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Abstract This article presents SPARE-ICE, the Synergistic Passive Atmospheric Retrieval Experiment-ICE.
SPARE-ICE is the first Ice Water Path (IWP) product combining infrared and microwave radiances. By using
only passive operational sensors, the SPARE-ICE retrieval can be used to process data from at least the
NOAA 15 to 19 and MetOp satellites, obtaining time series from 1998 onward. The retrieval is developed
using collocations between passive operational sensors (solar, terrestrial infrared, microwave), the CloudSat
radar, and the CALIPSO lidar. The collocations form a retrieval database matching measurements from
passive sensors against the existing active combined radar-lidar product 2C-ICE. With this retrieval database,
we train a pair of artificial neural networks to detect clouds and retrieve IWP. When considering solar,
terrestrial infrared, and microwave-based measurements, we show that any combination of two techniques
performs better than either single-technique retrieval. We choose not to include solar reflectances in
SPARE-ICE, because the improvement is small, and so that SPARE-ICE can be retrieved both daytime and
nighttime. The median fractional error between SPARE-ICE and 2C-ICE is around a factor 2, a figure similar
to the random error between 2C-ICE ice water content (IWC) and in situ measurements. A comparison

of SPARE-ICE with Moderate Resolution Imaging Spectroradiometer (MODIS), Pathfinder Atmospheric
Extended (PATMOS-X), and Microwave Surface and Precipitation Products System (MSPPS) indicates that
SPARE-ICE appears to perform well even in difficult conditions. SPARE-ICE is available for public use.

1. Introduction

The systematic and global observation of cloud properties is essential for the understanding of the cli-
mate system [WMO, 2010]. A fundamental parameter in estimates of atmospheric ice is Ice Water Path (IWP)
[g/m?], defined as the vertical integral of Ice Water Content (IWC) [g/m?] or the atmospheric column den-
sity of ice. Climate model estimates of cloud IWP vary by more than an order of magnitude [Waliser et al.,
2009] and show deviating spatial distributions [Eliasson et al., 2011]. One of the reasons for poor model
performance is the lack of good constraints.

Only space-based remote sensing can provide global IWP measurements, but the remote sensing of atmo-
sphericice is severely underconstrained. Depending on the technique, the measured quantity (such as
reflectance, radiance, or radar backscatter) depends in a complex manner on the vertical distribution of
IWC, particle sizes, particle shapes, temperature, humidity, and other quantities. Individual measurements
contain insufficient information to retrieve all those quantities directly and independently, and many
assumptions need to be made [e.g., Stephens and Kummerow, 2007]. This leads to a considerable uncertainty
in retrieved IWP. Moreover, the true uncertainty in IWP retrievals is very hard to quantify, not least because
of the various difficulties of performing reliable in situ measurements.

Current IWP products are based on reflected solar radiation [e.g., Rossow and Schiffer, 1991; King et al., 19971,
passive microwave [e.g., Ferraro et al., 2005; Boukabara et al., 2011; Gong and Wu, 2013], or active sensors
such as radar and lidar [e.g., Austin et al., 2009; Delanoé and Hogan, 2010; Deng et al., 2010]. Passive sub-
millimeter measurements have been proposed for their ability to sample the size distribution and their
sensitivity to relevant particle sizes, which allows for sensing the full ice column [e.g., Buehler et al., 2012],
but no down-looking instrument is currently in space. Active techniques have the capability to determine
the vertical structure of atmosphericice, and IWP retrieved from active sensors is likely more accurate than
any IWP retrieval from passive measurements, although the error remains very difficult to characterize in
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absolute terms. However, active sensors are costly and require a lot of energy, and the technology is less
mature than for many passive technologies. They tend to have a small footprint and are (so far) exclusively
carried on scientific platforms, which have a limited lifetime. On the other hand, passive sensors exist on
both scientificand operational satellites. In particular, sensors on operational satellites provide a much bet-
ter spatial and temporal coverage than active sensors. A nearly identical set of instruments is available on
the National Oceanic and Atmospheric Administration (NOAA) 15-19 satellite series, as well as on MetOp

A, MetOp B, and the future MetOp C satellite. Hence, any product based on those sensors can be readily
processed from 1998 until the present (and beyond). Each individual satellite provides daily near-global cov-
erage. Therefore, the potential data volume for such a product vastly outstrips the data volume from active
sensors, allowing entirely different applications.

Eliasson et al. [2013] use strict collocations between radar, lidar, solar, and microwave sensors, in order to
systematically compare spaceborne IWP retrievals on a footprint-level basis. Thus, they quantify where var-
ious techniques share IWP sensitivity with the active combined radar-lidar product raDAR/IiDAR (DARDAR)
[Delanoé and Hogan, 2010]. They find that IWP products based on solar bispectral methods share sensitiv-
ity with DARDAR from 40 g/m? upward, whereas the microwave-based Microwave Surface and Precipitation
Products System (MSPPS) shares sensitivity with DARDAR only from 900 g/m? upward.

Existing products from passive operational sensors include Pathfinder Atmospheres Extended (PATMOS-X)
[Walther and Heidinger, 2012] and MSPPS [Ferraro et al., 2005]. PATMOS-X uses reflected solar radiation,
which comes with the disadvantage of being available only in daylight. If a product performs equally well
or better than PATMOS-X, but omits reflected solar radiation, then this has the distinct advantage of being
available both daytime and nighttime, thus allowing climatological studies involving diurnal cycles.

A combination of different passive techniques may be capable of exploiting synergies, providing a more
accurate IWP retrieval than by using any individual part of the spectrum. Synergies have been exploited
in, e.g., retrievals of rainfall [e.g., Kidd et al., 2003; Marzano et al., 2004; Rapp et al., 2009; Kidd and Levizzani,
2011] and liquid clouds [Taylor and English, 1995]. For retrievals of properties for atmospheric ice, synergies
between radar and lidar have been used in at least two products [Delanoé and Hogan, 2010; Deng et al.,
2010], but synergies between different passive techniques appear underutilized.

This article presents SPARE-ICE, the first IWP product exploiting the synergy between terrestrial infrared and
microwave. SPARE-ICE will be publicly available through the World Data Center for Remote Sensing of the
Atmosphere (WDC-RSAT) under the Open Data Commons Attribution License.

The use of collocations between active, scientific instruments and passive, operational instruments to learn
more about the latter has a limited history. Holl et al. [2010] introduce collocations between CloudSat Cloud
Profiling Radar (CPR) and NOAA 18 Microwave Humidity Sounder (MHS) and briefly present three potential
applications. Liu and Seo [2013] use radar reflectivities from CloudSat CPR as a proxy reference for the detec-
tion of snowfall over snow-covered surfaces. Other statistical retrievals do not use collocations but retrieval
simulations [e.g., Evans et al., 2012; Jiménez et al., 2007] or output from general circulation models (GCMs)
[e.g., Surussavadee and Staelin, 2008].

The retrieval presented in this study builds on a collocation toolkit developed by Holl et al. [2010]. Whereas
Eliasson et al. [2013] used collocations between IWP retrievals to characterize different sensitivities, we use
collocations between the same sets of satellites to develop a new retrieval algorithm. In the present study,
we match reflectances from Advanced Very High Resolution Radiometer (AVHRR) solar reflected channels,
radiances from AVHRR terrestrial infrared channels, and radiances from MHS humidity channels, with IWP
as reported by the official CloudSat product 2C-ICE [Deng et al., 2010] as distributed by the CloudSat Data
Processing Center (CDPC). Then, we use an artificial neural network (ANN) to train an IWP retrieval from pas-
sive measurements (note that in our final product, SPARE-ICE, reflectances are not used). Thus, we reproduce
actively retrieved IWP using only passive, operational sensors.

The primary aim of the study is to develop and analyze an improved IWP retrieval from passive operational
sensors. A secondary aim of the study is to quantify synergies between different passive operational sensors.

The following sections describe the work in detail. In section 2, we describe the instruments used, the col-
locations, and the retrieval approach. Section 3 presents the results for the investigation into synergies and
shows SPARE-ICE retrievals for three case studies and a 2007 gridded mean. In section 4, we discuss the
results. Finally in section 5, we recommend tasks for further work and conclude the article.
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Figure 1. Diagram illustrating the approach for developing and retrieving SPARE-ICE and intermediate products. The horizontal line
in the collocations box separates input measurements and auxiliary data from the target measurement. For a description of the input
measurements and auxiliary data, including an explanation of the acronyms, refer to Table 1. All steps are described in detail in the text.

2. Methodology

In the following subsections, we will describe the SPARE-ICE retrieval algorithm in detail. The overall
approach is summarized in Figure 1. Broadly, we consider three phases:

1. The development of the retrieval system. This consists of (i) obtaining collocations as described by Holl
et al. [2010]; (ii) selecting various combinations of input channels and auxiliary information, considering
solar, terrestrial infrared, and passive microwave, in order to investigate synergies; (iii) training of a pair
of neural networks (one for cloud detection, one for IWP retrieval) for each of those selections; and (iv)
finally, testing the performance of this pair of neural networks. This consists of estimating the error, as well
as looking at the climatology.

These steps are repeated for many different combinations of input channels and auxiliary information.

2. Based on the results of part 1 of the study, we decide what information to include in the SPARE-ICE
retrieval algorithm.

3. Processing measurements. This involves (i) collecting and combining measurements for the needed
sensors and channels, (i) selecting the input channels and auxiliary information, and (iii) applying the
relevant set of neural networks to obtain IWP.

These steps are described in more detail in the following subsections.

2.1. Instruments and Products

The instruments used in the study can be grouped in two categories: active and passive. In the following,
we will first describe the passive observations that were considered for the retrievals, then auxiliary informa-
tion, and then the active instruments and the 2C-ICE product that was used for training. The measurements
considered for the retrieval development are listed in Table 1, and auxiliary information considered is listed
in Table 2.

HOLL ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1506
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Table 1. Measurements Considered in the Development of SPARE-ICE?

Sensor Channel Spectral Range Technique Use in SPARE-ICE
AVHRR 1 0.58 to 0.68 um Solar No
AVHRR 2 0.725t0 1 ym Solar No
AVHRR 3b 3.55 to 3.93 um Mixed Both
AVHRR 4 10.3to 11.3 pm Terrestrial IR Both
AVHRR 5 11.5to0 12.5 pm Terrestrial IR Both

MHS 3 183 +1GHz Microwave Raw IWP only
MHS 4 183 + 3 GHz Microwave Raw IWP only
MHS 5 190 GHz Microwave Raw IWP only

?In the column “use in SPARE-ICE,” “both” means that the information is used both in the
network to retrieve IWP and in the network to detect a cloud, as described in the text. See
also Figure 1 and Table 2.

2.1.1. Passive Systems

Although active systems can retrieve many ice cloud properties more accurately than passive ones, there

is a need for continued development of IWP products based on passive sensors. In particular, a product
based on passive operational sensors can be processed far back in time and operational sensors are more or
less guaranteed to remain working. In our approach, we use a combination of solar, terrestrial infrared, and
microwave sensors, allowing for data to be processed back to 1998.

2.1.1.1. Reflected Solar Radiation and Terrestrial Infrared Radiation

AVHRR [Cracknell, 1997] was first launched on board NOAA 6 in 1979. Although the precise configuration has
varied somewhat throughout the years, there may be no other meteorological satellite instrument with as
many copies and as long a lifetime as AVHRR. Recent editions (from NOAA 15 onward) carry six channels, of
which five are simultaneously operated. Three channels (1, 2, and 3A) measure reflected solar radiation. Two
channels (4 and 5) measure terrestrial infrared radiation (sometimes referred to as “thermal”). Channel 3B,
covering 3.55 to 3.93 um, measures a signal containing both reflected solar and emitted terrestrial radiation.
Channel 3 can be switched between 3A and 3B. See Table 1 for the spectral characteristics of AVHRR data
considered for SPARE-ICE. Due to downlink limitations, global data for the NOAA satellites are only available
at a limited resolution, through the global area coverage (GAC) product. AVHRR GAC data only contain every
third AVHRR scan and average four adjacent measurements [Robel et al., 2009], resulting in effective discon-
tiguous footprints of 1 - 4km?, as illustrated in Figure 2. Both reflected solar and emitted terrestrial radiation
contain information about clouds and other aspects of the Earth system. AVHRR has been used for a very
wide variety of applications, including (but not limited to) the retrieval of cloud properties, such as in the
PATMOS-X data set, [Stowe et al., 2002; Jacobowiitz et al., 2003; Heidinger and Pavolonis, 2009] available from
the early 1980s to present.

The High-Resolution Infrared Radiation Sounder (HIRS) also measures terrestrial radiation and does so in
more spectral bands than AVHRR. Holl et al. [2010] briefly explored retrieving IWP from a combination of
HIRS and MHS. However, as shown in Figure 2, HIRS footprints are highly noncontiguous, and therefore, HIRS
is less suitable for usage in combination with other sensors and is not used in SPARE-ICE.

2.1.1.2. Microwave

Advanced microwave sounding unit (AMSU) and MHS are microwave sounders that have been carried
on board NOAA satellites since the launch of NOAA 15 in 1998. AMSU-B [Saunders et al., 1995] and MHS
[Kleespies and Watts, 2007] measure at frequencies
Table 2. Auxiliary Information Considered for from 89 to 190 GHz. AMSU-B is carried on NOAA
SPARE-ICE? 15, 16, and 17, while MHS is carried on NOAA 18,
NOAA 19, MetOp A, and MetOp B and will be car-

Information Use in SPARE-ICE

A - ried on MetOp C. In thIS study, V\{E use MHS on
Solar zenith angle (SZA) No NOAA 18, but the retrieval algorithm can also be
Solar azimuth angle (SAA) No applied to AMSU-B, so we describe both.

Local zenith angle (LZA) Both

Local azimuth angle (LAA) Both Two channels, one at 89 GHz and one at

Surface temperature T,

- surf No 150 GHz (for AMSU-B) or 157 GHz (for MHS), are
Surface elevation z Both . o
surface-sensitive channels under all conditions,
and their usage requires characterizing surface

surf.

?See also Table 1.
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R e S i R emissivity. For this reason, we have chosen to
S e HIRS/4 f focus on the remaining channels. The three
MHS remaining channels are near the 183 GHz
AVHRR/3 GAC water vapor absorption line, at 183 + 1 GHz,
183+3 GHz, and finally 183+7 GHz (AMSU-B) or
190 GHz (MHS). If there is sufficient water vapor
in the field of view, they are all sounding chan-
nels without any surface sensitivity. However, if
the atmosphere is particularly dry (such as may
happen at high latitudes), in particular the out-
ermost channel becomes a surface-sensitive
channel. At the frequencies around the 183 GHz
water vapor absorption line, large ice particles
can be detected from a spaceborne platform
due to the scattering of radiation emitted by
water vapor below the ice.

0km 75 km Both AMSU-B and MHS scan across-track with
Figure 2. lllustration of various footprint sizes. Adapted from Holl et al. footprint diameters varying from a diameter of
[2010]. Not shown is CALIPSO, which is smaller than CloudSat and falls 16 km at nadir to approximately 52 km x 27 km
mostly within the latter footprint. at the edge of the scan [Robel et al., 2009]. The
path length through the atmosphere increases with an increasing nadir angle, which leads to Jacobians
peaking higher up in the atmosphere, and therefore lower radiances (limb cooling). This needs to be taken
into account by any retrieval utilizing these channels.
2.1.2. Auxiliary Information
For the SPARE-ICE development, we also consider auxiliary information, as summarized in Table 2. This
includes instrument viewing angles, and solar angles when solar reflectances are considered. Additionally,
we consider surface elevation from Amante and Eakins [2009] and surface temperatures from the National
Centers for Environmental Prediction (NCEP) Community Forecast System Reanalysis (CFSR) [Saha et al.,
2010]. We also explore how adding latitude information affects the retrieval. See Table 2 for a complete
overview of all auxiliary information considered.
2.1.3. Radar and Lidar
The CloudSat CPR is a 94 GHz radar launched in 2006 [Stephens et al., 2002, 2008]. It measures vertical pro-
files of backscattering, in particular from clouds and precipitation. It observes only at (near) nadir with a
footprint of 1.1 km. Retrieved profiles of IWC and liquid water content (LWC), and therefore retrieved IWP,
have a considerable error, reported by Austin et al. [2009] to be around 40%, but that is likely an underesti-
mate. The error may be large and is quite hard to quantify, due to poorly known ice particle sizes and shapes
and due to a poor characterization of supercooled liquid and melting particles.

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a lidar, carried on the Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observation (CALIPSO), measuring backscattering at 532 nm and 1064 nm
from aerosols and cloud tops [Winker et al., 2003, 2009]. It measures only at nadir and has a footprint of 70 m.

CloudSat and CALIPSO fly close to each other in the A-Train satellite constellation.

A combination of radar and lidar, or specifically between CPR and CALIOP, provides a more complete
measurement of the ice column than any other presently existing spaceborne measurement. Radar can pen-
etrate thick systems of precipitating clouds but is mainly sensitive to large particles and does not detect
small ones. The radar wavelength (3.2 mm in the case of CPR) is roughly an order of magnitude larger than
many ice particles. This puts the scattering in the Rayleigh regime, where radar reflectivity is a function of
the sixth power of particle size [Austin et al., 2009]. Therefore, large particles dominate the returned sig-
nal. Lidar, on the other hand, operates at a wavelength smaller than most particles. Backscattering of laser
energy is dominated by small particles (because they are most numerous), but it also gets attenuated more
quickly. Therefore, radar and lidar are complementary.

Two products exploiting a radar-lidar synergy are publicly available at present. Delanoé and Hogan [2008]
describe the radar-lidar product DARDAR, developed further in Delanoé and Hogan [2010]. A slightly newer
product based on the same sensors is described by Deng et al. [2010] and published as an official CloudSat
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product by the name 2C-ICE. Both DARDAR and 2C-ICE retrieve IWP on the CPR footprint. For the present
study, we choose to use 2C-ICE, but the principle can also be carried out with DARDAR or any other reference
data set, and there is no strong reason to choose one over the other. Deng et al. [2013] briefly review the
differences between DARDAR and 2C-ICE.

Although DARDAR and 2C-ICE can, at least potentially, determine IWP better than any passive retrieval, their
temporal and spatial coverage is inherently limited. Active systems require a lot more energy than passive
ones, and both CPR and CALIOP observe only at an (almost) nadir geometry. The technology is less estab-
lished, and the lifetime for an active system may be less than for a passive one. Although their lifetimes
have already exceeded design and expectations considerably, both CPR and CALIOP will come to an end.
EarthCare [Bezy et al., 2005] is scheduled for launch in 2015 and will carry (among other instruments) a lidar
and a cloud radar, and thus provide a continuation to CPR and CALIOP. However, active systems are not
operational, and hence, their continued existence is not guaranteed.

Like any retrieval for ice clouds or frozen precipitation, the 2C-ICE retrieval is heavily dependent on forward
model assumptions, both for the lidar and radar contributions. As 2C-ICE is used to train SPARE-ICE, the lat-
ter directly inherits all systematic errors and limitations in 2C-ICE. One limitation is that small particles are
seen only near the top of the cloud. If small particles exist deep into the cloud (where lidar cannot reach),
they go unnoticed by both radar and lidar [Mace et al., 2009]. This may cause a dry bias, again hard to quan-
tify due to the lack of a reference. Deng et al. [2010] report on the sensitivity of the 2C-ICE retrieval algorithm
to multiple scattering (in the part of the column where lidar information is important), microphysical model
assumptions, and simulated radar backscatter in the lidar-only region. They find that changing the assumed
particle size distribution leads to a systematic 21% reduction in estimated IWC and that changing assump-
tions on particle shapes can affect retrieved IWC by 1 or 2 orders of magnitude. They also compare 2C-IWC
retrieved from an airborne platform similar to the A-Train, to measurements by two independent in situ
instruments, a comparison performed during the TC-4 measurement campaign [Toon et al., 2010]. Deng et
al. [2010] find that the ratio between 2C-IWC and in situ measurements is similar to the ratio between two
independent in situ measurements, both being around a factor 2, and conclude that “the retrieval agrees
well with in situ data.” However, it should be kept in mind that this agreement is at best within a factor 2
(100% error). This puts a lower bound on the achievable accuracy in SPARE-ICE.

2.2. Collocations

In the context of this study, a collocation is an event where two spaceborne sensors observe the same place
at almost the same time. Holl et al. [2010] have shown that due to the proximity of NOAA 18 to the A-Train
(the constellation including CloudSat, CALIPSO, and other satellites), collocations between sensors on NOAA
18 and CloudSat occur globally. The collocation algorithm is described in Holl et al. [2010] and updated in
John et al. [2012].

In this study, we use collocations to obtain a database for training artificial neural networks. Figure 1 illus-
trates the role of collocations in the SPARE-ICE retrieval development, and Table 1 gives an overview of all
measurements used.

For obtaining the collocations, we use the flexible and sophisticated toolkit initially developed by Holl et al.
[2010] but since developed considerably further. The collocation algorithm is fully based on time and geolo-
cation information contained in the data files. Others, such as Nagle and Holz [2009], use orbital parameters
to calculate when collocations occur, before looking at data files.

We collocate NOAA 18 MHS (the primary) with CloudSat CPR (the secondary). To this, we add AVHRR mea-
surements and auxiliary information. From CPR, we use the 2C-ICE product. Although this uses both CPR and
CALIORP, it is retrieved on the CPR footprint, so we do not need to explicitly collocate with CALIOP.

As shown in Figure 2, the footprints for CPR and AVHRR are much smaller than the ones for MHS. There-
fore, we “collapse” CPR and AVHRR onto the MHS, for all secondary footprints within 7.5 km and 10 min of
the primary, as defined by the center of the measurement. For each MHS footprint, we store the number of
collocated CPR and AVHRR footprints, as well as the mean and standard deviation for each AVHRR channel
measurement (reflection or radiance), as well as for IWP from both 2C-ICE and DARDAR. We also store the
fraction of 2C-ICE or DARDAR footprints with IWP > 10 g/m?. Even when the CloudSat ground track passes
exactly through the center of an MHS footprint, CPR covers less than 10% of MHS, and an error from impre-
cise collocations is unavoidable. As long as this error is random, the effect on the SPARE-ICE retrieval will be
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Colloc. angles 1 min. 2007—01 occurrences limited. However, if this introduces a systematic
- difference, then this will affect the final IWP prod-
i 2500 uct. This systematic error is partly unavoidable,
-50 2000 because a larger footprint acts similar to a low-pass
filter on measured IWP.
1500

The collocations form a training set for a neural
1000 network (see next section). A training set for an

Latitude (°)
o

50 | 500 artificial neural network must have “a sufficient
LN number of properly distributed data records that
_50 0 50 © adequately resolve the functional complexity of
Viewing angle (°) the target mapping” [Krasnopolsky, 2007]. In our

case, that means all latitudes, angles, cloud types,
Figure 3. If collocations were limited to maximum 1 min and 1 km,

they would only occur at very specific angles and latitudes, as shown etc. must be represented’ althoth the distribu-
in this figure obtained from Holl et al. [2010]. The numbers in this tion of the training data does not need to match

figure relate to collocations before collapsing (see text), for January  the distribution of the real world [Swingler, 1996,
2007 only. The collocations used in this study have much larger .
section 5.2.2].

thresholds for distance and time difference and therefore fill a much

| f th ) .
arger part of the space Although collocations occur globally, they occur

only at particular ranges of MHS viewing angles, where the exact range is a function of latitude. This effect
is strongest for collocations with very strict requirements. Figure 3 illustrates an extreme case, with statistics
for collocations occurring with at most 1 min and 1 km in-between. In this example, collocations for a partic-
ular latitude occur only at two particular angles (one corresponding to the ascending, one to the descending
node). With longer requirements (15 min, 15 km), a much larger part of the latitude/viewing-angle space

is filled, but even then, collocations do not fill the entire space of latitude and MHS viewing angle, which
would be desirable for our neural network training approach described below. Additionally, collocations
are not equally distributed over the globe but occur more frequently near the poles than around the equa-
tor (like any measurements from polar orbiting satellites). Due to the nonuniform distribution, collocations
also contain correlations that do not occur in noncollocated data. Of course, even in noncollocated data,
quantities like latitude and surface temperature have correlations (of either sign) with IWP. To mitigate the
nonuniform distribution of collocations as a function of latitude, we make a subselection where we use an
increasingly small fraction of collocations poleward from the equator, so that the density of collocations (per
square kilometer) is approximately constant.

In the present study, we have roughly 1.3 - 10° collapsed collocations with valid radiances occurring through
2007. After thinning to get a constant geographical distribution, 7.9 - 10° collocations are left. Of those,
approximately 3.4 - 10° have an MHS-averaged 2C-ICE IWP larger than zero and can be used to train the IWP
retrieval (which occurs in log space—see below). For details on the collocations, refer to Holl et al. [2010].

2.3. Retrieval Development

The aim of the SPARE-ICE retrieval is to make an IWP product that is globally available and at the full com-
bined scan range of AVHRR and MHS. We consider the full atmospheric column, including cloud ice, graupel,
and snowfall—we do not attempt any separation. In developing SPARE-ICE, we also develop intermediate
products using only a subset of channels and auxiliary information, as indicated in Figure 1. The process of
training and testing the retrieval algorithm described below is repeated for each of these subsets. In the
following pages, we describe our retrieval approach.

2.3.1. Neural Networks

We use the collocations as a retrieval database for training ANNs, as illustrated in Figure 1. An ANN is a net-
work of interconnected processing units called nodes. We use multilayer perceptrons (MLPs), feed-forward
neural networks where the nodes are divided in multiple layers. MLPs are commonly used to statistically
characterize the complex relation between a set of inputs and one or more quantities of interest, called
targets. This makes MLPs popular for geophysical retrievals [e.g., Krasnopolsky, 2007]. We use an MLP with
three layers. For the first layer, called the input layer, we use one node for each input quantity. See Table 1
for an overview of all input quantities used. The second layer is the so-called hidden layer, in which we use
10 nodes. The third and final layer is the output layer and contains a single node corresponding to our tar-
get, the logarithm of 2C-ICE IWP. All nodes in layer n are connected to all nodes in layers n + 1 via activation
functions. The training algorithm iteratively assigns weights and biases to each activation function. This is
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done by minimizing the cost function, which is defined as the mean square error difference between the
neural network output and the targets. The trained neural network forms a nonlinear regression, mapping
the set of inputs to one or more target quantities. Such networks are prone to “overfitting,” where the net-
work learns the statistical relation not only between the inputs and the target but also between input noise
and the target. To prevent overfitting, part of the data is set apart as validation data. If, for N subsequent iter-
ations, the fitting improves (i.e., the cost function becomes smaller) with the training data, but gets worse
with the validation data, then the training is considered finished (this approach is called the “early stop-
ping” criterion). There is no perfect choice for N. If N is too small, the cost function may prematurely reach

a local minimum, and if N is too large, training might take unnecessarily long. In our implementation, we
choose N = 5. Note that there are stochastic elements in the training (for example, the initial values of
weights and biases) and that there is no guarantee that the fitted network is the best possible one. For the
implementation, we use the Mathworks MATLAB® Neural Network toolbox V8.0.1 (R2013b).

For the training, we use all collocations where all inputs and the target have valid measurements, occur-
ring during 2007 (see Table 1 for an overview of input measurements). We divide the collocations in three
subsets: training, validation, and testing. The training data are used to minimize the cost function, and the
validation data are used to prevent overfitting as described above. The testing data are not used in the train-
ing and serve as independent data to characterize the performance of the regression. From the collocation
database, we draw 200,000 random samples according to a uniform distribution. From those samples, we
randomly assign 2/3 to be used for training and 1/3 to be used for validation. The remaining collocations
are used for testing the neural network.

There is no guarantee that a trained network is optimal, and the minimization of the error function may very
well get stuck in a local minimum. Therefore, we perform the training 5 times every time we need to obtain
a trained neural network and select the network that performs best for further use.

We split up the retrieval in two neural networks, as illustrated in Figure 1. The two networks operate
independently, and the final IWP value is a result of combining the output from both nets.

1. One network classifies a scene as either cloudy or noncloudy. During the training, we define a scene
as cloudy if 2C-ICE IWP averaged over the covered part of the MHS footprint is larger than a threshold
value t. From the sensitivity study by Eliasson et al. [2013] and confirmed later in this study (see Figure 8),
t = 10 g/m’ is the lower sensitivity limit we can expect for SPARE-ICE and is therefore a good choice as a
threshold. During the retrieval, the classification network retrieves a value p € (0, 1) that we interpret as
a cloud probability. For each value p > ¢, where c is the cutoff value, we consider the scene as cloudy and
proceed to retrieve IWP. For p < ¢, we consider a scene free of ice. For the classification network, we leave
out microwave measurements. Holl et al. [2010] show that for MHS channel 5 (at 190 GHz), there is no sig-
nificant radiance signal at IWP < 100 g/m?. Any cloud thick enough to be detectable by microwave is also
easily detectable by solar and terrestrial infrared measurements.

2. The other network retrieves “raw” IWP. Because of the high dynamic range of IWP, and because we inde-
pendently assess whether or not a scene is cloudy, we retrieve IWP in log space ("° log IWP). Training and
validation data are limited to cases with IWP > 0 but are otherwise a subset of the data used in the cloud
classification network. The distribution of IWP is much closer to lognormal than to normal [Eliasson et al.,
2013], which is beneficial to the neural network fitting algorithm.

When performing the actual retrieval, both the classification network and the network retrieving “raw” IWP
are applied for all measurements. Then, we determine IWP = 0 where the classification network retrieves
p < ¢,and IWP = “raw” IWP otherwise.

2.3.2. Error Analysis

Neural network retrievals do not provide a direct uncertainty estimate for an individual retrieval. Other
methods do, but even for optimal estimation-based retrievals, the reliability of the uncertainty estimate is
only as good as the forward model and the error characterization therein, and may very well be an under-
estimate of the true error, i.e., the error compared to the unknown truth. A reliable error estimate would
require a ground truth, that is difficult to obtain for IWP. In our approach, we use the aforementioned testing
data, which were not used in the training, to get an estimate of the error as a function of IWP. For the error
estimate, we consider the two steps—classification and quantification—separately.
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2.3.2.1. Cloud Classification Error

For the cloud classification network, we explore the rate of false positives and the rate of false negatives. A
false positive is an occasion where the neural net obtains a cloud (p > ¢) while the independent reference
states that there is not (according to the cloud definition described above). A false negative is an occa-
sion where the neural net obtains no cloud (p < ¢) while the reference states there is. A higher cutoff will
decrease the rate of false positives but increase the rate of false negatives. The final choice for c is somewhat
subjective, depending on the balance desired for false positives and false negatives.

2.3.2.2. IWP Retrieval Error

We compare the IWP retrieved by the neural network against the reference IWP. For the IWP retrieval, we
define the fractional error,

| n IWPretrieved

IWP -1 (M

FE = exp

reference

For example, if the reference IWP is 200 g/m?, then a retrieved value of 50 g/m? would have a fractional error
of 3 (300%), just like a retrieved value of 800 g/m? would. This should be kept in mind when comparing
errors to other sources (such as Deng et al. [2013]) that are not always explicit in their definitions of the error
but that may consider a 50 g/m? retrieval for a 200 g/m? reference to be a 75% error rather than 300% one.
For small errors (less than approximately 10%), an error according to our fractional error definition is close
to the more classical definition of |b — a|/a (where a is the reference and b the retrieved value). However,
errors in IWP and IWC are often much larger than that and may easily exceed a factor 2 (100%). With the
classical definition, a retrieval algorithm that systematically retrieves a factor 3 too high would have a larger
error (200%) than one that unconditionally retrieves 0 g/m? (error 100%), although the former is clearly more
useful. With our fractional error definition, these retrievals would have errors of 200% and infinity, respec-
tively. Moreover, IWC and IWP are often retrieved in logarithmic space, and a fractional error in linear space
corresponds to a “classical” error in logarithmic space.

We divide the testing data (i.e., collocations not used in the training) in bins according to the reference IWP
and calculate the median fractional error for each bin. The bins are logarithmically spaced between 10! and
10* g/m?. Note that when shown as such, a low median fractional error for a certain IWP does not neces-
sarily mean the retrieval is useful. In the hypothetical situation where a retrieval always results in a constant
10 g/m?, then the median fractional error (or, indeed any other sensibly defined error) as a function of the
reference IWP would be very small close to 10 g/m? (even a stationary clock states the correct time once

or twice per day). Therefore, we also generate scatter plots for each retrieval, in order to identify the range
where the retrieval has sensitivity to IWP.

2.3.3. Analyzing Multispectral Synergies

We systematically explore synergies between three techniques: solar reflected, terrestrial infrared, and ter-
restrial microwave radiation. For each of the techniques, as well as for any combination of two or three
techniques, we train a retrieval (consisting of two networks, as described above). We also explore how
adding other data affects the retrieval, as described in section 2.1.2 above. See Tables 1 and 2 for a complete
overview of all data considered. Based on the synergy-exploration and other considerations, we make an
initial decision of what information to use for the SPARE-ICE retrieval.

2.3.4. Characterizing SPARE-ICE

After choosing the input data based on the error analysis and other considerations, we study the resulting
SPARE-ICE IWP in more detail. For a selection of atmospheric scenes, we compare SPARE-ICE IWP against
IWP from two other products. This comparison is the first step away from the collocation world. Therefore,
this comparison can indicate whether the retrieval can be extrapolated to cases where no collocations exist,
such as toward the edge of the scan, or in geographic regions where retrievals may be difficult (such as
mountain areas) that are too small to show up when doing global statistics. Then, we compare global maps
of the 2007 climatological mean for a selection of products.

First, we compare scenes against the MHS-based MSPPS product [Ferraro et al., 2005]. MSPPS mea-
surements are based on radiation scattered by large (precipitation-sized) ice particles at 89 GHz and
150 GHz. The retrieval requires an accurate characterization of surface temperature and emissiv-
ity (SPARE-ICE uses channels centered around 183 GHz, where this problem is much less present).
MSPPS retrievals are at the MHS footprint size, with a diameter of approximately 16 km at nadir.
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Solar-only IWP performance Second, we compare scenes against the Mod-
erate Resolution Imaging Spectroradiometer
(MODIS) Aqua MYD08_M3 monthly gridded
IWP product [King et al., 1997]. The retrieval is
based on four channels measuring reflected
solar radiation, including one visible channel
(0.645 um) and three near-infrared channels
(0.858 um, 1.24 um, and 2.13 pm). The MODIS
MYDO08,,, product is derived from measure-
ments with a footprint size of approximately
1 km.

800

—e— solar

= solar+latitude
600 |- —@— solar+angles
solar+angles
+latitude

400

Median fractional error [%]

Then, we compare maps of a 2007 gridded
0 p 10 10° mean IWP for a selection of products. First, we
compare with MODIS, described above. Sec-
IWP [g/m?] . .
ond, we compare with 2C-ICE. The comparison
Figure 4. Performance for a global retrieval based only on solar reflected ~ With 2C-ICE is not an independent comparison,
measurements from AVHRR channels 1 and 2 (see Table 1), with or with-  hacause 2C-ICE was used to train SPARE-ICE.
out additional angle or latitude information used in the retrieval. The hi . il gi
fractional error is defined by equation (1). However, this comparison can still give a use-
ful insight into SPARE-ICE's ability to obtain
a climatology similar to 2C-ICE. Finally, we compare SPARE-ICE with PATMOS-X. PATMOS-X is an opera-
tional retrieval based on AVHRR measurements, providing daytime estimates of IWP and other quantities
[Heidinger and Pavolonis, 2009].

The comparisons are meant to indicate differences between SPARE-ICE and other products but are not
meant as a detailed intercomparison. A full intercomparison of different IWP products (without SPARE-ICE)
is presented by Eliasson et al. [2013], and a comparison focussing on spatial distributions of climatological
means is shown by Eliasson et al. [2011]. Note that this comparison is not a validation of SPARE-ICE.

3. Results

The results are presented in two parts. First, we explore synergies and choose the inputs to SPARE-ICE. Then,
we analyze the resulting product for individual scenes and gridded means.

3.1. Exploring Synergies and Choosing the Inputs to SPARE-ICE

We will first show the performance for single-technique retrievals and then for retrievals using a com-
bination of two or three techniques. All results are for global retrievals for all angles for which we have
collocations. For these results, we look only at the network retrieving IWP, i.e., the part of the retrieval

assuming the presence of (cloud) ice. We will explore the performance of the cloud filter separately.
3.1.1. Single-Technique Retrievals

Figure 4 shows the performance of a retrieval using only measurements from AVHRR channels 1

(0.58 t0 0.68 um) and 2 (0.725 to 1 um), using reflected solar radiation. As indicated before, for all retrievals,
we observe a local minimum in the fractional error somewhere between 1 and 10 g/m?. This minimum does
not indicate that the retrieval is truly performing well for these IWP values. Rather, this local minimum indi-
cates that the neural network retrieves these values when it lacks information. If the neural network lacks
information, it tends to the mean state of similar measurements for which it lacks information. In this case,
that is the geometric mean (because retrievals are in log space) for clouds too thin to be detected, hence the
values between 1 and 10 g/m?. Therefore, one should be cautious in interpreting errors for small values of
IWP based on figures like this one and also look at scatter plots such as shown later in Figure 8.

For a global retrieval using only AVHRR channels 1 and 2 and no additional information, the performance
for all but the very thickest clouds is poor. Clouds are essentially nonabsorbing at the short wavelengths of
AVHRR channels 1 and 2. Lacking the absorption at higher IR frequencies, IWP must be determined purely
from reflection. For moderately thick clouds, the reflectivity is affected by both the cloud visible optical
depth 7 and effective radius r,. However, for thick clouds, reflectivity is mostly affected by = and not much
by r,. Therefore, retrieving IWP is easier for thicker clouds [McFarquhar and Heymsfield, 1998], explaining the
decreasing IWP error for larger values of IWP. Adding latitude information improves the solar-only retrieval
performance a little bit, and adding angular information improves this more, although errors remain high
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Terrestrial-only IWP performance at over 600% compared to 2C-ICE. The
improvement from angular information is not
surprising, because solar angles are essential to
interpret information from solar reflectances.
The small improvement from adding latitude
information is likely due to correlations in
the collocated data set. The finding that lat-
itude information does not achieve much if
angular information is already present sug-
gests that latitude information is useful only
due to its correlation with viewing angles

600
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500 w— TIR+ T surt
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400
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1008 (see also Figure 3). Despite the improvements
by adding auxiliary information, variations
0 in surface brightness, as well as other fac-
10° 10' 10% 10° tors, mean that solar reflected information
IWP [g/m?] from AVHRR channels 1 and 2 alone is not

Figure 5. Performance for a global retrieval based only on terrestrial enOUgh to obtain a quantitative estimate
emission measurements from AVHRR channels 4 and 5 (see Table 1), with  of IWP.

or without additional surface temperature or latitude information used

in the retrieval. TIR is short for terrestrial infrared radiation. Figure 5 shows the performance of a retrieval

using only the two AVHRR terrestrial infrared
channels. Without surface temperature information, a global retrieval based on only the two terrestrial
radiation AVHRR channels performs very poorly (errors reach almost 600%). Adding latitude information
improves results, but adding surface temperature information (from CFSR) improves them more. Adding
latitude and surface temperature information does not help beyond adding only surface temperature
information. The addition of latitude information might help mainly due to its correlation with surface tem-
perature. In the atmospheric window region, terrestrial infrared measurements essentially give information
on the target temperature. A large difference between target brightness temperature and surface tempera-
ture indicates the presence of a cloud. The error remains around 200%, because this temperature difference
alone is still not sufficient to quantify the amount of atmosphericice.

Figure 6 shows the performance of a retrieval using only the three MHS water vapor channels around

183 GHz. This retrieval is similar to the one presented in Holl et al. [2010], although Holl et al. [2010] did not

attempt to do global retrievals. Without additional information, a global microwave-only retrieval performs
even poorer than a global solar-only or a global

Microwave-only IWP performance terrestrial infrared-only retrieval. We see a sig-
2,000 e MW nificant improvement by adding latitude or
1,200 = MWo-latitude angular information and even more improve-
X —e— MW-+angles ment when we add both, with the median
5 400 MW-latitude fractional error going down to 100% for very
5 oy +angles thick clouds. A retrieval at these frequencies is
g 300 i based on scattered radiation, so ice is detected
'§ e =8 through a brightness temperature depression
-’; \ for a down-looking sensor. At high latitudes,
I \h where the atmosphere is very dry compared
2 e to the tropics, these water vapor sounding
B channels become surface channels, in partic-
ular when the surface elevation is high (such
01 o° 10 102 108 as on Antarctica). The low surface emissivity

IWP [g/m?] (and low surface temperature) near 183 GHz

. ) then results in a low brightness temperature
Figure 6. Performance for a global retrieval based only on MHS channels R . 8 .
3-5 near the 183 GHz water vapor absorption line (see Table 1), with or  that, without additional information, cannot be
without additional latitude and viewing geometry information used in distinguished from a brightness temperature

the retrieval. The viewing geometry information (“angles” in the legend) depression due to a thick ice column, at least
includes the zenith and azimuth angles for the satellite as seen from the !

surface. Note that the ¥ axis has different scales for the upper and lower ~ NOt from a single channel. At off-nadir scan
parts of the axes. angles, the sounding altitude is increased due
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IWP performances to the longer path length through the atmo-
sphere, resulting in a lower radiance. This too
is observed as a low brightness temperature,
indistinguishable from scattering due to atmo-
sphericice. Therefore, and as Figure 6 shows,
information on latitude and viewing geome-
try is valuable for any global microwave-based
retrieval. Even more valuable should be a
combination of surface temperature and emis-
sivity, but emissivities were not explored in the
present study.

3.1.2. Multitechnique Retrievals

Figure 7 compares the performance of
single-technique and multiple-technique
retrievals, again according to the median frac-
tional error as defined in equation (1). For

this comparison, for each single-technique
retrieval, we chose the best-performing (low-
IWP [g/m?] est error) combination of measurements

and auxiliary information. The multitech-
nique retrievals are then simply combi-
nations of the different single-technique

ones. For IWP values between approx-

Median fractional error [%]

0
10° 10’ 10? 10°

—e— solar = TIR —o— MW
—— solar+TIR solar+MW --e-- TIR+MW
solar+TIR+MW —e— SPARE-ICE

Figure 7. C(?mparison between. thg performance of the IWP retrieval imately 10 and 1000 g/mz, out of the
networks using different combinations of input data. In this figure, X K ;

solar refers to AVHRR channels 1 and 2, TIR refers to AVHRR channels S'ngle'teChn'que retrievals, solar per-

4 and 5, and MW refers to MHS channels 3-5 (see Table 1 for channel forms worst, followed by microwave, and

det(:alls). Herte, all retrievals exFept SPARE-ICE lhclude latitude |nform?t|on, then terrestrial infrared. The combination
retrievals using solar or MW include information on solar and satellite

angles, and retrievals including IR use surface temperature informa- of solar and terrestrial infrared performs
tion. For details on information included in SPARE-ICE, refer to Table 1. better than either of those alone for any

Note that the y axis has different scales for the upper and lower part of IWP between 10 and 4000 g/mz For the
the axes. .
combination of solar and microwave, we

also see a strong synergy between 30 and 2000 g/m?. Out of the dual-technique retrievals, terres-
trial infrared and microwave performs the best and considerably better than either technique alone
throughout the entire range of IWP values. The triple-technique retrieval, combining all three tech-
niques, performs roughly as well as the infrared-microwave retrieval. However, a day-night retrieval
using only terrestrial infrared and microwave performs almost as well as a daytime-only retrieval that
uses solar.

SPARE-ICE uses terrestrial infrared and microwave but is slightly different from the TIR+MW retrieval shown
in the figure. SPARE-ICE includes AVHRR channel 3B (3.55 to 3.93 um) that is neither exclusively solar nor
exclusively terrestrial infrared and that is not included in any other retrievals shown in Figures 4-7. Table 1
summarizes the data used in SPARE-ICE. Figure 7 shows that for most values of IWP, the median fractional
error in SPARE-ICE is slightly below 100%. It is below 110% throughout the entire range of IWP and briefly
drops off to 75% for IWP between 1000 and 2000 g/m?.

Figure 8 shows a scatter density plot for SPARE-ICE versus 2C-ICE. Note that just like for the previous figures,
this comparison does not yet take into account the cloud filter but retrieves nonzero IWP everywhere. As
expected, the correlation between 2C-ICE and SPARE-ICE is very good for IWP > 10 g/m?. Our retrieval was
trained against 2C-ICE IWP. Although the testing data were not used in the training, they come from the
same data set and therefore exhibit the same statistics as the training and validation data. Therefore, a good
correlation between the retrieved and reference IWP is expected. For smaller values of IWP, we can see that
SPARE-ICE IWP tends to be larger than 2C-ICE IWP and levels off at a median of around 1-2 g/m? for 2C-ICE
IWP < 1 g/m2. SPARE-ICE is not sensitive to such small values of IWP. This justifies the choice of 10 g/m? as

a cutoff in the cloud filter. This also illustrates the phenomenon visible in Figures 4-7, where the median
fractional error drops off as IWP approaches the sensitivity limit, which does not indicate a good retrieval
but rather a lack of information, as explained before. Figure 8 also shows that the random error remains
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Figure 8. Comparison between 2C-ICE and SPARE-ICE IWP. All testing
data were binned first according to the reference 2C-ICE IWP and then
according to the retrieved SPARE-ICE IWP. The color in each bin indi-
cates the absolute number of retrievals with a particular combination of
2C-ICE / SPARE-ICE IWP. The black line represents the diagonal 1:1-line.
The grey lines show the median for one product when the other product
is kept fixed; for example, when 2C-ICE is 1 g/m?, the median SPARE-ICE
is 2 g/m”. Any vertical or horizontal intersection is a histogram; for exam-
ple, when 2C-ICE is 10 g/m?, SPARE-ICE varies roughly between 1 and
100 g/m?. Note that this figure considers “raw” IWP, meaning IWP before
any cloud filter is applied.

quite large; this is quantified by the aforemen-
tioned fractional error, shown in Figure 7, which
has a median around 100% for SPARE-ICE, but
with outliers up to 2 orders of magnitude away
from the reference value.

3.2. Cloud Filter Performance

Because IWP is retrieved in log space, the
retrieval is always nonzero. This is not physi-
cally correct. Therefore, as described earlier, a
separate network is used for the cloud filter.

Figure 9 shows the performance of the

cloud filter. The cloud filter uses the same
inputs as SPARE-ICE, minus the microwave
channels—microwave adds no information
when the purpose is to detect clouds. A scene
is considered cloudy if the cloud probability p is
larger than the defined cutoff. The sum of false
positives and false negatives has a minimum
for a cutoff of 0.40, and the rate of false posi-
tives and false negatives is equal at a cutoff of
approximately 0.31. The figure also shows ref-
erence and retrieved IWP values for the false
positives and false negatives. For a cutoff of 0.5,
if the cloud filter falsely detects a cloud where

there really is not, SPARE-ICE retrieves a median IWP of around 25 g/m?, while the reference median IWP is
close to 0 (recall that the definition of “cloudy” means the reference IWP > 10 g/m?). Similarly, when the
cloud filter misses a cloud, SPARE-ICE retrieves a “raw” value of less than 10 g/m?, while the true IWP has a
median of around 25 g/m?. Either way, the values of IWP for clouds where the cloud filter is wrong are quite

small. SPARE-ICE uses a cutoff of 0.5.
3.3. Characterizing SPARE-ICE

We have processed measurements for NOAA 18 for 2007, 2008, and 2009, resulting in 3 years
of retrieved SPARE-ICE IWP. We show a selection of three case studies, all from NOAA 18.

cloud filter test

0.8 T T T T 100
—— false positive ----f.p. ref.
——false negative ----f.p. retr. /
0.6 | —total errors  ----f.n. ref. /L 75
f.n. retr. /

error rate
median IWP [g/m?]

Figure 9. Performance of the SPARE-ICE cloud filter depending on the
selected cutoff value. A false positive occurs when the cloud filter con-
siders a scene to be cloudy (IWP > 10 g/m?) when it is not, and a false
negative occurs when a scene is cloudy, but the filter concludes it is not.
The solid lines show the rate of false positives, false negatives, and the
total error rate, according to the left axis line. The dashed lines show
the retrieved and reference IWP values for false positives (f.p.) and false
negatives (f.n.), respectively, according to the right axis line.

We show composites of three AVHRR chan-
nels and three MHS channels. For AVHRR, we
follow Dybbroe et al. [2005] and combine chan-
nel 1, channel 2, and the inverse of channel

4 (so that clouds are white in all channels)

and put those in the red, green, and blue
planes of a composite image. Similarly, we
make a composite image of MHS channels 3,
4, and 5 (where clouds are black in all panels).
Although AVHRR channels 1 and 2 have not
been used in SPARE-ICE, the 1-2-4’ combina-
tion allows for a convenient visual inspection of
the scene.

Figure 10 shows a fragment of a swath for

a midlatitude winter scenario in the North
Atlantic Ocean, off the coast of Newfound-
land, Canada. The retrievals from MODIS and
SPARE-ICE show similar spatial structures,
although there are some differences. The exact
values of retrieved IWP differ considerably
between MODIS and SPARE-ICE. For example,
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Figure 10. (top, right) Snapshot of a NOAA 18 swath at 1 January 2007, 16:40 UTC, off the coast of Canada. (top) Color composites for AVHRR and MHS, respectively, as described in
the text. The cloud probability, retrieved from the AVHRR channels, is shown in Figure 10. (bottom) Retrieved IWP according to three different products: MSPPS, MODIS (Aqua), and,
finally, SPARE-ICE. Inputs to the product not shown in the figure are satellite and solar angles, surface elevation, and the individual AVHRR and MHS channels.

for a particular region (48-52°W, 38-42°N), the all-sky mean for MODIS IWP is 228 g/m?, whereas the all-sky
mean SPARE-ICE IWP is 116 g/m?. This may be partly due to the different measurement resolutions, where
a SPARE-ICE footprint is more than 100 times larger than a MODIS footprint. Lacking an independent refer-
ence, there is no way of determining which one is more accurate. The retrieval from MSPPS is clearly lacking
in comparison to either MODIS or SPARE-ICE, detecting only a small fragment of the system (but note that
MSPPS retrieves using 89 and 150 GHz and is known to retrieve mostly precipitating ice).

All features visible in SPARE-ICE are also visible to some degree in the AVHRR and MHS composites, or both,

and in the individual channels (not shown). The cloud probability network mostly retrieves either probabili-
ties close to 1 or close to 0. In the region where it is close to the cutoff, the corresponding SPARE-ICE retrieval
is small, so the cutoff has no major impact on the overall IWP (see also Figure 9).

Another scene is shown in Figure 11. Here, the observation is of Tropical Cyclone Indlala in the south-west
Indian Ocean, near Madagascar, on 14 March 2007. For this system, the microwave signature is significant
enough for MSPPS to also obtain most of the spatial structure. This structure is also clearly visible in all input
channels, although not nearly as cold in the 3.55 to 3.93 um channel as in the longer wavelength AVHRR
channels. This channel contains a mixed signal of solar reflected and terrestrial emitted, and for a very deep
ice cloud, the solar reflected signal increases, while the terrestrial emitted signal decreases. Also another
system on this map, at the coast of Africa, is seen in all input channels and recognized by MODIS, MSPPS,
and SPARE-ICE.

For the final example, in Figure 12, we look at a system above Antarctica. Antarctica is a region where
retrieving atmospheric ice is difficult with any passive technology. Using microwave humidity channels, it
is difficult because the high surface elevation and the low temperature both result in a very low specific

HOLL ET AL.

©2014. American Geophysical Union. All Rights Reserved. 1517


http://dx.doi.org/10.1002/2013JD020759

@AG U Journal of Geophysical Research: Atmospheres 10.1002/2013JD020759

Latitude [°]

Latitude [°]

|
(&

|
-
o

|
—
o

AVHRR RGB 1 +2 + 4/ MHS RGB3+4+5 cloud probability 1
- ¥ ‘\‘
e Zz
[0) =
S ||o5 8
E= 2
o =
e b 0
50 40 50 40 50
Longitude [°] Longitude [°] Longitude [°]
MSPPS MODIS SPARE-ICE

Latitude [°]

|
50 40 50 40 50

Longitude [°] Longitude [°] Longitude [°]

200 300 400 500 600 700 800 900 1,000
IWP [g/m?]

Figure 11. Observation of 14 March 2007, 10:40 UTC, of Tropical Cyclone Indlala, making landfall at Madagascar in the south-west Indian Ocean. See Figure 10 for an explanation of
the individual panels.

humidity throughout the atmospheric column. Combined with a low surface emissivity, this leads to a very
low radiance. We lack the humidity background against which ice scattering is visible around 183 GHz. The
color gradient of the MHS composite shows how the lack of humidity first affects the outermost channel
(channel 5) first and the innermost channel (channel 3) last. The MHS composite has regions that are black
(all channels cold) and regions that are red (i.e., channel 3 still warm, but channels 4 and 5 cold). Brightness
temperatures for channel 5 drop to 133 K. Solar channels are also hard to use, because the reflectance by
ice is similar to the reflectance by ice clouds. Finally, the ice cloud signature from terrestrial infrared usually
derives from the temperature difference compared to the surface; when the surface is very cold, this dif-
ference is no longer a clear indicator of clouds. Even so, SPARE-ICE seems to still perform quite well in this
difficult region—at least the retrieved IWP is not clearly unphysical. From AVHRR channels 4 and 5, there is a
region near the South Pole with a radiance of around 240 to 250 K and a region near the coast with a simi-
lar radiance. At the coast, this region exists against a warmer background, and indeed, this is the area where
a high cloud probability is obtained (larger than 0.7) and where SPARE-ICE retrieves nonzero IWP. MODIS
and SPARE-ICE agree that there is nonzero IWP in this region, although SPARE-ICE sees a larger area with
atmospheric ice than MODIS does. Even closer to the South Pole, SPARE-ICE observes clouds with low IWP.
In the same region, MODIS retrieves some very high IWP values, up to 5.5 - 10°* g/m? as far south as 88°. This
is not realistic, and likely due to measurement noise, since the signal-to-noise ratio is low at such low tem-
peratures. For comparison, the highest retrieved IWP by SPARE-ICE south of 85° in this swath is 261 g/m?.
Although we do not know whether or not this is correct, at least it is not obviously wrong. Above Antarctica,
MSPPS sees virtually nothing (if these very high MODIS IWP retrievals were true, MSPPS should also

detect IWP).

Figure 13 shows a gridded map for SPARE-ICE for 2007 on a projection according to Mollweide [1805]
(due to the equal-area, pseudocylindrical nature of this projection, it is more suitable for geophysical visu-
alizations than equirectangular projections). For this map, all daytime measurements between 1 January
and 31 December were sorted into 1° X 1° bins, and the mean IWP was calculated for each bin. Although
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Figure 12. Example swath passing over Antarctica, 21 January 2007, 5:45 UTC. The South Pole is visible as a cross near the bottom of

the maps. Quantities shown are as in Figure 10.

SPARE-ICE can be retrieved day and night, only day measurements were considered for a consistent compar-
ison with MODIS and PATMOS-X. The IWP distribution appears in line with what one would expect, and there
are no regions where SPARE-ICE is clearly unphysical. However, we can not verify that our IWP measurement

is correct, either.

SPARE-ICE gridded mean IWP, 2007

0 50 100 150 200 250 300 350 400
IWP [g/m?]
Figure 13. SPARE-ICE IWP gridded mean for 2007, using NOAA 18.
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Figure 14. The 2007 gridded mean IWP for MODIS Aqua, CPR 2C-ICE, PATMOS-X, and the difference between MODIS Aqua and SPARE-ICE. 2C-ICE is gridded on a 5° grid, while the
other products are all gridded on a 1° grid.

We compare the 2007 SPARE-ICE mean IWP with three other products. Figure 14 shows level-3 IWP for
MODIS Aqua (product MYDO08), 2C-ICE, PATMOS-X, and the difference between SPARE-ICE and MODIS. For
all maps, only daytime measurements are considered. In the discussion here, we will focus on SPARE-ICE in
relation to other products. A thorough comparison of different level-3 IWP products (predating SPARE-ICE)
is given by Eliasson et al. [2011], while a systematic comparison on a footprint-level basis is presented by
Eliasson et al. [2013] and for MODIS in particular, by S. Eliasson et al. (The uncertainty in MODIS ice water
path retrievals depending on cloud scenario, submitted to Journal of Geophysical Research, 2013).

There are considerable differences between yearly mean SPARE-ICE and IWP from the other products. Over
most of the planet, SPARE-ICE retrieves higher values of IWP than MODIS does. The difference is largest in
tropical convective regions. MODIS IWP is obtained from a retrieval of optical depth and effective radius,
which, by the nature of MODIS, are obtained for the upper layers of the cloud [King et al., 1997]. The effec-
tive radius in the upper layers of the cloud is typically smaller than the effective radius for the entire column,
because particles near the top are typically smaller than particles further down. Therefore, we consider
that MODIS likely underestimates IWP for these cases (see also Eliasson et al. [2013]). On the other hand,
SPARE-ICE includes microwave information, which helps to quantify cases with very thick clouds.

In polar areas, as well as in some parts of the midlatitudes, MODIS IWP is higher than SPARE-ICE IWP, some-
thing that can also be seen in the Antarctica observation in Figure 12. MODIS has difficulties over bright
surfaces, such as those covered by snow or ice, and likely retrieves spuriously high IWP due to measurement
noise (for example, it retrieves several thousand g/m? above the South Pole, despite a high surface and very
low temperatures). To the contrary, SPARE-ICE considers the polar areas to have very low IWP.
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PATMOS-X has higher values than SPARE-ICE in most areas, but not everywhere. PATMOS-X has serious
problems above cold, bright surfaces, such as over the poles—retrieved IWP is extremely high, a problem
that has been reported before [e.g., Eliasson et al., 2011]. The explanation given for MODIS above applies.
Throughout the midlatitudes, PATMOS-X also retrieves higher IWP than SPARE-ICE but not unrealistically so.
In the tropics, PATMOS-X has higher IWP above land, whereas SPARE-ICE has higher IWP above the oceans.
It is not easy to point to the exact cause of these differences, nor to determine which product is closer to
the truth. An oversimplified model of mixed phase clouds could mean that 2C-ICE, and therefore SPARE-ICE,
overestimates IWP over ocean and underestimates it over land, but this remains speculation.

The gridded map for CPR 2C-ICE exhibits significant noise due to the poor sampling resolution, even if the
grid resolution is 25 times larger (5 x 5 instead of 1 x 1 degree). As illustrated in Figure 2, measurements are
only obtained at (near) nadir. Even for a full year of data, the number of measurements per grid box is quite
small. Products based on radar and/or lidar, therefore, are of limited use for studying geographic patterns in
a particular year.

As mentioned before, lacking an independent measurement, we can not state with certainty which one is
more correct (or less wrong). This would at least require in situ measurements of IWP. Such measurements
would be a major and novel undertaking in itself and would need to have a sufficiently small error to be
useful for validation.

4. Discussion

Compared to 2C-ICE, SPARE-ICE has a median fractional error of around 100% or a factor 2. This can be
compared to the scatter found by Deng et al. [2013], who compared IWC retrievals between 2C-ICE and in
situ measurements, among other things. Deng et al. [2013] found that “[IWC is] strongly correlated with
the in situ data (...) although the scatter is around a factor of 2" Although Deng et al. [2013] do not quan-
tify the random error more rigorously and use IWC rather than IWP, it does indicate that the error between
SPARE-ICE and active retrievals may be of similar magnitude as the error between active retrievals and
the truth. If both are random, uncorrelated, and 100%, that would put the true error for SPARE-ICE at
V14 1-100% = 141% according to the law of error propagation.

From the case studies, it appears that SPARE-ICE does well in a wide variety of cases. Drawing information
from both terrestrial infrared and microwave not only leads to synergies as seen directly by the median frac-
tional error (Figure 7) but also appears to extend the IWP retrieval to climate regimes that normally pose
large difficulties, such as over Antarctica (Figure 12), although the latter is currently impossible to verify. It is
difficult to establish whether the system that SPARE-ICE concludes to be atmospheric ice, really is such and
not humidity or something else. However, unlike MODIS, SPARE-ICE appears not to obtain any IWP values
that are clearly unphysical.

SPARE-ICE can be used for reasonably long time series, because the combination of sensors that it uses has
been around since 1999. At the time of writing, AVHRR and MHS are carried on NOAA 15 through NOAA
19, MetOp A, and MetOp B, and similar instruments are carried on other polar orbiting satellites. Therefore,
SPARE-ICE has many potential applications for climatological studies.

A number of variations and improvements to SPARE-ICE can be made. In the training, SPARE-ICE does not
take into account the error in the reference data set 2C-ICE. To take an error into account in neural net-
work training is not completely trivial. One way that could be investigated is to adapt calculation of the cost
function and use a weighted error sum rather than a simple root mean square sum, while giving higher
weight to observations with a small error in 2C-ICE. This might improve the retrieval somewhat and could
be investigated in future work. In the present study, we did not test whether the retrieval is improved by
further constraining it with integrated water vapor from reanalysis model output. This would be interesting
to study.

The chosen target, 2C-ICE, could very well be replaced by DARDAR. This is not likely to lead to large changes
for SPARE-ICE but could be worth investigating nevertheless.

The development of a synergistic retrieval from a database need not be from collocations but can also be
done using simulations. By combining a sophisticated method of generating synthetic atmospheric profiles,
such as presented by Evans et al. [2012], and a suitable radiative transfer model, one can also build a retrieval
database. This could use either the same input channels, which would give a product using the same
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information as SPARE-ICE but potentially independent from either SPARE-ICE or 2C-ICE (depending on
how the retrieval database is created), or additional inputs using channels that do not yet exist, such as
those at submillimeter frequencies. In general, the addition of submillimeter frequencies should improve
the SPARE-ICE retrieval. After 2022, European Organisation for the Exploitation of Meteorological Satel-
lites (EUMETSAT) plans to fly the Ice Cloud Imager (ICl) on the MetOp-SG-B1 satellite. ICl is very similar to
instruments that have been proposed before, such as Cloudice [Buehler et al., 2012].

Another aspect that is worthwhile to study is to more formally investigate the information content for each
of the channels used in SPARE-ICE, along the lines of Cooper et al. [2006]. This might lead to a more specific
and stronger recommendation on what information to include or not for an IWP retrieval algorithm.

The principle by which the SPARE-ICE retrieval works can be applied to other geophysical quantities. In
general, it is very beneficial if scientific satellites fly in orbits near operational ones, because operational
retrievals can learn from scientific ones, as SPARE-ICE illustrates.

5. Summary and Conclusion

In this article, we have presented SPARE-ICE, a new IWP product based entirely on passive, operational sen-
sors available day and night. By collocating NOAA 18 with the CloudSat 2C-ICE IWP product, we obtained a
training database of AVHRR and MHS measurements on the one hand and joint radar-lidar IWP on the other
hand. With this database, we have trained a set of neural networks for the detection of atmospheric ice
and the retrieval of IWP, using 2C-ICE IWP as a reference. By using three AVHRR channels, three MHS chan-
nels, and auxiliary information (satellite angles, surface temperature, and surface elevation), SPARE-ICE can
retrieve IWP, while the median fractional error compared to 2C-ICE IWP is around 100% for IWP > 10 g/m?.
Because we use only terrestrial infrared and microwave measurements, SPARE-ICE is available day and night,
unlike products such as MODIS and PATMOS-X, which are available daytime only.

Overall, SPARE-ICE should be a relevant new member to the family of IWP products. SPARE-ICE will be
publicly available through the WDC-RSAT under the Open Data Commons Attribution License.
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