m we
denote the set of β-expansions for x by Σβ,m(x), i.e.,

Σβ,m(x) =
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N :

∞∑
i=1

εi
βi

= x
}
.

It is a well known property that for β ∈ (1,m + 1) a point x ∈ (0, m
β−1) will typically have a

non-unique β-expansion, see [2, 4, 10, 13, 15, 17]. The following set was introduced in [8]

Eβ,m,n(x) =
{

(ε1, . . . , εn) ∈ {0, . . . ,m}n|∃(εn+1, εn+2, . . .) ∈ {0, . . . ,m}N

:
∞∑
i=1

εi
βi

= x
}
,

we refer to an element of Eβ,m,n(x) as an n-prefix for x. In what follows we fix the map Tβ,i(x) =
βx− i for i ∈ {0, . . . ,m}. Moreover, we let

Ωβ,m(x) =
{

(ai)
∞
i=1 ∈ {Tβ,0, . . . , Tβ,m}N : (an ◦ an−1 ◦ . . . ◦ a1)(x) ∈ Iβ,m for all n ∈ N

}
Date: November 17, 2015.
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2 SIMON BAKER

and

Ωβ,m,n(x) =
{

(ai)
n
i=1 ∈ {Tβ,0, . . . , Tβ,m}n : (an ◦ an−1 ◦ . . . ◦ a1)(x) ∈ Iβ,m

}
,

for each n ∈ N. For our purposes it is also useful to define Ωβ,m,0(x) to be the set consisting
of the identity map. Typically we will denote an element of Ωβ,m,n(x) or any finite sequence of
maps by a. When we want to emphasise the length of a we will use the notation a(n). We also
adopt the notation a(n)(x) to mean (an ◦ an−1 ◦ . . . ◦ a1)(x). The following technical lemma will
be useful.

Lemma 1.1. (1) Card(Eβ,m,n(x)) = Card(Ωβ,m,n(x)),where our bijection identifies (εi)
n
i=1

with (Tβ,εi)
n
i=1.

(2) Card(Σβ,m(x)) = Card(Ωβ,m(x)), where our bijection identifies (εi)
∞
i=1 with (Tβ,εi)

∞
i=1.

(3) A finite block (ε1, . . . , εn) of elements from {0, . . . ,m} appears in a β-expansion for x if
and only if there exists a finite sequence of maps a, such that (Tβ,εn ◦ . . . ◦Tβ,ε1 ◦ a)(x) ∈
Iβ,m.

Proof. The proofs of statements 1 and 2 are contained in [2]. To prove statement 3 we replicate
an argument given in [8]. Suppose (ε1, . . . , εn) appears in a β-expansion for x, then there exists
N ∈ N and (δ1, . . . , δN) ∈ {0, . . . ,m}N such that

x−
N∑
i=1

δi
βi
−

n∑
i=1

εi
βN+i

∈
[
0,

m

βN+n(β − 1)

]
.

A simple manipulation yields that this is equivalent to

βN+nx−
N∑
i=1

δiβ
N+n−i −

n∑
i=1

εiβ
n−i ∈ Iβ,m.

However

βN+nx−
N∑
i=1

δiβ
N+n−i −

n∑
i=1

εiβ
n−i = (Tβ,εn ◦ . . . ◦ Tβ,ε1 ◦ Tβ,δN ◦ . . . ◦ Tβ,δ1)(x).

Our result follows immediately.
�

With Lemma 1.1 in mind we also refer to an element of Ωβ,m,n(x) as an n-prefix for x. Natu-
rally arising from Lemma 1.1 are the sets

Sβ,m,n(x) =
{
a(x) : a ∈ Ωβ,m,n(x)

}
and

Sβ,m(x) =
∞⋃
n=0

Sβ,m,n(x).

After proving several elementary results for Sβ,m(x) we will study the case when β is Pisot. Our
main result will be the following.
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Theorem 1.2. Let β be a Pisot number, then Sβ,m(x) is finite if and only if x ∈ Q(β).

Recall that a Pisot number is a real algebraic integer greater than 1 whose other Galois con-
jugates are of modulus strictly less than 1. Using Theorem 1.2 we will show that for a general
method of producing β-expansions the β-expansion generated for x is eventually periodic if and
only if x ∈ Q(β), generalising a theorem due to Schmidt [14]. Theorem 1.2 will also provide
the motivation for sufficient conditions under which the growth rate of β-expansions equals the
Hausdorff dimension of the set of β-expansions, partially answering a question posed in [3],
moreover our method allows us to explicitly calculate these quantities.

Before beginning our study of the sets Sβ,m,n(x) and Sβ,m(x) it is useful to recall the following,
as we will see the subsequent theory will be important in understanding the topology of these
sets.

To each m ∈ N and β ∈ (1,m+ 1] we associate the set

Y m(β) =
{ n∑

i=1

εiβ
i|εi ∈ {0, . . . ,m}, n = 0, 1, . . .

}
.

The elements of Y m(q) can be arranged into a strictly increasing sequence ym0 (β) < ym1 (β) <
ym2 (β) < . . . , tending to infinity. We define the quantities

lm(β) = lim inf
k→∞

(ymk+1(β)− ymk (β)) and Lm(β) = lim sup
k→∞

(ymk+1(β)− ymk (β)).

These limits have been studied in great depth, to name but a few references we refer the reader
to [1, 5, 7, 19]. As we will see the quantities lm(β) and Lm(β) will be intimately related to the
topology of the sets Sβ,m,n(x) and Sβ,m(x).

2. ELEMENTARY PROPERTIES

In this section we prove several elementary results relating the topology of Sβ,m(x) to the set
of β-expansions. Following [5] we say that a β-expansion for x is universal if it contains all
finite blocks of digits from {0, . . . ,m}. Similarly, we say that a point x ∈ Iβ,m is universal if for
any finite block of digits from {0, . . . ,m} there exists a β-expansion for x containing this block.
The following propositions are immediate.

Proposition 2.1. x ∈ Iβ,m is universal if and only if Sβ,m(x) is dense in Iβ,m.

Proof. Assume x is universal and let I be a nontrivial subinterval of Iβ,m. Let z ∈ int(I) and
(δi)

∞
i=1 be a β-expansion for z, we consider the set

Γ((δi)
N
i=1) =

{
y ∈ Iβ,m|(Tβ,δN ◦ . . . ◦ Tβ,δ1)(y) ∈ Iβ,m

}
.

This set is an interval of diameter m
βN (β−1) containing z, since z ∈ int(I) we have Γ((δi)

N
i=1) ⊂ I

for N sufficiently large. As x is universal there exists a β-expansion for x containing the digits
(δ1, . . . , δN), by an application of Lemma 1.1 there must exist a finite sequence of maps a such
that a(x) ∈ Γ((δi)

N
i=1). Therefore Sβ,m(x) ∩ I 6= ∅, as I was arbitrary we may conclude that

Sβ,m(x) is dense in Iβ,m.
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We now prove the opposite implication. Suppose Sβ,m(x) is dense and let ε = (ε1, . . . , εn) be
a finite block of digits from {0, . . . ,m}. Let

Iε =
{
y ∈ Iβ,m|(Tβ,εn ◦ . . . ◦ Tβ,ε1)(y) ∈ Iβ,m

}
.

As Sβ,m(x) is dense there exists a finite sequence of maps a such that a(x) ∈ Iε, therefore
(Tβ,εn ◦ . . . ◦ Tβ,ε1 ◦ a)(x) ∈ Iβ,m, our result follows from Lemma 1.1.

�

Proposition 2.2. If x ∈ Iβ,m has a universal β-expansion then there exists a ∈ Ωβ,m(x) such
that {(an ◦ . . . ◦ a1)(x)|n = 1, 2, . . .} is dense in Iβ,m.

The proof of this statement follows by a similar argument to the first part of Proposition 2.1
and is therefore omitted.

Proposition 2.3. Every x ∈ (0, m
β−1) has a universal β-expansion if and only if Sβ,m(x) is dense

in Iβ,m for all x ∈ (0, m
β−1).

Proof. The rightwards implication is an immediate consequence of Proposition 2.2. Let us sup-
pose Sβ,m(x) is dense in Iβ,m for every x ∈ (0, m

β−1). Let {Bi}∞i=1 be an enumeration of all
finite blocks of transformations from {Tβ,0, . . . , Tβ,m}. For each Bi there exists an interval IBi
such that, Bi(y) ∈ Iβ,m if and only if y ∈ IBi . As Sβ,m(x) is dense in Iβ,m there exists a finite
sequence of maps a, such that a(x) ∈ int(IB1), therefore B1 ◦ a(x) ∈ (0, m

β−1). Applying our
hypothesis to B1 ◦ a(x) we can assert that there exists a finite sequence of maps a1, such that
(B2 ◦a1 ◦B1 ◦a)(x) ∈ (0, m

β−1). Repeating this process arbitrarily many times we may construct
an infinite sequence of maps containing all finite blocks from {Tβ,0, . . . , Tβ,m}, by Lemma 1.1
our result follows. �

In [5] the following result was shown to hold.

Theorem 2.4. If Lm(β) = 0 then every x ∈ (0, m
β−1) has a universal β-expansion.

By Theorem 2.4 and the results presented in [1], [7] and [18] the following theorem is imme-
diate.

Theorem 2.5. • Let β ∈ (1, 21/3] and assume β is not a Pisot number, then Sβ,1(x) is dense
in Iβ,1 for every x ∈ (0, 1

β−1).
• Let β ∈ (21/3, 21/2) and assume that β2 is not a Pisot number, then Sβ,1(x) is dense in
Iβ,1 for every x ∈ (0, 1

β−1).

• Let β ∈ (1, 2), then for almost every x ∈ Iβ,1 there exists a ∈ Ωβ,1(x) such that {an ◦
. . . ◦ a1(x)|n = 1, 2, . . .} is dense in Iβ,1.

3. THE PISOT CASE

In this section we study the case when β is Pisot. As well as proving Theorem 1.2 we will
show that the following result holds.
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Proposition 3.1. Let β be a Pisot number and x ∈ Iβ,m, then Card(Sβ,m,n(x)) can be bounded
above by some constant depending only on β and m.

To prove Theorem 1.2 and Proposition 3.1 we require the following theorem due to Garsia [9].

Theorem 3.2. Let m ∈ N and β ∈ (1,m + 1] be a Pisot number, then Y m(β) is uniformly
discrete, i.e., there exists ∆(β,m) > 0 such that |x − y| ≥ ∆(β,m) for all x, y ∈ Y m(β) such
that x 6= y.

Proof of Theorem 1.2. Suppose Sβ,m(x) is finite, in this case there exists n < n′, a ∈ Ωβ,m,n(x)
and a′ ∈ Ωβ,m,n′(x) such that a(x) = a′(x). It follows that there exists (εi)

n−1
i=0 ∈ {0, . . . ,m}n

and (ε′i)
n′−1
i=0 ∈ {0, . . . ,m}n

′ satisfying

βnx−
n−1∑
i=0

εiβ
i = βn

′
x−

n′−1∑
i=0

ε′iβ
i,

from which it is a simple consequence that x ∈ Q(β). It remains to show that the opposite
implication holds. Let x ∈ Q(β), then x = p(β)/n1 for some n1 ∈ N and p(β) =

∑d
i=0 δiβ

i

where δi ∈ Z. Let ε > 0, we assume for a contradiction that Sβ,m(x) is infinite. If Sβ,m(x) is
infinite then there exists j, j′ ∈ N such that

(3.1) 0 <
∣∣∣(βjp(β)

n1

−
j−1∑
i=0

εiβ
i
)
−
(βj′p(β)

n1

−
j′−1∑
i=0

ε′iβ
i
)∣∣∣ < ε

n1

,

for some (εi)
j−1
i=0 ∈ {0, . . . ,m}j and (ε′i)

j′−1
i=0 ∈ {0, . . . ,m}j

′
. By an abuse of notation we can

rewrite (3.1) as

(3.2)
∣∣∣βjp(β)− βj′p(β)

n1

−
k∑
i=0

εiβ
i
∣∣∣ < ε

n1

,

where k = max{j − 1, j′ − 1} and (εi)
k
i=0 ∈ {−m, . . . ,m}k+1. Multiplying through by n1 we

can rewrite (3.2) as

(3.3)
∣∣∣βjp(β)− βj′p(β)− n1

k∑
i=0

εiβ
i
∣∣∣ < ε.

Let n2 = max{|δi|} and L = max{d+ j, d+ j′}, collecting positive and negative terms we can
rewrite (3.3) as

(3.4)
∣∣∣ L∑
i=0

ωiβ
i −

L∑
i=0

ω′iβ
i
∣∣∣ < ε,

for some (ωi)
L
i=0, (ωi′)

L
i=0 ∈ {0, . . . , n1m+n2}L+1.We remark that n1m+n2 has no dependence

on j and j′ and if we take ε = ∆(β, n1m+n2), then by Theorem 3.2 we have a contradiction. �
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Proof of Proposition 3.1. Let m ∈ N and β ∈ (1,m + 1] be a Pisot number, for each x ∈ Iβ,m
we can rewrite Sβ,m,n(x) as

Sβ,m,n(x) =
{
y ∈ Iβ,m|y = βnx−

n−1∑
i=0

εiβ
i where εi ∈ {0, . . . ,m}

}
.

Let z, z′ ∈ Sβ,m,n(x) and z 6= z′, then |z−z′| = |
∑n−1

i=0 εiβ
i−
∑n−1

i=0 ε
′
iβ
i| for some (εi)

n−1
i=0 , (ε

′
i)
n−1
i=0 ∈

{0, . . . ,m}n. By Theorem 3.2 |z − z′| ≥ ∆(β,m) and therefore

Card(Sβ,m,n(x)) ≤
[ m

β−1

∆(β,m)

]
+ 1.

�

Remark 3.3. In [18] it was shown that for β ∈ (1, 2) almost every x ∈ Iβ,1 has a universal β-
expansion. By Proposition 2.2 it follows that Sβ,1(x) is dense in Iβ,m for almost every x ∈ Iβ,1.
We might expect Card(Sβ,1,n(x))→∞ as n→∞ for almost every x. However, by Proposition
3.1 Card(Sβ,1,n(x)) can be bounded above when β is Pisot for all x ∈ Iβ,m.

The following corollary is an immediate consequence of Theorem 1.2 and Propositions 2.1
and 2.2.

Corollary 3.4. Let β be Pisot, if x ∈ Q(β) then x cannot be universal or have a universal
β-expansion.

This generalises a result in [5] where it was shown that if β is Pisot then 1 cannot have a
universal β-expansion.

4. GENERALISATION OF SCHMIDT’S THEOREM

In this section we generalise a theorem due to Schmidt [14]. Before stating our theorem and
Schmidt’s it is necessary to establish the following. Let A = {Bk}2

m+1−1
k=1 = P({0, . . . ,m}) \

{∅}, where P({0, . . . ,m}) denotes the powerset of {0, . . . ,m}. We set

B(x) :=
{
i ∈ {0, . . . ,m} : Tβ,i(x) ∈ Iβ,m

}
,

and to each Bk ∈ A we associate the set

Ik,β,m =
{
x ∈ Iβ,m : B(x) = Bk

}
.

We remark that for many Bk the corresponding set Ik,β,m will be empty, however for our
purposes this will not be important. We also remark that the set {Ik,β,m}2

m+1−1
k=1 forms a partition

of Iβ,m. When Ik,β,m is non-empty it will be an interval; possibly open, closed or neither.

Example 4.1. Let m = 1 and β ∈ (1, 2], in this case A = {Bk}3k=1 = {{0}, {1}, {0, 1}} and
I1,β,m = [0, 1

β
), I2,β,m = ( 1

β(β−1) ,
1

β−1 ] and I3,β,m = [ 1
β
, 1
β(β−1) ].
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0 1
β−1

1
β

1
β(β−1)

FIGURE 1. A typical expansion generating function for m = 1 and β ∈ (1, 2)

Suppose Bk = {δk,l}p(k)l=1 , we let {Ak,l}p(k)l=1 be a partition of Ik,β,m. As {Ik,β,m}2
m+1−1
k=1 is a

partition of Iβ,m then {Ak,l}k,l is also a partition of Iβ,m. We define the expansion generating
function associated to {Ak,l}k,l to be the function F : Iβ,m → Iβ,m, where F (x) = Tβ,δk,l(x) if
x ∈ Ak,l. As {Ak,l}k,l is a partition of Iβ,m the function F is well defined. We refer to F as the
expansion generating function associated to {Ak,l}k,l because by repeatedly iterating our map F
it associates to each x ∈ Iβ,m a unique element of Ωβ,m(x), by Lemma 1.1 this corresponds to a
unique β-expansion for x. We define this unique β-expansion to be the β-expansion generated by
F . Intuitively we think of the partition {Ak,l}k,l as a collection of rules under which whenever we
have a choice of maps from {Tβ,0, . . . , Tβ,m} satisfying Tβ,i(x) ∈ Iβ,m, our rules decide which of
these maps we perform. We remark that the elements of {Ak,l}k,l may have an exotic structure,
they need not be intervals or even measurable sets. We refer the reader to Figure 1 for a diagram
illustrating a typical expansion generating function in the case where m = 1 and β ∈ (1, 2).

Remark 4.2. If Ak,max{δk,l} = Ik,β,m for each 1 ≤ k ≤ 2m+1 − 1, then

F (x) =

{
βx(mod 1) if x ∈ [0, m

β
]

βx−m if x ∈ (m
β
, m
β−1 ].

The β-expansion generated by this function is the greedy expansion. If Ak,min{δk,l} = Ik,β,m then
the β-expansion generated by F is the lazy expansion. We refer the reader to [16] for the relevant
details regarding greedy and lazy expansions.
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When Ak,max{δk,l} = Ik,β,m as in Remark 4.2 we denote the expansion generating function
associated to {Ak,l}k,l by Fgreedy, moreover we let Pre(Fgreedy) denote the set of pre-periodic
points of Fgreedy. In [14] the following theorem was shown to hold.

Theorem 4.3. Let β be a Pisot number, consider Fgreedy : [0, 1) → [0, 1), then Pre(Fgreedy) =
Q(β) ∩ [0, 1).

It is not difficult to show that this result can be extended to the case when Fgreedy : Iβ,m →
Iβ,m. We generalise this result as follows.

Theorem 4.4. Let β be a Pisot number, then Pre(F ) = Q(β)∩Iβ,m for any expansion generating
function F .

Proof. Let x ∈ Pre(F ), by Lemma 1.1 there exists an eventually periodic β-expansion for x,
manipulating this expansion using standard techniques for geometric series we can conclude that
Pre(F ) ⊂ Q(β) ∩ Iβ,m. We now show the opposite inclusion, let x ∈ Q(β) ∩ Iβ,m and F be
an expansion generating function corresponding to some {Ak,l}k,l. Each succesive iterate of the
map F is an element of Sβ,m(x). By Theorem 1.2 we have that Sβ,m(x) is finite and therefore
there exists N,N ′ ∈ N, such that FN(x) = FN ′

(x), therefore x ∈ Pre(F ). �

In [11] a version of Theorem 4.4 was shown to hold for a more general class of β-expansion,
however, this was under the weaker assumption that the elements of {Ak,l}k,l were intervals.

The following corollary is an immediate consequence of Theorem 4.4 and Lemma 1.1.

Corollary 4.5. Let β be a Pisot number, then for any expansion generating function F the β-
expansion generated by F is eventually periodic if and only if x ∈ Q(β) ∩ Iβ,m.

5. THE GROWTH RATE AND HAUSDORFF DIMENSION OF Σβ,m(x)

In this section we study the growth rate and Hausdorff dimension of the set of β-expansions.
Let β ∈ (1,m + 1] be some arbitrary number not necessarily Pisot, we assume that x ∈ Iβ,m
satisfies Sβ,m(x) = {γj}kj=1. Our motivation for this finiteness condition comes from Theorem
1.2 but as we will see the following results do not require any assumptions on the algebraic
properties of β or x. However, we remark that we are unaware of any non-trivial examples where
β is not Pisot and there exists x ∈ Iβ,m such that Sβ,m(x) is finite. In what follows we assume
that our enumeration of the set {γj}kj=1 is such that γ1 = x.

Recall the following from [3], let

Nβ,m,n(x) = Card(Eβ,m,n(x))

and define the growth rate of β-expansions to be

lim
n→∞

logm+1Nβ,m,n(x)

n
,

when this limit exists. When this limit does not exist we can consider the lower and upper growth
rates of β-expansions, these are defined to be

lim inf
n→∞

logm+1Nβ,m,n(x)

n
and lim sup

n→∞

logm+1Nβ,m,n(x)

n
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respectively. We endow {0, . . . ,m}N with the metric d(·, ·) defined as follows:

d(x, y) =

{
(m+ 1)−n(x,y) if x 6= y, where n(x, y) = inf{i : xi 6= yi}
0 if x = y.

We can consider the Hausdorff dimension of Σβ,m(x) with respect to this metric. It is a simple
exercise to show that following inequalities hold:

(5.1) dimH(Σβ,m(x)) ≤ lim inf
n→∞

logm+1Nβ,m,n(x)

n
≤ lim sup

n→∞

logm+1Nβ,m,n(x)

n
.

These quantities were studied in [2, 3, 8, 12]. In [2] it was shown that for each m ∈ N there
exists G(m) ∈ R such that, for β ∈ (1,G(m)) and x ∈ (0, m

β−1) the Hausdorff dimension of
Σβ,m(x) can be bounded below by some strictly positive function depending only on β and m.

We define the transition matrix associated to x to be the k × k matrix A, where A satisfies

(A)q,j =

{
1 if there exists i ∈ {0, . . . ,m} such that Tβ,i(γq) = γj
0 otherwise.

Let N(γq, γj, n) = Card({a ∈ Ωβ,m,n(x) such that a(γq) = γj}). The following proposition
is immediate.

Proposition 5.1. Let ej denote the (k × 1) column vector that is 1 in the j-th entry and 0 in all
other entries. Then N(γq, γj, n) = (Anej)q and Nβ,m,n(γq) =

∑k
j=1(A

nej)q.

Proof. As Nβ,m,n(γq) =
∑k

j=1N(γq, γj, n) it suffices to show that the first statement holds. It is
a standard inductive argument to show that

N(γq, γj, n) = (An)q,j,

our result then follows from the observation that (An)q,j = (Anej)q
�

We now give conditions under which we have equality in (5.1) and can explicitly compute
dimH(Σβ,m(x)) and the growth rate of β-expansions. Let A be the transition matrix associated
to {γj}kj=1 as above. As A is a non-negative matrix with non-zero entries it has a positive real
eigenvalue α with non-negative eigenvector vα, such that Spec(A) = α. It maybe the case that
there exists other possibly complex eigenvalues αi such that |αi| = α. This is the case we want
to avoid, as such we introduce the following condition. We say that A satisfies condition 1 if A
has a positive real eigenvalue α with non-negative eigenvector vα such that |αi| < α for all other
eigenvalues. Condition 1 is satisfied if for every γi, γj ∈ Sβ,m(x) there exists a finite sequence of
maps ai,j such that ai,j(γi) = γj, and if pi is the minimum number of transformations required
to map γi to γi, then gcd({pi}) = 1. This is a consequence of the Perron-Frobenius theorem for
primitive matrices.

Theorem 5.2. Let m ∈ N, β ∈ (1,m + 1] and x ∈ Iβ,m. Assume Sβ,m(x) = {γj}kj=1 and the
transition matrix A associated to x satisfies condition 1, then

dimH(Σβ,m(x)) = lim
n→∞

logm+1Nβ,m,n(x)

n
= logm+1 α.
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Before proving Theorem 5.2 we require the following lemma.

Lemma 5.3. Under the hypothesis of Theorem 5.2 there exists Cx > 0 and D > 0 such that

Cxα
n ≤ Nβ,m,n(x)

and
Nβ,m,n(γj) ≤ Dαn

for all γj ∈ Sβ,m(x) and n ∈ N.

Proof. The existence of D follows by a simple linear algebra argument and Proposition 5.1. It
remains to show the existence of Cx. Let i ∈ {1, . . . , k} be such that (vα)i > 0. By Proposition
5.1 we have that

Nβ,m,n(γi) ≥ (Anei)i = (An(projvα(ei)) + An(ei − projvα(ei)))i

= (αn(projvα(ei)) + An(ei − projvα(ei)))i

= (αn(projvα(ei)))i + (An(ei − projvα(ei)))i.

Here projvα denotes the projection onto the eigenvector vα, since (vα)i > 0 it follows that
projvα(ei) is nonzero and by condition 1 there exists C > 0 such that

(5.2) Nβ,m,n(γi) ≥ Cαn.

There exists a sequence of transformations a of length ni such that a(x) = γi, thereforeNβ,m,n+ni(x) ≥
Nβ,m,n(γi). By (5.2) we can conclude that Nβ,m,n+ni(x) ≥ Cαn, for all n ∈ N, our result fol-
lows. �

Applying Lemma 5.3 we can conclude that logm+1Nβ,m,n(x)
n

= α. By (5.1) to prove Theorem
5.2 it suffices to show that dimH(Σβ,m(x)) ≥ α. Our method of proof is analogous to that given
in [2], which is based upon Example 2.7 of [6].

Proof of Theorem 5.2. As Σβ,m(x) is a compact set we may restrict to finite covers. Let {Un}Nn=1

be a finite cover of Σβ,m(x), without loss of generality we may assume that Diam(Un) < 1
m+1

,
as such for each Un there exists l(n) ∈ N such that

(m+ 1)−(l(n)+1) ≤ Diam(Un) < (m+ 1)−l(n).

It follows that there exists z(n) ∈ {0, . . . ,m}l(n) such that, yi = z
(n)
i for 1 ≤ i ≤ l(n), for all

y ∈ Un.We may assume that z(n) ∈ Eβ,m,l(n)(x), if we supposed otherwise then Σβ,m(x)∩Un = ∅
and we can remove Un from our cover. We denote by Cn the set of sequences in {0, . . . ,m}N
whose first l(n) entries agree with z(n), i.e.

Cn =
{

(εi)
∞
i=1 ∈ {0, . . . ,m}N : εi = z

(n)
i for 1 ≤ i ≤ l(n)

}
.

Clearly Un ⊂ Cn and therefore the set {Cn}Nn=1 is a cover of Σβ,m(x).
Since there are only finitely many elements in our cover there exists J ∈ N such that (m +

1)−J ≤ Diam(Un) for all n. We consider the set Eβ,m,J(x). Since {Cn}Nn=1 is a cover of Σβ,m(x)
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each a ∈ Eβ,m,J(x) satisfies ai = z
(n)
i for 1 ≤ i ≤ l(n), for some n. Therefore

Nβ,m,J(x) ≤
N∑
n=1

Card({a ∈ Eβ,m,J(x) : ai = z
(n)
i for 1 ≤ i ≤ l(n)}).

Applying Lemma 5.3 the following inequality is immediate;

(5.3) Cxα
J ≤

N∑
n=1

Card({a ∈ Eβ,m,J(x) : ai = z
(n)
i for 1 ≤ i ≤ l(n)}).

Each element of the set {a ∈ Eβ,m,J(x) : ai = z
(n)
i for 1 ≤ i ≤ l(n)} can be identified with a

prefix of length J − l(n) for some element of {γj}kj=1, this is a simple consequence of Lemma
1.1. We may therefore apply the second bound from Lemma 5.3,

N∑
n=1

Card({a ∈ Eβ,m,J(x) : ai = z
(n)
i for 1 ≤ i ≤ l(n)}) ≤

N∑
n=1

DαJ−l(n)

= DαJ+1

N∑
n=1

(m+ 1)−(l(n)+1) logm+1 α

≤ DαJ+1

N∑
n=1

Diam(Un)logm+1 α.

Combining the above with (5.3) we have that the following inequality holds;

Cxα
J ≤ DαJ+1

N∑
n=1

Diam(Un)logm+1 α.

Dividing through by DαJ+1 yields

N∑
n=1

Diam(Un)logm+1 α ≥ Cx
Dα

,

the right hand side is a constant greater than zero that does not depend on our choice of cover. It
follows that dimH(Σβ,m(x)) ≥ logm+1 α. �

6. EXPLICIT CALCULATION

In this section we show how we can explicitly compute dimH(Σβ,m(x)) and the growth rate of
β expansions for some x, β and m. In what follows we assume β ≈ 1.53416 is the Pisot number
whose minimial polynomial is given by z5− z3− z2− z− 1, x = 1

β2−1 and m = 1. It is a simple
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computation to show that

Sβ,1

( 1

β2 − 1

)
= {γj}10j=1 =

{ 1

β2 − 1
,

β

β2 − 1
,
1 + β − β2

β2 − 1
,
β + β2 − β3

β2 − 1
,
β2 + β3 − β4

β2 − 1

β3 + β4 − β5

β2 − 1
,

β2

β2 − 1
,
β3 − β2 + 1

β2 − 1
,
β4 − β3 − β2 + β + 1

β2 − 1
,

β5 − β4 − β3 + β + 1

β2 − 1

}
and the matrix A is the 10× 10 matrix of the form

A =



0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0


This matrix has maximal eigenvalue κ ≈ 1.325 with strictly positive eigenvector

vκ ≈ (0.478, 0.478, 0.155, 0.206, 0.273, 0.361, 0.155, 0.206, 0.273, 0.361).

By Theorem 5.2 it follows that

dimH(Σβ,1(x)) = lim
n→∞

log2Nβ,1,n(x)

n
≈ log2 1.325 ≈ 0.40599 . . . .

This result in fact holds for all γj ∈ Sβ,1( 1
β2−1).

Remark 6.1. In [8] the authors show that if β ∈ (1, 2) is a Pisot number, almost every x ∈ Iβ,1
satisfies

lim
n→∞

log2Nβ,1,n(x)

n
= γ,

where γ < log2(
2
β
). However, when β is as above and x = 1

β2−1 we have that

lim
n→∞

log2Nβ,1,n( 1
β2−1)

n
= log2 1.325 > log2

( 2

β

)
.

Their bound cannot therefore be extended to all x ∈ (0, 1
β−1).
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