
CDASH: a cloud-enabled program for
structure solution from powder diffraction
data
Article

Accepted Version

Spillman, M. J., Shankland, K. ORCID: https://orcid.org/0000-
0001-6566-0155, Williams, A. C. ORCID:
https://orcid.org/0000-0003-3654-7916 and Cole, J. C. (2015)
CDASH: a cloud-enabled program for structure solution from
powder diffraction data. Journal of Applied Crystallography, 48
(6). pp. 2033-2039. ISSN 0021-8898 doi:
10.1107/S160057671502049X Available at
https://centaur.reading.ac.uk/48145/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://scripts.iucr.org/cgi-bin/paper?S160057671502049X
To link to this article DOI: http://dx.doi.org/10.1107/S160057671502049X

Publisher: Wiley-Blackwell Publishing, Inc

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

http://www.reading.ac.uk/centaur

Journal of Applied Crystallography computer programs

IMPORTANT: this document contains embedded data - to preserve data integrity, please ensure where possible that the IUCr

Word tools (available from http://journals.iucr.org/services/docxtemplate/) are installed when editing this document. 1

CDASH: a cloud-enabled program for structure solution from

powder diffraction data

Authors

Mark J. Spillmana*, Kenneth Shanklanda, Adrian C. Williamsa and Jason C. Coleb

aSchool of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading, Berkshire,

RG6 6AP, UK

bCambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, United Kingdom

Correspondence email: m.j.spillman@reading.ac.uk

Synopsis A cloud-computing approach to accelerating structure determination from powder

diffraction data, based on the Amazon EC2 system and the DASH software, is presented.

Abstract The simulated annealing approach to crystal structure determination from powder

diffraction data, as implemented in the DASH program, is readily amenable to parallelisation at the

individual run level. Very large scale increases in speed of execution can be achieved by distributing

individual DASH runs over a network of computers. The CDASH program delivers this by using

scalable, on-demand computing clusters built on the Amazon Elastic Compute Cloud service. By way

of example, a 360 vCPU cluster returned the crystal structure of racemic ornidazole (Zʹ=3, 30 degrees

of freedom) ca. 40 times faster than a typical modern quad-core desktop CPU. Whilst used here

specifically for DASH, this approach is of general applicability to other packages that are amenable to

coarse-grained parallelism strategies.

1. Introduction

DASH (David et al., 2006; David et al., 1998), a computer program for crystal structure determination

from powder diffraction data (SDPD) that utilises a simulated annealing (SA) algorithm, has

previously been adapted to run on computers that have multiple CPU-cores via MDASH (Griffin et

al., 2009b) and distributed computing systems via GDASH (Griffin et al., 2009a). Another SDPD

package, FOX (Favre-Nicolin & Cerny, 2002), has also been adapted to utilise multi-core

architectures and distributed computing, via the FOX.Grid add-on (Rohlíček et al., 2007).

Whilst the distributed computing capability provided by GDASH and FOX.Grid allow for orders-of-

magnitude increases in the computing power that can be brought to bear on a SDPD task, the

distributed computing approach to SDPD has seen only limited use. In the case of GDASH, this is

Journal of Applied Crystallography computer programs

2

almost certainly because of the significant financial hurdle presented by the specialised grid

management software required and its associated maintenance.

This work demonstrates how the distributed computing concept used by GDASH can be realised using

cloud-computing services, which remove the necessity for users to have a large existing network of

'in-house' computers.

Cloud-computing is a broad term that covers a variety of activities. In this work, we make use of

infrastructure as a service (IaaS) type cloud computing. IaaS enables users to access a wide range of

computers (usually in the form of virtual machines) over their internet connection. These machines

can then be used for any computing task required. One popular use of IaaS resources is on-demand,

high-performance computing. One well known IaaS provider is the Amazon Elastic Compute Cloud

(EC2) (Amazon, 2010) that permits on-demand creation of a wide variety of virtual machines1, which

when running are known as instances. The latest generation of high-performance computing instances

(at time of writing, those with prefix c42) are listed in Table 1. Full details of all available instance

types are available on the Amazon Web Services (AWS) website (Amazon, 2014). The EC2 service

has previously been utilised in a crystallographic context (de Oliveira et al., 2011) and for processing

single particle cryo-electron microscopy data (Cianfrocco & Leschziner, 2015).

EC2 instances use customisable operating systems, known as Amazon Machine Images (AMIs).

These can be pre-installed with software suited to diverse purposes such as high performance

computing, web servers, database management, video rendering and application development. Once a

suitable AMI has been created, multiple instances of that AMI can be started whenever required.

Microsoft Windows, Linux and BSD operating systems are supported.

Using the instance types available, bespoke computing clusters can be created without the need to

invest in hardware, which is of course subject to depreciation and obsolescence. Amazon provides an

application programming interface (API) which allows third-party tools to create, manage and interact

with instances, but writing software at the API level for cluster creation and management is a time

consuming task. Fortunately, toolkits such as StarCluster (Section 1.1) exist, which provide

convenient and easy-to-use interfaces for cluster creation, control and management.

1.1. StarCluster

1 For the purposes of this paper, a virtual machine can be defined as an operating system that is installed onto

software which imitates dedicated hardware. For example, a virtual machine running Linux can be created on a

computer running MS Windows as its base operating system, provided the appropriate virtualisation software is

installed on Windows. The end user interacts with Linux virtual machine exactly as if it were installed on the

underlying hardware. Importantly, the virtual machines can be created and destroyed at will.

2 According to the AWS documentation, “C4 instances are based on custom 2.9 GHz Intel® Xeon® E5-2666 v3

(Haswell) processors, optimized specifically for Amazon EC2” -

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/c4-instances.html

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/c4-instances.html

Journal of Applied Crystallography computer programs

3

StarCluster (STAR, 2014) is an open source toolkit used to automate the building, configuration and

management of high performance Linux-based compute-clusters on the EC2 service. The clusters it

builds are configured with one instance serving as the master node for the cluster, whilst any

remaining instances serve as worker nodes as shown in Figure 1. As such, users primarily interact

with the master node of the cluster, which then distributes jobs to the workers. By default, StarCluster

also executes jobs on the master node of the cluster, maximising utilisation of the computing

resources available. In this work, it is used as the basis for CDASH due to its ease of use and the rich

set of features it provides.

2. CDASH overview

CDASH is a lightweight command-line driven program written in the Python programming language.

It takes, as input, files generated by DASH and the parameters (defined by the number of instances

and instance type required) of the bespoke cluster requested by the user. It then automatically creates

a cluster of the requested specification on EC2, uploads files, queues jobs to run, checks job

completion status, downloads results and terminates the cluster. The results returned by CDASH are

standard .dash result files, which can be viewed, merged and manipulated locally as normal. Figure 2

provides a schematic of the CDASH mode of operation.

CDASH is intended to accelerate the structure determination of crystal structures that currently

require a few days or more of local CPU time to solve; these tend to be examples with large volume

asymmetric units, Zʹ > 1 and more than 30 degrees of freedom.

3. Program description

3.1. Running CDASH

3.1.1. Software requirements and AMI preparation

The following discussion assumes that the user already has an Amazon Web Services (AWS)

account3. Table 2 lists the software prerequisites for CDASH use, including both local software and

the packages that must be present on the AMI in order to allow CDASH to run. Due to these

requirements, prior to using CDASH for the first time, a user must prepare a custom Linux-based AMI

that has the software pre-requisites listed in Table 2 installed, as well as a copy of DASH that has been

installed and correctly configured4. This process is straightforward, with detailed instructions

available in the CDASH documentation. To ensure maximum compatibility with StarCluster, it is

strongly recommended that the custom AMI be based on a StarCluster public AMI. If this is not done,

3 AWS accounts can be created for free by following this link: http://aws.amazon.com/
4 DASH installation on a Linux-based AMI is accomplished using the Wine compatibility layer software. This

means that the DASH executable used on the cloud is identical to the one used locally.

Journal of Applied Crystallography computer programs

4

additional packages must be installed on the AMI in order for StarCluster to work5. Once the

prerequisites listed in Table 2 have been installed, the user saves the AMI using the tools provided by

AWS and configures CDASH to use that AMI for future clusters. Note that we utilise the Wine

compatibility layer (Wine Project, 2015) in order to let us install and run DASH (which normally runs

in an MS Windows environment) on a Linux virtual machine. This layer has a negligible impact on

DASH run times and removes the requirement for a Linux-specific version of DASH to be compiled.

3.1.2. Preparation of input files

The procedure for PXRD data preparation and DASH batch file (DBF) generation on the local

computer is identical to the procedure used for MDASH and GDASH, and is described elsewhere in

detail (Griffin et al., 2009b, a). The DASH batch files (DBFs), which have the extension .dbf, are

saved in the same directory as the files generated in the DASH Pawley fitting procedure (files with

extensions .sdi, .hcv, .tic, .dsl and .pik) together with the .zmatrix representations of the structural

fragments. These files are henceforth referred to as the “DASH files”, and the folder containing them

the “working directory”.

3.1.3. Command line invocation

After opening a command window on the local computer and navigating to the working directory,

CDASH is invoked using the command:

python cdash.py

The user is then prompted to specify which instance type to use, and the number of instances required

for the cluster. Alternatively, these parameters may be supplied as command line arguments as

follows:

python cdash.py –i instance-type –n N

where the argument instance-type is a string indicating the type of instance requested (typically

one from Table 1) and the argument N is an integer that determines the number of instances of type

instance-type to be included in the cluster. The user is prompted for these parameters if they are

omitted.

The appropriate choice of instance type and cluster size is dependent on the number of SA runs to be

performed, and the approximate duration of each SA run. AWS charges for instance time on an hourly

basis; a job lasting 1 minute and a job lasting 59 minutes would both be charged at a full hour. As

such, it is recommended that for a given number of SA runs, the number of vCPUs in the cluster

should be tailored to maximise the computing resources that are being paid for. By way of example, a

set of 100 SA runs, each taking 10 minutes could be processed on a cluster with 100 vCPUs or a

5 This process lies outside the scope of this publication, though instructions are readily available online.

Journal of Applied Crystallography computer programs

5

cluster with 25 CPUs. Ignoring cluster start-up and network transfer overheads, the cluster with 100

vCPUs will complete the allotted runs in approximately 10 minutes whilst the 25 vCPU cluster will

complete the runs in approximately 40 minutes. The latter scenario, whilst slower, will be cheaper.

When embarking on a structure determination that is likely to involve very large numbers of SA runs,

it is advisable to do a small “benchmarking” CDASH run, to aid in selecting the optimal instance type

and cluster size.

Beyond this point, CDASH requires no further user interaction: it automatically detects the DASH files

in the working directory and creates a cluster based on the user-defined instance type and size. Once

the cluster is running, files are uploaded and distributed around the cluster, jobs are queued and

tracked, and upon completion, results are downloaded to the working directory. By default, the cluster

is terminated to avoid incurring unnecessary costs.

3.2. CDASH operational sequence

3.2.1. Cluster creation

CDASH adds a new StarCluster template based on the user-defined instance type and size

requirements to the StarCluster config file. StarCluster is then used to create a new cluster based on

the template. A back-up of the original StarCluster configuration file is created automatically, and the

original file is restored once the cluster is in a running state.

3.2.2. File preparation and upload

The DASH files are automatically compressed into a .zip archive, and the cluster control scripts listed

in Table 3 are written to the working directory. Once the cluster is in a running state, CDASH uploads

all of these files to the master node of the cluster using the StarCluster put file transfer tool. The files

are then distributed around the cluster via a secure copy operation.

3.2.3. Job submission and tracking

The DASH jobs are queued for execution using the Sun Grid Engine (SGE) , which is pre-installed on

the StarCluster base AMI and which is automatically configured by StarCluster during the initial

cluster setup. Jobs are simultaneously executed on all available virtual CPUs (vCPUs) on all nodes of

the cluster, including the master node. Job progress is tracked by running the SGE qstat command

via the SSH functionality built into StarCluster. CDASH parses the output from this command and

provides users with an approximate percentage of the DASH runs completed and an estimate of the

time required to complete the remaining jobs.

3.2.4. Result retrieval and summary

Journal of Applied Crystallography computer programs

6

Upon job completion, the results of all runs (.dash and .log result files for each DBF, plus original

DBF) are retrieved and collated into a 7zip archive (Pavlov, 2010) named results.7z, which is then

downloaded to the working directory. By default, once the results from each worker node have been

returned to the master node, the worker node is shutdown to minimise costs. Similarly CDASH is by

default, set to terminate the cluster once the results have been downloaded to the working directory on

the local machine. The files written by CDASH (Section 3.2.2, Table 3) are then deleted.

Once CDASH has completed the assigned tasks, the user is given a summary containing estimates for

the time taken to perform tasks such as cluster start-up and job execution, together with a cost

estimate for the cluster. One of the CDASH configuration options (Section 3.3) can be enabled to

automatically convert the estimate from US$ to a user defined local currency.

3.3. CDASH configuration options

CDASH contains a number of user-configurable settings that are summarised in Table 4. These

settings provide users with additional options to enable CDASH to be customised to their needs. Here,

we highlight some of the more important options.

The 7zip software used to compress the results files may require users to install additional software on

their local machine in order to open the results. Users who do not wish to do so may set the

sevenzip parameter to False. If this is done, results are instead compressed into standard .zip

archives, which can be opened natively in Windows. As 7zip archives of DASH result files tend to be

much smaller than equivalent .zip archives, we strongly recommend their use to minimise download

time. For those who still prefer the use .zip, the downbest and numdown parameters are enabled

such that the user can choose to download only a given number of the best results, ranked by their

intensity χ2 values, in order to save time.

The ID parameter allows users to create multiple independent clusters simultaneously using CDASH.

This is of use when a user wishes to spawn several CDASH-clusters simultaneously or when multiple

users share the same AWS account.

The convert Boolean parameter and associated currency string allow users not based in the

USA to get the cost estimate for the CDASH run automatically converted to their local currency

using an up-to-date currency exchange rate obtained from a call to the Yahoo Finance API (Yahoo,

2015).

The masternode_different Boolean parameter (and associated masternode_type string)

can be used when the desired number of vCPUs is not an integer multiple of the number of vCPUs

possessed by the main instance type requested. For example, a cluster with 400 vCPUs could be

Journal of Applied Crystallography computer programs

7

obtained using eleven "c4.8xlarge" instances (11 × 36 vCPUs) and one "c4.xlarge" instance (1 × 4

vCPUs).

Amazon splits the EC2 infrastructure into geographically distinct regions. The switchregion

Boolean parameter is used to toggle the operation of StarCluster in regions other than the default

AWS region, which is situated in North Virginia, USA (AWS region = us-east-1). This functionality

can be useful for two main reasons:

i) AWS limits the number of instances a user can spawn in a given region. Access to further resources

can be obtained by spawning clusters in multiple regions.

ii) If multiple users share the same AWS account, each user could be assigned to a different AWS

region ensuring that CDASH functionality does not clash with another user.

4. DASH program performance when invoked using CDASH

The performance of CDASH has been evaluated using two challenging crystal structures; verapamil

hydrochloride (VHCl; (Florence et al., 2005)) and ornidazole (ORN; (Shankland & David, 2013)).

Structural and data parameters for both materials are listed in Table 5. The experimental parameters

used for the CDASH runs are listed in Table 6. For comparison purposes, identical sets of DASH runs

were run on a typical quad-core 3.20 GHz Intel Core i5-4570 standalone Windows PC using MDASH

to ensure use of all four available processing cores.

The results are presented in Table 7, from which the following important conclusions can be drawn.

Firstly, the main overheads associated with using CDASH (as opposed to DASH) are the cluster start

time and network transfer time. The cluster start time increases approximately linearly with the

number of instances requested and therefore it is recommended that clusters should be comprised of

instance types with the highest number of vCPUs possible in order to reduce this overhead. Network

transfer time depends on the network bandwidth available to the user. As mentioned in section 3.3,

use of the 7zip compression software is strongly recommended in order to reduce the overhead

associated with the result retrieval. Secondly, the average run time for an individual DASH simulated

annealing run, running on c4-based instances on the EC2 service is approximately double that of the

locally run jobs, reflecting the lower performance of each individual vCPU relative to the locally

operated CPU cores. Despite this, the ability to leverage very large numbers of vCPUs allows the

overall time for execution of a DASH job consisting of many simulated annealing runs to be radically

reduced.

5. Discussion

In general, as the complexity of a crystal structure increases, the computing power required to solve it

by global-optimisation-based SDPD methods increases (Shankland et al., 2013). In some cases, this

can become 'rate limiting' with the risk that some structures are then deemed 'too complex to solve'.

Journal of Applied Crystallography computer programs

8

The use of cloud resources removes this barrier by enabling access to reliable high-performance

computing resources without the need for investment in dedicated hardware that may only be

sporadically required for complex cases, or the extensive re-coding required to take advantage of

general purpose computing on graphical processing units (GP-GPU acceleration).

The on-demand nature of the EC2 resource also mean that users of CDASH do not need to apply for

time on, or wait for, high-performance computing resources within their institutions. Instead, a cluster

tailored to their specific requirements can be brought online within minutes allowing rapid

deployment of SA jobs. Evidently, this performance comes at a cost: time on EC2 is charged on a per-

instance-per-hour basis, with time rounded up to the next integer hour. By way of example, a run that

takes 61 minutes and one that takes 119 minutes are both charged as two hours of use. This should be

considered when planning jobs. Nevertheless, the costs associated with even large CDASH jobs are

still relatively small compared with those of dedicated hardware (purchase, maintenance and

depreciation), especially when the latter is only required periodically.

Other advantages of the cloud-based approach include the ability to tackle large numbers of SDPD

jobs in a short period of time. For example, this can facilitate rapid, parallel evaluation of multiple

structural input models. Similarly, users can batch process a number of separate DASH jobs (i.e. sets

of SA runs covering different materials) on the same cluster, in order to maximise resource utilisation.

Users working on central facility beamlines may benefit from rapid SDPD turnaround, allowing them

to modify experiments and recollect data if necessary. Note that CDASH does not have the same

hard-coded 999 SA run limit as DASH, and so batches of more than 999 SA runs can be processed.

Generating such numbers of SA runs can be accomplished either by using the DASH GUI to generate

multiple batches of .DBF run control files, or by using the dbfgen.py utility supplied with CDASH.

Whilst EC2 does allow users to run instances based on Windows AMIs, StarCluster does not (at

present) support Windows-based clusters. However, given that the effect on the performance of the

DASH executable when running on Linux virtual machines under Wine is negligible, there is currently

no strong imperative to move away from Linux-based clusters.

The current implementation of CDASH involves a certain amount of user intervention in the initial

installation phase. Considerable simplification of this process may be achieved by the production of a

custom AMI that already incorporates the DASH executable, but this remains to be investigated.

6. Conclusions

We have demonstrated the applicability of infrastructure-as-a-service cloud computing to the problem

of SDPD and shown that substantial increases in performance (relative to typically employed local

resources) can be obtained by running DASH jobs on scalable clusters that are rapidly and easily

Journal of Applied Crystallography computer programs

9

created on-demand. We anticipate that this approach will be more attractive to academic and

industrial users than the GDASH approach.

7. Availability and documentation

The CDASH source code and associated documentation is available

online, at https://github.com/mspillman/cdash/. Inherent in the CDASH approach is the use of

multiple virtual machines running multiple copies of the DASH executable, and as

such, CDASH is only suitable for users with a DASH site license that permits such use. Details of

DASH availability can be found

at https://www.ccdc.cam.ac.uk/Solutions/PowderDiffraction/Pages/DASH.aspx.

Acknowledgements MJS thanks the University of Reading and the Science and Technology

Facilities Council (STFC) for funding. We are grateful to the University of Reading Chemical

Analysis Facility for local powder diffraction facilities and to the authors of StarCluster, whose

program greatly simplified the task of creating CDASH.

References

Amazon.com Inc. (2010). Amazon elastic compute cloud (Amazon EC2), http://aws.amazon.com/ec2/.

Amazon.com Inc. (2015). Amazon Web Services EC2 instance types,

http://aws.amazon.com/ec2/instance-types/.

Cianfrocco, M. A. & Leschziner, A. E. (2015). eLife 4.

David, W. I. F., Shankland, K. & Shankland, N. (1998). Chemical Communications 931-932.

David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C.

(2006). Journal of Applied Crystallography 39, 910-915.

de Oliveira, D., Ocana, K., Ogasawara, E., Dias, J., Baiao, F. & Mattoso, M. (2011). Cloud

Computing (CLOUD), 2011 IEEE International Conference on, pp. 708-715.

Favre-Nicolin, V. & Cerny, R. (2002). Journal of Applied Crystallography 35, 734-743.

Florence, A. J., Shankland, N., Shankland, K., David, W. I. F., Pidcock, E., Xu, X., Johnston, A.,

Kennedy, A. R., Cox, P. J., Evans, J. S. O., Steele, G., Cosgrove, S. D. & Frampton, C. S. (2005).

Journal of Applied Crystallography 38, 249-259.

Griffin, T. A. N., Shankland, K., van de Streek, J. V. & Cole, J. (2009a). Journal of Applied

Crystallography 42, 356-359.

https://github.com/mspillman/cdash/
https://www.ccdc.cam.ac.uk/Solutions/PowderDiffraction/Pages/DASH.aspx
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/instance-types/

Journal of Applied Crystallography computer programs

10

Griffin, T. A. N., Shankland, K., van de Streek, J. V. & Cole, J. (2009b). Journal of Applied

Crystallography 42, 360-361.

Pavlov, I. (2010). 7-zip file archiver. http://www.7-zip.org/

Rohlíček, J., Hušák, M. & Favre-Nicolin, V. (2007). FOX.Grid,

http://fox.vincefn.net/Manual/Fox.Grid

Shankland, K. & David, W. I. F. (2013). Private communication.

Shankland, K., Spillman, M. J., Kabova, E. A., Edgeley, D. S. & Shankland, N. (2013). Acta

Crystallographica Section C 69, 1251-1259.

MIT (2014). StarCluster, http://star.mit.edu/cluster/

Van Rossum, G. & Drake, F. L. (2003). Python language reference manual. Network Theory.

Wine Project (2015). Wine. Version 1.6.2.

Yahoo Inc. (2015), Yahoo Finance, http://finance.yahoo.com/

http://www.7-zip.org/
http://fox.vincefn.net/Manual/Fox.Grid
http://star.mit.edu/cluster/
http://finance.yahoo.com/

Journal of Applied Crystallography computer programs

11

Table 1 Latest generation of compute-optimised instance types available on the EC2 service.

Instances with the c4 prefix are based on optimised 2.9 GHz Intel Xeon E5-2666 v3 (Haswell)

processors. The virtual CPUs (vCPUs) run as hardware hyperthreads on these processors.

Instance type vCPU Memory (GiB) Cost / hour (US$)*

c4.large 2 3.75 0.110

c4.xlarge 4 7.5 0.220

c4.2xlarge 8 15 0.441

c4.4xlarge 16 30 0.882

c4.8xlarge 36 60 1.763

* As listed on 2015-10-01

Journal of Applied Crystallography computer programs

12

Table 2 Local and cloud-based software prerequisites for CDASH. It is assumed that the AMI is

based on a StarCluster public AMI and hence has all the dependencies necessary for StarCluster use

already installed.

Location / OS Software Version Reference

Local / Windows 7 Python 2.7.x 2.7.8 (Van Rossum & Drake, 2003)

 StarCluster 0.95.6 (STAR, 2014)

 DASH 3.3.4 (David et al., 2006)

 7zip (optional) 9.20 (Pavlov, 2010)

Cloud / Ubuntu 14.04 Wine 1.6.2 (Wine Project, 2015)

 p7zip-full 9.20.1 (Pavlov, 2010)

 zip 3.0-8

 xvfb 2:1.15.1-0ub

 DASH 3.3.4 (David et al., 2006)

Journal of Applied Crystallography computer programs

13

Table 3 Cluster control scripts written by CDASH

Script name Language Purpose

unzipper.sh BASH Unzip DASH files

queuejobs.sh BASH Submit rundash.sh for every DBF to be processed

rundash.sh BASH Run DASH in a subdirectory* then copy results into the parent folder

scp.py Python Distribute files from master node to worker nodes

getres.py Python Retrieve results from all worker nodes and collate them into a single

compressed archive (7zip or zip). By default, terminates worker nodes once

results have been retrieved to the master node.

* This is done due to the use of multiple copies of DASH running simultaneously. If all jobs were run in the

same directory, there is a risk that errors will arise if the different instances of DASH attempt to read from or

write to the same files simultaneously. Such errors are known as race conditions.

Journal of Applied Crystallography computer programs

14

Table 4 Configuration parameters for CDASH.

Parameter Data type Default Description

sevenzip Boolean True Compress results using the 7zip software

downbest Boolean False Download best numdown results only if

sevenzip is set to False

numdown Integer 20 Number of results to download if downbest

is set to True

terminator Boolean True Terminate cluster automatically

shutdownnodes Boolean True Shutdown worker nodes once jobs have

completed

convert Boolean False Convert price estimate to another currency

currency String GBP ISO 4217 three letter code for currency to

convert to if convert is set to True

verbose Boolean False Display output of all commands for

debugging

tracker Integer 30 Refresh rate of job tracking in seconds

allowinstances csv * Comma separated values listing allowed

instance types and their cost per hour in $US

maxnodes Integer 20† Maximum number of running instances

allowed

ID String mycluster Cluster identifier

masternode_different Boolean False Allows user to specify a different instance

type for the master node. Useful for reaching

desired numbers of vCPUs.

Masternode_type String - Instance type to set the master node if

masternode_different is True

switchregion Boolean False Switch AWS region from default us-east-1

region String - Region to start cluster in if switchregion

is True

* Comma separated variables which provide a list of the names of the instance types and their associated hourly

cost in US$. This items are listed in the order instance-type, cost-per-hour. Whilst the default list

contains information for all c3 and c4 instance types, a truncated example is given below:

c4.large,0.110,c4.xlarge,0.220,c4.2xlarge,0.441,c4.4xlarge,0.882,c4.8xlarge,1.763

Journal of Applied Crystallography computer programs

15

† AWS limit the number of instances that new users can create in any given region to 20 running instances.

Raising this limit is easily accomplished by filling in a request form on the AWS website.

Journal of Applied Crystallography computer programs

16

Table 5 Structural and data parameters for verapamil hydrochloride (VHCl) and racemic ornidazole

(ORN).

Parameter VHCl ORN

a / Å 7.086 13.605

b / Å 10.591 14.054

c / Å 19.196 8.913

α / ° 100.10 71.59

β / ° 93.73 78.73

γ / ° 101.55 64.86

Space group 𝑃1̅ 𝑃1̅

Volume / Å3
1382.060 1460.086

Z / Zʹ 2 / 1 6 / 3

CSD reference code CURHOM NETRUZ

Degrees of freedom 23* 30

Data source Laboratory diffractometer Synchrotron

Radiation Cu Kα1 0.65278 Å

Pawley fit resolution / Å 2.25 2.88

Pawley fit χ2 2.92 14.95

* The Z-matrix for the verapamil backbone was used without any modification or fixing of automatically

detected refinable torsion angles. Normally, the nitrile torsion angle would be fixed resulting in the 22 degrees

of freedom reported in previous publications.

Journal of Applied Crystallography computer programs

17

Table 6 Experimental parameters for assessing the performance of CDASH relative to a typical

modern desktop computer.

Parameter VHCl ORN

Number of SA runs 108 2160

Number of moves per SA run 2 × 107 2 × 107

EC2 instance type used c4.8xlarge c4.8xlarge

Number of instances 3 10

Number of vCPUs 108 360

SA runs per vCPU 1 6

Journal of Applied Crystallography computer programs

18

Table 7 Results of the experiments listed in Table 6. Solved = number of SA runs that reached the

global minimum; SA run average = average time for each SA run to complete the allotted moves;

Total = total time taken; Job = time taken to process the SA runs only; Overhead = time associated

with tasks other than SA jobs. For the local runs using MDASH, it is assumed that there are no

overheads and hence Total = Job. Relative speed is the speed relative to the locally run jobs.

 Time taken / minutes

Structure Solved Environment SA run avg. Total Job Overhead Relative

speed

Cost / US$

VHCl 2 Local 12.6 331 331 0 1

 3 × c4.8xlarge 26.8 33.2 27.9 5.3 10 5.29

ORN 3 Local 6.6 3677 3677 0 1

 10 × c4.8xlarge 14.8 97.4 91.2 6.2 38 35.26

Journal of Applied Crystallography computer programs

19

Figure 1 StarCluster running on a local laptop or workstation can be used to automatically build,

manage and control clusters located in the cloud. Each instance belonging to a cluster is referred to as

a node. Usually, StarCluster will interface directly with a “master node” which then controls the rest

of the cluster, or “worker nodes”.

Journal of Applied Crystallography computer programs

20

Figure 2 (a) DASH batch files are generated within DASH following the same procedure as for

GDASH and MDASH (b) CDASH creates a cluster with a user-defined number of instances of user

specified type and uploads all required files. CDASH instructs the cluster to process the DBFs and

checks periodically to see if jobs have completed. (c) If so, the results are downloaded from the

cluster which is then terminated to avoid incurring unnecessary costs. Results are opened locally in

DASH as normal.

Journal of Applied Crystallography computer programs

21

Supporting information

S1. DASH running using Wine

Two locally operated computers with identical hardware running Windows 7 and Ubuntu 14.04 LTS

were used to compare the performance of DASH running under Windows and Linux (using Wine)

environments respectively. Identical DASH executables and DASH files were used in each case. 50

runs of 2 × 107 SA moves for VHCl were used as a test set. Results are summarised in Table S1. From

these results, two important points are clear: (a) the use of Wine has a negligible impact on the

performance of DASH, with only a few seconds difference between the runs in the different

environments and (b) the results obtained in each case were identical and therefore the use of Wine

does not affect the accuracy of results obtained by DASH when identical DASH files are used.

Table S1 Comparison of DASH performance when run on Windows and Linux (using Wine)

operating systems. Identical DASH executables were used, and identical DASH run files consisting of

50 SA runs of 2 × 107 SA moves per run on the crystal structure VHCl were processed in each

environment.

Parameter Windows Linux + Wine

Minimum run time / minutes 15.3 15.4

Maximum run time / minutes 16.6 16.9

Average run time / minutes 16.4 16.6

Minimum profile χ2 12.28 12.28

Maximum profile χ2 163.78 163.78

Number of solutions obtained 2 2

Journal of Applied Crystallography computer programs

22

S2. 7zip compression vs zip compression for DASH result files

The result files of 108 DASH SA runs for VHCl and 2160 DASH SA runs for ORN were compressed

using the 7zip and zip file compression packages. The resultant archive file sizes are listed in Table

S2. For this particular file type, it is clear that the 7zip algorithm offers a vastly superior compression

ratio and hence its use is strongly recommended.

Table S2 Compression of results from 108 SA runs of VHCl and 2160 SA runs of ORN. The total

file sizes are given for the uncompressed data and the resultant 7zip and zip archives.

Results Uncompressed / MB 7zip compression / MB zip compression / MB

VHCl 10.9 0.064 5.44

ORN 245 0.792 123

