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Abstract

Anti-spoofing is attracting growing interest in biometrics, considering the vari-

ety of fake materials and new means to attack biometric recognition systems.

New unseen materials continuously challenge state-of-the-art spoofing detec-

tors, suggesting for additional systematic approaches to target anti-spoofing.

By incorporating liveness scores into the biometric fusion process, recognition

accuracy can be enhanced, but traditional sum-rule based fusion algorithms

are known to be highly sensitive to single spoofed instances. This paper in-

vestigates 1-median filtering as a spoofing-resistant generalised alternative to

the sum-rule targeting the problem of partial multibiometric spoofing where m

out of n biometric sources to be combined are attacked. Augmenting previous

work, this paper investigates the dynamic detection and rejection of liveness-

recognition pair outliers for spoofed samples in true multi-modal configuration

with its inherent challenge of normalisation. As a further contribution, boot-

strap aggregating (bagging) classifiers for fingerprint spoof-detection algorithm

is presented. Experiments on the latest face video databases (Idiap Replay-

Attack Database and CASIA Face Anti-Spoofing Database), and fingerprint

spoofing database (Fingerprint Liveness Detection Competition 2013) illustrate

the efficiency of proposed techniques.
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1. Introduction

Fingerprint and face biometrics as most widely adopted traits are being

exposed to an increasing threat of presentation attacks. Consequently, there

are numerous studies [1, 2] and open challenges [3, 4] on anti-spoofing tech-

niques assessing the spoofing detector’s ability to distinguish between genuine5

and fake attempts for especially these two traits. Recently, the integration of

anti-spoofing scores with recognition scores has received considerable attention

[5, 6, 7]. The standard approach, as outlined in [5], has been to reject spoofed

samples before comparing them against the gallery template. However, recog-

nition scores can be helpful in the probe-attack spoofing detection problem and10

liveness scores can impact on the recognition task. Considering imposters with

access to fake fingers or face photographs reveals an impact on overall accuracy

(shifted imposter score distribution for non-zero-effort attempts [7]) and assum-

ing a correlation between successful spoofs achieving a higher score and their

corresponding liveness score is likely (and shown) to help in the final judgment of15

the decision task, especially in an ensemble of classifiers where this paper looks

for outliers. It is therefore useful to investigate the benefits of dealing with a

holistic (liveness and verification) multi-class problem rather than two separate

classification problems (live vs. fake and genuine vs. impostor). If a system

involves multiple modalities there is an even larger variety of different ways to20

treat the problem of combining liveness and recognition scores. Multibiomet-

rics using face and fingerprint biometrics comes with many benefits including

expected increased accuracy, higher universality (absence of single characteris-

tics), efficiency (fast indexing), but its robustness to spoofing attempts has been

shown to be compromised [8, 9]. Furthermore, with the inclusion of multiple25

modalities the attacker has an even more extended choice to select the easiest

modality to be attacked. It is therefore desirable to find new techniques coping

with spoofing attacks, which are subject to investigation in this paper. The

paper focuses on three objectives: (1) investigation of spoofing robustness in

multibiometrics; (2) development of novel methods towards anomaly detection30
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for increased systematic anti-spoofing; and (3) proposition of a novel bootstrap

aggregating (bagging) of classifiers method combining features in fingerprint

counter-spoofing.

With regards to the first topic on spoofing robustness in multibiometrics,

the paper tests degradation in accuracy for the “partial multibiometric spoof-35

ing” scenario, where m out of n samples are spoofed, highlighting the tradeoff

between accuracy and security for different fusion methods. Fig. 1 illustrates

this concept. The sensitivity of a recognition and liveness fusion method with

regards to spoofing is especially interesting in multimodal configuration, where

scores originate from different underlying distributions and multiple traits facil-40

itate a selection of the modality to be attacked. The paper analyses the impact

of the number of spoofed fingers or spoofed face on accuracy using the latest

biometric datasets. The relative robustness of several score-level fusion rules

can be used to choose the most robust fusion rule [9].

As a second outlined contribution, this paper presents a novel multibiomet-45

ric spoofing-aware fusion method following the idea of anomaly detection and

extending research in [10] to multiple modalities. This paper investigates 1-

median-based fusion using outlier detection applied in a multibiometric setup.

Note that the extension to multiple modalities raises further questions with

regards to normalisation. For different modalities, scores generally follow dif-50

ferent distributions. Therefore, counter-spoofing is much more challenging than

for single-modality approaches, including multi-instance or multi-algorithm ap-

proaches. Further, this work presents further theoretical considerations and

discusses parameter choice in detail. Recognition scores and liveness scores are

likely to be dependent, as spoofing tries to achieve a high recognition score in55

order to successfully claim the alien (spoofed) identity. In partial multibiometric

spoofing this information can be used to further discriminate between genuines

and impostors. Despite spoofing sensitivity of traditional fusion techniques, it

is a reasonable assumption to claim a higher difficulty for attackers to spoof

multiple modalities at the same time or even to obtain the necessary samples to60

produce a fake fingerprint or face mask. On the other hand, special spoofing-
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robust fusion schemes might exhibit a reduced level of accuracy. This trade-off

between cost and security to limit drawbacks [5, 11] is investigated.

Third and last, as a by-product of evaluations the paper further presents

a novel spoofing detector again employing a fusion principle: bootstrap aggre-65

gating (bagging) of classifiers. This technique is employed in combining the

decision outcome of multiple different classifiers. Using also multiple features to

be more robust versus changes in materials (see [12]), the paper aims at inves-

tigating this technique in the employed system as an anti-fingerprint spoofing

technique towards integral fusion concepts in robust anti-spoofing. Bagging is70

shown to outperform state-of-the-art detectors on the most challenging LivDet

2013 Crossmatch subset database.

The remainder of this paper is organized as follows: Section 2 introduces

the problems of anti-spoofing and spoofing-aware fusion in biometrics. The

proposed methods of bagging for spoof-detection and 1-median filtering for75

spoofing-resistant multibiometric fusion are outlined in Section 3. Section 4

highlights experimental results with regards to the proposed and investigated

techniques. This includes a discussion of methods towards anomaly detection

in multibiometrics, highlighting parameter choice and optimisation for the pro-

posed 1-median filtering. Section 5 concludes this paper with an outlook on80

future work.

2. Related work

There are several anti-spoofing or liveness detection algorithms extracting

features (usually trained for modality, sensor, material, etc.), in order to deter-

mine whether a biometric sample is either live or fake. For evaluation purposes,

ferrlive (rate of misclassified live samples) and ferrfake (rate of misclassified fake

samples) are employed. Whereas for individual modalities the anti-spoofing

problem is well defined and evaluated separately from biometric system per-

formance, research on fusion between match scores and liveness factors is still

in its infancy [13]. Recently, [14] suggested a framework for verification sys-
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tems under spoofing attacks. Within the framework [8] adopted in this paper,

liveness and recognition scores are combined considering the scenario of probe-

spoofing only (i.e. no gallery-spoofing, enforced by e.g., attended enrolment).

Formally, given a vector of biometric observation (units, e.g. fingers, eyes)

~o = (o1, . . . on) from one or more modalities, and corresponding claimed iden-

tity template ~g = (g1, . . . , gn), the task of the fusion module F is to compute

a unified decision score, using comparison scores ~s = (s1, . . . , sn) and (probe)

liveness values ~l = (l1, . . . , ln), so that the verification task V (authentication

based on threshold η) can be formulated as follows:

V (~o,~g) :=





accept , if F (~s,~l) ≥ η;

reject , else.
(1)

Let i be the current index and E(oi), E(gi) refer to extracted (modality-

specific) features of samples, then si = C(E(oi), E(gi)) ∈ [0, 1] is used to denote

the normalized comparison result of oi, gi and li = L(oi) ∈ [0, 1] denote the85

likeliness of a genuine (live) sample. Clearly, it is desirable to find a method F

unaffected in performance if m out of the n elements of ~o are spoofed. This test-

ing setup is referred to as “partial multibiometric spoofing”, introduced in [10]

and extended in this work towards multiple modalities. Note, that this notion

of live or spoffed probes versus always-live enrolled gallery samples (assuming90

attended enrollment) leads to a simpler modelling (2 classes distinguishing live

probe from spoof or live, but different source) than in the general assymet-

ric case (8 classes based on live/spoof probe, live/spoof gallery sample, and

same/different source) or symmetric case (6 classes) [7], fully concentrating on

a dichotomous authentication task, which can be evaluated in the traditional95

way using receiver operating characteristics.

2.1. On combining anti-spoofing and recognition

Marasco et al. [5] are among the first considering fusion of liveness with

recognition scores separately for each modality, using simple rejection of spoofed

samples. If a spoofing attempt is indicated, the current modality matching100
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score is ignored. This initial study is extended in [15] evaluating sequential fu-

sion, classifier fusion, and Bayesian Belief Networks for combining match scores

and liveness measures, highlighting the superiority of the latter method for the

LivDet2009 dataset but also that accuracy is decreased when taking liveness

detection into account. Chingovska et al. [6] evaluate binary decision rules and105

Logistic Regression (LR) as decision and score-level fusion techniques combining

face recognition and liveness scores addressing the integration (but neglecting

the partial spoofing problem) of liveness. They report higher resistance to spoof-

ing attacks (91.54% vs. 10%) but are outperformed by LR approaches achieving

both, high verification accuracy and good spoofing detection. Recently, Poh et110

al. [7] have targeted the problem of integrating spoofing and matching scores

in a probe and gallery-spoofing scenario, investigating Gaussian Copula-based

Bayesian classifiers and mixture of linear classifiers for this task. While their

method outperforms classical Support Vector Machine (SVM) based techniques,

the approach needs training with regards to the full range of attacks.115

The assessment of traditional fusion rules (this work is using Kittler et al.’s

classical framework [16]) in the presence of spoofing attacks is a further relevant

sub-problem and addressed in this work. Rodrigues et al. [8, 17] first addressed

this security issue of spoofing attacks against a multimodal biometric system.

They presented two methods, one using likelihood ratio and another employing120

fuzzy logic, both exceeding the accuracy of traditional fusion rules. Also Akhtar

et al. [18] studied the impact of spoofing on parallel and serial fusion rules for

face and fingerprint reporting that score-level fusion methods from the literature

are not robust to spoofing attacks and that serial fusion gave better results for

an overall assessment of performance, verification time, user acceptability and125

robustness.

2.2. Anti-spoofing in fingerprint and face recognition

In fingerprint recognition, there are two general ways to address the spoof-

ing problem: either by actively assessing the liveness (e.g. by measuring pulse,

perspiration patterns, or blood pressure), or by passively analysing patterns of130
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spoofed materials (e.g. lack of detail, pattern differences). The latter type,

which is the subject of interest in this paper, reveals high risk of material and

sensor-dependence [12]. An excellent recent survey of spoofing methods in fin-

gerprint recognition can be found in [2]. Among the most common techniques

for static (extracted from single image) texture-based anti-spoofing methods are135

statistical features [19], Power Spectrum Fourier analysis [20], Ridge Frequency

Analysis [19], Local Binary Patterns (LBP) [21] and Local Phase Quantiza-

tion [22]. However, recent developments towards material-independent static

anti-spoofing suggest to combine multiple features and probably even detectors.

Fumera et al. [13] give a good introduction into the problem of combining140

multiple liveness detectors for a single modality, fusion of liveness detector and

matcher for a single modality, and anti-spoofing capabilities of adhoc fusion

rules combining multiple comparison scores.

Face spoofing counter-measures can broadly be classified into texture-based

and motion-based counter-measures. A good overview on face counter-spoofing145

may be found in [23]. The first category assessing textural properties is the

more widespread group with approaches like LBP [24], or statistical features

[25] exploiting the observation that images/videos with spoofed faces (printed

or replayed) do not exhibit the same noise-level like genuine samples. The sec-

ond type of motion-based approaches targets the reproduction of (flat) printed150

photographs or re-display of faces on tablets exploiting the difference in 3D ap-

pearance of spoofed approaches. For fusion purposes this paper focuses on the

first type and employs an existing anti-spoofing system [26].

3. Proposed methods

In order to solve the problem of robust face and fingerprint fusion in the155

presence of spoofing attacks, this work proposes 1-median filtering for enhanced

tolerance with regards to a number of attack-outliers in the ensemble of score-

liveness tuples, and bagging of classifiers for enhanced (fused) spoofing resis-

tance. Both methods are described in detail in the next subsections.
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3.1. 1-Median Filtering for score-and-liveness fusion160

Aiming to overcome the limitations of traditional sum-rule based techniques,

which are known to be very susceptive towards outliers and thus easy to be at-

tacked in mutibiometric configuration, where an attacker can target the weakest

link in the chain of combined biometric units to be attacked (e.g. using a par-

ticular available latent fingerprint), 1-median filtering [10] is investigated as a165

method for joint face and fingerprint score-and-liveness fusion. The motivations

in the definition of 1-median filtering are (1) an extension towards a hybrid

between sum rule and median rule as in Kittler et al.’s classical fusion methods

[16] to find an optimal compromise between (0-spoof) accuracy and (m-spoof)

robustness performance, and; (2) an incorporation of high-dimensional informa-170

tion to be combined (score ~s and liveness ~l pairs as introduced in Sct. 2).

Based on the median rule’s property to be less affected by outliers (which

is very beneficial for spoofing resistance), this fusion method can be formulated

as follows:

Fmf (~s) :=
1∑n

i=1M(~s, si)

n∑

i=1

M(~s, si)si. (2)

M(~s, si) :=





1, if

∣∣∣∣si −
n

med
j=1

sj

∣∣∣∣ < φ;

0, else.

(3)

Note that parameter φ limiting the zone of influence allows for an arbitrary

tradeoff between the sum rule (φ =∞ results in Fmf (~s) = 1
n

n∑
i=1

si, the classical

sum rule) and the median rule (for φ sufficiently small, the definition becomes

Fmf (~s) =
n

med
j=1

sj , the median rule). One of the important tasks is to find a175

suitable (trained) parameter φ, which can be either fixed or a function of the

scores. The choice of φ is not straightforward and should rely on the underlying

distribution’s properties. Parameter selection is discussed in Section 4.7.

As motivation for the selection of the median, consider the following the-

oretical considerations: as observed in [6] unimodal non-zero-effort imposter180

score distributions (comparing a spoofed sample with a genuine reference) are

shifted towards the genuine distribution (comparing two live genuine samples)
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compared to zero-effort imposters (comparing two live samples from different

identities). In an equally-weighted mixture-model for random variables Xi,

we have E( 1
n

n∑
i=1

Xi) = 1
n

n∑
i=1

E(Xi) = µ assuming independent, normalised185

(same mean µ and variance σ2) distributions. However, for the variance, we

get Var( 1
n

n∑
i=1

Xi) = 1
n2 Var(

n∑
i=1

Xi) = 1
nσ

2. While this illustrates the positive

effect of fusion on imposter scores (narrowing the variance), it also clearly il-

lustrates that if one of the random variables follows a degraded spoof-imposter

distribution with lower mean, this is likely leading to a bimodal distribution190

(especially if n is large). Assuming the distributions can be modelled by gaus-

sians, a mixture of two normal distributions with highly unequal means has

a positive kurtosis, as the smaller distribution lengthens the tail of the more

dominant one. While there are exceptions to the rule [27], as a rule of thumb, it

is generally suggested, that in skewed distributions, the mean is farther out the195

longer tail than the median [28], therefore a better representative in the filtering

process (which is likely to succeed as can be seen from theoretical considerations

if the number of spoofed modalities is low compared to n). However, note that

the crucial pre-assumption is a proper normalisation, which ideally should leave

genuine score distribution almost unaffected. Further, please note that median200

filtering is not to be mixed up with image- or kernel-based combination and

works on score (and liveness-) values to be combined.

The outlined technique can easily be extended to 2D for combining points

(si, li) of recognition and liveness scores, using the geometric-median (1-median).

This is the point minimizing the sum of distances to the sample points using205

score si and liveness li as coordinate values.

F 2
mf (~s,~l) :=

1
n∑

i=1

M
([

~s

~l

]
,
[
si

li

])
n∑

i=1

M
([

~s

~l

]
,
[
si

li

]) [
si

li

]
. (4)

M

~s
~l

 ,
si
li

 :=


1, if

∥∥∥∥[sili
]
−

n

med
j=1

[
sj

lj

]∥∥∥∥ < φ;

0, else.

(5)

Figure 2 illustrates how median filtering uses the median as a seed point
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Data: comparison pairs’ scores ~s = {s1, s2, . . . sn} and probe-liveness

~l = {l1, l2, . . . ln}, trained parameters φ,Ψ

Result: verification decision p ∈ [0, 1] indicating live and genuine match

m ←
n

med
j=1

[
sj

lj

]
;

for each score pair (si, li) do

if
∥∥∥
[
si

li

]
−m

∥∥∥ < φ then

reject sample from ~s,~l and update n← n− 1;

end

end

f ← 1
n

n∑
i=1

[
si

li

]
; p ← logreg(f,Ψ);

Algorithm 1: Median Filtering

to select all points in a local neighbourhood, computing the centroid of the

set of filtered points as an even better local representative. As the median is

less affected by outliers (left example) it is beneficial in the presence of out-210

liers, whereas in case samples are less scattered (right example), no samples

are rejected. Algorithm 1 illustrates all the steps. Note, that the additional

processing time needed for the comparison should have a negligible impact, as

n is traditionally rather small.

Note, that the 1-median is not necessarily an input point and for performance215

reasons an approximation (e.g., coordinate-wise median) might be sufficient.

As the task of the fusion module is to come to a final single decision score, a

further mapping to a single scalar is necessary. For this task, LR or SVMs can

be employed to find the hyperplane Ψ : ~w · ~x −~b = 0 optimally separating the

sets of genuine and zero-/m-spoof impostors, where m is the number of spoofed220

samples in the joint fusion scheme:

Fmf (~s,~l) := dist(F 2
mf (~s,~l),Ψ). (6)

Separability becomes more difficult for larger values of m (spoofed samples),

the presented implementation uses m = bn/2c. Threshold variation is equal to
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moving the hyperplane separating the two (genuine and impostor) joint score-

and liveness-distributions. Training of Ψ is discussed in Sct. 4.5.225

3.2. Bagging-based fingerprint liveness detection

For fingerprint anti-spoofing relatively poor performance compared to other

test sets is reported for the Crossmatch subset of LivDet 2013 fingerprint database

[4]. In order to improve those results, this paper proposes the following novel

spoof detection algorithm. The employed setup follows a three-stage archi-230

tecture with preprocessing, feature extraction, and classifier fusion. Figure 3

illustrates the processing chain. In the preprocessing stage, the fingerprint im-

age is segmented and aligned. The background of the image is removed using

Otsu’s thresholding [29] and the region of interest is automatically cropped at

a dimension of 248 by 256 pixels. Feature extraction extracts global properties235

and local texture details using three methods selected as representative meth-

ods (wavelet-based, statistical and frequency-based) to make maximal use of the

fusion technique:

1. 2D Gabor filters [30]: these filters as product of a Gaussian and a sinu-

soid capturing local details are parameterized by Gaussian space constants240

δx and δy, frequency f of the modulating sinusoid and orientation θ:

G(x, y, f) =
1

2πδxδy
e

−1
2 ( x

2

δ2x
+ y2

δ2y
)
cos(2πfx) (7)

x′ = x sin θ + y cos θ y′ = x cos θ − y sin θ

Similar to [31] θ is set to 0◦, 45◦, 90◦ and 135◦ at frequency f = 0.1, cor-

responding to 10 pixels (typical inter ridge distance). The filtered region

of interest is divided in blocks of 20×20 pixels. For each block, mean and

standard deviation are computed leading to a total of 880 features.245

2. Gray level co-occurrence matrix (GLCM): 6 features each were ex-

tracted from 20 by 20 sized pixel-blocks (leading to a total feature vector

size of 1100 components) computing local characteristics following [31]:

maximum probability, entropy, contrast, energy, homogeneity and inverse

difference moment of order k.250
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3. Fourier Transform (FT) based features: As global features on the

Fourier-transformed image, the sum of absolute differences between pairs

of concentric circles (at distance 1-3 pixels, evaluated at 25 locations) are

computed, similar to [32], yielding 180 components.

The final feature of 2160 components is obtained by concatenating the 3255

individual feature vectors described above and Principal Component Analysis

(PCA) is applied as a feature selection procedure retaining 99% of the variance

of the data with 80 PCA components. Besides a fusion of features, the suggested

anti-spoofing algorithm employs a multiple classifier framework, which distin-

guishes itself from a standard multiple classifier system by applying a bagging260

[33] technique for its component (base) classifiers.

The Bootstrap AGGregatING (bagging) method [33] is used to add base

classifiers to the base ensemble using bootstrap replicates on the training set.

The bootstrap method facilitates determining the probability distribution of the

data without using the Central Limit Theorem [34]. The idea behind bootstrap

sampling is to create an artificial random list of the labelled training set by

picking some labels more than once. One classifier is trained on this random

list and is added to the base ensemble. In the operational phase, the base

classifiers are applied to the input feature and their outputs are combined at

the decision level by using majority vote. To benefit from the variations of

the training set, it is better if the base classifiers are unstable (e.g. neural

networks and tree classifiers). In the present work, three base classifiers are

employed: (1) regularized LR; (2) single layer perceptron, and; (3) SVM. The

three base classifiers are trained n = 100 times on different bootstrap replicates

of the training data. In the operational phase, the 300 classifiers decisions are

recorded as 0 or 1, where 1 indicates that the classifier believes that the image

is spoofed. The final spoofing score sf for one test fingerprint image is given as:

sf =

∑m
i=1

∑n
j=1D

i
j

mn
(8)
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where m is the number of base classifiers types, n is the number of bootstrap

replicates and Di
j is the decision of base classifier of type I trained on the

bootstrap replicate number j. In the proposed implementation, m = 3, n = 100.

The value of sf is in the range [0, 1]. By setting and adjusting a threshold t ∈265

[0, 1], different operating points of the anti-spoofing approach are configurable.

4. Experiments and discussion

In order to evaluate the suggested 1-median filtering and bagging approaches,

a modularized setup is employed, using state-of-the-art feature extraction, recog-

nition and spoofing algorithms described in the following sections. After an270

introduction into database, metrics and employed reference setup, this section

concentrates on questions related to baseline performance of spoofing detectors

evaluating the bagging classifier approach and inter-relation of recognition and

anti-spoofing. Then, partial multibiometric spoofing in multibiometric face and

fingerprint context is assessed, considering recognition-only and joint recogni-275

tion and liveness fusion techniques.

4.1. Setup: database and metrics

As in many other approaches assessing face and fingerprint fusion [18, 35],

also this work builds on a chimaeric dataset pairing face and fingerprints orig-

inally originating from different people. This approach is justifiable, since fin-280

gerprints and faces as biometric modalities can be assumed to be independent.

While also true multi-biometric databases exist with multiple traits collected

from the same person, this does not extend to spoofing datasets. Further,

spoofing datasets are created for liveness detection purposes and therefore usu-

ally do not have to come with a large number of genuine samples, which are285

needed for the intended recognition-based assessment. In contrast to spoofing

evaluations assessing ferrfake and ferrlive (see Sct.2) measures, this evalua-

tion refers to Receiver Operating Characteristics (ROC). Note, that for m > 0

spoofed samples these refer to pairs of Spoof False Acceptance Rate (SFAR)
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and Genuine Acceptance Rate (GAR, the percentage of genuine users being290

accepted), rather than False Acceptance Rate (FAR) and GAR pairs, see [36].

For comparing recognition performance (S)EER is employed as the (Spoof)

Equal Error Rate where GAR=(S)FAR and decidability index (d-Prime) as

d′ = |µ1 − µ2| /
√

(σ2
1 + σ2

2)/2 measuring the separation of distributions with

mean µi and standard deviation σi.295

Paired data originate from the following datasets (Table 1):

• LivDet 2013 CrossMatch [4]: The 4500 images of 99 users support up

to 3 genuine samples per finger and a varying number of spoofed samples

made from BodyDouble, Latex, Playdoh and WoodGlue.

• Idiap ReplayAttack [37]: The counter-spoofing video database of 1300300

clips of 50 clients with 320 x 240 pixels resolution provides 8 genuine and 40

attack samples per user offering a controlled (homogeneous background)

and challenging adverse recording setup. There are 4 mobile attacks using

iPhones, 4 high-resolution iPad replays, and 2 hard-copy prints.

• CASIA AntispoofingFace [38]: This database of 600 clips of 50 clients305

with 640 x 480 pixels resolution comes with 3 genuine and 9 fake samples

per user, offering low, medium and high quality setups and 3 fake attacks.

A chimeric dataset is compiled, combining faces and fingers from the databases

above, forming a new set of 85 classes. Note the number of classes, 85, is due to

the restriction of LivDet to right-hands only and guaranteeing a minimum num-310

ber of genuine and spoof fingers to simulate the selection of n out of m spoofed

samples of different fingers in a random way. Testing uses right hands only to al-

low for a training of the employed counter-spoofing detector and learning-based

parameters of median filtering. Spoofing attempts are simulated by randomly

replacing m out of n samples (4 fingers and 1 face) with spoofs.315

4.2. Setup: baseline system

For experiments, the following baseline system is employed:
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• NIST Biometric Image Software [39]: for fingerprint feature extrac-

tion (using minutiae detection mindtct) and comparison (using bozorth3

in 1:1 verify mode). While the final score is not normalized, (capped)320

min-max normalization is used to map scores to the unit interval [0, 1].

• Neurotechnology VeriLook 5.5 [40]: for processing video/still image

face samples. The off-the-shelf software extracts a 4-35 kilobytes template

via facial reference points and is able to account for off-axis registration

(using 15◦ roll, pitch and yaw parameters). Note, that quality assurance325

(ISO/IEC 19794-5:2005) was deactivated to account for low-quality sam-

ples in the dataset. The setup employed in this work used the low matching

speed setting with switched-off threshold (such that final scores could be

obtained).

• LBP-TOP Face-Liveness [24]: using the open-source implementation330

in [26] for face liveness-detection. The LBP-TOP operator calculates LBP

features at three orthogonal planes that intersect in the centre pixel. The

features are extracted from each separate plane and then concatenated

together. A multi-resolution description is then generated, that the his-

tograms along the time domains (XT and Y T ) are concatenated for dif-335

ferent values of time t. Figure 4 illustrates the process. Compared with

traditional 2D LBP features, LBP-TOP can capture spatio-temporal fea-

tures combining information from both image and time domains. SVMs

are then applied for classification.

• Bagging Fingerprint-Liveness: as introduced in Sct. 3.340

4.3. Baseline performance of spoofing detectors

In a first experiment, the detection performance of employed spoofing detec-

tors is investigated. For anti-spoofing performance assessment, ferrfake and fer-

rlive rates are computed, using the underlying LivDet 2013 Crossmatch dataset

for the fingerprint modality, and the ReplayAttack database for face. The im-345

plementation of the face spoofing-detection algorithm based on the open source
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package provided from the original work [26] yielded an accuracy of 85% on

ReplayAttack. A similar accuracy is obtained for the presented fingerprint de-

tection scheme, however the rate is much more remarkable given the high quality

of the underlying spoofing dataset. Counter-spoofing using bagging classifiers350

yielded an accuracy of 84% on the Crossmatch set (the method is trained using a

distinct subset of the test database using fingers from left hands), a value which

significantly outperforms the best accuracy reported (68.8%) in the results of

the LivDet liveness detection competition [4] for this subset. Given that inte-

grated feature-level and classifier fusion in spoofing detectors is not a common355

practice, recognition rates are very promising and suggest to explore this topic

even further in the future.

4.4. On the mutual impact of liveness and recognition

Spoofing systems are usually evaluated on their own without taking recog-

nition into consideration [6]. However, the joint operation of liveness and recog-360

nition systems in practice raises a series of questions, most notably how to

combine recognition and liveness information. This section highlights, that not

only liveness values are useful in justifying the authenticity of an identification

claim, but also vice versa: the recognition score of a template is actually helpful

to judge the presence of a spoofing attack. In LivDet, counter-spoofing per-365

formance is measured in terms of ferrfake and ferrlive rates referring to finger

images as inputs, not comparisons. If recognition scores are to be considered in

the evaluation of spoofing detection, it is important not to assume specific prop-

erties of the comparison. In real-world applications, however, a fake fingerprint

will be employed to fake the originating identity causing its corresponding score370

to be distributed according to the spoof-imposter score distribution, whereas a

live fingerprint is to originate from either genuine or zero-impostor distributions.

The impostor score distribution is likely to shift towards the genuine score dis-

tribution in evaluations considering non-zero-effort impostors [6], whereas the

genuine score distribution remains unaffected. Since spoofs are unlikely to be375

perfect, scores are typically degraded, which can be used to judge the presence
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of a fake sample using, e.g. fuzzy logic as employed in [8]. Simple fuzzy-rule

based (inverting the recognition score contribution after threshold t = 0.6) prod-

uct fusion of recognition and liveness scores using randomly determined identity

claims in experiments increased the spoofing detection capability from 18.36%380

ferrfake = ferrlive to 13.86% for the LivDet CrossMatch set. The integration of

spoofing scores into recognition accuracy can further increase recognition accu-

racy when considering 1-spoof impostors in evaluations, e.g. by simply rejecting

the sample [15]. Therefore, the real challenge is to find a suitable tradeoff be-

tween recognition accuracy and spoofing robustness, subject to investigation in385

the next sections.

4.5. Combining liveness and recognition scores with Logistic Regression

With the positive impact of recognition on spoofing detection and vice versa,

it is reasonable to proceed towards a holistic framework integrating both evi-

dence as discussed in Sections 2 and 3 and illustrated in Fig.1. When combining

both sets of scores individually using sum rule, Logistic Regression can be used

to learn a more robust boundary. This boundary is trained (and then outliers

eliminated using the presented 1-median filtering approach) in already combined

(fused) space, which is able to clearly distinguish between different zero-effort

and spoof detection. The 1-spoof and 2-spoof examples are used to account

for the median tolerating a number of outliers up to half of the samples. The

trained decision hyperplane in Fig. 5 has the following form:

Ψ : y = −13.52x+ 12.4257. (9)

The experiment also clearly illustrates how m-spoof distributions are shifted

towards the genuine distribution with increased m.

4.6. Classical fusion in partial multibiometric spoofing390

In partial multibiometric spoofing, m out of n biometrics samples of an

identity are spoofed (n = 5 with 4 fingerprints and 1 face in experiments, using

equal probabilities). That is, an attacker is assumed to have access to m =
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0, 1, . . . , n latent fingerprints or face masks/print-outs for the attempt to spoof

the system, referred to as an m-spoof attack. Recognition rates for the common395

fusion rules sum, product and median are evaluated in this scenario and results

listed in Table 3. Confirming assumed behaviour, experiments in this work

show that spoofing clearly impacts on recognition. For simple sum rule fusion

it is evident that recognition is affected if even a single sample is spoofed, EER

is degraded from 0% to 2.32% (d-Prime from 2.91 to 2.62). While perfect400

separation in the first case is certainly also attributable to the size of the dataset,

the degradation is clearly visible, taking also the large number of 5 combinations

of 2 modalities in a single authentication attempt in our particular setup into

account. Further m-spoofing of faces and fingerprints suggest an increase of

abs. 2-3% using sum rule for every additional spoofed sample (EERs of 2.32%405

to 12.24% for 1-5 spoofs), which is even more pronounced compared to previous

fingerprint-only experiments [10] and spoofing of all samples did not always

lead to acceptance (due to degraded accuracy of spoofed samples). The ROCs

in Figs. 6, 7 illustrate the degradation for sum and median rules, respectively.

In contrast to previous experiments on fingerprints only, median rule has410

shown to be even more successful in combining results. There is little differ-

ence between 0-spoof, 1-spoof, and 2-spoof samples (EERs of 0.42%, 0.87%,

and 1.20%), suggesting better tolerance versus spoofing attempts clearly out-

performing the sum-rule. However, this comes at a price of clearly degraded

initial performance. Further, results indicated that the underlying distributions415

have a huge impact on the performance of the median rule (reported results refer

to min-max-normalized scores). It is therefore important to consider learning

distributions beforehand and employ a proper normalisation method. If median

rule is extended to median filtering, the low 0% EER of 0-spoofs can be retained

and still a better spoofing resistance than sum rule is observed. The product420

rule performed slightly worse than sum rule with 1-5 spoof EERs of 3.35% to

15.72%.

As an interesting side-aspect of the evaluation conducted in this paper,

the effect of face-only versus fingerprint-only spoofing is investigated. If al-
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ways a specific modality is spoofed, a clear discrepancy of spoofing success can425

be observed: for 1-spoof spoofing restricted to spoofing the face image only

(without spoofing detection) 7.33% EER is obtained (using sum rule), whereas

fingerprint-only spoofing results in 1.19% EER. This underlines the difficulty

of finding suitable counter-spoofing fusion methods being able to tackle these

different shifts in distributions. Note, however the quality of the employed face430

database was also very challenging and thus impacting on this result. Experi-

ments continue with the setup using random selection of spoofing samples (i.e.

20% probability to spoof face and 4x20% probability to spoof fingerprint).

4.7. Median Filtering

In order to evaluate the suggested 1-median filtering an experiment using435

LR on the joint liveness-and-score pairs is conducted, incorporating liveness

information into decision. Obtained EER for the method show much more

stable results and also ROC curves are much flatter, see Fig. 8 plotted using log-

scale. Median-filtering on probabilities of already combined scores and liveness

measures is able to retain EERs below 2% over all spoofing attempts, within a440

narrow band (0.81% to 1.81%), and at the same time retains a very high 0-spoof

accuracy (0.47%). Results refer to using a filter radius of φ = 3σ, i.e. relative

to the standard deviation of fused samples. Also corresponding d-Prime clearly

illustrate the much better separation of genuine and m-impostor distribution.

However, the tradeoff is a slightly degraded initial 0-spoof performance of 0.47%445

(which however, is much better than previously published results in [10] due to

better spoofing detection).

In a further experiment we verified the superiority of the median compared

to the mean when looking at simple recognition-score m-spoof imposter distribu-

tions. From Table 2 we can see, that (1) mean recognition scores decrease with450

the number of spoofed samples indicating an effect of the spoofing effort; and

(2) median consequently delivered better performance suppressing the negative

impact of spoofed samples (note the small changes especially for up to 2-spoof

in contrast to the mean) confirming theoretical considerations. Finally, we also
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tested the effect on variance and found that variance is increasing for a larger455

number of spoofed samples in multibiometric configuration (e.g., σ2 = 0.00012

for 0-spoof, 0.0222 for 3-spoofed and 0.0293 for the 5-spoof case).

Finally, a critical task in setting up parameters for the median filtering is

a suitable choice for the filter radius φ. The introduction of filter parameter

φ results in a tradeoff permitting for better choices between the median rule460

(φ ≈ 0), which is better for suppression of spoofing attempts, and the sum rule

(φ = ∞), which delivers the best zero-spoof performance. While one method

is to employ static values of φ, in order to avoid over-fitting with regards to

the training set, dynamic selection methods of φ are investigated, based on the

scattering of input scores (e.g., as a factor of σ being the standard deviation465

of the n scores/tuples to be combined). As can be seen from filter evaluations

on score-only combinations in Table 3, small values of φ (0.5) deliver a closer

performance to median filtering, whereas larger values of φ are closer to the per-

formance of the sum rule. This way an arbitrary compromise between classical

accuracy using the sum rule and potentially slightly degraded 0-spoof perfor-470

mance but higher spoofing resistance, as for the median rule, can be obtained.

While the paper does not aim to provide an assessment of computational cost,

please note that the overhead introduced by median filtering is minimal, as the

number n of employed features is typically a fixed and low number.

4.8. Rejection of spoofing samples475

Finally, the classical alternative in many implementations implementing

counter-spoofing functionality is to reject samples during quality assurance, if

they appear to originate from a spoofed source. Unfortunately spoofing detec-

tor errors in multibiometric configuration add up and cause a high number of

falsely rejected genuine attempts. In order to virtually compare this method480

with the presented integrated approach, the final score is set to 1, if and only

if one or more of the spoofing scores were greater than a threshold (t = 0.44 is

used). The resulting (virtual, as normally this would result in a Failure to Ac-

quire error) EER of approx. 22% clearly illustrates the superiority of integrated
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recognition-and-spoofing fusion. Further, especially for commercial applications485

falsely rejected users are considered critical, whereas any threshold is typically

set at a very conservative level which limits the use of employed techniques.

Compared to techniques integrating liveness results, an advantage is that no

information is lost and the overall scores can be taken into account.

5. Conclusion490

Experiments in this paper show, that 1-spoofing in face and fingerprint fu-

sion can successfully be targeted by employing median instead of sum rule for

combinations using its property to be less affected by a certain number of out-

liers. However, this comes at the cost of a reduced 0-spoof performance. Its

extension to 1-median filtering is able to find arbitrary trade-off points be-495

tween sum and median rule, allowing for better flexibility in choosing the right

tradeoff between accuracy and security. The paper investigated how spoofing

detection and recognition can mutually benefit from each other and evaluated

1-median filtering as a novel multibiometric fusion method integrating liveness

and recognition scores. Results yielded more stable results for this method in500

partial multibiometric spoofing configuration, where m out of n samples of an

identity are spoofed (EERs 0.47% to 1.81% vs. 0% to 12.24% for the sum

rule). The paper presented an analysis of the filter radius in median filtering

and investigated the impact of face vs. fingerprint spoofing. Finally, bootstrap

aggregating (bagging) classifiers were proposed for anti-spoofing and shown to505

deliver highly accurate results (84% accuracy) on the challenging LivDet2013

crossmatch dataset. We believe the following remaining questions should be

further investigated in future work: a closer investigation of score normalisation

issues for median filtering; an extension towards user-adaptive anti-spoofing and

recognition fusion, and; integration of extrinsic factors (e.g. acquisition condi-510

tions) and/or quality-related measurements into the fusion scheme.
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Table 1: Employed test databases.

Mod. Database / Set Images Users Training Testing

FP LivDet2013 Crossmatch 4500 99 left hand right hand

Face ReplayAttack 1300 50 train set devel, enroll, test

Face AntispoofingFace 600 50 - train, test

Table 2: Average mean vs. median of m-spoof imposter distribution.

Unit 0-spoof 1-spoof 2-spoof 3-spoof 4-spoof 5-spoof

Median 0.991 0.989 0.984 0.965 0.935 0.921

Mean 0.989 0.964 0.940 0.914 0.889 0.873

Table 3: EER/SEER (in %) and d-Prime results of face-and-finger fusion on the test set

varying the number m of spoofed samples.

Method
(S)EER d-Prime

m=0 m=1 m=2 m=3 m=4 m=5 m=0 m=1 m=2 m=3 m=4 m=5

Sum rule 0 2.32 5.71 7.52 10.38 12.24 2.91 2.62 2.27 2.11 1.89 1.67

Product rule 0 3.35 7.61 9.48 12.64 15.72 6.44 3.40 2.31 2.03 1.69 1.42

Median rule 0.42 0.87 1.20 3.91 6.74 10.03 2.38 2.37 2.31 2.14 1.89 1.68

Median filter-

ing (φ = 1σ)

0 1.71 3.65 5.22 8.02 10.60 2.66 2.45 2.19 2.06 1.87 1.69

Median filter-

ing (φ = 0.5σ)

0 1.03 2.04 3.50 6.23 9.53 2.29 2.17 2.01 1.90 1.75 1.69

1-Median filter 0.47 0.81 1.16 1.39 1.71 1.81 3.18 3.16 3.12 3.11 3.10 3.08
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Figure 5: Fused Liveness-comparison scores with trained decision boundary for genuine, im-

postor, 1-spoof and 2-spoof pairs for finger-and-face fusion.

Figure 6: ROC for Partial Multibiometric Spoofing using Sum rule.
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Figure 7: ROC for Partial Multibiometric Spoofing using Median rule

Figure 8: ROC for Partial Multibiom. Spoofing using 1-Median filtering + LR.
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