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Abstract. Projections of Arctic sea ice thickness (SIT) have

the potential to inform stakeholders about accessibility to the

region, but are currently rather uncertain. The latest suite of

CMIP5 global climate models (GCMs) produce a wide range

of simulated SIT in the historical period (1979–2014) and

exhibit various biases when compared with the Pan-Arctic

Ice–Ocean Modelling and Assimilation System (PIOMAS)

sea ice reanalysis. We present a new method to constrain

such GCM simulations of SIT via a statistical bias correc-

tion technique. The bias correction successfully constrains

the spatial SIT distribution and temporal variability in the

CMIP5 projections whilst retaining the climatic fluctuations

from individual ensemble members. The bias correction acts

to reduce the spread in projections of SIT and reveals the

significant contributions of climate internal variability in the

first half of the century and of scenario uncertainty from the

mid-century onwards. The projected date of ice-free condi-

tions in the Arctic under the RCP8.5 high emission scenario

occurs in the 2050s, which is a decade earlier than without

the bias correction, with potentially significant implications

for stakeholders in the Arctic such as the shipping industry.

The bias correction methodology developed could be simi-

larly applied to other variables to reduce spread in climate

projections more generally.

1 Introduction

Global climate models (GCMs) are the primary tool for mak-

ing climate predictions on seasonal to decadal timescales,

and climate projections over the next century (Flato et al.,

2013). In a warming climate, changes to sea ice thick-

ness (SIT) are expected to lead to significant implications for

polar regions and beyond. A reduction in SIT will likely open

up the Arctic Ocean to economic diversification including

new marine shipping routes (Smith and Stephenson, 2013)

and extraction of natural resources, as well as changes to the

Arctic ecosystem and potential links to mid-latitude weather

(Francis and Vavrus, 2012). Many of these economic oppor-

tunities may rely on SIT evolution, but current projections

have considerable uncertainty. SIT is also much more in-

formative than sea ice concentration (SIC), especially in the

central Arctic, where future thinning can occur without ma-

jor changes in the local SIC.

The GCMs from the Coupled Model Intercomparison

Project, phase 5 (CMIP5) (Taylor et al., 2012) exhibit a

large range in sea ice volume (SIV), spatial SIT distribution,

and temporal SIT variability under present-day forcing con-

ditions (e.g. Blanchard-Wrigglesworth and Bitz, 2014). For

September sea ice extent, Swart et al. (2015) showed that the

uncertainty in CMIP5 projections over the next few decades

is dominated by these differences between models, termed

“model uncertainty” by Hawkins and Sutton (2009, 2011).

Uncertainty in climate projections arises from three distinct

sources: (1) model uncertainty, (2) internal variability, and

(3) scenario uncertainty, as discussed by Hawkins and Sutton

(2009, 2011) for temperature and precipitation respectively.

In contrast to projections of temperature where the anoma-

lies are often used, the absolute value of SIT is important –

for example, ships have critical SIT thresholds above which

their use is not possible (Stephenson et al., 2013).

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Bias correction (BC) of GCM simulations has the potential

to reduce the differences between models and hence poten-

tially increase confidence in near-term climate projections.

The importance of BC in impact-based climate change stud-

ies was described in a special report of the IPCC (Seneviratne

et al., 2012), but BC has not previously been applied to pro-

jections of SIT; this manuscript is novel in that it recalibrates

SIT, and does it locally. There are many different types of

proposed BC techniques (e.g. Boe et al. (2009); Christensen

et al. (2008); Ho et al. (2011); Mahlstein and Knutti (2012);

Vrac and Friederichs (2014); Watanabe et al. (2012), and ref-

erences therein) which have mainly been applied to tempera-

ture and precipitation. However, these existing methods need

refining for sea ice as SIT is a particularly challenging vari-

able. This is due to its positive semi-definite nature, and the

spatial and temporal occurrence of zeros, in observations and

projections of SIT.

This study addresses the development of a new BC tech-

nique that constrains both the mean and variance of SIT in

GCMs to an estimate of the observed statistics. It is impor-

tant to correct the mean as this corrects the spatial SIT dis-

tribution. Variability in SIT also has a significant impact on

the simulated range of regional ice-free dates, something of

great interest to stakeholders, and the CMIP5 GCMs exhibit

a wide range in their SIT variability. The study also uses

multiple ensemble members from the same model when per-

forming the BC, something that is often not utilised in other

studies. This is important as it enables an assessment of the

role of internal variability in future projections to be made.

The techniques described in this paper are not limited to SIT,

and would work for many climate variables. The exact imple-

mentation used in this study should also be calibrated to the

user’s needs based on factors such as the length of reliable

observations and number of ensemble members.

In this paper we use the Pan-Arctic Ice–Ocean Modelling

and Assimilation System (PIOMAS) (Zhang and Rothrock,

2003) as a reanalysis-based estimate of recent SIT, along

with climate projections from a subset of six GCMs from

the CMIP5 archive (Sect. 2). We first test the performance

of increasingly complex BC approaches in a “toy” model

environment (Sect. 3) and then apply our favoured method

to the subset of CMIP5 GCMs in Sect. 4. We test the BC

method by splitting the historical PIOMAS data, and then ex-

plore how the range in SIT projections is reduced using these

techniques (Sect. 4) and summarise and discuss the results in

Sect. 5.

2 Climate simulations and observations

2.1 PIOMAS

To represent observed SIT, we use estimates from the PI-

OMAS reanalysis. PIOMAS is a coupled ice–ocean model

that is forced with the National Centers for Environmental

Prediction (NCEP) atmospheric reanalysis, and assimilates

satellite observed sea ice concentration (Lindsay and Zhang,

2006) and sea surface temperature (Schweiger et al., 2011).

It does not however assimilate sea ice thickness (SIT), al-

though this has been attempted using the NASA Operation

IceBridge and SIZONet campaigns of 2012 (Lindsay et al.,

2012).

As a reanalysis, PIOMAS is constrained by the quality of

the assimilated observations. Lindsay et al. (2014) force PI-

OMAS with four different atmospheric reanalysis products

producing differing results. Schweiger et al. (2011) found bi-

ases in PIOMAS of 0.26 m in autumn and 0.1 m in spring

when compared with ICESat (Zwally et al., 2002) although

the spring bias is within the range of uncertainties found by

Zygmuntowska et al. (2014). Larger differences are found in

the areas of thickest ice, north of Greenland and the Cana-

dian Archipelago, with ICESat retrievals around 0.7 m larger

than PIOMAS. However in this region PIOMAS agrees bet-

ter with in situ data (Schweiger et al., 2011). Zygmuntowska

et al. (2014) suggest that this discrepancy is due to the choice

of sea ice density in ICESat, and they support this explana-

tion by finding lower discrepancies between PIOMAS and

CryoSat-2 (Laxon et al., 2013) which utilises an alternative

sea ice density value. Stroeve et al. (2014), in a comprehen-

sive study of SIT across CMIP5 and observations, find that

the spatial correlations in thickness between CMIP5 mod-

els and PIOMAS are generally higher than those between

CMIP5 models and ICESat. It should be noted that these re-

sults will be sensitive to the data set chosen to represent ob-

served SIT.

We choose PIOMAS to represent estimates of SIT as satel-

lite observations are limited in their spatial and temporal

range. For example, data from ICESat are only available be-

tween October and March 2003–2008 (Kwok et al., 2009).

More recently CryoSat-2 has started producing real-time SIT

data sets but only for the non-summer months (Tilling et al.,

2015). This is also not ideal as it is the summer and autumn

months when the ice is thinnest that are most relevant for po-

tential economic activity. The spatial consistency, temporal

length, and completeness of the data are important consider-

ations when computing climatological means and variances,

as the longest time series possible is needed to validate the

statistics. It is primarily for this reason that PIOMAS has

been chosen to represent observations in this study. Several

studies (e.g. Laxon et al. (2013), Schweiger et al. (2011),

Lindsay and Zhang (2006), and Stroeve et al., 2014) have

compared PIOMAS to satellite and in situ observations and

models and find it a suitable estimate of observed SIT. PI-

OMAS is also deemed realistic enough to initialise numer-

ical models for seasonal forecasts e.g. the Sea Ice Outlook

(Blanchard-Wrigglesworth and Bitz, 2014) where the accu-

racy of the initial conditions is vital.

Figure 1 shows the mean September SIT and tempo-

ral standard deviation (SD) after linear detrending for PI-

OMAS over the satellite era (1979–2014). In the heart of

the Canadian Archipelago, PIOMAS ice thickness is up to

The Cryosphere, 9, 2237–2251, 2015 www.the-cryosphere.net/9/2237/2015/
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Figure 1. September 1979–2014 mean SIT and standard deviation

(SD) from the PIOMAS reanalysis. SD is calculated after removing

the linear trend.

1.5 m, which is reasonable when compared to Haas and How-

ell (2015) who measured ice along the Northwest Passage

in May 2011 and April 2015 using airborne electromagnetic

induction soundings, and to Tilling et al. (2015) who used

CryoSat-2 for October and November 2010–2014. North of

Greenland SIT exceeds 3.5 m, which is again comparable to

CryoSat-2 for October and November 2010–2014 and is be-

tween 0 and 1 m along the north Russian coast. The SIT is

most variable around the edge of the ice pack and especially

near land. An effective BC should ensure that the simulations

replicate these patterns of mean SIT and SD over this recent

period.

2.2 Global climate models

This paper utilises a subset of six GCMs from CMIP5. Since

a large part of this work assesses SIT variability, it is neces-

sary for each GCM to have multiple ensemble simulations in

the historical period and for each of the representative con-

centration pathways (RCPs) 2.6, 4.5, and 8.5 for future sce-

narios (Van Vuuren et al., 2011). In addition, the GCM mean

spring thickness must fall within the 10th and 90th percentile

of PIOMAS (Stroeve et al., 2014), have a reasonable spatial

resolution, and a somewhat resolved Canadian Archipelago.

A consistent spatial distribution of land is needed for realis-

tic and spatially complete multi-model means. The six GCMs

that comprise this CMIP5 subset are listed in Table 1.

For the CMIP5 subset the historical simulations are used

for the period 1979–2005. In most of the analysis for the pe-

riod post-2005, the RCP8.5 scenario is used, which ramps

up the amount of greenhouse gases to have a cumulative ef-

fect of increasing the direct radiative forcing by 8.5 W m−2

(approximately 1370 ppm CO2 equivalent) by 2100 (Van Vu-

uren et al., 2011). The impact of other scenarios is com-

pared later in the analysis. Figure 2 shows the 1979–2014

ensemble-mean September SIT for the CMIP5 subset, high-

lighting the considerable differences between the model sim-

Figure 2. Mean September SIT for each of the six GCMs consid-

ered, averaged over the period 1979–2014.

ulations, and indicating that model bias is likely to be the

dominant uncertainty in near-term projections.

The aim of the SIT BC outlined in this paper is to cor-

rect the mean and variance in the CMIP5 subset shown in

Fig. 2 to the PIOMAS statistics. Although this should im-

prove short-term predictions, a caveat to this approach is

that PIOMAS only yields one realisation of the past (see

Lindsay et al. (2014) for discussion of PIOMAS forced with

alternative atmospheric forcings). We have to assume that

the relatively short period over which we have observations

(36 years) captures a representative sample of the behaviour

we expect from the climate system. In the short term, this

is probably a reasonable assumption, as the GCMs will not

have evolved far from their corrected state of the recent past;

this assumption is explored further in Sect. 4.

3 Bias correction methodology

Bias correction methods effectively aim to reduce model un-

certainty by constraining GCMs to observations. There are

two components to model uncertainty: the overall mean dif-

ference (or bias), and differences in the amplitude of re-

sponse to specified forcings. We have deliberately chosen

not to try and correct the simulated ice loss trend to that

which PIOMAS depicts. Our reasoning is to keep this as

prescribed by the different GCMs because the response of

the SIT to future warming is unknown, likely non-linear, and

the GCMs are designed to give an estimate of this. It is also

doubtful how well the forced current trend can be determined

from 36 years of data given the high noise to signal ratio for

trends, especially on grid point scales. It is also uncertain

how much of the recent ice loss seen in the observations can

be attributed to changes in external forcing as opposed to in-

ternal variability, although previous studies have attempted

www.the-cryosphere.net/9/2237/2015/ The Cryosphere, 9, 2237–2251, 2015
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Table 1. List of models used: the CMIP5 subset and observations.

Institution Model name Ensemble

membersa

Commonwealth Scientific and

Industrial Research Organisa-

tion (CSIRO)

CSIRO Mark version 3.6.0: CSIRO-Mk3.6.0 (Rotstayn

et al., 2012)

10

Met Office Hadley Centre Hadley Centre Global Environment Model version 2-

Earth System: HadGEM2-ES (The HadGEM2 Devel-

opment Team et al., 2011)

4

National Center for

Atmospheric Research

Community Climate System Model, version 4: CCSM4

(Gent et al., 2011)

6

National Center for

Atmospheric Research

Community Earth System Model, Community Atmo-

sphere Model, version 5: CESM1-CAM (Meehl et al.,

2013)

3

Model for Interdisciplinary Re-

search on Climate (MIROC)

MIROC version 5: MIROC5 (Watanabe et al., 2010) 3

Max Plank Institute for Meteo-

rology (MPI)

MPI Earth System Model, low resolution: MPI-ESM-

LR (Jungclaus et al., 2006)

3

Applied Physics Laboratory

(University of Washington)

Pan-Arctic Ice–Ocean Modelling and Assimilation Sys-

tem: PIOMASb (Zhang and Rothrock, 2003)

1

a multi-model statistics are calculated (Sect. 4.3 onwards) using the first three ensemble members.
b used as observations.

Figure 3. Performance of different SIT BCs for one particular month at a hypothetical grid point in a “toy” model. Mean, SD (detrended), and

trend legend statistics are calculated over the observation period (1979–2014). “Ice-free” is defined as the first occurrence of any ensemble

member below 0.15 m. The ice-free ensemble range is shown; i.e. the year of the first ensemble member to be ice-free to the last ensemble

member to be ice-free. The black line represents “observations”; the blue and red lines represent high and low ice models respectively. The

thin coloured lines represent ensemble members, and the thick lines represent the ensemble mean.

this including Kay et al. (2011), Day et al. (2012), Notz and

Marotzke (2012), Stroeve et al. (2012), Notz (2015), Swart et

al. (2015) and Zhang (2015). We are also cautious of overfit-

ting; applying a trend correction would potentially result in

an over-confident projection.

The Cryosphere, 9, 2237–2251, 2015 www.the-cryosphere.net/9/2237/2015/
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To test the performance of different possible BC methods,

a toy model was used as proxy ensemble time series (repre-

senting SIT at a single grid point for the same month each

year for the period 1979–2100). The time series are shown

in Fig. 3a for a high-mean–high-variance model (blue) and

a low-mean–low-variance model (red), where the black line

shows the “truth” (observations with one realisation over the

historical period only). The time series were all produced

using a first-order auto-regressive (with an AR(1) parame-

ter of 0.3 chosen to be representative of CMIP5 SIT auto-

correlation) model imposed on a declining linear trend with

negative numbers reset to zero. Each model has five sepa-

rate model ensemble members (thin coloured lines); the thick

lines represent the ensemble means. The statistics in all the

legends are calculated over the observation window (1979–

2014). “Ice-free” in Fig. 3 is here defined as the first occur-

rence of an ensemble member below 0.15 m. Shown is the

ice-free ensemble range, i.e. the year of the first ensemble

member to be ice-free to the last ensemble member to be ice-

free. A successful BC method should transform the individ-

ual ensemble members (thin red and blue lines) to match the

mean and variance of the observations (black line), produc-

ing matched statistics. We test various approaches for such a

bias correction. The mathematical notation for the following

equations is in Table 2.

3.1 Additive correction

A basic additive correction, which has previously been used

for temperature projections, is shown in Fig. 3b. This ap-

proach simply corrects the time mean by subtracting the dif-

ference between the historical model ensemble-mean time

mean, 〈Mh〉, and observation time mean, Oh, from each of

the model ensemble members, M .

Additive corrected thickness=M −
(
〈Mh〉−Oh

)
(1)

However, as the low ice model is adjusted up by the ad-

dition of a constant, it equilibrates at a positive value in the

future rather than zero. Likewise the high ice model equili-

brates at negative values. Neither of these properties are sen-

sible.

This study makes use of multiple ensemble members from

the same model, raising the question of how to treat ensemble

member statistics when calculating a particular GCM’s bias.

For calculating the mean SIT, each GCM’s ensemble mean is

used because it is the GCM’s mean bias that we wish to cor-

rect. This is important because a particular ensemble mem-

ber’s deviation from the ensemble mean is retained; it allows

an individual ensemble member’s time mean to be different

to the observations over the historical period, but not the en-

semble mean. The treatment of ensemble members for the

SD calculation is described in Sect. 3.4.

Table 2. Notation key.

Notation Description

M Model

Oh Observations

xh x over the historical period (1979–2014)

x Time mean of x over historical period

〈x〉 Ensemble mean of x

x̃ Running time mean (11 years) of x

x̂ Temporally detrended x over the historical period

σ Standard deviation

3.2 Multiplicative correction

If a multiplicative correction is used (Fig. 3c), where the ratio

of the observed time mean and model ensemble-mean time

mean,Oh/〈Mh〉, is multiplied as a factor to the model ensem-

ble members, M , then the corrected thickness is as follows.

Multiplicative corrected thickness=M
Oh

〈Mh〉
(2)

Multiplicative methods effectively preserve the future zero

ice year, which is potentially an important value for a wide

range of stakeholders. However, when applied as above this

approach has the undesired effect of distorting the variances

by the same factor as the mean correction, as visible in

Fig. 3c.

3.3 Mean multiplicative correction

To avoid altering the variances, the mean multiplicative cor-

rection can be introduced (Fig. 3d), where the multiplicative

mean correction, Oh/〈Mh〉, is applied only to the 11-year-

centred running-mean ensemble mean, 〈M̃〉. This corrects

the model mean evolution without corrupting the sub-decadal

variance as 〈M̃〉 is smoothed. The model anomalies for each

ensemble member,M−〈M̃〉, are then added back to the cor-

rected mean evolution.

Mean multiplicative corrected thickness

=
(
M −〈M̃〉

)
+〈M̃〉

Oh

〈Mh〉
(3)

This works to correct the mean SIT and does not suf-

fer from any peculiarities of the previous two methods. The

model variance now remains unchanged but the approach

opens up the possibility of correcting the variance towards

that observed in the historical period. Note that by using the

ensemble mean, 〈Mh〉, for all these corrections we ensure that

each ensemble member is corrected in the same way, thus

preserving certain ensemble properties into the future.

www.the-cryosphere.net/9/2237/2015/ The Cryosphere, 9, 2237–2251, 2015
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3.4 Mean and variance correction

The GCMs from CMIP5 show a large range in SIT variance,

and the magnitude of these variations is a significant factor

determining when regions of the Arctic may first become

accessible (when one ensemble member may first become

ice-free). Therefore a variance correction is incorporated into

Eq. (3) by taking the ratio of the temporal standard deviation

of the detrended observations, σÔh
, to the square root of the

ensemble mean of the variance of the detrended model en-

sembles, 〈σM̂h
〉 (detrended mean ensemble SD), over the his-

torical period. The detrending in the models is calculated us-

ing each model’s ensemble mean linear trend. This has some

similarities to the approach of Ho et al. (2011) in application

to temperature projections for Europe. See also Appendix A

for some further discussion of the choices made.

To incorporate the variance correction, the mean multi-

plicative correction (Eq. 3) is first de-trended, the variance

correction applied, and the trend re-applied. This creates

the Mean And VaRIance Correction (MAVRIC), shown in

Eq. (4).

MAVRIC=
(
M −〈M̃〉

) σÔh

〈σM̂h
〉
+ 〈M̃〉

Oh

〈Mh〉
(4)

Figure 3e shows the MAVRIC does a near-perfect job of

correcting both the mean and variance to the observed statis-

tics while still retaining the individual ensemble members’

own climate fluctuations, but being fractionally scaled by the

variance ratio.

Comparing the ensemble range in projected ice-free date

between the correction methods, it is apparent that although

the shapes of time series have qualitatively changed, this does

not always result in a different range in projected ice-free

date. For example the difference evident on comparing the

high-mean–high-variance GCM (blue) between (a) to (c) and

(b) to (d) is partly coincidence and partly due to how the four

correction methods shown manipulate the time series. The

MAVRIC method (e) results in a unique set of ice-free dates.

This is an important attribute that the MAVRIC method dis-

plays, as the ice-free date is of vital importance to stakehold-

ers in the Arctic and more basic methods of bias correction

fail to appropriately adjust this parameter.

4 Bias corrected sea ice thickness projections

Figure 3e illustrates that the MAVRIC successfully corrects

the mean and variance in a toy model environment. Before

proceeding to investigate the impact of the MAVRIC on SIT

projections, it is prudent to test whether the MAVRIC can

improve GCM performance by validating with PIOMAS. We

use CSIRO-Mk3.6.0 (CSIRO) as the GCM to test. The ice in

CSIRO generally has too much areal coverage and too little

variability and is a CMIP5 outlier model with regards to SIT

(Stroeve et al., 2014). However, CSIRO benefits from hav-

ing 10 ensemble members, increasing the robustness of the

statistics. For these two reasons, it is considered a thorough

test of the MAVRIC’s performance within a real GCM.

The test uses a data denial method where we train the

MAVRIC on a subset of PIOMAS observations, 1979–1999,

termed the “calibration window”. From this we examine

how the MAVRIC predicts the observations for 2000–2014,

termed the “validation window”. A limitation of this method

is the length of observations: the period over which the

MAVRIC calibration takes place must be long enough to

capture a robust measure of the observed statistics. The vali-

dation period must also be long enough to be able to draw

robust conclusions. It is not clear whether either the 21-

year calibration or the 15-year validation windows are long

enough for robust method calibration and results verification,

but we are limited by the data available. An additional lim-

itation to this method is that the calibration and validation

periods are very close to each other.

Figure 4 shows the performance of the MAVRIC at three

grid points for September. The raw CSIRO ensembles (grey)

are bias-corrected via the MAVRIC using the PIOMAS ob-

servations (black) over the calibration window, producing

the MAVRIC corrected ensembles (green) for the validation

window. If the MAVRIC can produce plausible predictions,

the characteristics of PIOMAS should be indistinguishable

from individual corrected ensemble members in the valida-

tion window. It is clear from the validation bean plots (right),

that the distribution from the corrected ensembles resembles

PIOMAS much more closely than the raw distribution, e.g.

non-zero probability of zero ice. We do not expect the distri-

bution from PIOMAS to match the corrected distribution per-

fectly as PIOMAS only has one realisation (15 data points)

while CSIRO has 10 realisations. We can tentatively accept

that this test demonstrates the validity of the MAVRIC ap-

proach.

In the following sections the MAVRIC is applied to the

CMIP5 subset of six GCMs used in this study (Table 1). PI-

OMAS estimates of Arctic SIT are available from 1979 to

2014. This 36-year window is the period over which statistics

are calculated in the observations, and in the CMIP5 subset

(using historical runs for 1979–2005 and RCP8.5 for 2006–

2014). Each model, month, and grid point has its own spe-

cific correction which is applied to all years (1979–2100).

However, separate ensemble members from the same GCM

are treated with the same correction, as we wish to correct

the model bias and retain the ensemble spread. Results are

shown for September, initially only for CSIRO and later for

all six models combined to form the CMIP5 subset used for

this study.

4.1 Temporal perspective example

Figure 5 shows the impact of the MAVRIC in September in

CSIRO at the same three grid points as Fig. 4 but for the en-

tire calibration window (1979–2014). The East Siberian Sea

in CSIRO has about double the SIT and half the SD of PI-

The Cryosphere, 9, 2237–2251, 2015 www.the-cryosphere.net/9/2237/2015/
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Figure 4. September SIT at three grid point locations in the Arctic, from PIOMAS (black) and CSIRO-Mk3.6.0 historical (1979–2005) and

RCP8.5 (2006–2014) raw output (grey) and post-MAVRIC (green). The raw CSIRO ensembles (grey) are bias-corrected via the MAVRIC

using the PIOMAS observations (black) over the calibration window, producing the MAVRIC ensembles (green) for the validation window.

Bean plots (right) show the distribution of the SIT for the validation period. The small horizontal lines show every SIT value, the frequency

of which is illustrated by the width of the shaded region. The thick horizontal line depicts the mean.

Figure 5. September SIT at three grid point locations in the Arctic, from PIOMAS (black) and CSIRO-Mk3.6.0 historical (1979–2005) and

RCP8.5 (2006–2100) raw output (grey) and post-MAVRIC (green). Thin lines show individual ensemble members; thick lines show the

ensemble means. Mean, SD, and trend legend statistics are calculated over the period of observations (1979–2014). The SD is the detrended

mean ensemble SD. The range of the first occurrence of the first and last ensemble member below 0.15 m is considered to be ice-free.

OMAS (Fig. 5a). The correction therefore reduces the mean

SIT whilst increasing the variance. This brings forward the

range of first year ice-free conditions (the first occurrence in

each ensemble member of a SIT below 0.15 m) from after

2100 to 1981–2032. Similarly in the Beaufort Sea (Fig. 5b)

the SD needs to be almost tripled, and the correction results

in the first ice-free year coming over 100 years earlier. In

the Fram Strait (Fig. 5c) CSIRO and PIOMAS have simi-
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Figure 6. CSIRO-Mk3.6.0 and HadGEM2-ES, September 1979–

2014 ensemble mean SIT and SD (detrended). The raw columns are

the model solutions as found in the CMIP5 archive. The corrected

columns show the distribution after the MAVRIC has been applied.

PIOMAS SIT fields are shown in Fig. 1.

lar SIT, requiring only a small mean adjustment; however

CSIRO requires a big increase in variance. The MAVRIC

moves the first possible ice-free date about 30 years earlier

and increases the ensemble range from 32 to 63 years. It is

worth noting that the dominant cause of this shift to an ear-

lier ice-free date at this location is due to the variance cor-

rection term in the MAVRIC rather than the mean correction

term. This highlights the importance of correcting the vari-

ance in addition to the mean. Figure 5 demonstrates that the

MAVRIC can lead to simulations that look significantly more

like reality in the historical period and have an impact on re-

gional ice-free projections.

4.2 Historical spatial perspective

In addition to examining the MAVRIC in a temporal sense, it

is important to evaluate the results spatially to see where the

MAVRIC is having the most effect and if it works at all lo-

cations. Figures 2 and 6 show that the mean September SIT

distribution is very different in HadGEM2-ES and CSIRO.

After the MAVRIC has been applied, the mean SIT fields are

almost identical for the historical period (Fig. 6). It is im-

portant to note there are still differences when considering

individual years and ensemble members i.e. the year-to-year

variability and ensemble spread is preserved (although ad-

justed by the MAVRIC).

Figure 6 also shows the SD before and after the MAVRIC.

The SD shown is the detrended mean ensemble SD as before.

CSIRO has a variability that is too low in the majority of

locations, although it correctly places the maximum SD near

the edges of the ice pack similarly to PIOMAS. HadGEM2-

ES exhibits about the same magnitude of variability as the

observations but the variability is too high in the centre of

the ice pack and too low at the edges. After the correction,

the SD fields in both GCMs now look more similar to each

other, with the highest variability located at the edge of the

Figure 7. September multi-model ensemble mean (three members

from each model) mean SIT from the CMIP5 subset, using the raw

data (top row) and post-MAVRIC (middle row). The bottom row

shows (MAVRIC – raw); hence green areas are where MAVRIC

has reduced SIT and purple areas are where MAVRIC has increased

SIT.

ice pack and at coastal locations. They are now also both

similar to the estimate from PIOMAS (Fig. 1).

4.3 CMIP5 subset multi-model sea ice thickness

projections

The bias-corrected SIT from each GCM can be brought to-

gether to form the multi-model mean CMIP5 subset, com-

puted using three ensemble members (the maximum avail-

able across all models) from each of the six GCMs for the

historical and future decadal periods (Fig. 7). It is remark-

able how the raw multi-model mean product for the historical

period is not too different from PIOMAS in Fig. 1, showing

that the location and magnitude of model biases cancel out

to a considerable degree, at least with this subset of models.

Given this result it is not so surprising that the raw and cor-

rected fields are fairly similar for the future projections also.

Nevertheless, even in this multi-model multi-ensemble

framework the MAVRIC is still making some discernible dif-

ferences. These differences are most apparent in the Cana-

dian Archipelago and the Russian Arctic seas, where the cor-

rection leads to a reduction in SIT of approximately 1 m in

both regions. Both the raw and bias-corrected fields predict a

SIT loss of about 0.25 m per decade.

The fact that the MAVRIC is still making a significant dif-

ference on the regional scale is critical, e.g. for ship route

availability. Currently, studies that assess the future opening

of Arctic shipping routes, which critically depend on the ab-
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Figure 8. September 2015–2024 sources of SIT uncertainty from

the CMIP5 subset (SD of the detrended SIT). The multi-model en-

semble mean (three members from each) is shown when comparing

raw output (top row) and post-MAVRIC (bottom row).

solute value of SIT, do not yet account for such factors and

will need to be reassessed.

4.4 Sources of uncertainty in projections of sea ice

thickness

The uncertainty in climate projections can be partitioned into

three distinct sources: (1) model uncertainty: for the same

radiative forcing, different models simulate different mean

distributions and temporal changes; (2) internal variability:

the natural fluctuations of the climate present with or with-

out any anthropogenic induced changes to radiative forcing;

(3) scenario uncertainty: uncertainty in future radiative forc-

ing resulting from unknown future emissions. Hawkins and

Sutton (2009, 2011) assessed these sources of uncertainty

in global and regional temperature and precipitation projec-

tions, and here we quantify the sources of uncertainty in SIT,

utilising the CMIP5 subset multi-model ensemble. Crucially

we use the absolute values of SIT rather than considering

anomalies as is often done for other climate variables. The

methodology for partitioning these sources of uncertainty

is detailed in Appendix B. An additional source of uncer-

tainty that we neglect here is the PIOMAS calibration un-

certainty emerging from the choice of atmospheric reanaly-

sis and model tuning. This could be assessed by sampling

the different versions of the PIOMAS reanalysis described

in Lindsay et al. (2014). They find the different versions are

broadly similar and can be accounted for by appropriate tun-

ing of the ice model component. This bias in PIOMAS itself

will introduce systematic biases to the MAVRIC projections.

This bias is not a flaw in MAVRIC however but a limitation

intrinsic to the observational data set one is correcting to.

The MAVRIC method outlined in this study acts to elim-

inate the model bias in the MAVRIC calibration period

(1979–2014). After this period the model uncertainty grows

due to the GCM’s differing responses to changes in external

forcing. The sources of uncertainty for SIT for the decade

Figure 9. The evolution of the sources of September SIT un-

certainty in the CMIP5 sub-set with lead time. Year zero is the

MAVRIC window mid-point (1997) and the emission scenarios

(RCPs) start in 2006. Panel (a) shows the change in magnitude

of the different sources of uncertainty. The uncertainty shown is

the median SIT variance and hence the lines scale additively. The

dashed lines are for the raw model output and solid lines are for

post-MAVRIC. Contributions of model uncertainty, internal vari-

ability, and scenario uncertainty as a fraction of total uncertainty

are shown for the raw output (b) and post-MAVRIC (c).

2015–2024, immediately following the MAVRIC calibration

period, are shown in Fig. 8. The total uncertainty in the

corrected CMIP5 subset is strikingly lower than in the raw

CMIP5 subset. Closer analysis reveals that this is due to

the substantial reduction in model uncertainty owing to the

MAVRIC. The other sources of uncertainty do not change as

much.

The temporal evolution of these sources of uncertainty is

shown in Fig. 9a by taking the median variance from each

of the panels in Fig. 8 for this and other periods. There are

three competing factors for how the uncertainty will change

with time. First, the SIT is decreasing, and this will reduce

the uncertainty as the range of values of which the SIT can

occupy shrinks. Second, the separate GCMs’ simulated SIT

responses due to external forcing will differ from each other,

causing GCMs to drift apart over time. Thirdly, sea ice at

the grid point scale becomes more mobile and vulnerable to

external factors as it thins. This will increase variability, ini-

tially at least (Sou and Flato, 2009). All of these factors are

involved in the evolution of the uncertainties.

The raw CMIP5 subset exhibits a decrease in total uncer-

tainty with time (dashed black in Fig. 9a). This is primar-

ily due to the reduction in model uncertainty (dashed blue),

likely because the mean SIT is reducing. The corrected total

uncertainty is lower than the raw uncertainty until at least the

end of the century. This means that the MAVRIC can reduce

the model spread (or bias) and so may potentially increase

confidence in climate projections of SIT throughout this pe-

riod. The corrected model uncertainty increases for the first

three decades, as the models start from a similar state and

www.the-cryosphere.net/9/2237/2015/ The Cryosphere, 9, 2237–2251, 2015



2246 N. Melia et al.: Improved Arctic sea ice thickness projections

subsequently diverge because of differing responses to the

changes in external forcing. Later the corrected model un-

certainty reduces as the mean SIT decreases towards zero.

The total uncertainty is the sum of model uncertainty, in-

ternal variability, and scenario uncertainty (see Appendix B

for more details). The other panels in Fig. 9 illustrate the rel-

ative importance of these sources of uncertainty in terms of

the percentage total variance explained, for the raw data, and

after the MAVRIC.

Figure 9b illustrates that in the raw projections, model

uncertainty remains the dominant (> 50 %) source of uncer-

tainty until at least 2100, whereas it only becomes dominant

for a few decades mid-century after the MAVRIC (Fig. 9c).

The absolute magnitude of internal variability, and its contri-

bution to the total uncertainty, decreases with time because

SIT also decreases with time. In the corrected projections,

the internal variability is the major contributor to the total

uncertainty for the first 25 years, compared to a maximum

contribution of only 26 % in the raw projections. This high-

lights the importance of correcting the variance to realistic

magnitudes and also the key role of natural variations in pre-

dicting the near-future evolution of sea ice. The scenario un-

certainty accounts for less than 10 % of the total uncertainty

for the first 50+ years. Additional analysis metrics on the im-

provement that the MAVRIC method affords can be found in

Appendix C.

Although we have demonstrated here that the MAVRIC

method reduces the model uncertainty as seen by the reduc-

tion in spread of projected SIT with our selection of GCMs,

we acknowledge that this may not necessarily correspond to

a reduction in uncertainty in the real world.

4.5 Reduced spread in timing of ice-free conditions

By reducing the model spread the range of possible out-

comes has been reduced, this potentially leads to greater con-

fidence in SIT projections. Figure 10 shows the raw and cor-

rected CMIP5 subset SIV* projections until 2100 using the

18 multi-model ensemble members in each scenario as be-

fore (* calculated here does not consider spatial SIC as it is

not bias-corrected). To find a representative SIC for the SIV*

calculation we use the September SIC in CCSM4 RCP8.5

and find a mean (of the non-zero grid cells) SIC of approxi-

mately 50 % for 2006–2100.

The thick coloured lines show the multi-model scenario

mean and the coloured regions represent the 16–84 % (equiv-

alent to 1σ around the mean of a Gaussian distribution) of

the ensemble members. To account for the large range in SIT

at any particular time in the CMIP5 subset, we use a method

similar to that of Massonnet et al. (2012) to calculate first ice-

free conditions. We postulate that SIV for ice-free conditions

is 1× 103 km3, which is in agreement with previous studies

calculating first ice-free dates (e.g. Massonnet et al. (2012)

and Overland and Wang, 2013), and is equivalent to 1 m thick

ice for an ice extent of 106 km2.

Figure 10. CMIP5 subset sea ice volume (SIV*) projections and

first ice-free conditions. Panels (a, b) show the projected SIV* from

all six models (18 ensemble members total) in both the raw and

corrected GCMs (11-year running mean), and shaded regions are

the 16th–84th percentiles. Panel (c) shows the number of ensemble

members having passed the ice-free threshold. Panel (d) shows the

statistics of (c), with the whiskers representing the range (1st and

18th ensemble member ice-free), the box capturing the 16th–84th

percentiles, and the bold line showing the median (9th ensemble

member). Ice-free is defined as the first year the pan-Arctic SIV*

dips below 1× 103 km3 for a particular ensemble member. *Vol-

ume (SIV*) is calculated using a constant 50 % SIC throughout.

The MAVRIC reduces the total SIV, but the relative mag-

nitude of this reduction decreases as SIV declines. The 16–

84 % range has also been vastly reduced, particularly for the

near future. For example, in 2025 the MAVRIC has reduced

the 16–84 % range from 6× 103 km3 to 2.5× 103 km3. It is

this reduction in the plausible range of SIV that leads to po-

tential increased confidence in projections of SIT and SIV.

To assess when the Arctic will first display ice-free condi-

tions, we focus on RCP8.5, the most realistic scenario from

the last 10 years (Fuss et al., 2014). The cumulative number

of ensemble members having satisfied the ice-free criterion

as a function of time is shown in Fig. 10c. If the range in this

parameter has reduced, this will be shown by the gradient of

the line increasing post-MAVRIC, and this is clearly seen.

Figure 10d further illustrates the spread reduction with box

plots, where the internal line represents the median (9th) en-

semble member to go ice-free. This occurs in 2052 with the

MAVRIC, 9 years earlier than before. The box represents 16–

84 % of the ensemble members. This range has been reduced

by about 20 years; dates after 2085 can now be eliminated.

Corrected results from the other emission scenarios show

similar features but with later ice-free dates, as expected for

lower emissions, and some ensemble members fail to be-

come ice-free by 2100. For RCP4.5 the MAVRIC makes a

profound difference with the median ice-free date occurring

35 years earlier in 2060. For RCP2.6 there is spread reduc-

tion mid-century but the CMIP5 subsets before and after the
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MAVRIC are in good agreement by the end of the century,

with projected ice-free dates around 2090.

5 Summary and discussion

5.1 Summary

This study has developed a bias correction methodology

for simulations of sea ice thickness (SIT). By constraining

CMIP5 simulations with the PIOMAS reanalysis we have

demonstrated the following.

– GCMs simulate a wide range of SIT in the histori-

cal period and exhibit various spatial and temporal bi-

ases when compared with the PIOMAS reanalysis. This

model uncertainty (or bias) is the dominant source of

uncertainty in CMIP5 future climate projections of SIT.

– The Mean And VaRIance Correction (MAVRIC) tech-

nique outlined in this paper significantly reduces the to-

tal uncertainty in future projections of SIT as far as 2100

by reducing model uncertainty. Correcting both mean

and variance of models is found to be critical for im-

proving the robustness of the projections.

– The MAVRIC results in internal variability being the

dominant source of uncertainty until 2022, and model

uncertainty is dominant thereafter. From the mid-

century onwards, scenario uncertainty becomes increas-

ingly important and as influential as model uncertainty

by 2100.

– The MAVRIC results in projected September ice-free

conditions in the Arctic under RCP8.5 occurring up to

10 years earlier (2050s) than without the correction, and

with a considerably narrower range, e.g. excluding post-

2085 dates.

5.2 Discussion

Without the MAVRIC, the true magnitude of the internal

variability and scenario uncertainty in projections of SIT is

concealed by the dominant model uncertainty. This demon-

strates that time invested in running many ensemble members

to sample internal variability in SIT may be more beneficial

than running many future emission scenarios for near-term

projections. These findings implicate that there is room for

improvement in GCMs at least for 50-year projections where

the scenario differences are negligible. However, for projec-

tions at the end of the century, the scenarios become more

important.

The MAVRIC bias correction technique developed in this

study results in a significant improvement in model simula-

tions of SIT with respect to observations. In future projec-

tions, the MAVRIC results in a substantial reduction in the

range of SIT, potentially leading to increased confidence in

climate projections. As absolute values of SIT are utilised,

this reduction in spread potentially has important implica-

tions for stakeholder sectors operating in Arctic waters such

as the shipping industry. The application of the bias correc-

tion results in a 60 % reduction in the likely range (16–84 %)

of sea ice volume in September 2025.

There are a number of caveats to these findings. No at-

tempt is made to constrain the trend in the GCMs. This would

be difficult because of the short timescale over which obser-

vations are available, raising serious questions about the ro-

bustness of calculated historical trends. However future stud-

ies could consider this further and assess the feasibility of

a trend correction to GCMs. In addition, it is important to

recognise that PIOMAS, used here as observations, will also

have errors. It would be possible to reduce the multiplicative

weightings in Eq. (4) to reflect some uncertainty in the his-

torical data. Other temporally and spatially complete sea ice

reanalyses could also be used in future to address this issue.

The simulations tend to show an increase in variance

as the sea ice thins, before subsequently declining as the

thickness approaches zero (Goosse et al., 2009). Blanchard-

Wrigglesworth and Bitz (2014) assessed the relationship of

this mean state-dependent variance in 19 GCMs, including

five of the six used in this study, in addition to PIOMAS.

They find a relationship between mean thickness variabil-

ity and mean thickness in models; i.e. models with thicker

SIT depict more variable SIT. In the 19 GCMs assessed, PI-

OMAS sits on the trend line for the correlation between mean

thickness variability and mean thickness. However, in the de-

veloped MAVRIC, the change in variance is decoupled from

the applied change to the mean state. This aspect could be

further developed, but only by making additional assump-

tions about future changes in SIT variability.

Studies should make use of the MAVRIC in assessing the

impact on potential stakeholders sensitive to SIT; and a paper

utilising the MAVRIC to investigate the opening of the Arctic

sea routes is in preparation. We also make the bias-corrected

SIT fields (Melia, 2015) freely available online for further

investigations at http://dx.doi.org/10.17864/1947.9.
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Appendix A: Supplementary MAVRIC methodology

details

For model biases to be calculated a common grid needed to

be used; hence all MAVRIC calculations took place on the

CMIP5 model’s native grid. This means that PIOMAS was

converted to the CMIP5 model grid for each GCM’s bias

calculations. This choice was made as it only involves in-

terpolating one of the two fields each time and generally it

is PIOMAS that has the higher resolution. The BC shown

in Eq. (4) contains two terms for the representation of the

variance in both observations σÔh
and models σM̂h

. Over the

36-year period of observations the magnitude of the ice loss

trend can be significant. To accurately calculate variances

this externally forced trend should first be removed to leave

the variance due to internal variability. Here a choice needs

to be made about how best to remove the externally forced

trend. For the PIOMAS observations we choose to linearly

detrend the monthly data. A smoothed detrending was con-

sidered, however this might remove longer timescale vari-

ability which is undesirable. Using similar reasoning it is

possible that the linear detrending removes some variabil-

ity on the multi-decadal timescale. This is assumed to be

significantly less than variability on smaller timescales, and

much of the trend is attributed to be externally forced over

the 36 years, hence should not be included as internal vari-

ability. The performance of a smoothed detrend was tested

in a theoretical framework and resulted in a 10 % loss of ac-

curacy in the standard deviation correction due to describing

variance as trend.

The calculation of variance in the models is more compli-

cated due to the fact that there is more than one realisation.

It is obvious that the required variance should be calculated

from the individual ensemble members rather than the en-

semble mean. The variance should be calculated in each en-

semble member and then the mean taken. There is another

choice to make, i.e. whether each ensemble member should

be detrended with its own trend, or whether the ensemble

mean trend should be used. We propose that the ensemble

mean trend should be used as this is the models’ response

to the changes in forcings. The model detrended ensemble

mean standard deviation, σM̂h
, was calculated by calculating

the detrended ensemble variances, then taking the square root

of their mean.

The running mean for the future model correction term

〈M̃〉 is calculated over an 11-year period of the ensemble

mean; this window hence starts at 1975 for the historical

calculations. The chosen period must be long enough to ad-

equately smooth the time series, whilst still being able to

capture variations in the sea ice decline trend. This was also

tested and found to outperform a 21-year period.

Appendix B: Partitioning sources of uncertainty

The sources of uncertainty in Sect. 4.4, Figs. 8 and 9,

are calculated for each decadal period (2005–2014, 2015–

2024, etc.) separately as follows. Three ensemble mem-

bers from each of the six GCMs are utilised for three dif-

ferent emission scenarios (RCP2.6, 4.5, and 8.5). This re-

sults in each decade having 6 (GCMs)× 3 (ensemble mem-

bers)× 3 (scenarios)× 10 (years)= 540 (fields).

– The total uncertainty is the variance calculated across

all 540 fields.

– The internal variability is calculated similarly to the

total variability except instead of the absolute values,

the anomalies from the models’ decadal-mean ensem-

ble mean for each scenario are used.

– To calculate the model uncertainty, each of the six mod-

els’ decadal-mean ensemble mean is calculated, result-

ing in six fields. The variance is then calculated across

these six fields, and repeated for all three scenarios sep-

arately (to eliminate differential model dependent re-

sponses to the different emission scenarios). The model

uncertainty is the square root of the mean of these three

fields.

– The scenario uncertainty is calculated in a similar way.

For each model, each of the three scenarios decadal-

mean ensemble means are calculated resulting in three

(scenario-dependent) decadal-mean ensemble means

for each of the six models. The variance is then calcu-

lated through these three scenario mean fields for each

of the six models, resulting in six fields of the variance

in each model. The square root of the mean of the six

models’ scenario uncertainty is the scenario uncertainty.

To create Fig. 8b and c it is assumed that the total variance

(total uncertainty, T 2) is the sum of the variance due to model

uncertainty (M2), internal variability (I 2), and scenario un-

certainty (S2), formally:

T 2
=M2

+ I 2
+ S2. (B1)

We note that the variances calculated above do not always

sum exactly in this way due to small interaction terms (ap-

proximately 10 %) which we ignore.
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Appendix C: Additional MAVRIC performance analysis

To highlight whether the estimated uncertainties are reliable,

we examine the errors in the projections when considering

one member as “truth”. As all ensemble members are con-

strained by PIOMAS, one individual ensemble member out

of sample should fall within the distribution of the remain-

ing ensemble members. This principle should hold true for

all ensemble members out of sample in turn.

The root-mean-square error (RMSE) is calculated using

Eq. (C1):

RMSE=

√√√√ 1

18

18∑
n=1

(
En− E15

)2
, (C1)

where En is the ensemble member between 1 and 18; E15

is the mean of the 15 ensemble members from the models of

which En is not a member.

Figure C1 shows the advantage of the MAVRIC method

in this out of sample RMSE test. A decreasing RMSE means

that the models are initially biased though are converging to a

common value (as we expect in this case as the models trend

towards being ice-free). An increasing RMSE means that the

models are diverging as they have different ice loss trends.

The MAVRIC ensemble trained on every individual en-

semble member within MAVRIC results in an RMSE of

0.1 m initially and up to a maximum RMSE of 0.5 m. The fact

that the raw RMSE decreases (as opposed to increases) high-

lights that the models have biases. The 0.1 m in the MAVRIC

RMSE indicates that initially the MAVRIC ensemble mem-

bers differ only in internal variability. The RMSE then grows

due to differing ice loss trends, which is expected as there is

no attempt to correct the trends in this study.

To find the dispersion of the MAVRIC multi-model en-

semble we repeat this style of experiment with the standard

error (SE) metric, using Eq. (C2):

SE=
En− E15

σ15

, (C2)

where En is the ensemble member between 1 and 18; E15

is the mean of the 15 ensemble members from the models of

whichEn is not a member. σ15 is the standard deviation of the

15 ensemble members of which En is not a member. This is

repeated for all 18 ensemble members, giving 18 SEs of how

different each ensemble member is to the rest of the multi-

model ensemble set. The SD across these 18 SEs is the dis-

persion of the multi-model ensemble. A perfectly dispersed

ensemble set will have a dispersion of 1. Numbers less than 1

mean the ensemble set is under-dispersed and hence predic-

tions/projections from that set will be under-confident as the

SD is too large. Values greater than 1 indicate that the system

is over-dispersive and hence over-confident.

The results of the dispersion calculation are shown in

Fig. C2. The MAVRIC ensemble is approximately 15–

30 % over-dispersed for lead times of up to 60 years. This

Figure C1. Multi-model ensemble out of sample September median

SIT RMSE.

Figure C2. Multi-model ensemble out of sample September median

SIT dispersion.

means that the ensemble is slightly over-confident and thus

has slightly too little overall variance. The rapid increase

in dispersion from 60 years is solely due to the CSIRO

GCM, specifically its comparatively slow ice loss trend. This

was tested by repeating the dispersion experiment omitting

CSIRO (not shown). At this lead time many models are start-

ing to be ice-free in September while CSIRO retains ice. It is

to the merit of MAVRIC that it is less over-dispersed than the

raw output; hence more reliance can be placed on MAVRIC

than the raw output as its ensemble distribution is more rep-

resentative.
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