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Synopsis A cloud-computing approach to accelerating structure determination from powder 

diffraction data, based on the Amazon EC2 system and the DASH software, is presented. 

Abstract The simulated annealing approach to crystal structure determination from powder 

diffraction data, as implemented in the DASH program, is readily amenable to parallelisation at the 

individual run level. Very large scale increases in speed of execution can be achieved by distributing 

individual DASH runs over a network of computers. The CDASH program delivers this by using 

scalable, on-demand computing clusters built on the Amazon Elastic Compute Cloud service. By way 

of example, a 360 vCPU cluster returned the crystal structure of racemic ornidazole (Zʹ=3, 30 degrees 

of freedom) ca. 40 times faster than a typical modern quad-core desktop CPU. Whilst used here 

specifically for DASH, this approach is of general applicability to other packages that are amenable to 

coarse-grained parallelism strategies. 

 

1. Introduction  

DASH (David et al., 2006; David et al., 1998), a computer program for crystal structure determination 

from powder diffraction data (SDPD) that utilises a simulated annealing (SA) algorithm, has 

previously been adapted to run on computers that have multiple CPU-cores via MDASH (Griffin et 

al., 2009b) and distributed computing systems via GDASH (Griffin et al., 2009a). Another SDPD 

package, FOX (Favre-Nicolin & Cerny, 2002), has also been adapted to utilise multi-core 

architectures and distributed computing, via the FOX.Grid add-on (Rohlíček et al., 2007). 

Whilst the distributed computing capability provided by GDASH and FOX.Grid allow for orders-of-

magnitude increases in the computing power that can be brought to bear on a SDPD task, the 

distributed computing approach to SDPD has seen only limited use. In the case of GDASH, this is 
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almost certainly because of the significant financial hurdle presented by the specialised grid 

management software required and its associated maintenance.  

This work demonstrates how the distributed computing concept used by GDASH can be realised using 

cloud-computing services, which remove the necessity for users to have a large existing network of 

'in-house' computers. 

Cloud-computing is a broad term that covers a variety of activities. In this work, we make use of 

infrastructure as a service (IaaS) type cloud computing. IaaS enables users to access a wide range of 

computers (usually in the form of virtual machines) over their internet connection. These machines 

can then be used for any computing task required. One popular use of IaaS resources is on-demand, 

high-performance computing. One well known IaaS provider is the Amazon Elastic Compute Cloud 

(EC2) (Amazon, 2010) that permits on-demand creation of a wide variety of virtual machines1, which 

when running are known as instances. The latest generation of high-performance computing instances 

(at time of writing, those with prefix c42) are listed in Table 1. Full details of all available instance 

types are available on the Amazon Web Services (AWS) website (Amazon, 2014). The EC2 service 

has previously been utilised in a crystallographic context (de Oliveira et al., 2011) and for processing 

single particle cryo-electron microscopy data (Cianfrocco & Leschziner, 2015). 

EC2 instances use customisable operating systems, known as Amazon Machine Images (AMIs). 

These can be pre-installed with software suited to diverse purposes such as high performance 

computing, web servers, database management, video rendering and application development. Once a 

suitable AMI has been created, multiple instances of that AMI can be started whenever required. 

Microsoft Windows, Linux and BSD operating systems are supported. 

Using the instance types available, bespoke computing clusters can be created without the need to 

invest in hardware, which is of course subject to depreciation and obsolescence. Amazon provides an 

application programming interface (API) which allows third-party tools to create, manage and interact 

with instances, but writing software at the API level for cluster creation and management is a time 

consuming task. Fortunately, toolkits such as StarCluster (Section 1.1) exist, which provide 

convenient and easy-to-use interfaces for cluster creation, control and management. 

1.1. StarCluster  

                                                      
1 For the purposes of this paper, a virtual machine can be defined as an operating system that is installed onto 

software which imitates dedicated hardware. For example, a virtual machine running Linux can be created on a 

computer running MS Windows as its base operating system, provided the appropriate virtualisation software is 

installed on Windows. The end user interacts with Linux virtual machine exactly as if it were installed on the 

underlying hardware. Importantly, the virtual machines can be created and destroyed at will. 

 
2 According to the AWS documentation, “C4 instances are based on custom 2.9 GHz Intel® Xeon® E5-2666 v3 

(Haswell) processors, optimized specifically for Amazon EC2” - 

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/c4-instances.html  

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/c4-instances.html
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StarCluster (STAR, 2014) is an open source toolkit used to automate the building, configuration and 

management of high performance Linux-based compute-clusters on the EC2 service. The clusters it 

builds are configured with one instance serving as the master node for the cluster, whilst any 

remaining instances serve as worker nodes as shown in Figure 1. As such, users primarily interact 

with the master node of the cluster, which then distributes jobs to the workers. By default, StarCluster 

also executes jobs on the master node of the cluster, maximising utilisation of the computing 

resources available. In this work, it is used as the basis for CDASH due to its ease of use and the rich 

set of features it provides. 

2. CDASH overview 

CDASH is a lightweight command-line driven program written in the Python programming language. 

It takes, as input, files generated by DASH and the parameters (defined by the number of instances 

and instance type required) of the bespoke cluster requested by the user. It then automatically creates 

a cluster of the requested specification on EC2, uploads files, queues jobs to run, checks job 

completion status, downloads results and terminates the cluster. The results returned by CDASH are 

standard .dash result files, which can be viewed, merged and manipulated locally as normal. Figure 2 

provides a schematic of the CDASH mode of operation. 

CDASH is intended to accelerate the structure determination of crystal structures that currently 

require a few days or more of local CPU time to solve; these tend to be examples with large volume 

asymmetric units, Zʹ > 1 and more than 30 degrees of freedom. 

3. Program description 

3.1. Running CDASH 

3.1.1. Software requirements and AMI preparation  

The following discussion assumes that the user already has an Amazon Web Services (AWS) 

account3. Table 2 lists the software prerequisites for CDASH use, including both local software and 

the packages that must be present on the AMI in order to allow CDASH to run. Due to these 

requirements, prior to using CDASH for the first time, a user must prepare a custom Linux-based AMI 

that has the software pre-requisites listed in Table 2 installed, as well as a copy of DASH that has been 

installed and correctly configured4. This process is straightforward, with detailed instructions 

available in the CDASH documentation. To ensure maximum compatibility with StarCluster, it is 

strongly recommended that the custom AMI be based on a StarCluster public AMI. If this is not done, 

                                                      
3 AWS accounts can be created for free by following this link: http://aws.amazon.com/  
4 DASH installation on a Linux-based AMI is accomplished using the Wine compatibility layer software. This 

means that the DASH executable used on the cloud is identical to the one used locally. 
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additional packages must be installed on the AMI in order for StarCluster to work5. Once the 

prerequisites listed in Table 2 have been installed, the user saves the AMI using the tools provided by 

AWS and configures CDASH to use that AMI for future clusters. Note that we utilise the Wine 

compatibility layer (Wine Project, 2015) in order to let us install and run DASH (which normally runs 

in an MS Windows environment) on a Linux virtual machine. This layer has a negligible impact on 

DASH run times and removes the requirement for a Linux-specific version of DASH to be compiled. 

3.1.2. Preparation of input files 

The procedure for PXRD data preparation and DASH batch file (DBF) generation on the local 

computer is identical to the procedure used for MDASH and GDASH, and is described elsewhere in 

detail (Griffin et al., 2009b, a). The DASH batch files (DBFs), which have the extension .dbf, are 

saved in the same directory as the files generated in the DASH Pawley fitting procedure (files with 

extensions .sdi, .hcv, .tic, .dsl and .pik) together with the .zmatrix representations of the structural 

fragments. These files are henceforth referred to as the “DASH files”, and the folder containing them 

the “working directory”.  

3.1.3. Command line invocation 

After opening a command window on the local computer and navigating to the working directory, 

CDASH is invoked using the command:  

python cdash.py 

The user is then prompted to specify which instance type to use, and the number of instances required 

for the cluster. Alternatively, these parameters may be supplied as command line arguments as 

follows: 

python cdash.py –i instance-type –n N 

where the argument instance-type is a string indicating the type of instance requested (typically 

one from Table 1) and the argument N is an integer that determines the number of instances of type 

instance-type to be included in the cluster. The user is prompted for these parameters if they are 

omitted.  

The appropriate choice of instance type and cluster size is dependent on the number of SA runs to be 

performed, and the approximate duration of each SA run. AWS charges for instance time on an hourly 

basis; a job lasting 1 minute and a job lasting 59 minutes would both be charged at a full hour. As 

such, it is recommended that for a given number of SA runs, the number of vCPUs in the cluster 

should be tailored to maximise the computing resources that are being paid for. By way of example, a 

set of 100 SA runs, each taking 10 minutes could be processed on a cluster with 100 vCPUs or a 

                                                      
5 This process lies outside the scope of this publication, though instructions are readily available online. 
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cluster with 25 CPUs. Ignoring cluster start-up and network transfer overheads, the cluster with 100 

vCPUs will complete the allotted runs in approximately 10 minutes whilst the 25 vCPU cluster will 

complete the runs in approximately 40 minutes. The latter scenario, whilst slower, will be cheaper. 

When embarking on a structure determination that is likely to involve very large numbers of SA runs, 

it is advisable to do a small “benchmarking” CDASH run, to aid in selecting the optimal instance type 

and cluster size. 

Beyond this point, CDASH requires no further user interaction: it automatically detects the DASH files 

in the working directory and creates a cluster based on the user-defined instance type and size. Once 

the cluster is running, files are uploaded and distributed around the cluster, jobs are queued and 

tracked, and upon completion, results are downloaded to the working directory. By default, the cluster 

is terminated to avoid incurring unnecessary costs.  

3.2. CDASH operational sequence 

3.2.1. Cluster creation 

CDASH adds a new StarCluster template based on the user-defined instance type and size 

requirements to the StarCluster config file. StarCluster is then used to create a new cluster based on 

the template. A back-up of the original StarCluster configuration file is created automatically, and the 

original file is restored once the cluster is in a running state.  

3.2.2. File preparation and upload 

The DASH files are automatically compressed into a .zip archive, and the cluster control scripts listed 

in Table 3 are written to the working directory. Once the cluster is in a running state, CDASH uploads 

all of these files to the master node of the cluster using the StarCluster put file transfer tool. The files 

are then distributed around the cluster via a secure copy operation. 

3.2.3. Job submission and tracking 

The DASH jobs are queued for execution using the Sun Grid Engine (SGE) , which is pre-installed on 

the StarCluster base AMI and which is automatically configured by StarCluster during the initial 

cluster setup. Jobs are simultaneously executed on all available virtual CPUs (vCPUs) on all nodes of 

the cluster, including the master node. Job progress is tracked by running the SGE qstat command 

via the SSH functionality built into StarCluster. CDASH parses the output from this command and 

provides users with an approximate percentage of the DASH runs completed and an estimate of the 

time required to complete the remaining jobs. 

 

3.2.4. Result retrieval and summary 
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Upon job completion, the results of all runs (.dash and .log result files for each DBF, plus original 

DBF) are retrieved and collated into a 7zip archive (Pavlov, 2010) named results.7z, which is then 

downloaded to the working directory. By default, once the results from each worker node have been 

returned to the master node, the worker node is shutdown to minimise costs. Similarly CDASH is by 

default, set to terminate the cluster once the results have been downloaded to the working directory on 

the local machine. The files written by CDASH (Section 3.2.2, Table 3) are then deleted. 

Once CDASH has completed the assigned tasks, the user is given a summary containing estimates for 

the time taken to perform tasks such as cluster start-up and job execution, together with a cost 

estimate for the cluster. One of the CDASH configuration options (Section 3.3) can be enabled to 

automatically convert the estimate from US$ to a user defined local currency.  

 

3.3. CDASH configuration options 

CDASH contains a number of user-configurable settings that are summarised in Table 4. These 

settings provide users with additional options to enable CDASH to be customised to their needs. Here, 

we highlight some of the more important options. 

The 7zip software used to compress the results files may require users to install additional software on 

their local machine in order to open the results. Users who do not wish to do so may set the 

sevenzip parameter to False. If this is done, results are instead compressed into standard .zip 

archives, which can be opened natively in Windows. As 7zip archives of DASH result files tend to be 

much smaller than equivalent .zip archives, we strongly recommend their use to minimise download 

time. For those who still prefer the use .zip, the downbest and numdown parameters are enabled 

such that the user can choose to download only a given number of the best results, ranked by their 

intensity χ2 values, in order to save time.  

The ID parameter allows users to create multiple independent clusters simultaneously using CDASH. 

This is of use when a user wishes to spawn several CDASH-clusters simultaneously or when multiple 

users share the same AWS account. 

The convert Boolean parameter and associated currency string allow users not based in the 

USA to get the cost estimate for the CDASH run automatically converted to their local currency 

using an up-to-date currency exchange rate obtained from a call to the Yahoo Finance API (Yahoo, 

2015). 

The masternode_different Boolean parameter (and associated masternode_type string) 

can be used when the desired number of vCPUs is not an integer multiple of the number of vCPUs 

possessed by the main instance type requested. For example, a cluster with 400 vCPUs could be 
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obtained using eleven "c4.8xlarge" instances (11 × 36 vCPUs) and one "c4.xlarge" instance (1 × 4 

vCPUs).  

Amazon splits the EC2 infrastructure into geographically distinct regions. The switchregion 

Boolean parameter is used to toggle the operation of StarCluster in regions other than the default 

AWS region, which is situated in North Virginia, USA (AWS region = us-east-1). This functionality 

can be useful for two main reasons:  

i) AWS limits the number of instances a user can spawn in a given region. Access to further resources 

can be obtained by spawning clusters in multiple regions.  

ii) If multiple users share the same AWS account, each user could be assigned to a different AWS 

region ensuring that CDASH functionality does not clash with another user. 

4. DASH program performance when invoked using CDASH 

The performance of CDASH has been evaluated using two challenging crystal structures; verapamil 

hydrochloride (VHCl; (Florence et al., 2005)) and ornidazole (ORN; (Shankland & David, 2013)). 

Structural and data parameters for both materials are listed in Table 5. The experimental parameters 

used for the CDASH runs are listed in Table 6. For comparison purposes, identical sets of DASH runs 

were run on a typical quad-core 3.20 GHz Intel Core i5-4570 standalone Windows PC using MDASH 

to ensure use of all four available processing cores.  

The results are presented in Table 7, from which the following important conclusions can be drawn. 

Firstly, the main overheads associated with using CDASH (as opposed to DASH) are the cluster start 

time and network transfer time. The cluster start time increases approximately linearly with the 

number of instances requested and therefore it is recommended that clusters should be comprised of 

instance types with the highest number of vCPUs possible in order to reduce this overhead. Network 

transfer time depends on the network bandwidth available to the user. As mentioned in section 3.3, 

use of the 7zip compression software is strongly recommended in order to reduce the overhead 

associated with the result retrieval. Secondly, the average run time for an individual DASH simulated 

annealing run, running on c4-based instances on the EC2 service is approximately double that of the 

locally run jobs, reflecting the lower performance of each individual vCPU relative to the locally 

operated CPU cores. Despite this, the ability to leverage very large numbers of vCPUs allows the 

overall time for execution of a DASH job consisting of many simulated annealing runs to be radically 

reduced. 

5. Discussion 

In general, as the complexity of a crystal structure increases, the computing power required to solve it 

by global-optimisation-based SDPD methods increases (Shankland et al., 2013). In some cases, this 

can become 'rate limiting' with the risk that some structures are then deemed 'too complex to solve'. 
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The use of cloud resources removes this barrier by enabling access to reliable high-performance 

computing resources without the need for investment in dedicated hardware that may only be 

sporadically required for complex cases, or the extensive re-coding required to take advantage of 

general purpose computing on graphical processing units (GP-GPU acceleration). 

The on-demand nature of the EC2 resource also mean that users of CDASH do not need to apply for 

time on, or wait for, high-performance computing resources within their institutions. Instead, a cluster 

tailored to their specific requirements can be brought online within minutes allowing rapid 

deployment of SA jobs. Evidently, this performance comes at a cost: time on EC2 is charged on a per-

instance-per-hour basis, with time rounded up to the next integer hour. By way of example, a run that 

takes 61 minutes and one that takes 119 minutes are both charged as two hours of use. This should be 

considered when planning jobs. Nevertheless, the costs associated with even large CDASH jobs are 

still relatively small compared with those of dedicated hardware (purchase, maintenance and 

depreciation), especially when the latter is only required periodically. 

Other advantages of the cloud-based approach include the ability to tackle large numbers of SDPD 

jobs in a short period of time. For example, this can facilitate rapid, parallel evaluation of multiple 

structural input models. Similarly, users can batch process a number of separate DASH jobs (i.e. sets 

of SA runs covering different materials) on the same cluster, in order to maximise resource utilisation. 

Users working on central facility beamlines may benefit from rapid SDPD turnaround, allowing them 

to modify experiments and recollect data if necessary. Note that CDASH does not have the same 

hard-coded 999 SA run limit as DASH, and so batches of more than 999 SA runs can be processed. 

Generating such numbers of SA runs can be accomplished either by using the DASH GUI to generate 

multiple batches of .DBF run control files, or by using the dbfgen.py utility supplied with CDASH. 

Whilst EC2 does allow users to run instances based on Windows AMIs, StarCluster does not (at 

present) support Windows-based clusters. However, given that the effect on the performance of the 

DASH executable when running on Linux virtual machines under Wine is negligible, there is currently 

no strong imperative to move away from Linux-based clusters. 

The current implementation of CDASH involves a certain amount of user intervention in the initial 

installation phase. Considerable simplification of this process may be achieved by the production of a 

custom AMI that already incorporates the DASH executable, but this remains to be investigated. 

 

6. Conclusions 

We have demonstrated the applicability of infrastructure-as-a-service cloud computing to the problem 

of SDPD and shown that substantial increases in performance (relative to typically employed local 

resources) can be obtained by running DASH jobs on scalable clusters that are rapidly and easily 
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created on-demand. We anticipate that this approach will be more attractive to academic and 

industrial users than the GDASH approach. 

 

7. Availability and documentation 

The CDASH source code and associated documentation is available 

online, at https://github.com/mspillman/cdash/. Inherent in the CDASH approach is the use of 

multiple virtual machines running multiple copies of the DASH executable, and as 

such, CDASH is only suitable for users with a DASH site license that permits such use.  Details of 

DASH availability can be found 

at https://www.ccdc.cam.ac.uk/Solutions/PowderDiffraction/Pages/DASH.aspx. 
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Table 1 Latest generation of compute-optimised instance types available on the EC2 service. 

Instances with the c4 prefix are based on optimised 2.9 GHz Intel Xeon E5-2666 v3 (Haswell) 

processors. The virtual CPUs (vCPUs) run as hardware hyperthreads on these processors. 

Instance type vCPU Memory (GiB) Cost / hour (US$)* 

c4.large 2 3.75 0.110 

c4.xlarge 4 7.5 0.220 

c4.2xlarge 8 15 0.441 

c4.4xlarge 16 30 0.882 

c4.8xlarge 36 60 1.763 

* As listed on 2015-10-01 
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Table 2 Local and cloud-based software prerequisites for CDASH. It is assumed that the AMI is 

based on a StarCluster public AMI and hence has all the dependencies necessary for StarCluster use 

already installed. 

Location / OS Software Version Reference 

Local / Windows 7 Python 2.7.x 2.7.8 (Van Rossum & Drake, 2003) 

 StarCluster 0.95.6 (STAR, 2014) 

 DASH 3.3.4 (David et al., 2006) 

 7zip (optional) 9.20 (Pavlov, 2010) 

    

Cloud / Ubuntu 14.04 Wine 1.6.2 (Wine Project, 2015) 

 p7zip-full 9.20.1 (Pavlov, 2010) 

 zip 3.0-8  

 xvfb 2:1.15.1-0ub  

 DASH 3.3.4 (David et al., 2006) 
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Table 3 Cluster control scripts written by CDASH  

Script name Language Purpose 

unzipper.sh BASH Unzip DASH files 

queuejobs.sh BASH Submit rundash.sh for every DBF to be processed 

rundash.sh BASH Run DASH in a subdirectory* then copy results into the parent folder 

scp.py Python Distribute files from master node to worker nodes 

getres.py Python Retrieve results from all worker nodes and collate them into a single 

compressed archive (7zip or zip). By default, terminates worker nodes once 

results have been retrieved to the master node. 

* This is done due to the use of multiple copies of DASH running simultaneously. If all jobs were run in the 

same directory, there is a risk that errors will arise if the different instances of DASH attempt to read from or 

write to the same files simultaneously. Such errors are known as race conditions. 
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Table 4 Configuration parameters for CDASH. 

Parameter  Data type Default Description 

sevenzip Boolean True Compress results using the 7zip software 

downbest Boolean False Download best numdown results only if 

sevenzip is set to False 

numdown Integer 20 Number of results to download if downbest 

is set to True 

terminator Boolean True Terminate cluster automatically 

shutdownnodes Boolean True Shutdown worker nodes once jobs have 

completed 

convert Boolean False Convert price estimate to another currency 

currency String GBP ISO 4217 three letter code for currency to 

convert to if convert is set to True 

verbose Boolean False Display output of all commands for 

debugging 

tracker Integer 30 Refresh rate of job tracking in seconds 

allowinstances  csv * Comma separated values listing allowed 

instance types and their cost per hour in $US 

maxnodes Integer 20† Maximum number of running instances 

allowed 

ID String mycluster Cluster identifier 

masternode_different Boolean False Allows user to specify a different instance 

type for the master node. Useful for reaching 

desired numbers of vCPUs. 

Masternode_type String - Instance type to set the master node if 

masternode_different is True 

switchregion Boolean False Switch AWS region from default us-east-1 

region String - Region to start cluster in if switchregion 

is True 

* Comma separated variables which provide a list of the names of the instance types and their associated hourly 

cost in US$. This items are listed in the order instance-type, cost-per-hour. Whilst the default list 

contains information for all c3 and c4 instance types, a truncated example is given below: 

c4.large,0.110,c4.xlarge,0.220,c4.2xlarge,0.441,c4.4xlarge,0.882,c4.8xlarge,1.763 
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† AWS limit the number of instances that new users can create in any given region to 20 running instances. 

Raising this limit is easily accomplished by filling in a request form on the AWS website. 
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Table 5 Structural and data parameters for verapamil hydrochloride (VHCl) and racemic ornidazole 

(ORN). 

Parameter VHCl  ORN 

a / Å 7.086 13.605 

b / Å 10.591  14.054  

c / Å 19.196 8.913  

α / ° 100.10 71.59  

β / ° 93.73 78.73  

γ / ° 101.55 64.86  

Space group 𝑃1̅  𝑃1̅  

Volume / Å3 
1382.060 1460.086  

Z / Zʹ 2 / 1 6 / 3 

CSD reference code CURHOM NETRUZ 

Degrees of freedom 23* 30 

Data source Laboratory diffractometer Synchrotron 

Radiation Cu Kα1 0.65278 Å 

Pawley fit resolution / Å 2.25 2.88 

Pawley fit χ2 2.92 14.95 

* The Z-matrix for the verapamil backbone was used without any modification or fixing of automatically 

detected refinable torsion angles. Normally, the nitrile torsion angle would be fixed resulting in the 22 degrees 

of freedom reported in previous publications. 
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Table 6 Experimental parameters for assessing the performance of CDASH relative to a typical 

modern desktop computer. 

Parameter VHCl ORN 

Number of SA runs 108 2160 

Number of moves per SA run 2 × 107 2 × 107 

EC2 instance type used c4.8xlarge c4.8xlarge 

Number of instances 3 10 

Number of vCPUs 108 360 

SA runs per vCPU 1 6 
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Table 7 Results of the experiments listed in Table 6. Solved = number of SA runs that reached the 

global minimum; SA run average = average time for each SA run to complete the allotted moves; 

Total = total time taken; Job = time taken to process the SA runs only; Overhead = time associated 

with tasks other than SA jobs. For the local runs using MDASH, it is assumed that there are no 

overheads and hence Total = Job. Relative speed is the speed relative to the locally run jobs.  

   Time taken / minutes   

Structure Solved Environment SA run avg. Total Job Overhead Relative 

speed 

Cost / US$ 

VHCl 2 Local 12.6 331 331 0 1  

  3 × c4.8xlarge 26.8 33.2 27.9 5.3 10 5.29 

         

ORN 3 Local 6.6 3677 3677 0 1  

  10 × c4.8xlarge  14.8 97.4 91.2 6.2 38 35.26 
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Figure 1 StarCluster running on a local laptop or workstation can be used to automatically build, 

manage and control clusters located in the cloud. Each instance belonging to a cluster is referred to as 

a node. Usually, StarCluster will interface directly with a “master node” which then controls the rest 

of the cluster, or “worker nodes”. 
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Figure 2 (a) DASH batch files are generated within DASH following the same procedure as for 

GDASH and MDASH (b) CDASH creates a cluster with a user-defined number of instances of user 

specified type and uploads all required files. CDASH instructs the cluster to process the DBFs and 

checks periodically to see if jobs have completed. (c) If so, the results are downloaded from the 

cluster which is then terminated to avoid incurring unnecessary costs. Results are opened locally in 

DASH as normal. 



Journal of Applied Crystallography    computer programs 

21 

 

Supporting information  

S1. DASH running using Wine 

Two locally operated computers with identical hardware running Windows 7 and Ubuntu 14.04 LTS 

were used to compare the performance of DASH running under Windows and Linux (using Wine) 

environments respectively. Identical DASH executables and DASH files were used in each case. 50 

runs of 2 × 107 SA moves for VHCl were used as a test set. Results are summarised in Table S1. From 

these results, two important points are clear: (a) the use of Wine has a negligible impact on the 

performance of DASH, with only a few seconds difference between the runs in the different 

environments and (b) the results obtained in each case were identical and therefore the use of Wine 

does not affect the accuracy of results obtained by DASH when identical DASH files are used. 

 

 

Table S1 Comparison of DASH performance when run on Windows and Linux (using Wine) 

operating systems. Identical DASH executables were used, and identical DASH run files consisting of 

50 SA runs of 2 × 107 SA moves per run on the crystal structure VHCl were processed in each 

environment. 

Parameter Windows Linux + Wine 

Minimum run time / minutes 15.3 15.4 

Maximum run time / minutes 16.6 16.9 

Average run time / minutes 16.4 16.6 

Minimum profile χ2 12.28 12.28 

Maximum profile χ2 163.78 163.78 

Number of solutions obtained 2 2 
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S2. 7zip compression vs zip compression for DASH result files 

The result files of 108 DASH SA runs for VHCl and 2160 DASH SA runs for ORN were compressed 

using the 7zip and zip file compression packages. The resultant archive file sizes are listed in Table 

S2. For this particular file type, it is clear that the 7zip algorithm offers a vastly superior compression 

ratio and hence its use is strongly recommended. 

 

 

 

Table S2 Compression of results from 108 SA runs of VHCl and 2160 SA runs of ORN. The total 

file sizes are given for the uncompressed data and the resultant 7zip and zip archives. 

Results Uncompressed / MB 7zip compression / MB zip compression / MB 

VHCl 10.9 0.064 5.44 

ORN 245 0.792 123 

 

 


