
A method of evaluating the accuracy of 
human body thermoregulation models 
Article 

Accepted Version 

Yang, Y., Yao, R. ORCID: https://orcid.org/0000-0003-4269-
7224, Li, B., Liu, H. and Jiang, L. (2015) A method of 
evaluating the accuracy of human body thermoregulation 
models. Building and Environment, 87. pp. 1-9. ISSN 0360-
1323 doi: 10.1016/j.buildenv.2015.01.013 Available at 
https://centaur.reading.ac.uk/53607/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.buildenv.2015.01.013 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



1 

 

 

A Method of Evaluating the Accuracy of Human Body 

Thermoregulation Models  

 

Yu Yang a,b,c; Runming Yao c,b; Baizhan Li a,b*; Hong Liu a,b; Lai Jiang c 

 

a Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, 

Ministry of Education, Chongqing University, Chongqing 400045, China; 

b National Centre for International Research of Low-carbon and Green Buildings, 

Chongqing University, Chongqing 400045, China; 

c School of Construction Management and Engineering, University of Reading 

 

Highlights: 

• Lack of studies into evaluating population-based Human Body 

Thermoregulation models;   

• A new evaluation method of combined both statistical and empirical methods; 

• Evaluation of the population-based HBT models’ accuracy; 

• A framework for the validation process of HBT models. 

Abstract 

Human Body Thermoregulation Models have been widely used in the field of human 

physiology or thermal comfort studies. However there are few studies on the evaluation 
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method for these models. This paper summarises the existing evaluation methods and 

critically analyses the flaws. Based on that, a method for the evaluating the accuracy of 

the Human Body Thermoregulation models is proposed. The new evaluation method 

contributes to the development of Human Body Thermoregulation models and validates 

their accuracy both statistically and empirically. The accuracy of different models can 

be compared by the new method. Furthermore, the new method is not only suitable for 

the evaluation of Human Body Thermoregulation Models, but also can be theoretically 

applied to the evaluation of the accuracy of the population-based models in other 

research fields. 

 

Graphic Abstract 
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Nomenclature 
si

2 sample variances from population ‘i’ 

𝑇̅ sample mean of skin temperature  

avei mean value of μm,i and xi T skin temperature 

CI confidence interval for population mean Xi population ‘i’ 

d̅ 
mean difference between sample means 

and model predictions 

x𝑖̅ sample mean from population ‘i’ 

xi,j sample j from population ‘i’ 

di 
difference between sample mean and 

model prediction of population ‘i’ 

α significance level 

μa prediction from Model A 

H0 null hypothesis μb prediction from Model B  

HBT human body thermoregulation μm model prediction 

k number of the populations μi population mean 

LOA limit of agreement 

Subscript 
ni 

number of the samples from population 

‘i’ 

Nob number of the observations a denotes Model A 

Nsub number of the subjects b denotes Model B 

RMSE root mean square error i denotes population number 

sd 

standard deviation of the differences 

between sample means and model 

predictions 

j denotes sample number 

m denotes model 

sei 
standard error of sample mean from 

population ‘i’ 
t denotes time 
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1. Introduction 

The thermal interaction of the human body with the environment involves two 

processes: i) the heat transfer between the human body and the thermal environment, 

simultaneously including radiation, convection, conduction, evaporation and 

respiration; and ii) the self-regulation function of the human body which responds to 

varied thermal environments, such as vasoconstriction, vasodilation, shivering and 

sweating [1]. Human Body Thermoregulation Models (HBT models) are developed to 

simulate these two aspects of interaction and then predict the human thermal 

physiological responses (e.g. skin temperature, core temperature) under thermal 

conditions usually with the input parameters of air temperature, radiation temperature, 

air velocity, relative humidity, clothing insulation, metabolic rate and their variations 

with exposure time. These models have been widely used in the field of human 

physiology or thermal comfort studies.  

The existing research in this field mainly focuses on developing HBT models using 

different modelling methods for body segmentation [2-6], thermoregulatory systems [2, 

7, 8], heat transfer [3, 5] and numerical solutions [3, 9]. It is very important to evaluate 

the accuracy of the models. However, very little effort has been made to study the 

methods for evaluating the prediction accuracy of the HBT models. It is still a question 

under discussion whether the existing model-evaluation methods are generally 

applicable.  

Models predicting the average thermal responses of a group of human bodies are 

defined as ‘population based’ model, and this average response is recognized as the 

‘population mean’ in statistics. The existing HBT models are mostly population-based 

because individual thermal responses vary from one person to another. Two questions 

in evaluating the prediction accuracy of HBT models are still open: i) How to validate 

the prediction accuracy of the models in given thermal processes. This is because the 

users need to have confidence in applying the models in practice. And ii) How to 

compare the prediction accuracy of models for the same thermal processes. This is to 

provide guidance for the selection of the most accurate one among different models. 
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In this paper, the existing evaluation methods for HBT models are summarized and the 

strengths/weaknesses of these methods are analysed. Thereafter, a new evaluation 

method for HBT models has been developed. 

 

2. Existing methods for evaluating the accuracy of HBT models 

2.1 Brief literature review  

This study has reviewed the accessible research papers published over the last fifty 

years in regard to the development or improvement of HBT models. In total, twenty-

two related papers were selected for the discussion in this paper. The detailed 

information of model evaluation and evaluation methods in these studies is listed in 

Table 1. From the table, we can see that among these studies on the HBT models 

development, four papers proposed models without any evaluation; eighteen papers 

validated the prediction accuracy of the models and eight papers compared the 

prediction accuracy of different models. 

The methods for evaluating models’ accuracy in these papers can be summarized into 

two categories: i) directly observing the figures by comparing the predicted values from 

the models with the raw data or descriptive statistics of samples from experiments; 

which can be termed an ‘Observation Method’; and ii) calculating the root mean square 

error (RMSE) between the model predictions and sample means; hereafter known as 

the ‘RMSE Method’. From Table 1 we can see that fifteen papers utilised the 

‘observation’ method and three papers applied the ‘RMSE’ method. Among the eight 

papers that compared the accuracy of different models; six used the ‘observation’ 

method and two used the ‘RMSE’ method.  

 

Table 1. The methods used to evaluate from existing HBT models papers 

No. 

Model 

Reference 

Whether the study validated the 

models’ prediction accuracy  

Whether the study compared the 

prediction accuracy of different 

models 

 
Yes (Y) or No (N) 

Method 

used 
Yes (Y) or No (N) Method used 
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1 [2] N N/A N N/A 

2 [3] Y Observation N N/A 

3 [10] Y Observation N N/A 

4 [11] Y Observation N N/A 

5 [12] N N/A N N/A 

6 [13] Y RMSE N N/A 

7 [14] N N/A N N/A 

8 [15] Y Observation N N/A 

9 [9] Y Observation N N/A 

10 [8] Y RMSE Y Observation 

11 [5] Y Observation N N/A 

12 [4] N N/A N N/A 

13 [16] Y Observation N N/A 

14 [17] Y Observation Y Observation 

15 [18] Y Observation Y Observation 

16 [19] Y Observation Y Observation 

17 [20] Y Observation Y Observation 

18 [21] Y Observation N N/A 

19 [7] Y Observation Y RMSE 

20 [22] Y Observation N N/A 

21 [6] Y Observation Y Observation 

22 [23] Y RMSE Y RMSE 

 

2.2 Analysis of the existing methods 

The ‘Observation’ and ‘RMSE’ methods, to some extent, are insufficient to evaluate the 

prediction accuracy of the HBT models. We use a practical example of real data from 

our experimental studies for a further explanation (see in Figure 1). 
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Figure 1. The raw dataset of predictions and samples 

These black thin lines in Figure 1 show the raw data of measurements for skin 

temperatures in a human exposure experiment in which ten half-naked health male 

subjects experienced a temperature step-change process from The Environment Ⅰto 

the Environment Ⅱ and then stayed in the Environment Ⅱ for a period of 3600 

seconds. The information of the subjects and the thermal conditions of the two 

environments are listed in Table 2 and 3 respectively. Subjects’ skin temperatures were 

measured each second. The measured skin temperature of subject ‘j’ at time ‘t’ is 

expressed as 
,t jT (t=1···3600; j=1···10).  

 

Table 2. Subjects’ information in the case study (mean ± standard deviation) 

Age 24±1 

Height (m) 174±6 

Weight (kg) 60±7 

Clothing insulation (clo) 0.03±0 

Activity level (met) 1.0±0 

 

 

Table 3. Thermal conditions of the experiment in case study (mean ± standard deviation) 
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Environment Ⅰ Environment Ⅱ 

Air Temperature (℃) 28.2±0.1 34.7±0.1 

Relative Humidity (%) 60.4±2.8 55.8±0.3 

Air Velocity (m/s) 0.06±0.01 0.18±0.04 

Globe Temperature (℃) 28.3±0.25 34.7±0.1 

 

Models A and B are two modified HBT models based on the classical two-node 

model of thermoregulation [2]. The two models were developed by optimizing the 

modelling of the body, the regulatory system and the numerical solution method. The 

main difference between the two models is the empirical parameters of the regulatory 

system (i.e. function of regulatory sweating rate and blood flow rate of skin), which are 

achieved by training different sets of data, respectively. Both of the models are applied 

to simulate the skin temperature for the above thermal process. The predicted data from 

Model A and Model B for each second are denoted as
,a t , 

,b t (t=1,2,3···3600), which 

are represented by red and blue lines in Figure 1. 

Here we attempt to use these available data (
,t jT ,

,a t ,
,b t ) to validate and compare the 

prediction accuracy of these two models for this specific thermal process. The existing 

methods for evaluating models’ prediction accuracy are analysed using this example. 

 

When applying the ‘Observation Method’ or ‘RMSE Method’, usually the first step is 

to calculate the average skin temperature of the 10 subjects at each moment t 

(t=1···3600) by 
,t jT . This is generally known as the sample mean of skin temperature 

which is expressed as tT  in equation 1.  

1

1
=

subN

t t j

jsub

T T
N 

 ，                                          Equation 1  

In the ‘Observation Method’, the most common way is to depict the sample means and 

model predictions in a figure and draw conclusions concerning the prediction accuracy 

of models through observing the relationships between the data in the figure. In this 



9 

example, every second the measured sample mean and the predictions from Model A 

and Model B are plotted in Figure 2, and it is the most typical figure that appears in 

papers using the ‘Observation Method’ (e.g. reference [6]). It can be found that 

predictions of Model A in the first 1800 seconds are about 0.05-0.3℃ higher than the 

sample means; the differences between the predictions and sample means in the final 

1800s are less than 0.05℃; the maximum deviation of these two sets of data is about 

0.3℃. By contrast, predictions of Model B are always about 0.1-0.2℃ less than the 

sample means. By investigating the information obtained from Figure 2, we can neither 

draw conclusion on whether the accuracy of Model A or Model B is sufficiently 

accurate in predicting or on which model predicts more accurately than the other. 

Therefore, in this example, the ‘Observation Methods’ are not applicable for the 

evaluation of HBT models.  

 

 
Figure 2. Model predictions and measured sample means  

 

 The ‘RMSE Method’ is applied based on the RMSE values between model predictions 

and sample means, which can be generally expressed as Equation 2 . In this example, 

RMSE values (RMSEa, RMSEb) of Model A and Model B has been calculated as 0.13 

and 0.136 respectively for evaluating the models’ accuracy. As the ‘RMSE Method’ is 

applied in reference [23], the conclusion about whether the prediction of Model A or 
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Model B is sufficiently accurate or not should directly depend on the RMSE value of 

0.13 or 0.136. In addition, a conclusion that Model A is better than Model B in 

prediction accuracy will be drawn according to the fact that a bRMSE RMSE
 as 

described in reference [7].  

 
2

,

1

1
=

obN

tm m t

tob

RMSE T
N




                            Equation 2 

However, the existing references for HBT models did not provide any theoretical basis 

or statistical reference for the ‘RMSE Method’ to support the conclusions. Actually, 

RMSE is one of the most popular error measures of prediction accuracy [24], but it is 

commonly used for comparing the accuracy of models [24] rather than validating the 

accuracy of a model, because i) RMSE index itself cannot be used for statistical 

inference on validation; and ii) itself lacks of specific meaning for common user to 

understand the accuracy of the model. Besides, the error measure of RMSE is not 

appropriate for all the accuracy comparison studies as it also has its constraints [24]. A 

recognized constraint of RMSE when applied to HBT models is the ignorance of the 

difference between the populations and samples, which will be discussed in Section 

3.1.1. 

By analysing the existing methods for evaluating the prediction accuracy of HBT 

models, we can summarize that: i) the ‘Observation Method’ is a simple and 

straightforward decision-making method but in many cases it cannot provide a 

convincing evaluation of models because it lacks a theoretical basis; ii) the RMSE is a 

useful measure of accuracy but can only reasonably be applied in comparing the 

prediction accuracy of models with some constraints specified for population-based 

HBT models. Considering the inadequacy of existing methods, a general method for 

evaluating the accuracy of HBT models is necessary. 
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3. The evaluation method 

3.1 Principles  

As stated above, to evaluate the accuracy of HBT models is to i) validate and ii) 

compare their prediction accuracy. The proposed evaluation method  attempts to solve 

these two problems separately. 

 

3.1.1 Validate the prediction accuracy of models 

A requirement of the developed models is that they can accurately predict the real 

situation. But how can we judge the accuracy of the model? The proposed method 

considers this question from the following two aspects:  

 

1) Statistical Analysis   

As the HBT model is a population-based model of predicting population means, 

therefore, theoretically, the accuracy evaluation should be based on the measurements 

of the differences between the predictions from the model and the population means. 

However, population means are usually unknown and often unavailable. Most existing 

studies use sample means instead of population means to calculate the discrepancies 

because the sample mean is the unbiased estimator of the population mean. When the 

sample size is small or the sample variation is large, both of which are very common in 

the existing human thermal response studies, the variance of the unbiased estimator will 

be large and the sample mean might often be far from the true mean. If the sample mean 

is used instead of the population mean, the true value might be distorted due to the lack 

of statistical information such as sample size and sample standard deviation. In fact, 

when statistically estimating the population mean, interval estimation which describes 

the population mean using confidence interval consisting of the sample mean and 

standard deviation, is a more scientific approach than point estimation which 

characterizes the population mean via the sample mean. The confidence interval 

provides a range that is highly likely (often 95% or 99%) to contain the true population 

quantity that is being estimated, and through which the researchers can analyse the 
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difference between the prediction and population mean by statistical inference. In this 

way, the accuracy of the model can be validated statistically.  

 

2)  Empirical Analysis  

Apart from analysis of inferential statistics, the degree of agreement between model 

predictions and sample means can equally reveal the degree of accuracy of the model. 

Appropriate methods for assessing the agreement between model predictions and 

sample means are needed in a model evaluation process. 

Bland and Altman proposed a method to assess agreement between two measurement 

methods in clinical research. They criticized the commonly-used approaches including 

‘Comparison of means’, ‘Correlation coefficient’, and ‘Regression’ as inappropriate 

ways for the agreement assessment of two different measures [25] and proposed a new 

approach which was named the Bland-Altman analysis [26, 27]. Zaki [28] endorsed that 

in medical research, the Bland-Altman method is the most popular method for 

agreement studies; 85% studies having used this method during 2007 to 2009. In this 

paper, in order to assess the agreement between the sample means and predictions of 

the HBT model, we introduce the Bland-Altman method. The sample means and the 

predictions from the HBT model can be regarded as two methods for measuring the 

population means. To apply the Bland-Altman method, we calculate the mean 

difference ( d ) of the level of population means obtained by sample means and model 

predictions, and also calculate the standard deviation of the differences ( s
d

). 

Consequently, the index ‘limits of agreement’ ( 1.96 dd s ), which represents the range 

in which 95% differences between the predictions and the sample means will lie, is 

obtained. Consequently, the degree of agreement between the sample means and the 

model predictions is dependent on ‘whether the differences provided by the ‘limits of 

agreement’ are acceptable by the users in application’. By agreement analysis, the 

accuracy of the model can be validated empirically. 

 

3.1.2 Comparisons of the prediction accuracy of models 
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In the study of developing HBT models, it is common to compare the accuracy of 

different models using the samples from the same dataset to select the model with the 

better/best accuracy. RMSE is a commonly-used error analysis measure for comparing 

the prediction accuracy of models, but it has some constraints when applied to certain 

models. RMSE represents the average closeness of the predicted data to the ‘sample 

means’ but not to the ‘population means’. According to the aforementioned analysis of 

the difference between the population means and the sample means, a remarkable 

inadequacy of the traditional ‘RMSE Method’ is that it ignores the analysis on 

populations when comparing models. As the relationship between the predictions and 

populations has already been analyzed in the statistical validation process of section 

3.1.1, applying index RMSE based on the results of models’ validation will be an 

improvement over the traditional RMSE method by taking the factor of population into 

consideration when comparing the prediction accuracy of models. 

Models whose accuracy is validated statistically are more acceptably accurate than 

models whose accuracy is validated empirically. If the models are validated as the same 

accuracy level (see in section 3.2), the RMSE values calculated from the models’ 

predictions and sample means are applied for the further comparison, considering that 

the statistical validation process is completely objective while the empirical validations 

are subjective . 

3.2 The process of evaluation  

Based on the above discussion, a new method for the accuracy evaluation of HBT 

models is proposed here: 

Set of data: 

The population “i” is denoted by iX  which represents a physiological index set (such 

as skin temperature, core temperature, etc.) under certain conditions. Its mean is 

denoted by i . In the conditions for evaluation, the HBT model m is used to predict the 

population means i (i=1···k) from k populations iX (i=1···k) and the prediction 

for each population is described as 
,m i  (i=1···k); 

,i jx  (j=1···ni) are in  samples 
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from iX . The sample mean, sample variance and standard error of sample mean from 

iX  are denoted as ix , 2

i
s  and ise respectively. In the statistical analysis, the 

significance level is denoted as and the value chosen in this study is =0.05 . 

Evaluation steps: 

1) Define the null hypothesis and alternative hypothesis. 

The null hypothesis is "For any populations provided, the model can accurately predict 

the population mean, that is 
,m i i 

 
(i=1···k)’. The alternative hypothesis is “the 

model cannot accurately predict all the population means, that is at least for one value 

of i , ,m i i  ”.  

 

2) Define the confidence intervals for population means. 

By calculating ix  (Equation 3), is  (Equation 4), ise  (Equation 5) of each 

population, the 100(1  )% confidence interval iCI
 
for each population mean can be 

derived (Equation 6) [29]. The probability that iCI  contains i  is  100 1 % . 

 

,

1

1
=

in

i i j

ji

x x
n 

                                                Equation 3 

 
2

2

,

1

1
= -

1

i

i

n

ii i j

ji

s s x x
n 



                                   Equation 4 

i
i

i

s
se

n
                                                  Equation 5 

   /2 /2= 1 , 1i ii i i i iCI x t n se x t n se 
                            Equation 6 

In Equation 6,  /2 1it n  is the / 2  percentage point of the t-distribution with 

 1in   degrees of freedom, which is determined by the value of  and ( 1in  ). For 

the  100 1 %=95% confidence interval,  /2 1it n   values are 2.2, 2.1 and 2.0 for 

10, 20 and 30 degrees of freedom respectively. 
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3) Validate the model’s accuracy by comparing model predictions with the confidence 

intervals of the population means. 

Compare all the predictions 
,m i with the corresponding confidence interval iCI  (this 

can be conveniently judged by the graphical method): according to statistical inference, 

if all the model predictions are within the corresponding confidence interval, it indicates 

that the difference between predictions and population means are statistically 

insignificant (  =0.05). Therefore, the hypothesis 0H  cannot be rejected which 

suggests the model’s prediction is statistically accurate. The model in this case will be 

classified into accuracy level Ⅰ. On the other hand, if one or more of the predictions 

fall outside the corresponding confidence interval, it indicates that at least one of the 

model predictions is significantly statistically different from the population mean (

=0.05). Therefore, the hypothesis 0H  should be rejected, and the model’s accuracy 

cannot be validated by statistical inference. 

A model of accuracy level I means: through statistical inference, the model is validated 

to be sufficiently accurate for predicting, i.e. “the model’s prediction is statistically 

accurate”. For models which are not classified into levelⅠ, the accuracy fails to satisfy 

the statistical requirements. Hence, further empirical validation is needed.  

 

4) Validate the model’s accuracy by analysing the agreement between the model 

prediction and the sample mean. 

For models that cannot be validated statistically, the Bland-Altman method [30] of 

agreement study is introduced to analyse the agreement between the model prediction 

and sample mean, based on which, the empirical validation can be made from the 

requirements of the model application. The specific application of the Bland-Altman 

method in a model evaluation study is as follows: for the population i, id  is the 

differences between 
,m i  and ix  (Equation 7) and iave  is the mean value of 

,m i  

and ix  (Equation 8); for the differences from all the populations, the mean d  and  

standard deviation ds  (Equation 10) of these differences can be calculated in Equation 



16 

9 and Equation 10, respectively; If the differences are normally distributed, we would 

expect 95% of them to lie within 1.96 dd s , which we call 95% limits of agreement. 

For any  , the ‘limits of agreement’ (LOA) of 1-  can be calculated as shown in 

Equation (12). These values define the range within which most differences between 

the predictions and the sample means will lie. The decision on the accuracy of the model 

is made by the users. If the user considers that the difference provided by the ’limit of 

agreement’ is acceptable when applying the model, it suggests that the predictions have 

good agreement with the sample means. In this case, we regard the model’s accuracy 

as level Ⅱ , which means “the model’s prediction is sufficiently accurate for users in 

application”. Conversely, if the user judges the provided difference between the sample 

mean and the prediction as significant for the model application and cannot accept it, 

the model’s accuracy will be classified into level Ⅲ , which implies “the model’s 

prediction is not sufficiently accurate”. 

,= ii m id x                                                Equation 7 

 ,

1
=

2
ii m iave x                                           Equation 8 

1

1
=

k

i

i

d d
k 

                                                Equation 9 

1

1
=

1

k

d i

i

s d
k 

                                           Equation 10 

/2 /2d dLOA d z s d z s 
    ，                                  Equation 11 

In Equation 11, /2z is the / 2 -percentile of the standard normal distribution. 

When 0.05  , /2 =1.96z . 
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The stated calculation of the ‘limits of agreement’ is based on the assumption that 

differences are normally distributed. When differences do not follow normal 

distribution, the reference [26] indicated that ’a non-normal distribution of differences 

may not be as serious in Bland-Altman analysis as in other statistical contexts’. For 

example, for the 95% “limits of agreement”, approximate analysis can still proceed as 

if the differences are normally distributed as long as 95% of the observed values of the 

difference lie within the intervals 1.96 dd s . For the cases that are not in this scenario, 

reference [27] points out that ‘this is perhaps most likely to happen when the difference 

and average value are related’. Considering that in this situation the calculation of the 

‘limits of agreement’ will be complicated and this situation happens rarely, this part will 

not be elaborated in the present paper. Readers who are interested in this can directly 

refer to the paper [27].   

It will be more convenient to use graphical techniques for the Bland-Altman analysis, 

which is described in the case study in section 4. 

 

5) Compare the accuracy of models based on accuracy level and RMSE. 

When different models applied to the same set of data, are compared the determination 

of accuracy should primarily depend on the models’ accuracy level, and then be 

confirmed by comparing the RMSE (Equation 12) of the models. For these models, the 

accuracies of which are in different levels, a level I model is superior to the level Ⅱ

model which is superior to the level Ⅲ model. When the models’ accuracies are in the 

same level, the model with a smaller RMSE  is more accurate. 

 
2

,

1

1 k

im m i

i

RMSE x
k




                                   Equation 12 

 

In general, the first four steps show how to validate the prediction accuracy of the 

models and classify their accuracy level. The final step solves the problem of how to 

compare the prediction accuracy of the models, by which the more/most accurate model 
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can be selected. The models’ validation and comparison process is summarized in 

Figure 3 and Table 4.  

Figure 3. The framework for the validation process of HBT models  

Table 4. Evaluation on the prediction accuracy of HBT models 

Accuracy level Term Interpretation  

Ⅰ 
Statistically 

accurate 

The model’s prediction is sufficiently statistically 

accurate.  

Ⅱ 
Empirically 

accurate 

The model’s prediction is sufficiently accurate for 

users in application. 

Ⅲ Inaccurate The model’s prediction is not sufficiently accurate. 

a For models in different accuracy levels, levelⅠmodels are more accurate than level Ⅱ models 

which are themselves more accurate than level Ⅲ models. 

b For models in the same accuracy level, the smaller the model’s RMSE is, the more accurate the 

model is. 
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4. Case study 

In order to further explain this new evaluation method, a case study is illustrated here. 

The accuracy of Model A and Model B, which have been described in Section 2.2, will 

be evaluated by the new method.  

First, the set of data in the case study needs to be linked to the corresponding inputs in 

the new method: these two HBT models are used to predict skin temperature per second 

in a given thermal process, the population i ( iX ) is the set of skin temperature at the 

time t (that is i is equivalent to t in this case), thus the total numbers of the population 

are =3600k ; the sample 
,i jx  is the measured skin temperature 

,t jT  and the sample 

size of each population is =10in ; the predicted values of skin temperature per second 

from Model A or Model B are the predictions of population 
,m i  in the evaluation 

method, that is when evaluating Model A, 
,m i  is 

,a i  (i=1···3600), while when 

evaluating Model B, 
,m i  is 

,b i  (i=1···3600). In the case study, the significance 

level  is 0.05. 

 

According to the new method, the evaluation process has five steps: 

 

1)  Define the null hypothesis 0H  for Model A and Model B. The 0H  for Model A 

(or Model B) is that ‘the Model A (or Model B) can accurately predict population means. 

That is, for any i ( i=1···3600), 
,a i i   (or 

,b i i  )’. 

 

2) Calculate the ix  (Equation 13), is
 (Equation 14), ise

 (Equation 15) and build 

100(1 )% 95%   
iCI
 (Equation 16) for each population. The calculated iCI

, ix  

and 
,a i
, ,b i

 
(i=1···3600) are plotted in Figure 4.  
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   /2 /2= 1 , 1 2.2 , 2.2i i i ii i i i i i iCI x t n se x t n se x se x se 
               Equation 16 

 

Figure 4. The predictions and statistical information from the samples 

 

3) Compare the relationship between model predictions and the confidence intervals of 

the corresponding population. From Figure 4 it can be seen that for Model B, all 

predictions lie within the confidence intervals of the population means, indicating that 

there is no statistically significant difference between the population means and the 

predictions of Model B. Thus, the accuracy of Model B is evaluated as level Ⅰ. For 

Model A, the predictions for some populations are beyond their confidence intervals 

(marked in Figure 4), indicating that for these populations, the model’s predictions have 

a statistically significant difference from the population means, so the model’s accuracy 
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cannot be validated statistically. Further empirical validation for Model A should be 

carried out. 

 

4) For Model A, the Bland-Altman method is applied to analyse the agreement of 

predictions and sample means. The statistics id
, iave

, d , ds
 are calculated from 

Equations 17 ~ 20. Dots ( id
, iave

) are plotted in Figure 5, while the value of d  and 

1.96 dd s
 are marked in the figure. Figure 5 shows that there is no obvious correlation 

between the difference and average value, and 95% of the dots are located within the 

range 
1.96 dd s

. Therefore, for Model B, the 'limit of agreement' of the model 

predictions and population means is -0.05 to 0.26 (Equation 21). Provided that the user 

regards the accuracy requirement for the skin temperature as ‘the difference between 

the model prediction and the sample mean in most cases must be less than 0.2℃ ’, due 

to the difference provided by the 'limit of agreement' having exceeded 0.2℃ , the 

model’s accuracy will be evaluated as level Ⅲ. 

, ,= =i ii m i b id x x                                            Equation 17 

   , ,

1 1
= =

2 2
i ii m i b iave x x                                   Equation 18 

10

1 1

1 1
= 0.1

10

k

i i

i i

d d d
k  

                                       Equation 19  

10

1 1

1 1
= 0.08

1 3

k

d i i

i i

s d d
k  

 

                                Equation 20 

 /2 /2, 1.96 , 1.96 0.05,0.26d d d dLOA d z s d z s d s d s 
               Equation 21 
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Figure 5. Bland- Altman analysis 

 

5) Compare the accuracy between Model A and Model B. As the accuracy of Model A 

and Model B are evaluated as level Ⅲ and level Ⅰ respectively, the prediction 

accuracy of Model B is considered to be better than that of Model A. 

 

The evaluation results of this case study can be concluded as follows: for the given 

thermal process, i) the accuracy of Model B is evaluated as levelⅠwhich means Model 

B’s prediction is statistically accurate; ii) the accuracy of Model A is evaluated as level 

Ⅲ, thus, Model A is inaccurate in predicting the given process; iii) the prediction 

accuracy of Model B is better than that of Model A. 

 

5. Discussion  

5.1 The application of the new method 

From the description of the new method and its application in the case study, some 

issues need to be pointed out when applying this new method: 

1) The HBT models evaluated by this method should be population-based models, 

which are used to predict the average responses of populations. This method should not 
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be applied to any HBT model developed for individuals. Theoretically, the new 

evaluation method can be widely applied to any population-based model which 

includes, but is not limited to, the HBT models. 

 

2) For every population predicted, a certain number of samples are required for a 

statistical validation process. According to statistical principles, there is no statistical 

approach that can give a 100% correct conclusion. When applying this method, the 

reliability of the conclusions increases with the sample size. Therefore, raw data with 

large sample size will be beneficial to the evaluation. 

 

3) As the RMSE is the accuracy measure whose scale depends on the scale of the data 

[31], in the proposed evaluation method, the method of accuracy comparison of models 

is only applicable to situations in which models are applied to the same set of data. 

Models predicting different conditions are not comparable using this method. 

 

4) In most of the HBT models studied, this method is used to evaluate models by 

examining the accuracy of the predictions. However, for some specialized models, the 

tendency of the predictions may be more important than the predicted values 

themselves. This method can be equally used for these models examining the accuracy 

of the changing rate of predictions - the principles are the same as when examining the 

accuracy of the predictions. Thus, when applying this evaluation method, the objects 

needing to be examined are dependent on the characteristics of the models. 

 

In general, HBT models can easily satisfy these specificities mentioned above, which 

is the reason that this paper illustrates the new evaluation method through the example 

of HBT models. In theory, the application of this method can be extended to the 

evaluation of any models in other topics (such as the validation of thermal sensation 

models, as the questions be arisen in reference [32]). 
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5.2 The validation of models’ prediction accuracy 

From the case study, the prediction accuracy of models can be validated using both 

statistical and empirical analysis. The statistical validation only depends on the 

predictions from the model and the measured samples, thus the conclusion is objective. 

 

The results of empirical validation are based on the set of data as well as the subjective 

judgments of the users. Thus, even provided with the same dataset, the conclusion may 

be different due to differences in users’ requirements for accuracy. For example, in the 

case study, the accuracy of Model A cannot be statistically validated hence the empirical 

validation is used. The 'limit of agreement' is obtained as -0.05 to 0.26 through Bland-

Altman analysis, but the user believes ‘the bias between prediction and sample mean 

should not exceed 0.2℃’, as the ‘limit of agreement’ is beyond this threshold of 0.2℃, 

the model is recognized as inaccurate for this thermal process. However, if for some 

reason, the user’s requirement for accuracy becomes less rigorous and a bias which is 

less than 0.3℃ becomes acceptable, then Model A becomes sufficiently accurate for 

application by the users. Since the results of empirical validation ultimately depend on 

the users’ demands, it is recommended that when a user gives the validation conclusions 

of empirical validation, he/she should provide the ‘limit of agreement’ simultaneously 

to guide other users making their own decision. 

 

5.3 Comparing the prediction accuracy of models 

The new method for comparing the accuracy of HBT models attempts to improve the 

traditional RMSE method by applying RMSE based on validation results of the 

population-based models. In the case study, the conclusion that Model B is more 

accurate than Model A is drawn because the accuracy of Model B is validated as level

Ⅰwhile Model A is level Ⅲ . However, if the judgement is purely based on the 

traditional RMSE Method, the fact that the RMSE of Model A is smaller than that of 

Model B will lead to a conclusion opposite to the one obtained from the new method. 

Obviously, a model which is able to make statistically accurate predictions should be 
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superior to a model which is inaccurate. This result reveals the limitations of the 

traditional RMSE Method. 

 

Compared with the traditional RMSE Method, we believe that the new method is more 

general and rational. Comparisons between models are not only based on the 

comparisons of the RMSEs between predictions and sample means, but also related to 

the other statistics such as sample standard deviation and sample size. For example, for 

the case in Section 3, if the sample mean and model prediction remain unchanged, and 

the standard deviation of each sample widens to 1.5 times as much as before, the 

confidence intervals for each population mean will be expanded and data in this 

modified case is shown in Figure 6.  

 

Figure 6. The predictions and statistical information from the samples in the 

modified case 

In this modified case study, the RMSE of Model A and Model B are still 0.16 and 0.165 

respectively, just the same as the RMSE values in the original case study. But the 

models’ predictions are all within the confidence interval at this time, which means that 

both Model A and Model B are statistically accurate and should be classified into 

accuracy level Ⅰ . By comparing RMSE values from the two models, it will be 
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concluded that Model A is better than Model B. The modified case study here and the 

original case study in section 3 have no differences on model predictions and sample 

means, but the difference in sample standard deviation leads to the opposite conclusion 

when comparing the models. 

 

5.4 Significance level   

According to the elaboration of the new method, the significance level   determines 

the 'confidence interval of population means' and 'limit of agreement', so different 

values may lead to different evaluation results. In this paper,  is set to 0.05, which is 

a customary choice in statistics. Apparently, other values such as 0.01 or 0.1 can also 

be selected, but it must be ensured that  is kept as a consistent figure during the whole 

evaluation process. Using the same  is a precondition for applying this evaluation 

method to compare the prediction accuracy of different models. 

 

6. Conclusion 

This research proposes a method for evaluating the accuracy of the population-based 

Human Body Thermoregulation Models. Based on the theory of statistical inference, 

agreement analysis and error analysis, two key questions in model evaluation study 

namely: i) ‘How to validate the prediction accuracy of models?’ ii) ‘How to compare 

the prediction accuracy of models’ can be properly solved by using this new method. A 

framework of the validation process for HBT models has been proposed, which 

validates a model’s accuracy both from the statistical and empirical aspects. Five steps 

are proposed in the framework in the new method as: i) Define the null hypothesis and 

alternative hypothesis; ii) Define the confidence intervals for population means; iii) 

Validate the model’s accuracy by comparing model predictions with the confidence 

intervals of the population means; iv) Validate the model’s accuracy by analysing the 

agreement between the model prediction and the sample mean; v) Compare the 

accuracy of models based on accuracy level and RMSE. For validation of HBT models, 
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three levels of accuracy are proposed as: Ⅰ—statistically accurate; Ⅱ—empirically 

accurate; Ⅲ—inaccurate. This method can promote the development and evaluation 

of the HBT models, which is very important in the studies of human physiology or 

thermal comfort. Furthermore, the new method is not only suitable for the evaluation 

of HBT models, but can also be theoretically applied to the evaluation of population-

based models in other research fields. 
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