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Abstract We assess Indian summer monsoon seasonal1

forecasts in GloSea5-GC2, the Met Office fully coupled2

subseasonal to seasonal ensemble forecasting system.3

Using several metrics, GloSea5-GC2 shows similar skill4

to other state-of-the-art forecast systems. The predic-5

tion skill of the large-scale South Asian monsoon cir-6

culation is higher than that of Indian monsoon rain-7

fall. Using multiple linear regression analysis we evalu-8

ate relationships between Indian monsoon rainfall and9

five possible drivers of monsoon interannual variability.10

Over the time period studied (1992-2011), the El Niño-11

Southern Oscillation (ENSO) and the Indian Ocean12

dipole (IOD) are the most important of these drivers13

in both observations and GloSea5-GC2. Our analysis14

indicates that ENSO and its teleconnection with the15

Indian rainfall are well represented in GloSea5-GC2.16

However, the relationship between the IOD and Indian17

rainfall anomalies is too weak in GloSea5-GC2, which18

may be limiting the prediction skill of the local mon-19

soon circulation and Indian rainfall. We show that this20

weak relationship likely results from a coupled mean21

state bias that limits the impact of anomalous wind22

forcing on SST variability, resulting in erroneous IOD23

sst anomalies. Known difficulties in representing con-24

vective precipitation over India may also play a role.25
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Since Indian rainfall responds weakly to the IOD, it26

responds more consistently to ENSO than in observa-27

tions. Our assessment identifies specific coupled biases28

that are likely limiting GloSea5-GC2 prediction skill,29

providing targets for model improvement.30
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Indian Ocean dipole32

1 Introduction33

Analysis of intraseasonal and interannual modes of In-34

dian summer monsoon rainfall variability suggests that35

there is a significant seasonally persisting component36

of Indian monsoon rainfall anomalies forced by slowly37

varying boundary conditions (Charney and Shukla, 1981;38

Krishnamurthy and Shukla, 2000, 2007). For variabil-39

ity in boundary conditions to be a useful source of sea-40

sonal predictability, anomalies must be large and persis-41

tent, they must interact with monsoon rainfall through42

a consistent physical mechanism and the response of43

monsoon rainfall must be large enough to distinguish44

from the intrinsic variability of the atmosphere (Kang45

and Shukla, 2006). Studies have investigated the pre-46

dictability gained from many sources, including modes47

of sea surface temperature (SST) variability, variabil-48

ity of soil moisture and interannual variability of snow49

cover (e.g. Palmer and Anderson, 1994; Goddard et al,50

2001).51

For the Indian summer monsoon, the most signif-52

icant and well known source of predictability is the53

El Niño-Southern Oscillation (ENSO, e.g. Shukla and54

Paolino, 1983). A developing El Niño event warms SSTs55

in the east Pacific, shifting the Walker circulation such56

that anomalous subsidence occurs over the Maritime57
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Continent and Indian Ocean, reducing monsoon rain-58

fall. A developing La Niña event has the opposite effect59

(e.g. Webster and Yang, 1992; Ju and Slingo, 1995).60

Recent work suggests that the zonal location of the61

warm SSTs alters the strength of the relationship by62

altering the location of the anomalous subsidence. Cen-63

tral Pacific El Niño events are consequently more likely64

to strongly suppress monsoon rainfall than east Pacific65

El Niño events (Krishna Kumar et al, 2006).66

Another important known source of predictability67

is the the Indian Ocean dipole (IOD, also known as68

the Indian Ocean Zonal mode). The IOD is a coupled69

mode of SST variability in the equatorial Indian ocean70

analogous to ENSO in many ways. In a positive IOD71

event, anomalous easterlies develop in spring off the72

coast of Sumatra which increase upwelling, shoal the73

thermocline and create cool SST anomalies that ex-74

tend into the eastern equatorial Indian Ocean (EEIO).75

These are often accompanied by warm SST anoma-76

lies in the western equatorial Indian Ocean (WEIO).77

This changes the zonal equatorial SST gradient, and78

consequently reinforces equatorial zonal easterly wind79

anomalies. An IOD event continues to develop through80

July and August and peaks in the autumn (Saji et al,81

1999; Webster et al, 1999; Annamalai et al, 2003). Us-82

ing an atmospheric GCM (AGCM), Ashok et al (2001)83

demonstrated that a positive IOD event drives anoma-84

lous low-level atmospheric convergence in the WEIO85

and divergence in the EEIO that strengthens the South86

Asian monsoon circulation, increasing rainfall over In-87

dia.88

Kucharski et al (2007, 2008) identify a component89

of Indian monsoon interannual variability that is forced90

by the Atlantic Niño, an ENSO-like mode of SST vari-91

ability in the southeastern tropical Atlantic. Atlantic92

Niño SST anomalies extend from the Angola coast to93

the Gulf of Guinea in spring and summer (Chang et al,94

2006). Using AGCM experiments, Kucharski et al (2007,95

2008) demonstrate that cool SSTs (Atlantic Niña) drive96

a stationary wave response that creates a low-level cy-97

clone over India, bringing increased moisture to India98

and increasing seasonal monsoon precipitation.99

Many studies have explored the role of snow over100

Asia in driving monsoon rainfall interannual variabil-101

ity (see references in Fasullo, 2004). Sensitivity experi-102

ments in atmospheric GCMs (Turner and Slingo, 2011)103

and the ECMWF seasonal forecast system 4 (Senan104

et al, 2015), demonstrate a mechanism linking snow105

over the Himalayas and Tibetan Plateau (HimTP) with106

the timing and intensity of the Indian monsoon. They107

show that increased snow cover over the HimTP in108

spring and summer reduces surface sensible and long-109

wave heating as proposed by Blanford (1884), which110

delays the onset of the monsoon and significantly re-111

duces monsoon rainfall in June. As HimTP snow cover112

decreases rapidly through the spring and early summer,113

interannual snow variability has little impact on rainfall114

variability later in the monsoon season.115

Despite these many sources of predictability, Indian116

monsoon rainfall prediction skill is modest in state-of-117

the-art coupled seasonal prediction systems (Kim et al,118

2012; Rajeevan et al, 2012; Nanjundiah et al, 2013).119

The DEMETER sample of six seasonal forecast sys-120

tems had a multimodel mean interannual correlation121

skill of 0.28 (p > 0.1) over 1960-2001. The more recent122

ENSEMBLES sample, which uses updated versions of123

the DEMETER systems, improved to 0.45 (p < 0.05)124

over the slightly longer time period of 1960-2005. Mean125

state biases in boundary conditions, poor representa-126

tion of coupled teleconnections with monsoon rainfall,127

large ensemble spread and the lack of seasonal pre-128

dictability of intraseasonal variability are some of the129

challenges that face monsoon seasonal prediction (Sper-130

ber et al, 2000; Krishnamurthy and Shukla, 2007; Kim131

et al, 2012; Rajeevan et al, 2012; Sperber et al, 2013).132

Here, we assess Indian summer monsoon seasonal133

forecasts in GloSea5-GC2, the Met Office fully cou-134

pled subseasonal to seasonal ensemble forecasting sys-135

tem. We assess the representation of the tropical mean136

state, the prediction skill of monsoon rainfall (all In-137

dia rainfall, AIR) and representation of relationships138

between monsoon rainfall and ENSO, the IOD, the At-139

lantic Niño and HimTP snow cover. In this publica-140

tion we focus on the interannual variability of monsoon141

rainfall; a future publication will focus on intraseasonal142

variability (Jayakumar et al, 2016).143

In Section 2 we describe the forecast system, the in-144

tegrations analysed and our analysis techniques. In Sec-145

tion 3 we describe the global properties of the forecast146

system, including mean state biases and maps of en-147

semble signal-to-noise ratios. In Section 4 we assess the148

interannual prediction skill of Indian summer monsoon149

rainfall. In Section 5 we use multiple regression analy-150

sis to assess the representation of relationships between151

AIR and sources of predictability. Where the regression152

analysis indicates these relationships are poorly repre-153

sented, we explore the mechanisms behind these rela-154

tionships in more detail, to determine the source of the155

errors. We conclude in Section 6.156

2 Methodology157

2.1 GloSea5-GC2158

Full details of the GloSea5-GC2 configuration are de-159

scribed in Williams et al (2015), so we limit our descrip-160
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tion here to a brief introduction of the componant mod-161

els. GloSea5-GC2 uses the MetUM global atmosphere162

6.0 (GA6.0) configuration at N216 resolution (0.833◦ ×163

0.556◦) with 85 vertical levels (Walters et al, 2015). It164

includes a stochastic physics scheme, Stochastic Kinetic165

Energy backscatterv2 (SKEB2, Bowler et al, 2009), to166

represent unresolved stochasticity. SKEB2 introduces167

small grid-level perturbations throughout the integra-168

tions to create ensemble spread. The global land 6.0169

(GL6.0) configuration of JULES (Best et al, 2011; Wal-170

ters et al, 2015) with four vertical soil levels is “tightly171

coupled” to the MetUM: integrated on the MetUM grid172

as part of the same executable. The MetUM is cou-173

pled on a three-hourly time scale to ocean and sea ice174

models using the OASIS3 coupler (Valcke, 2013). The175

global ocean 5.0 (GO5.0) configuration of the Nucleus176

for European Modelling of the Ocean (NEMO) model177

is integrated on the ORCA 0.25◦ tripolar grid with 75178

vertical levels. The level thickness is a double tanh func-179

tion of depth such that the level spacing increases from180

1 m near the surface to 200 m at 6000 m (Megann181

et al, 2014). The global sea ice 6.0 configuration of the182

Los Alamos sea ice model (CICE) is tightly coupled to183

NEMO on the NEMO grid (Rae et al, 2015; Megann184

et al, 2014) and integrated with five sea-ice thickness185

categories.186

2.2 Hindcast set187

The hindcast set we assess here is composed differently188

than the ensemble used for operational seasonal fore-189

casts and from the hindcasts used to bias correct the op-190

erational forecast. For comparison, we describe the op-191

erational forecast system before describing the dataset192

we use here.193

In the operational forecast system, two seasonal fore-194

cast ensemble members are initialised every day and195

integrated for 210 days. Three weeks of ensemble mem-196

bers are combined to create the operational seasonal197

forecast, a total of 42 ensemble members in each fore-198

cast. These are bias corrected using a 14 year (1996-199

2009), three ensemble member hindcast set initialised200

on the 1, 9, 17 and 25th of each month. The four nearest201

weeks of hindcasts, a total of 12 ensemble members, are202

weighted, combined, and then used to bias correct the203

forecasts. The GloSea5-GC2 operational forecast sys-204

tem is fully described in MacLachlan et al (2015).205

The hindcast set in this study contains 20 years of206

hindcasts, spanning 1992 to 2011, which are initialised207

on three start dates, 25 April, 1 May and 9 May. They208

are integrated for 140 days, ending on 11, 17 and 25209

September. To assess seasonal monsoon rainfall, we val-210

idate JJA values, leaving a forecast lead time of ap-211

proximately one month. For years 1992 through 1995,212

2010 and 2011 eight ensemble members are initialized213

on each start date, resulting in 24 members for each214

hindcast year. For 1996 through 2009, five ensemble215

members are initialized on each start date, resulting216

in 15 members for each hindcast year.217

The MetUM and JULES are initialised from daily218

ERA-Interim reanalysis (gridded to 0.75 × 0.75◦, Dee219

et al, 2011). JULES soil moisture is initialised from a220

JULES re-analysis climatological seasonal cycle of soil221

moisture calculated (1989 to 2011). NEMO and CICE222

are initialised from the GloSea5 Ocean and Sea ice anal-223

ysis using the GloSea5 global ocean 3.0 system (here-224

after referred to as the GloSea5-GO3 analysis), which is225

driven by ERA-Interim reanalysis and incorporated us-226

ing the NEMOVAR data assimilation scheme (Blockley227

et al, 2014). NEMOVAR is based on NEMO and CICE228

using the same resolution and similar parametrisations229

as the forecast model configurations (Mogensen et al,230

2009).231

A climatological seasonal cycle of solar forcing is232

prescribed. Climate forcings such as CO2 are set to ob-233

served values until the year 2005, and subsequently fol-234

low the Intergovernmental Panel on Climate Change235

RCP4.5 scenarios. Other aerosols are updated every236

five days and use a climatological seasonal cycle derived237

from previous versions of the MetUM. Ozone concentra-238

tions are updated every 30 days and are set to the ob-239

servational climatology of the Stratosphere-troposphere240

Processes And their Role in Climate (SPARC, Cionni241

et al, 2011) dataset (1994 to 2005). Further details are242

described in MacLachlan et al (2015) and Williams et al243

(2015).244

2.3 Analysis techniques245

2.3.1 Multiple linear regression analysis246

To assess relationships between Indian rainfall and slowly247

varying boundary conditions, we perform multiple lin-248

ear regression analysis. We use the “regress” function249

in IDL8.2 (modified version of “regres” in Bevington,250

1969), which uses all independent variables to minimise251

the overall residual and give the best fit. We assess252

goodness of fit using the coefficient of determination,253

or R2, value. In the case of a perfect fit, R2 = 1; in the254

case of no relationship, R2 = 0. In addition to the re-255

gression coefficients (the slopes of the regression lines)256

we analyse the standard error of the regression fit. The257

standard error is the sampling error in the regression258

coefficient assuming the data is normally distributed259

about the fit.260
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2.3.2 Forward selection of parameters261

To diagnose the relative importance of independent vari-262

ables in our multiple regression analysis, we use for-263

ward selection (Wilks, 2006). First, a single linear re-264

gression is calculated between the dependent variable265

and each independent variable in turn. The indepen-266

dent variable with the highest R2 is noted. Then a two267

parameter regression is calculated using this indepen-268

dent variable and each of the remaining independent269

variables in turn. The regression with the highest R2
270

is kept and so on, until all independant variables have271

been included in the fit. The change in the R2 value272

as each independent variable is added to the regression273

indicates the importance of each of the independent274

variables to the final regression.275

2.3.3 Samples of ensemble members276

To validate GloSea5-GC2 against observations, it is cru-277

cial that we do not solely analyse the ensemble mean.278

Observations contain chaotic noise as well as variability279

forced by slowly varying components of the climate sys-280

tem (e.g. Palmer and Anderson, 1994; Goddard et al,281

2001). Ensemble averaging reduces noise, reducing the282

total atmospheric variability and increasing the relative283

contribution of forced variability to the total variabil-284

ity. To accurately compare GloSea5-GC2 variability to285

observed variability and to reduce the risk of mistak-286

ing noise in observations for forced variability, we must287

compare individual ensemble members from the hind-288

cast set to observations. To accomplish this we repeat289

our statistical calculations, such as the regression analy-290

sis in Section 5, on many samples of ensemble members291

and compare a distribution of the resulting values, such292

as regression coefficients, to a single observed value.293

In this article, most metrics require a twenty year294

JJA time series from the hindcast set. We create many295

JJA time series for our statistical calculations by com-296

bining different ensemble members from different years.297

Ensemble members with the same start date are ini-298

tialised identically, so any combination ensemble mem-299

bers with the same start date can be used.300

The first step is to create five time series for each of301

the start dates by randomly sampling ensemble mem-302

bers with the same start date from each hindcast year303

without replacement. In years with five members for304

each start date, each of the five ensemble members is305

used in one of these time series. In years with eight en-306

semble members for each start date, five of the eight307

members are used in these five time series. There are308

three start dates in the hindcast set, so this process309

results in 15 time series. We then repeat this process310

N times. We raised N until raising it further did not311

change the results, to N = 2000, creating 3 × 104 JJA312

time series which we refer to as “hindcast samples.”313

In these samples, every ensemble member in the years314

with five ensemble members for each start date is used315

an equal number of times. In the years with eight en-316

semble members for each start date, each individual317

member is used fewer times and it is also possible that318

some members are used more than others. Given the319

large value of N we would not expect this to affect our320

results.321

2.4 Observational and reanalysis datasets322

To assess precipitation we use the Global Precipitation323

Climatology Project (GPCP) Version 2.2 Monthly Pre-324

cipitation Analysis (Adler et al, 2003). GPCP is a 2.5◦325

gridded merged analysis that incorporates precipitation326

estimates from low-orbit satellite microwave data, geo-327

stationary satellite infrared data and surface rain gauge328

observations. GloSea5-GC2 data are bilinearly interpo-329

lated to the GPCP grid for comparison.330

We assess winds using the European Centre for Medium-331

Range Weather Forecasts (ECMWF) ERA-Interim at-332

mospheric reanalysis product gridded to 0.70 × 0.70◦333

(Dee et al, 2011). Fields were interpolated to the Me-334

tUM grid and compared on equivalent pressure lev-335

els. We assess snow using snow water equivalent (snow336

mass) from ERA-Interim/Land, a global land surface337

reanalysis dataset driven by ERA-Interim (Balsamo et al,338

2015), which is also interpolated to the MetUM grid for339

comparison.340

SST is assessed using the GloSea5-GO3 analysis used341

to initialise the NEMO ocean model, as described in342

Section 2.2, interpolated to the MetUM grid. The ocean343

temperature profile is assessed using the EN4.1.1 anal-344

yses (1◦ × 1◦, Good et al, 2013). This analysis includes345

ocean temperature and salinity profiles from many sources,346

including the Global Temperature and Salinity Profile347

Program and the Argo dataset, which are quality con-348

trolled before creating the analysis. An updated version349

of the Gouretski and Reseghetti (2010) bias correction350

is then applied. Profiles are compared on their native351

levels.352

All fields are compared over 1992 to 2011. In the353

rest of this paper, when a combination of observations354

and reanalysis are used to validate the model they will355

be collectively referred to as “observations.”356
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Fig. 1 Ensemble mean JJA (a) precipitation and 850 hPa winds in GloSea5-GC2, (b) SST and surface wind stress in GloSea5-
GC2, (c) precipitation and 850 hPa winds bias with respect to GPCP and ERA-Interim, (d) SST and surface wind stress bias
with respect to GloSea5-GO3 analysis and ERA-Interim.

3 Forecast system global performance357

3.1 Ensemble mean bias358

The GloSea5-GC2 ensemble mean JJA precipitation359

and 850 hPa winds are shown in Figure 1a alongside360

their bias with respect to GPCP and ERA-Interim in361

Figure 1c. Precipitation biases in the Indo-Pacific are362

similar to those seen in the CMIP5 models (Sperber363

et al, 2013) and state-of-the-art seasonal forecast sys-364

tems (Rajeevan et al, 2012; Kim et al, 2012), with ex-365

cess precipitation over the WEIO and western north366

Pacific and a deficit of precipitation over India, the367

Maritime Continent and the EEIO. The deficit of pre-368

cipitation over India (AIR deficit of 0.72 mm day−1)369

is largely due to a climatologically late onset of the370

monsoon in GloSea5-GC2, which reduces the precipita-371

tion over and around India in May and June. Precip-372

itation is similar to the observed climatology in July373

and August (not shown). Monsoon westerlies, which374

extend from the Arabian Peninsula across the Indian375

and Indochina peninsulas, are overly strong in GloSea5-376

GC2, in contrast to the CMIP5 multi-model mean weak377

bias (Sperber et al, 2013). This is likely associated with378

the overly strong precipitation and convergence in the379

western north Pacific in GloSea5-GC2 and a smaller380

Arabian Sea cold bias than is generally seen in the381

CMIP5 models (Levine et al, 2013). The well docu-382

mented Arabian Sea cold SST bias in coupled GCMs383

tends to weaken the monsoon circulation and monsoon384

precipitation, but initialisation in May prevents the growth385

of a large bias (Levine and Turner, 2012; Levine et al,386

2013, personal communication R. Levine). The excess387

precipitation bias in the western north Pacific seen in388

GloSea5-GC2 is also associated with the cyclonic wind389

bias over the western north Pacific and east Asia (Bush390

et al, 2015).391

GloSea5-GC2 JJA SST and wind stress are shown392

alongside their biases in Figure 1b and Figure 1d. The393

eastern side of each ocean basin shows an equatorial394
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cold bias. Equatorial cold biases are common in cou-395

pled models (e.g. Li and Xie, 2012, 2014) and seasonal396

forecast systems (Kim et al, 2012; Vanniere et al, 2013),397

especially in the Pacific. GloSea5-GC2 also has a cold398

SST bias associated with the western north Pacific ex-399

cess precipitation bias and a warm bias in the west-400

ern Indian Ocean opposite the cold bias in the EEIO.401

Large wind stress biases are associated with many of402

the cold SST biases in the warm pool region, including403

the EEIO, Bay of Bengal, South China Sea and west-404

ern north Pacific. We address how these Indian Ocean405

biases may be impacting the monsoon rainfall forecast406

skill in Section 5.2.2.407

3.2 Ensemble spread408

To quantify the ensemble spread in the forecast sys-409

tem, we calculate the signal-to-noise ratio (S/N) of JJA410

anomalies, defined as the ratio of the variance of the en-411

semble mean anomaly time series to the average vari-412

ance of the ensemble member anomalies in each year413

(Rowell et al, 1995; Kang and Shukla, 2006). If S/N > 1414

then the interannual variability in the ensemble mean415

is greater than the average ensemble spread. In Fig-416

ure 2 we show S/N maps for JJA precipitation and417

zonal vertical wind shear (850-200 hPa), which is a di-418

agnostic of the large-scale monsoon circulation related419

to the strength of the monsoon diabatic heating (Gill,420

1980; Webster and Yang, 1992). In both metrics, there421

is lower S/N in the Indian Ocean than in the other422

ocean basins. JJA precipitation S/N > 1 is confined423

to the equatorial Pacific and Maritime Continent, in-424

dicating that the precipitation anomalies most directly425

forced by ENSO SST anomalies have the highest S/N .426

S/N can also be expressed as a theoretical limit427

on the correlation skill, using the expression Rlimit =428
√

S/N
S/N+1

(Kang and Shukla, 2006). A Rlimit = 0.5 con-429

tour is shown on both panels of Figure 2. The precip-430

itation Rlimit exceeds 0.5 over most of the equatorial431

oceans and the circulation Rlimit exceed 0.5 throughout432

the tropics. This indicates that the S/N of GloSea5-433

GC2 is high enough to permit precipitation and circu-434

lation correlation skill greater than 0.5 over much of the435

tropics.436

3.3 Anomaly correlations437

To assess the global forecast skill, in Figure 3 we show438

the grid point anomaly correlations of GPCP JJA pre-439

cipitation and the ERA-Interim vertical wind shear with440

their GloSea5-GC2 ensemble mean equivalents. In both441

fields, significant skill (0.44, p < 0.05) is restricted to442

the tropics, consistent with other state-of-the-art sea-443

sonal forecasting systems (Kim et al, 2012). Precipita-444

tion prediction skill is lower than circulation prediction445

skill. In both circulation and precipitation, the lowest446

skill in the tropics is located in the Indian Ocean, sug-447

gesting difficulties in seasonal prediction of the South448

Asian monsoon system. In the next section we exam-449

ine the prediction skill of Indian monsoon precipitation450

and the South Asian monsoon circulation in detail.451

4 Indian summer monsoon forecast skill452

JJA AIR is a commonly used measure of seasonal mon-453

soon rainfall (e.g. Rajeevan et al, 2012; Nanjundiah454

et al, 2013) and is reported in seasonal forecasts issued455

by the Indian Meteorological Department1. The inter-456

annual variation of AIR does not necessarily reflect the457

regional detail of the interannual variation of Indian458

rainfall (e.g. Ihara et al, 2007), but AIR is convenient459

for conducting a first-order assessment of monsoon sea-460

sonal prediction skill. JJA AIR anomalies in GPCP and461

GloSea5-GC2 are shown in Figure 4. The box plots rep-462

resent the minimum, median, maximum and interquar-463

tile range of the ensemble, while the diamond represents464

the ensemble mean. In some years, such as 2008, the465

forecast is very good, with tight ensemble spread. In466

other years, such as 1997, all of the ensemble members467

predict the incorrect sign of the precipitation anomaly.468

Overall, the ensemble spread is large compared to the469

size of the anomalies, consistent with the S/N map in470

Figure 2a. It is rare that all ensemble members predict471

anomalies of the same sign.472

JJA anomalies of the Webster-Yang dynamical in-473

dex, an index representing the strength of the large-474

scale monsoon circulation using the vertical zonal wind475

shear over a large domain (difference between 850 hPa476

and 200 hPa over 40◦ to 110◦E, 0◦ to 20◦N; Webster477

and Yang, 1992), are also shown in Figure 4. There is478

not a one-to-one relationship between correctly predict-479

ing Indian precipitation anomalies and correctly pre-480

dicting the large scale circulation anomalies. In some481

years, such as 1997, the circulation anomaly is well pre-482

dicted while the precipitation anomaly is poorly pre-483

dicted. In other years, such as 1996, the precipitation is484

well predicted and the circulation is poorly predicted. In485

GloSea5-GC2, the monsoon circulation and precipita-486

tion over India are strongly related, with the ensemble487

mean correlating at 0.67 (p < 0.01). However, in the488

observations, they are quite unrelated, with a correla-489

tion of 0.18 (p > 0.1). This indicates precipitation over490

India is too directly forced by the large scale circulation491

1 http://www.imd.gov.in/pages/monsoon main.php
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Fig. 2 Maps of GloSea5-GC2 JJA signal-to-noise ratio (see Section 3.2) for (a) precipitation and (b) zonal vertical wind shear
(850 hPa - 200 hPa). A signal-to-noise ratio greater than one is indicated by the dark solid contour. A theoretical correlation
limit (Rlimit) of 0.5 is indicated by the red contour.
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Fig. 3 Grid-point anomaly correlations of GPCP JJA precipitation and ERA-Interim JJA vertical wind shear with their
GloSea5-GC2 ensemble mean equivalents. Significant skill (0.44, p < 0.05) is shaded, while lower skill is contoured at 0.2 and
0.4.

in GloSea5-GC2. Ensemble spread in the Webster-Yang492

index is still large compared to the magnitude of the493

mean anomaly, but less so than in JJA AIR, consistent494

with the S/N maps in Figure 2.495

A simple measure of forecast skill is the correlation496

of observed and ensemble mean anomaly time series,497

such as those shown in Figure 4. We have listed these498

correlations in Table 1. The correlation of the GPCP499

and GloSea5-GC2 ensemble mean JJA AIR anomaly500

time series is 0.41 (p < 0.1). This indicates a mod-501

est level of skill, consistent with other forecast systems502

(Rajeevan et al, 2012). The Wang-Fan dynamical index503

represents the strength of the local Indian monsoon cir-504

culation in the northern Indian Ocean and over India505

itself using horizontal shear in the 850 hPa zonal winds506

(difference between 40◦ to 80◦E, 5◦ to 15◦N and 70◦ to507

90◦E, 20◦ to 30◦N Wang and Fan, 1999). The Wang-508

Fan index shows a very similar correlation value (0.36,509

p > 0.1) to AIR, suggesting modest skill in predicting510

the local Indian monsoon circulation is related to the511

modest skill in predicting AIR.512

The Webster-Yang dynamical index has a higher513

correlation of 0.66 (p < 0.01). This indicates that the514

large scale South Asian monsoon circulation is better515

predicted than the local Indian monsoon circulation516

and rainfall over India, consistent with the global corre-517

lation maps (Figure 3). However, this skill in predicting518

the Webster-Yang index is lower than that seen over a519

longer time period (1982-2009) with similar lead times520

and numbers of ensemble members in CfSv4 (0.74, p <521
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Fig. 4 JJA AIR (top) and Webster-Yang dynamical index (bottom) anomalies in GloSea5-GC2 (red), GPCP (top, black) and
ERA-Interim (bottom, black). Box plots represent minimum, median, maximum and interquartile ranges of the ensemble, and
the red diamond represents the ensemble mean. The Webster-Yang dynamical index subtracts the 850 hPa winds from the 200
hPa winds over 40◦ to 110◦E and 0◦ to 20◦N (Webster and Yang, 1992).

Table 1 Evaluating the GloSea5-GC2 skill in representing JJA monsoon precipitation and circulation index anomalies (indices
defined in the text). Column 1 lists the correlation of observed JJA anomalies with GloSea5-GC2 ensemble mean anomalies.
Columns 2 and 3 compare the observed interannual standard deviation (σ) to the hindcast sample median σ in mm day−1

(see Figure 5).

Correlation of Observations Hindcast sample
ensemble mean interannual σ median σ

AIR 0.41 0.69 1.06
Wang-Fan index 0.36 0.66 0.89
Webster-Yang index 0.66 1.21 1.62

0.01) and ECMWF System 4 (0.78, p < 0.01, Kim et al,522

2012).523

To evaluate the interannual variance, we calculate524

standard deviations (σ) of the JJA time series of AIR,525

Wang-Fan dynamical index and Webster-Yang dynam-526

ical index. Ensemble averaging enhances the compo-527

nent of interannual variability forced by slowly vary-528

ing components of the climate system relative to at-529

mospheric noise, likely artificially lowering the interan-530

nual variance relative to observations. Accordingly, we531

do not compare the ensemble mean σ to the observa-532

tions. Instead we create distributions of σ for each index533

(Figure 5) using the hindcast samples described in Sec-534

tion 2.3.3 and compare the median to the observed σ535

in Table 1. We find that in all indices, the variance in536

GloSea5-GC2 is too high, with the observed σ well sep-537

arated from the hindcast sample distribution. This is538

consistent with the high ensemble spread seen in Fig-539

ures 2 and 4.540

5 Relationship between AIR and drivers of541

monsoon interannual variability542

Slowly evolving boundary conditions such as SST, snow543

and soil moisture provide sources of tropical rainfall544

seasonal prediction skill (Charney and Shukla, 1981).545

In this section, we assess the representation of relation-546

ships between AIR and slowly evolving boundary con-547
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Fig. 5 Histograms of the standard deviation (σ) of JJA
anomalies of monsoon precipitation and circulation indices
in the hindcast sample time series. Medians of these distri-
butions are compared to observed σ in Table 1. The hindcast
samples are described in Section 2.3.3.

ditions in GloSea5-GC2. We perform a multiple linear548

regression analysis of AIR in observations and GloSea5-549

GC2 using indices representing modes of variability such550

as ENSO and the IOD as independent variables. We551

use the regression coefficients as a diagnostic of the re-552

lationships and explore sources of error in relationships553

that are poorly represented. Correcting these errors has554

potential to improve forecast skill, making them impor-555

tant targets for model development.556

5.1 Indices557

We use five indices of slowly varying boundary condi-558

tions in our analysis. Four indices represent three modes559

of SST variability: ENSO, the IOD and the Atlantic560

Niño. The final index represents interannual variability561

in snow mass over the HimTP. Each index has published562

proposed physical mechanisms that link their interan-563

nual variability to interannual variability in AIR (see564

review in Section 1). Table 2 defines the indices used.565

JJA anomalies are calculated relative to the time pe-566

riod covered by the hindcast set, 1992 to 2011, and are567

not standardised.568

In Figure 6, regions used to calculate SST indices569

(Table 2) are overlaid on a JJA interannual correlation570

map of GloSea5-GO3 analysis SST and GloSea5-GC2571

ensemble mean SST. GloSea5-GC2 has much higher572

prediction skill for SST than it does for precipitation573

or the circulation (Figure 3). There are significant cor-574

relation values across the globe, but the highest values575

are in the tropics. We use the Niño-3.4 index to repre-576

sent the overall amplitude of ENSO and a trans-Niño577

index (TNI), calculated by subtracting the Niño-4 index578

0.
2 0.20.
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Fig. 6 Interannual correlation map of GloSea5-GO3 analy-
sis and GloSea5-GC2 ensemble mean JJA SST. Grid points
where the correlation is significant (0.44, p > 0.05) are
shaded, while lower values are contoured. Most correlations
are significant. The regions used as indices to represent modes
of SST variability are outlined on this figure and listed in
Table 2. Note that the Niño-4 region used to calculate the
TNI index overlaps with the Niño-3.4 region from 120◦W to
150◦W.

from the Niño-1.2 index, to represent the zonal position579

of the heating. TNI has a positive value in an east Pa-580

cific El Niño, and a negative value in a central Pacific581

El Niño (Trenberth and Stepaniak, 2001). The IOD is582

represented by the IOD index (Saji et al, 1999), and the583

Atlantic Niño is represented by averaging SST anoma-584

lies over the region used in Kucharski et al (2007, 2008)585

(note this is the negative of the index used in Kucharski586

et al, 2007, 2008). The correlations of the GloSea5-GO3587

analysis and the GloSea5-GC2 ensemble mean SST in-588

dices are is listed in Table 2. All four correlation val-589

ues are high and significant (p < 0.01) and the ENSO590

indices (Niño-3.4 and the TNI) have the highest val-591

ues. The GloSea5-GC2 skill in predicting these indices592

should generate AIR prediction skill if the mechanism593

linking them is well represented.594

Following Turner and Slingo (2011), who showed595

that snow cover over HimTP is the most relevant to596

AIR interannual variability, we adopt their HimTP in-597

dex (Table 2). Figure 7 shows this region, as well as598

the JJA climatological snow mass over the HimTP in599

GloSea5-GC2 (Figure 7a), the JJA bias against ERA-600

Interim/Land (Figure 7b) and the JJA interannual cor-601

relation map with ERA-Interim/Land (Figure 7c). In602

ERA-Interim/Land, not much snow is present in JJA;603

the climatological HimTP JJA snow depth is only 2.56604

cm of snow water equivalent (SWE). However, GloSea5-605

GC2 is missing 37% of the ERA-Interim/Land snow606

mass; a bias of -0.96 cm SWE. The correlation map607
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Table 2 Definition of JJA indices used as independent variables in the regression analysis, including the quantity and averaging
domain. Also listed are the interannual standard deviations (σ) of the JJA indices in GloSea5-GO3 analysis and ERA-
Interim/Land, and the interannual correlation of the indices with the GloSea5-GC2 ensemble mean indices.

Index Quantity Domain Reanalysis σ Correlation
Niño-3.4 SST 120◦- 170◦W, 5◦S - 5◦N 0.68 (◦C) 0.87
IOD SST difference between 0.49 (◦C) 0.71

50◦ - 70◦E, 10◦S - 10◦N and
90◦ - 110◦E, 10◦S - 0◦

ATL SST 30◦W - 10◦E, 20◦S - 0◦ 0.40 (◦C) 0.79
TNI SST difference between 1.30 (◦C) 0.91

80◦ - 90◦W, 10◦S - 0◦ and
160◦E - 150◦W, 5◦S - 5◦N

HimTP Snow water equivalent (SWE) 67.5◦ - 100◦E, 27.5◦- 40◦N 0.07 (cm SWE) 0.46
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Fig. 7 a) Climatological JJA snow depth in GloSea5-GC2. b) JJA bias against ERA-Interim/Land. Also shown, as the dashed
line, is the region used to calculate the HimTP index (Table 2). c) JJA interannual correlation map of ERA-Interim/Land and
GloSea5-GC2 ensemble mean SWE. Grid points where the correlation is significant (0.44, p > 0.05) are shaded, while lower
values are contoured at 0.0, 0.2 and 0.4. Most correlations are in this domain insignificant.

shows that the interannual prediction skill of GloSea5-608

GC2 snow mass in the region is low, though it tends to609

be higher in the locations with the most snow. The in-610

terannual correlation of the HimTP index is 0.46 (p <611

0.05, Table 2), indicating modest skill. Consequently,612

even if the mechanism linking HimTP snow to AIR is613

well represented in GloSea5-GC2, HimTP snow may614

contribute little to the overall prediction skill of AIR.615

5.2 Regression616

To assess the relationship between AIR and the indices617

listed in Table 2, we perform a five parameter multiple618

regression analysis with each index included as an inde-619

pendent variable. We first perform this analysis on the620

observed and ensemble mean indices. However, ensem-621

ble averaging enhances the component of interannual622

variability forced by slowly varying boundary condi-623

tions relative to atmospheric noise, so comparing the624

relationships in the ensemble mean to the relationships625

in observations is unfair. To make a fair comparison,626

we perform our regression analysis on the many indi-627

vidual 20 year JJA series selected from our ensemble628

members, as described in Section 2.3.3. We use the re-629

gression coefficients for each index, the standard error630

for each coefficient (a measure of uncertainty in the re-631

gression coefficient), and the final R2 value for the fit in632

our analysis (see Section 2.3.1 for a detailed description633

of each of these statistics). Performing the regression634

analysis on the hindcast samples creates a distribution635

of each statistic, which illustrates the ensemble spread,636

to compare to the single value from the observations.637

The median of each distribution is listed in Table 3 with638

the statistics from the observed and ensemble mean re-639

gressions. We also show the hindcast sample distribu-640

tions for the regression coefficients and the R2 value in641

Figure 8.642

The ensemble mean R2 (Table 3) is much higher643

than the observed R2, demonstrating that ensemble av-644

eraging enhances the forced component of the variabil-645

ity relative to the noise. In the rest of our analysis,646

we only compare the statistics from the hindcast sam-647

ples to the observations. The hindcast sample median648

R2 is lower than that of the observations, indicating649

there could be predictability from these indices that is650
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unexploited in the GloSea5-GC2 system. However, the651

observed R2 value falls well within the R2 distribution652

in Figure 8, suggesting the R2 values of the observa-653

tions and GloSea5-GC2 are consistent within the en-654

semble spread in GloSea5-GC2. We will now examine655

the regression coefficient from each index in turn, as656

a diagnostic of the relationship between AIR and that657

index.658

5.2.1 ENSO659

As expected, the observations show a negative regres-660

sion between Niño-3.4 and AIR in Figure 8, indicating661

that a positive Niño-3.4 anomaly, i.e. El Niño condi-662

tions, reduces AIR. The GloSea5-GC2 hindcast sample663

peak matches the observed value well, indicating the664

relationship between AIR and Niño-3.4 is well repre-665

sented. Regression maps of SST and precipitation on to666

the Niño-3.4 index confirm that the ENSO teleconnec-667

tions in observations and GloSea5-GC2 hindcasts are668

spatially very similar (not shown). This is likely the669

main source of the prediction skill in the Webster-Yang670

large-scale dynamical index (Figure 4).671

The observations show a weak negative relationship672

between TNI and AIR, suggesting that an East Pa-673

cific El Niño decreases AIR more than a central Pa-674

cific El Niño, which disagrees with Krishna Kumar et al675

(2006). However, the regression is weak, with a 1σ vari-676

ation in TNI resulting in a reduction in AIR of 0.14677

mm day−1 (using Tables 2 and 3). There are also only678

three El Niño years in our hindcast set (JJA Niño-3.4679

anomaly > 0.5◦C), and one of them is the very large680

east Pacific El Niño event of 1997, which likely domi-681

nates the relationship. Consequently, it is not surprising682

that the relationship between TNI and AIR is weak over683

this time period. The hindcast set replicates this weak684

relationship, with the peak of the distribution aligning685

with the observed value. This analysis indicates that686

the relationship between ENSO and AIR is well repre-687

sented in GloSea5-GC2.688

5.2.2 Indian Ocean dipole689

As expected, the observations show a large positive re-690

gression between the IOD index and AIR, indicating a691

positive IOD increases AIR. The hindcast samples also692

show a positive regression, but at a much smaller value,693

and the value derived from observations falls in the ex-694

treme tail of the hindcast sample distribution. This sug-695

gests the relationship between the IOD and AIR is too696

weak in GloSea5-GC2.697

To confirm this interpretation and diagnose any re-698

lated errors in GloSea5-GC2, we calculate a multiple699

regression with the same independent variables at each700

grid point in JJA maps of SST, land precipitation and701

850 hPa zonal and meridional winds. In Figure 9, the702

IOD index regression coefficient is shown for the ob-703

servations, analogous to the dashed line on the IOD704

panel of Figure 8, and for the hindcast sample median,705

analogous to the median of the distribution in the IOD706

panel of Figure 8. In the observations, the expected707

IOD SST anomalies are clear, with warm anomalies in708

the WEIO and cool anomalies in the EEIO, especially709

off the coast of Sumatra and Java (Saji et al, 1999;710

Webster et al, 1999). The SST anomalies are associ-711

ated with wind anomalies, including a strengthening of712

equatorial easterly winds and strengthening of the west-713

erlies across the Arabian Sea, India and Indochina. This714

brings increased moisture transport to India, increasing715

monsoon precipitation (Ashok et al, 2001). In GloSea5-716

GC2, the EEIO anomalies are too cold and extend to717

70◦E, too far west. The WEIO SST anomalies are not718

warm enough, reducing the anomalous zonal SST gradi-719

ent. The circulation anomalies and Indian precipitation720

anomaly are also weak.721

Using wind stress correction experiments in HiGEM,722

an older version of the coupled MetUM (Shaffrey et al,723

2009), Marathayil (2013) demonstrated that similar er-724

rors in IOD SST anomalies were due to a coupled mean725

state bias in the Indian Ocean. Stronger than observed726

mean state easterlies in the EEIO, which are related727

to errors in convective precipitation in the WEIO, lead728

to cooler than observed EEIO SSTs and increased up-729

welling, shoaling the thermocline in the east. The erro-730

neously cool EEIO SSTs and erroneously warm WEIO731

SSTs reinforce the erroneously strong easterlies. This732

is consistent with the GloSea5-GC2 precipitation, SST733

and winds biases shown in Figure 1. We show the en-734

semble mean IO vertical temperature profile averaged735

from 3◦S to 3◦N in GloSea5-GC2 compared to EN4736

analysis in Figure 10. The 20◦C isotherm is highlighted737

as a proxy for thermocline depth. The thermocline is738

slightly too deep in the WEIO, and much too shallow739

in the EEIO in GloSea5-GC2, also consistent with the740

HiGEM bias (Marathayil, 2013).741

This coupled mean state bias results in errors in the742

representation of the IOD. The shallower thermocline743

makes the EEIO SSTs more susceptible to wind anoma-744

lies during IOD initiation, leading to erroneously cool745

SST anomalies. The erroneous SST anomalies cause er-746

rors in the anomalous circulation and Indian precipi-747

tation, which could be further exacerbated by known748

errors in the representation of convective precipitation749

over the WEIO and India (Figure 1 and e.g. Bush et al,750

2015). Marathayil (2013) demonstrated that mean state751

wind stress corrections in the EIO decrease these mean752
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Fig. 8 Regression coefficients and R2 from the five parameter JJA AIR multiple regression analysis. The dashed lines are the
regression coefficients from observations, and the distributions in the solid lines show the results from many JJA series selected
from the ensemble members in the GloSea5-GC2 hindcast set (Section 2.3.3).
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Fig. 9 Maps of the IOD regression coefficient from the five parameter regression analysis computed at each grid point of JJA
SST, land precipitation and 850 hPa winds in (a) GloSea5-GO3 analysis, GPCP and ERA-Interim and (b) GloSea5-GC2. For
GloSea5-GC2, the regression is calculated for each hindcast sample and the median is taken at each grid point. The map in
(a) is equivalent to the dotted line in the IOD panel of Figure 8 at each grid point and the map in (b) is equivalent to the
median of the distribution in the IOD panel of Figure 8 at each grid point.
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Table 3 The regression coefficient and standard error for each independent variable in the multiple regression analysis of
JJA indices with JJA AIR. The R2 value for the regression is also listed. The statistics from the multiple regression analysis
of the observations, statistics from the multiple regression analysis of the ensemble mean and the median of the hindcast
sample statistics (median regression coefficient and median standard error) are all shown. The final line shows only the HimTP
regression coefficient and standard error from a multiple regression analysis of June indices with June AIR. The units of
regression coefficients and standard errors for SST indices are mm day−1 ◦C −1. The units of regression coefficients and
standard errors for the HimTP snow indices are mm day−1 cm SWE −1.

Obs and Analysis Ensemble mean Ensemble median
Niño-3.4 −0.82 ± 0.21 −0.68 ± 0.13 −0.74 ± 0.24

IOD 1.22 ± 0.26 0.31 ± 0.18 0.31 ± 0.28
Atlantic −0.64 ± 0.33 0.41 ± 0.38 0.15 ± 0.61

TNI −0.10 ± 0.09 −0.02 ± 0.08 −0.03 ± 0.16
HimTP Snow 1.45 ± 1.62 −1.06 ± 2.13 −0.35 ± 3.15

R2 0.66 0.79 0.56
June HimTP Snow −1.54 ± 1.21 −2.14 ± 2.63 −2.18 ± 4.70
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Fig. 10 Vertical profiles of Indian Ocean temperature at the equator, averaged from 3◦N to 3◦S, in (a) GloSea5-GO3 SST
analysis and EN4 subsurface analysis and (b) the GloSea5-GC2 ensemble mean. Each dataset is plotted on a similar set of its
own levels which are listed on the y-axis. The solid line marks the 20◦C isotherm, a proxy for thermocline depth. The white
gap in the GloSea5-GC2 hindcast data is due to missing data at the location of the Andaman Islands.

state biases and result in a better representation of the753

IOD SST anomalies in HiGEM. Improving this cou-754

pled mean state bias would likely improve AIR predic-755

tion skill and prediction skill in the Indian Ocean basin756

more broadly.757

5.2.3 Atlantic Niño758

As suggested by Kucharski et al (2007, 2008), the ob-759

servations show a negative regression between the At-760

lantic index and AIR, indicating warm tropical Atlantic761

SSTs decrease AIR or, conversely, that cool tropical At-762

lantic SSTs increase AIR. However, the hindcast sam-763

ples show a wide distribution created by the ensemble764

spread in GloSea5-GC2, that peaks at a slightly positive765

value and has tails extending to ±2 mm day−1 ◦C−1.766

While the Niño-3.4 and IOD regression coefficients in767

GloSea5-GC2 have similar standard errors to the stan-768

dard errors derived from observations (Table 3), the769

Atlantic index regression coefficient has nearly double770

the standard error in the hindcast samples than in the771

observations, indicating that the regression values are772

not as constrained in GloSea5-GC2 as they are in the773

observations. These results motivate a more detailed774

analysis of the representation of the mechanism linking775

Atlantic SST anomalies to AIR in GloSea5-GC2.776

Kucharski et al (2007, 2008) use an ensemble of at-777

mospheric GCM integrations, coupled only in the In-778

dian Ocean, to compare experiments forced by interan-779

nually varying Atlantic SSTs with control integrations780

forced by climatological Atlantic SSTs. Their experi-781

ments show an equatorial Rossby wave response to At-782

lantic Niño anomalies which creates a quadrupole struc-783

ture in upper level eddy stream function and modifies784

the low level circulation in the Indian Ocean (Kucharski785

et al, 2007, Figure 6). Cool anomalies create anomalous786
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Fig. 11 Maps of regression coefficients of precipitation (shading, a and b), 850 hPa eddy stream function (contours, a and
b), 200 hPa eddy stream function (contours, c and d) and velocity potential (shading, c and d) regressed against the Atlantic
index in GPCP, ERA-interim and the GloSea5-GC2 hindcast samples that are within 0.05 of the observed Atlantic regression
value in Figure 8. First, each grid point of each of these fields was regressed against the Niño-3.4 index. Then the residual was
regressed against the Atlantic Niño index, creating the regression coefficients shown here. 850 hPa stream function contours
are spaced by 0.3 106 m2 s−1 ◦C−1 and 200 hPa stream function contours are spaced by 106 m2 s−1 ◦C−1.

low level cyclones in the equatorial Indian Ocean on ei-787

ther side of the equator which increase moisture con-788

vergence and precipitation over India (Kucharski et al,789

2008, Figure 3).790

To determine whether this mechanism is acting in791

GloSea5-GC2, we regressed maps of the precipitation,792

850 and 200 hPa eddy stream function, and 200 hPa ve-793

locity potential against the Atlantic index. The Kucharski794

et al (2007, 2008) study included the effects of ENSO in795

both the experiments and the control, so the effects of796

ENSO should be excluded from their results. To anal-797

yse as similar a diagnostic as possible, we first regress798

the GloSea5-GC2 fields against the Niño-3.4 index and799

then regress the residual against the Atlantic index. To800

clarify the response, we calculate the regression maps801

individually for 768 of the 3 × 104 GloSea5-GC2 hind-802

cast samples which have Atlantic regression coefficients803

between -0.59 and -0.69 (within 0.05 of the observed804

value, Figure 8). We averaged the sample regression805

maps to create the final maps shown in Figure 11. We806

also show the equivalent regression maps derived from807

GPCP and ERA-Interim.808

As the hindcast samples were selected based on the809

proximity of their rainfall regression value to the ob-810

served regression value, it is not surprising that nega-811

tive rainfall anomalies over India are associated with812

positive Atlantic SST anomalies in both GPCP and813

the GloSea5-GC2 samples in Figure 11. However, the814

smooth response of the velocity potential and the quadrupole815

structure in upper level stream function shown in Kucharski816

et al (2007) are not present in the GloSea5-GC2 hind-817

cast samples or ERA-Interim. The low level Indian Ocean818

cyclones shown in Kucharski et al (2008), which would819

correspond to the low level anti-cyclones in Figure 11,820

are also missing in GloSea5-GC2. Instead, anomalous821

upper level divergence is seen broadly over the Atlantic822

and west Pacific, and upper level convergence is seen823

in the east Pacific and Indian Ocean, though the mag-824

nitude and pattern differ considerably between ERA-825

Interim and the GloSea5-GC2 samples. There is a low826

level anti-cyclone present over India in ERA-Interim,827

but it is not mirrored south of the equator. There is828

no clear wave-like pattern that is consistent between829

ERA-Interim and GloSea5-GC2 in upper or lower level830
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stream function. Similar maps made using all 3 × 104
831

hindcast samples give similar results (not shown).832

Pottapinjara et al (2014) introduced another diag-833

nostic of the influence of tropical Atlantic SSTs on the834

Indian monsoon. Using NCEP reanalysis (Kanamitsu835

et al, 2002) and the HadISST sst dataset (Rayner et al,836

2003), they correlate Atlantic SST indices with global837

tropospheric temperature anomaly (1000 hPa to 200838

hPa) maps after the influence of ENSO has been re-839

moved from both. This reveals a Gill-type (Gill, 1980)840

tropospheric temperature heating response to warm SSTs841

in the tropical Atlantic that extends into the tropi-842

cal Indian Ocean (Pottapinjara et al, 2014, Figure 10).843

They argue that the tropospheric temperature increase844

in the Indian Ocean reduces the meridional temper-845

ature gradient that drives the South Asian monsoon,846

reducing Indian rainfall. This is consistent with the847

Kucharski et al (2007, 2008) results showing cool trop-848

ical Atlantic SSTs increase Indian rainfall.849

We reproduce this Pottapinjara et al (2014) diagnos-850

tic in ERA-Interim reanalysis and the 768 GloSea5-GC2851

hindcast samples that agree with the observed Atlantic-852

AIR regression coefficient and show it in Figure 12.853

In ERA-Interim, tropospheric temperature warming is854

correlated with the Atlantic index over the tropical At-855

lantic and Indian Ocean. However it does not extend856

as far into the Indian Ocean, or correlate as strongly857

with the Atlantic index as shown in Pottapinjara et al858

(2014). In GloSea5-GC2 the correlation over the trop-859

ical Atlantic is weaker and it does not extend to the860

Indian Ocean. The Atlantic index used in this study is861

different than the Atlantic index used in Pottapinjara862

et al (2014), but repeating the analysis with their Atl3863

index does not change the results.864

We conclude that the wave mechanisms described in865

Kucharski et al (2007, 2008) are not acting in GloSea5-866

GC2, even in the hindcast samples with a similar re-867

gression coefficient to the coefficient derived from ob-868

servations. That ERA-Interim also does not show the869

mechanisms prompts questions about the validity and870

robustness of these mechanisms. Kucharski et al (2007,871

2008) study 1950 to 1999 and Pottapinjara et al (2014)872

study 1979 to 2012, so it is possible that decadal vari-873

ability has altered or obscured this mechanism in the874

1992 to 2011 time period we analyse here. Further study875

of the Atlantic Niño-AIR teleconnection and its varia-876

tion over time is needed to unify these results.877

5.2.4 HimTP snow878

Turner and Slingo (2011) and Senan et al (2015) show,879

using experiments that initialise anomalous snow on880

April 1, that increased HimTP snow cover reduces sur-881

face sensible and long wave heating as proposed by882

Blanford (1884), which delays the onset of the monsoon883

and significantly reduces monsoon rainfall in June. In884

these experiments, snow anomalies persist from April885

through June. The snow anomalies’ impact on June886

monsoon rainfall combines two effects: the effect pre-887

vious, spring snow cover had on the tropospheric tem-888

perature gradient that initiated the monsoon and the889

effect current, June snow cover has on current surface890

temperatures and radiative balances. In order to con-891

sider ensemble members from all initialisation dates in892

the GloSea5-GC2 hindcast set as one ensemble, we must893

analyse the impact of snow anomalies at a time suffi-894

ciently removed from the hindcast initialisation dates.895

Consequently, we do not consider snow before June in896

this analysis. This means we only analyse the relation-897

ship between summer snow cover anomalies and mon-898

soon rainfall anomalies. For consistency with our JJA899

analysis, we initially examine the relationship between900

JJA snow anomalies and JJA rainfall anomalies, but901

later in this section we examine the relationship be-902

tween June snow anomalies and June rainfall anoma-903

lies, where we would expect to see a larger impact.904

In the observations, HimTP snow shows a positive905

regression with AIR in JJA. This is the opposite of906

the expected relationship via the Blanford mechanism907

(Blanford, 1884). A 1σ variation in JJA HimTP snow908

cover results in an increase of 0.1 mm day−1 in JJA909

rainfall (using Tables 2 and 3), indicating almost no910

relationship between JJA HimTP snow and JJA AIR.911

The hindcast samples are consistent with this lack of912

relationship.913

However, Turner and Slingo (2011) showed that the914

main impact of HimTP snow on AIR is in June, and its915

relationship with June precipitation may not be strong916

enough to be detectable in JJA precipitation. To test917

the representation of the relationship in June, we re-918

peated the entire multiple regression analysis with June919

indices and, in Figure 13 and Table 3, we show the920

HimTP snow regression coefficients. The June regres-921

sion derived from observations is indeed negative, but922

roughly the same magnitude as the JJA regression.923

June snow in ERA-Interim/Land has a higher interan-924

nual standard deviation, 0.21 cm SWE, than JJA snow,925

so 1σ variation in June snow leads to a slightly larger926

impact on June rainfall, 0.3 mm day −1. The hindcast927

samples have a broad distribution, peaking at the ob-928

served value, suggesting GloSea5-GC2 is correctly rep-929

resenting this small negative impact current snow cover930

has on June Indian rainfall.931
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Fig. 13 HimTP snow index regression coefficients in the five
parameter June multiple regression analysis. The dashed line
is the observed value, and the distribution in the solid line
shows the results from many June series selected from the
ensemble members in the GloSea5-GC2 hindcast set.

5.3 Forward selection932

To assess the importance of each of these indices to933

this regression, we use forward selection (Section 2.3.2).934

In this technique, indices are each regressed separately935

against AIR. The index with the highest R2 value is936

then regressed against AIR in combination with each of937

the remaining indices in turn. The process is repeated938

until all of the indices are included as independent vari-939

ables in the regression. The ordering of the indices and940

the increase in R2 as each index is added, reflect the941

importance of the index in explaining the interannual942

variability of AIR.943

In both the observations and GloSea5-GC2, the Niño-944

3.4 and IOD indices are most important in explaining945

the interannual variability in AIR over the hindcast pe-946

riod. Their combined R2 values are 0.53 and 0.46 in the947

observations and hindcast samples, respectively, com-948

pared to R2 value when all five indices are included of949

0.66 and 0.56 (listed in Tables 3 and 4). The remaining950

three indices add similar, smaller contributions to the951

R2 in observations and GloSea5-GC2. This means it is952

difficult to separate them in order of importance, and953

we consequently focus on the differences in R2 for the954

Niño-3.4 index and the IOD index.955

In Table 4, we summerise the results of the forward956

selection for the Niño-3.4 and IOD indices. In the ob-957

servations, the IOD index explains most of the variance958

in AIR, with a single R2 of 0.27, while in GloSea5-GC2,959

Niño-3.4 explains most of the variance with a single R2
960

of 0.39. The two indices are similarly correlated with961

each other in the GloSea5-GO3 analysis (0.33) and the962

GloSea5-GC2 ensemble mean (0.28), indicating the re-963

lationship between ENSO and the IOD is consistent964

between the observations and GloSea5-GC2. The com-965

bined results from the forward selection and multiple966

regression analysis suggest that the weakness of the re-967

lationship between AIR and the IOD causes AIR to re-968

spond too consistently to ENSO anomalies in GloSea5-969

GC2, as seen in other forecast systems (Kim et al,970

2012), and consequently Niño-3.4 explains too much of971

the variance in AIR in GloSea5-GC2 and the IOD in-972

dex explains too little. If the relationship between AIR973

and the IOD were correctly represented, it would at974

times reinforce the AIR anomaly forced by ENSO, and975

at times counteract that anomaly, leading to a weaker976

overall correlation between ENSO and AIR and less977
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Table 4 Summary of results from forward selection. R2 for
a single regression of Niño-3.4 or the IOD index against AIR
is shown in the first two rows, the R2 for the combined re-
gression of both indices against AIR is shown in the third
row.

Observations and Hindcast sample
Analysis median

Niño-3.4 0.10 0.39
IOD 0.27 0.02

Niño-3.4 & IOD 0.53 0.46

interannual variability explained by ENSO, consistent978

with the observations.979

6 Discussion and Conclusions980

We have assessed the seasonal prediction skill of sum-981

mer all-India rainfall (AIR) and the representation of982

mechanisms contributing to predictability of AIR in the983

GloSea5-GC2 coupled ensemble seasonal forecast sys-984

tem. GloSea5-GC2 has notable mean state biases, in-985

cluding equatorial SST cold biases in all basins. The986

Indian Ocean has the lowest JJA precipitation and cir-987

culation signal-to-noise ratios and prediction skill in the988

tropics, consistent with other state-of-the-art seasonal989

forecast systems (Rajeevan et al, 2012).990

GloSea5-GC2 has moderate skill in predicting JJA991

AIR (0.41, p < 0.1). However, it has much higher skill992

in predicting the large scale circulation (0.66 for the993

Webster-Yang dynamical index, p < 0.01), consistent994

with other forecast systems. ENSO, the most widespread995

mode of interannual SST variability, and the relation-996

ship between ENSO and AIR are well represented in997

GloSea5-GC2. This indicates that the AIR interannual998

variability related to the large-scale circulation in GloSea5-999

GC2 is well represented. However, the basin-scale rela-1000

tionship between AIR and the IOD is weak in GloSea5-1001

GC2. Our analysis showed this likely due to a coupled1002

mean state bias in the Indian Ocean which alters the1003

amount of anomalous SST cooling/warming that re-1004

sults from anomalous wind forcing, giving erroneous1005

IOD SST anomalies. Known difficulties in represent-1006

ing convective precipitation over India may also play a1007

role (e.g. Bush et al, 2015). Due to the lack of response1008

to the IOD, AIR responds more consistently to ENSO1009

in GloSea5-GC2 than in observations, which manifests1010

itself in an erroneously high correlation between ENSO1011

indices and AIR.1012

Our analysis did not show a teleconnection from the1013

tropical Atlantic Niño region to the Indian subconti-1014

nent in GloSea5-GC2. However, when analysed over the1015

time period available from the GloSea5-GC2 hindcast1016

set, this teleconnection was not clear in ERA-Interim1017

either. This suggests further work is needed to con-1018

firm the validity and establish the robustness of the1019

Kucharski et al (2007, 2008) mechanism connecting the1020

the Atlantic Niño region to AIR. Our analysis also in-1021

dicated the response of June Indian rainfall to June1022

HimTP snow anomalies in GloSea5-GC2 agrees with1023

observations, but is small in both.1024

Due to the relatively few years in our hindcast set,1025

we analysed all years in our hindcast set together, rather1026

than studying years with an especially strong anomaly1027

in a given index, such as ENSO events. In twenty years1028

there are only a few events of any type, so analysis of1029

strong anomaly years would be very dependent on the1030

GloSea5-GC2 performance in a few individual years.1031

However, A limitation of our analysis is that our gen-1032

eral conclusions may not apply to an individual year.1033

For example, we cannot conclude from our analysis that1034

the 1997 forecast bust is necessarily due to a misrep-1035

resentation of the IOD-AIR relationship rather than a1036

misrepresentation of the ENSO-AIR relationship. We1037

can conclude that the IOD-AIR relationship is gener-1038

ally misrepresented in GloSea5-GC2, and improving it1039

will improve forecast skill over the hindcast period as1040

a whole, independent of whether it improves forecast1041

skill in a specific year such as 1997.1042

In agreement with our analysis, recent assessments1043

of seasonal forecast skill have generally found that ENSO1044

anomalies and the response of AIR to the ENSO anoma-1045

lies are well represented in GCMs (Kim et al, 2012;1046

Rajeevan et al, 2012; Nanjundiah et al, 2013). The rep-1047

resentation of the relationship between AIR and the1048

IOD is increasingly recognised as a source of error. Con-1049

sistent with our analysis of the coupled Indian Ocean1050

SST/wind bias, Rajeevan et al (2012) showed in the1051

ENSEMBLES and DEMETER samples of coupled sea-1052

sonal forecast systems that air-sea coupling in the In-1053

dian Ocean basin is too strong. Nanjundiah et al (2013)1054

studied five coupled seasonal forecast systems from the1055

ENSEMBLES sample and found that the relationship1056

between AIR and the equatorial Indian Ocean zonal1057

wind anomalies is generally poorly represented.1058

In GloSea5-GC2, the application of mean state bias1059

correction techniques to reduce the error in circula-1060

tion and equatorial SSTs in the Indian Ocean may im-1061

prove both the representation of IOD anomalies, as1062

Marathayil (2013) showed for the coupled GCM HiGEM,1063

and the relationship between the IOD and AIR. As the1064

IOD is the major mode of interannual variability in the1065

Indian Ocean, we expect that an improved representa-1066

tion of the Indian Ocean mean state and the IOD would1067

have a significant impact on precipitation and circula-1068

tion seasonal prediction skill in the Indian Ocean (Fig-1069
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ure 3), and would likely improve AIR prediction skill as1070

well.1071

Conditions in the equatorial Indian Ocean are im-1072

portant for the correct initiation and propagation of the1073

boreal summer intraseasonal oscillation (e.g. Sperber1074

and Annamalai, 2008). The propagation and amplitude1075

of the BSISO are weak in GloSea5-GC2 (Jayakumar1076

et al, 2016). Given the similarity in pattern between1077

the leading mode of interannual variability in monsoon1078

circulation and a component of the intraseasonal vari-1079

ability, and that the frequency of occurrence of this in-1080

traseasonal variability projects onto interannual varia-1081

tions (Sperber et al, 2000), poor simulation of Indian1082

Ocean intraseasonal variability may also therefore im-1083

pact on the skill of interannual rainfall prediction. Fur-1084

ther analysis should address the relationship between1085

errors in the Indian Ocean mean state, the IOD and1086

intraseasonal variability in seasonal forecast systems.1087
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