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Abstract
Determining the time of emergence of climates altered from their natural state by anthropogenic
influences can help inform the development of adaptation andmitigation strategies to climate change.
Previous studies have examined the time of emergence of climate averages. However, at the global
scale, the emergence of changes in extreme events, which have the greatest societal impacts, has not
been investigated before. Based on state-of-the-art climatemodels, we show that temperature
extremes generally emerge slightly later from their quasi-natural climate state than seasonalmeans,
due to greater variability in extremes. Nevertheless, according tomodel evidence, both hot and cold
extremes have already emerged acrossmany areas. Remarkably, even precipitation extremes that have
very large variability are projected to emerge in the coming decades inNorthernHemisphere winters
associatedwith awettening trend. Based on ourfindingswe expect local temperature and precipitation
extremes to already differ significantly from their previous quasi-natural state atmany locations or to
do so in the near future. Ourfindings have implications for climate impacts and detection and
attribution studies assessing observed changes in regional climate extremes by showingwhether they
will likelyfind a fingerprint of anthropogenic climate change.

1. Introduction

Overall, the anthropogenic influence on the climate is
causing the Earth towarm and the statistical properties
of temperature and precipitation to change. In terms
of impacts, changes in the climate become most
relevant when a novel climate emerges (i.e. the climate
of a certain period differs significantly from that of an
undisturbed state). This has motivated investigations
of the ‘time of emergence’ which is the point in time
when observations or model simulations show a
significant difference from a chosen baseline period,
e.g. the last 30 yr. Previously, efforts to calculate time
of emergence have focused on mean temperature and

precipitation (Giorgi and Bi 2009, Mahlstein
et al 2011, 2012a, 2012b, Hawkins and Sutton 2012)
and recently, sea level rise (Lyu et al 2014). Investiga-
tions into the time of emergence of extreme tempera-
tures over the United States (Scherer and
Diffenbaugh 2014) and extreme precipitation over
Europe (Maraun 2013) found robust signs of emer-
gence in the coming decades. However, the time of
emergence is expected to strongly differ across differ-
ent regions of the globe. Previous studies have often
usedmodel-based signal-to-noise ratios (Hawkins and
Sutton 2012) or exceedance of a median value
(Diffenbaugh and Scherer 2011) to determine when
the future mean climate emerges from its present-day
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state or recent past. However, these studies did not
take into account that the climate has changed over
recent decades or implicitly assumed that society is
fully adapted to the present-day climate. Here we use a
baseline period close to the pre-industrial state, when
the anthropogenic influence on the climate was much
smaller than today (Mahlstein et al 2012a), to calculate
a time of anthropogenic emergence (TAE) for climate
extremes (table 1) globally. We employ statistical tests
to calculate the TAE as the time when distributions of
mean and extreme temperatures and precipitation
emerge from those seen in the baseline period.

2.Data andmethods

Twenty-three model simulations from the Fifth Phase
of the Coupled Model Intercomparison Project
(CMIP5; Taylor et al 2012) combining historical
(1860–2005) and RCP8.5 scenario (2006–2099) simu-
lations from six climate models (table S1)were used in
this analysis. These six models were selected as they all
had mean temperature and precipitation and extreme
indices available for at least three historical and
RCP8.5 runs. The mean climate was represented by
the surface air temperature (tas) and precipitation (pr)
variables. The climate extremes indices (Zhang
et al 2011) used in this study were the seasonal
maximum and minimum values of daily maximum
temperature (TXx and TXn respectively) and daily
minimum temperature (TNx and TNn respectively),
and the seasonal maximum 1-d and consecutive 5-d
precipitation (RX1D and RX5D respectively). These
climate extremes indices, calculated for the different
CMIP5 runs, were obtained from the Environment
Canada CLIMDEX website (http://cccma.ec.gc.ca/
data/climdex/; Sillmann et al 2013a, 2013b) and have
been used in many studies as measures of climate
extremes (e.g. Min et al 2011). Monthly values of these
mean and extreme variables were regridded onto a
common 2.5°×2.5° grid. Seasonal values (June–
August and December–February) were calculated at
each gridbox and variable for each model run for
1860–2099, such that the extreme indices represent
the maximum (in the case of TXx, TNx, RX1D, and
RX5D) or minimum values (in the case of TXn and
TNn) for the season.

While the indices studied here might be less
‘extreme’ than events with longer return intervals
(such as 1-in-100 year maximum daily precipitation
events which are often used by the hydrological mod-
elling community), they offer a more robust way to
analyse the time of emergence results which would
otherwise be affected by the small sample sizes of very
rare events. Furthermore, they still represent climate
extremes that havemajor impacts on people and infra-
structure and are, therefore, of relevance to many
industries and sectors. For example, changes in the
hottest minimum temperature in the summer or the
coldest minimum in the winter are of importance to
the health sector as they are linked with increased hos-
pital admissions inmany regions (e.g. Lin et al 2009).

Within each of the 23 model runs, quasi-natural
distributions of each variable were calculated, for each
gridbox and season, over the 1860–1910 period when
anthropogenic forcing on the climate was much smal-
ler than it is today. A 51-yr period as opposed to a
shorter baseline was used to reduce the potential influ-
ences of multi-decadal variability on the results and so
that the findings would be more robust. Moving win-
dows of 20-yr periods were compiled for the
1920–2099 period and similarity with the quasi-nat-
ural distributions was tested using a Kolmogorov–
Smirnov (KS-) test with statistical significance defined
at the 5% level (Mahlstein et al 2012a). The TAE is
defined as the year when the KS-test implies that the
variable, defined seasonally for the 20-yr windowed
period, is drawn from a different distribution than the
quasi-natural period, and that all subsequent 20-yr
windowed periods are also drawn from different dis-
tributions than the quasi-natural period. The non-
parametric KS-test is well-suited to these calculations
as it can be used to detect differences in the location
and shape of two different distributions. This makes it
better suited to the study of changes in climate
extremes than a signal-to-noise ratio. The TAE is
indexed to the first year of the 20-yr moving windows.
This method was applied to variables at individual
land gridboxes, and averaged over sub-continental
regions and the globe as a whole. Median TAE values
were calculated at each land gridbox across all 23
model runs. A median TAE rather than a mean TAE
was calculated so that the influence of outlier model
values is nullified. Although, any systematic biases,

Table 1.Definitions ofmean and extreme indices used in this analysis.

Mean and extreme indices Definition of index

Tas Seasonalmean temperature

Pr Seasonal total precipitation

TXx Highest dailymaximum temperature per season

TXn Lowest dailymaximum temperature per season

TNx Highest dailyminimum temperature per season

TNn Lowest dailyminimum temperature per season

RX1D Maximum1-d precipitation per season

RX5D Maximumconsecutive 5-d precipitation per season
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such as those that might exist in simulated interannual
climate variability, are not accounted for by this
method. A comparison betweenmodelled interannual
variability and that observed inAustralianmean seaso-
nal temperatures found simulated variability to be
generally higher. This would suggest that the TAE esti-
mates may be slightly conservative. TAE values after
2060 were classified as not showing emergence
because we cannot be sure of permanent emergence
beyond the end of the simulations in these cases (e.g.
Hawkins et al 2014). TAE values were also calculated
over the ocean (not shown) producing similar patterns
of emergence but tending to show earlier emergence
than over adjacent land regions. Ocean TAE values are
not shown as the climate extremes considered here are
ofmost relevance to land regions.

The term ‘TAE’ is used because the same metho-
dology was also applied to mean temperature indices
in HistoricalNat simulations where there are no
anthropogenic forcings. At all gridboxes, no emer-
gence was seen in a majority of simulations in both
boreal summer and winter. These findings demon-
strate that the TAE values seen in the historical and
RCP8.5 simulations are associatedwith anthropogenic
influences on the climate.

The signal and noise were also calculated on the
same spatial scales as TAE values. Signal is defined as
the mean difference in each of these variables between
1860–1910 and 1989–2039 (a 51-yr period centred on
2014). Noise is calculated as the interannual standard
deviation of each variable for the 1860–1910 quasi-
natural period. Latitudinally averaged values of signal
and noise are calculated as the mean signal value at
each 2.5° latitude band, based on land values only.
Again, median values of signal and noise across model
runswere calculated.

Pattern correlations (Spearman’s rank) of TAE
values were calculated between eachmodel simulation
for each index. Rank correlation coefficients were cal-
culated, instead of Pearson’s correlations, so that an
assumption of normality in the distributions was not
required.

Times of anthropogenic emergence were also cal-
culated based on a long-running station-based obser-
vational timeseries, the Central England temperature
series (CET; Parker et al 1992), and compared with the
model timeseries for the 2.5° gridbox located over
Central England, using a similar methodology as
applied to the model simulations previously. As the
CET minimum and maximum temperatures start in
1878, the model and observed baselines were reduced
to the period 1878–1910. Themodel results were com-
pared with those calculated using the 1860–1910 base-
line and the differences in TAEwere found to be small.
Several long-running stations were investigated but
were found to have had changes in instrumentation
leading to artificially early TAE values or there was a
lack of meta-data about the station’s history. Stations
with substantial changes in location or

instrumentation are likely to have statistical break-
points in their timeseries, which the KS-test, used in
the TAE calculation, could detect and incorrectly
associate with anthropogenic climate change. This is
especially a problem when studying extremes as
adjustments are oftenmade based on themean only.

Sensitivity tests to choices made in applying this
methodology for TAE calculations were conducted
(see supplementary text for more details available at
stacks.iop.org/ERL/10/094015/mmedia).

3. Results

3.1. CMIP5model simulations
We find substantially earlier emergence of tempera-
ture extremes (defined as the hottest and coldest daily
maximum andminimum temperatures in a season) in
the tropics than in the extra-tropics (figure 1, S1)
despite the warming signal in the tropics being
comparatively small. The early tropical emergence,
which is also seen in mean temperatures (figure 1,
Hawkins and Sutton 2012, Mahlstein et al 2012a) is
due to the lack of a pronounced seasonal cycle and
substantially lower subseasonal and interannual tem-
perature variability in equatorial regions than at higher
latitudes. Whilst the temperature changes associated
with the early emergence in the tropics are small, they
have strong effects on the flora and fauna that exist
there (Mora et al 2013).

Across the globe, hot and cold temperature
extremes tend to emerge later thanmean temperatures
since they experience larger internal variability. Never-
theless, climate model simulations consistently sug-
gest that over much of the globe the emergence of
extreme temperatures has already occurred, and thus
is potentially detectable in observations, subject to the
limitations of the observational records. Given that
these temperature extremes are one-in-one-year
events, it is remarkable that the interannual variability
is low enough such that an emergence can be detected
through the KS-test. For precipitation extremes, on
the other hand, the TAE is considerably later or, in
many regions, does not occur prior to 2100 (the end of
our model simulations). Remarkably, however, an
anthropogenic signal is emerging, or is expected to
emerge soon, in wintertime heavy precipitation events
overmuch of Eurasia andNorth America despite large
variability in these regions. Hegerl et al (2004) found a
detectable wettening signal in modelled heavy pre-
cipitation events at Northern high latitudes associated
with anthropogenic influences on the climate. This
emergence of extreme precipitation in winter is asso-
ciated with a consistent wettening signal in the models
(figure S2, see also Fischer et al 2014), which can also
be seen in observational data (Min et al 2011, Donat
et al 2013).

Whilst all model simulations show broadly similar
geographical patterns of TAE, as evidenced by
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generally positive pattern correlations of TAE values
between simulations (figure S3), some models simu-
late earlier emergence (e.g. IPSL-CM5A-LR and MPI-
ESM-LR) whereas other models produce later emer-
gence (e.g. CSIRO-Mk3-6-0 and HadGEM2-ES). The
reasons for these differences are discussed later. There
is spread between models in the climate change signal
which is considerably greater than differences in inter-
nal variability (figure S4). Whilst there is disagreement
between models on the timing of emergence, the
agreement on the spatial patterns of TAE between
models suggests a greater confidence in where the
impacts of anthropogenic climate change are felt first.
This is important as it means that the design of adapta-
tion strategies can be targeted towards regions experi-
encing the earliest impacts from climate change.

To investigate regional differences and uncertain-
ties in the timing of emergence, the TAE was calcu-
lated based on area-averaged temperature and
precipitation indices for the globe as a whole and sub-
continental regions. Calculations were performed on
each of the 23 model runs separately and compared.
On a global scale, the TAE is considerably earlier for
indices based on temperature than for precipitation
(figure 2(a)). The TAE occurs before 2014 in all simu-
lations for all mean and extreme temperature indices
in June–August (JJA) and December–February (DJF).
Bothmean and extreme temperature indices have ear-
lier TAE when considering larger spatial scales than
the mapped gridbox values. This is caused by a reduc-
tion in the noise after indices are spatially aggregated
with the effect on extreme indices larger than for

Figure 1.Median time of anthropogenic emergence and zonally averaged signal and noise for climatemeans and extremes.Maps of
median TAE averaged across 23model simulations for (a) and (b)mean surface air temperature, (c) and (d) highest dailymaximum
temperature, (e) and (f) lowest dailyminimum temperature, (g) and (h) total precipitation, and (i), (j)maximum1-d precipitation for
(a), (c), (e), (g) and (i) June–August and (b), (d), (f), (h) and (j)December–February. Zonally averaged values of signal (red) and noise
(black) are shownwhere signal is themean difference in the variable between 1989–2039 and 1860–1910, and noise is the standard
deviation of the variable for 1860–1910.

4

Environ. Res. Lett. 10 (2015) 094015 ADKing et al



means (Bell 1982, Deser et al 2012, Fischer et al 2013).
On a global scale there are similar median emergence
times for mean and extreme temperatures, but, this is
not generally the case at individual gridboxes. Median
global TAE for precipitation extremes is around the
year 2000 whereas for mean precipitation the TAE has
not yet occurred for most model runs. A greater pro-
portion of land-based areas shows a wettening signal
in extreme precipitation than in the mean (figure S2).
Along with the effect of spatial aggregation reducing
noise, this likely explains the earlier global emergence
seen in extreme precipitation comparedwith themean
(Hegerl et al 2004).

Understanding regional differences in the time
of emergence has potentially useful implications for
assessing the impacts of climate change and forming
adaptation strategies, so the TAE was also calculated
for 21 sub-continental areas of the world (Giorgi
and Francisco 2000). For example, in West Africa
(figure 2(b)) there is earlier TAE for mean and
extreme temperatures than in other parts of the
world, but the TAE of precipitation indices is later
than in many other regions. Therefore, in this
region, adaptation plans would need to be centred
on reducing the impacts of extreme heat taking into
account local vulnerability and exposures. However,
in North Asia (figure 2(c)), the TAE values are more
similar across the temperature and precipitation

indices. In winter, all model mean precipitation
TAEs and most extreme precipitation TAEs are
prior to 2014 for North Asia. This is also a region
where the range of TAE values, between different
simulations, is smaller in precipitation indices than
in other areas. In this broad region, adaptation to
both the impacts of warming and increasing pre-
cipitation would be required. In South Asia
(figure 2(d)), there is strong seasonality in TAE of
precipitation extremes with earlier emergence in
JJA, which coincides with the monsoon season. In
all model simulations, heavy 1- and 5-d precipita-
tion emerges earlier in the monsoon season than
DJF. This is due to the strong signal towards
increased extreme JJA precipitation in the majority
of models, whereas in DJF there is virtually no sig-
nal (figure S2) and thus no emergence. The strong
seasonality seen in emergence of extreme precipita-
tion does not extend to mean precipitation. This
analysis was repeated for 18 other sub-continental
regions of the world (figure S5) showing earlier
emergence of temperature indices than
precipitation.

Differences between the TAE values for individual
model runs are substantial. The TAE differences are
primarily due to model differences rather than inter-
nal variability, since differences between individual
runs of a single model are smaller than differences

Figure 2.Time of anthropogenic emergence andmodel uncertainty. Graphs of TAE values for (a) theGlobe, (b)West Africa, (c)
NorthAsia and (d) SouthAsia calculated for each area-averaged extreme andmean index in June–August andDecember–February
shown forCanESM2 (light blue), CSIRO-Mk3-6-0 (dark blue), HadGEM2-ES (green), IPSL-CM5A-LR (yellow),MIROC5 (orange)
andMPI-ESM-LR (red). Themedian value of the 23model runs is shown in black. The year 2014 ismarked by the dashed line.
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between models (figure 2). Differences in TAE values
between simulations of the same model are to be
expected as internal variability leads to periods of
accelerated warming and periods of cooling or
reducedwarming (e.g.Maher et al 2014) that can bring
forward or delay the TAE. Similar effects of these ‘hia-
tus’ periods on climate extremes have also been found
using model simulations (Sillmann et al 2014) which
will lead to differences in TAE values for extreme indi-
ces between simulations of the same climate model.
The role of decadal-to-multidecadal variability can be
seen through the differences in TAE between simula-
tions of the same model. The principal cause of the
large differences in TAE between the climate models is
a strong difference in their climate change signal
(figure S6), although differences in forcings, in parti-
cular in direct and indirect aerosol effects, may play a
role. Models with greater signal have earlier TAE
values, whereas the relationship between noise and
TAE is weak (figure S6(b)). Timeseries of the climate
indices give a further indication of the causes of differ-
ences between TAE values (figure 3). There is a ten-
dency for models with earlier emergence in means to
also have earlier emergence in extremes. Models
which exhibit earlier emergence in both mean and
extreme temperatures, such as MPI-ESM-LR, show
less cooling in the mid-20th century than other mod-
els with later emergence, such as HadGEM2-ES

(figures 3(a) and (b)). During the mid-20th century
there was a period of cooling related to aerosol influ-
ences on the climate (Hartmann et al 2013). The treat-
ment of these aerosols differs betweenmodels and this
could explain the different TAE values around this
time. Also, the CSIRO Mk3-6-0 model has con-
siderably later emergence times for extreme precipita-
tion than other models related to a lower rate of
increase in extreme precipitation on the global scale
(figure 3(c)). The large spread between TAE values
across these models suggests that different findings
could be reached in event attribution studies depend-
ing on the selection of models used. Thus, an impor-
tant consideration when designing an event
attribution study may be to select models with a range
of climate sensitivities and test the sensitivity of the
results to the models used through bootstrapping of
simulations. For attribution studies in which an opti-
mal fingerprinting technique is being applied (e.g.
Allen and Stott 2003,Min et al 2011, Zhang et al 2013),
the issue of varied signals across models is of less
importance due to the regression of observational
trends onto fingerprints.

The analysis of TAE values for sub-continental
regions of the world allows for the examination of
where anthropogenic emergence is detected in climate
models prior to 2014 (figure 4). All regions have TAE
values prior to 2014 in all or most simulations for

Figure 3. JJA timeseries of globally averaged indices for eachmodel simulation. Timeseries of (a) highest dailymaximum temperature,
(b)mean temperature, (c)maximum1-d precipitation, and (d) total precipitation forCanESM2 (light blue), CSIRO-Mk3-6-0 (dark
blue), HadGEM2-ES (green), IPSL-CM5A-LR (yellow),MIROC5 (orange) andMPI-ESM-LR (red). TAE values corresponding to
each timeseries are shown as diamonds. The baseline period is shown in the grey box. Results based onDJF and the other extreme
temperature and precipitation indices are broadly similar (not shown).
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mean and extreme temperature indices. For precipita-
tion, TAEs occurring before 2014 are confined to the
Northern Hemisphere high latitudes. These maps are
comparable to detection and attribution studies
(Christidis et al 2005, 2011, Min et al 2011, 2013,
Morak et al 2013, Zhang et al 2013), and they provide
an indication of whether climate models would sug-
gest a significant anthropogenic influence on extreme
temperature and precipitation indices by 2014, and
the confidence across the models in there being an
anthropogenic signal by this time. For example, if no
model runs show emergence prior to 2014 for a given
variable and region, a significant anthropogenic signal
is unlikely to be detected. Of course, any attribution
result will also be influenced by other factors, such as
the use of different selections of climate models and
different region sizes over which the attribution study
is being performed.

3.2. An observational timeseries
An intercomparison of station observations with
model simulations was attempted. However, there is a
lack of near-complete long-running homogeneous

station observations of daily temperature and precipi-
tation extending back into the 19th century (Donat
et al 2013). TAEs were instead calculated using the
CET series, which has extensive literature detailing its
history (Parker et al 1992). The warming trend in
annual mean CET values over recent decades has been
attributed to anthropogenic climate change (Karoly
and Stott 2006), as has the recent record-breaking
2014 annual CET (King et al 2015). Permanent
emergence is not clearly seen in either the observa-
tional data ormodel simulations over Central England
prior to the present (figure 5). As climate observations
only exist to the present unlike model simulations,
which can be projected into the future, it is less likely
that current observational data will show permanent
emergence (i.e. TAE at least a few decades prior to the
end of the timeseries). A paucity of long-running
homogeneous station data means that a thorough
global analysis of the timing of anthropogenic emer-
gence based on observational data would involve using
a more recent quasi-natural baseline period, which
would include more of an anthropogenic influence on
the climate.

Figure 4.The proportion ofmodels where time of anthropogenic emergence has already occurred.Maps showing the proportion of
model simulations with TAEprior to 2014 for each sub-continental region and globally for (a) June–August and (b)December–
February. The abbreviated names of the regions (followingGiorgi and Francisco (2000)) are shown in (a).
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4. Conclusions

We present the first global analysis of the time of
emergence of climate extremes. The use of a quasi-
natural baseline period allows for the calculation of
the time of anthropogenic emergence (TAE). This
methodology, based on the use of a KS-test, is likely
more robust than those based on signal-to-noise
ratios (e.g. Hawkins and Sutton 2012, Sui et al 2014)
as it makes no assumptions about data distributions,
which is crucially important for extremes. Generally,
the times of emergence are predominantly asso-
ciated with changes in the location of the distribu-
tion, as illustrated by the positive signal values,
however, there may be an influence from changes in
the shapes of distributions as well. The method, and
specifically the use of a pre-industrial baseline
period, further allows for associations with the
attribution of changes in climate to anthropogenic
influences. This study suggests that for much of the
world, the anthropogenic emergence of temperature
extremes has already occurred as of the present date,
at least in model simulations. These findings are in
line with those presented in chapter 10 of the IPCC
fifth assessment report (Bindoff et al 2013) where
many regions, for which observations are available,
show warming in temperature extremes associated
with anthropogenic climate change. The emergence
time for temperature extremes is, however, typically
later than for mean temperature due to higher
interannual variability in extremes compared with

the mean. Our study suggests that the changes in
these extreme events and their impacts are already
being felt across much of the world. For most land-
areas, there is no anthropogenic emergence of
precipitation extremes prior to the end of this
century. However, globally we see emergence and
over Northern Hemisphere high latitudes in winter
there are signs of emergence of a wettening signal in
precipitation extremes in the coming decades.

We show that by examining the TAE we may
determine in which regions attribution studies are
likely to find an anthropogenic signal as these results
suggest whether or not emergence has already occur-
red. This information is useful in planning for and
responding to the impacts of climate change.
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