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Abstract 

Developmental growth stages in wheat play an important role in agronomic decision making, as 

well as identifying periods of growth susceptible to environmental stresses. Different developmental 

scales have been reviewed, with a particular focus on the Zadoks growth scale. The role of DGS in 

identifying the effect of environmental stresses was also reviewed. It was concluded that although 

DGS aren’t always consistent across genotypes, they provide a good framework to broadly identify 

optimal agronomic timings as well as identifying susceptible developmental timings to 

environmental stresses when combined with a more detailed view of the physiological stage the 

plant has reached.  

Growth stage scores defining cereal development 

Cereal plants mature from seed germination to harvest by passing through distinct, but integrated 

developmental phases typical of annual grasses. It is important to define the developmental stage of 

a crop because: responses and appropriate benchmarking of crops to agronomic and environmental 

conditions depend on stage of development; genotypic adaptation can be better understood to 

facilitate crop improvement; and calendar date or days from sowing are unreliable predictors of 

developmental stage (Kirby & Appleyard, 1987; Landes & Porter, 1989; Sylvester-Bradley et al., 

2008; Leather, 2010). Schemes for defining crop growth stage have, therefore, been devised and 

divided into those relying on assessing the exterior morphology of the plants with the naked eye, 

and those that need dissection of the shoot apex and some level of magnification (Landes & Porter, 

1989). Of the exterior schemes, the decimal growth stage (DGS) of Zadoks, Chang & Konzak is the 



most widely and frequently used. The DGS was first published in Eucarpia Bulletin (Zadoks et al., 

1974a), followed by Weed Research (Zadoks et al., 1974b), Annual Wheat Newsletter (Zadoks et al., 

1975a) and Cereal Rusts Bulletin (1975b). Zadoks (1985) also commended the subsequent illustrations 

of the DGS in this journal by Tottman et al. (1979) as being ‘excellent’, and further detail and 

revision is provided in Tottman (1987). The combined citations in the academic literature to the 

original score and subsequent illustrations and amendments are, so far, well over 5000. Zadoks 

(1985) promotes the scale as: covering all stages from seed sown to seed harvested; providing a 

recording system for development stages as they can be readily observed in the field; being a two-

digit, computer-compatible, easy-to-memorize, numerical code; and to becoming a readily accepted, 

official standard for many international organisations. Tottman (1987) also highlights the benefits of 

the DGS in allowing detailed descriptions of individual plants, and also for different parts of the 

code to be used concurrently (e.g. leaf production and tiller production).The reader is referred to 

Tottman (1987) for the detailed scoring system with precise definitions and illustrations but Table 1 

gives a summary. Landes & Porter (1989) and Harrell et al. (1993; 1998) provide equivalent scores 

between DGS and other systems. Landes & Porter (1989) compare DGS with six other ‘exterior’ 

scales: Feekes (1941), Keller & Baggiolini (1954), Woodford & Evans (1965), Chancellor (1966), 

Kuperman (1973), Waldren & Flowerday (1979); but use the DGS as standard because of the greater 

range and detail of plant development described. Acevedo et al., (2002) consider the DGS to be ‘the 

most comprehensive and easiest to use’ scale.  Thomas (2014) reasons that it was the detailed 

descriptions of key growth stages in Tottman (1987) that have been particularly influential in 

practical cereal agronomy because of the clarity in definition of important development phases for 

the optimal application of fertilizers and agrochemicals in crop production. The response of wheat to 

the timing of plant growth regulators (Kettlewell et al., 1983; Bodson & Durdu, 1996; Gandee et al., 

1997, 1998; Rajala & Peltonen-Sainio, 2002; Hussain & Leitch, 2007; Wiersma et al., 2011), 

herbicides (Wilson & Cussans, 1978; Tottman, 1982; Martin et al., 1990; Leaden et al., 2007; Pageau 

& Lajeunesse, 2008; Kong et al., 2009; Robinson et al., 2013); insecticides (Carter et al., 1989; Mann et 

al., 1991; Oakley et al.,1996); fungicides (Guy et al., 1989; Goulds & Fitt, 1990; Duczek & Jonesflory, 

1994; Nicolas, 2004; Wiersma & Motteberg, 2005; Marroni et al., 2006; Edwards & Godley, 2010; 



Wegulo et al., 2011); and nitrogen application (Darwinkel, 1983; Powlson et al., 1989; Sylvester-

Bradley et al., 1987; Flowers et al., 2001; Weisz et al., 2001; Efretuei et al., 2014); are all commonly 

interpreted with reference to DGS. Of particular importance is in identifying when inputs are: most 

likely to have a desired response such as the stem shortening effect of plant growth regulators 

(Gandee et al., 1997, 1998); safe to use on crops so as to avoid damaging effects such as can occur 

with mistimed application of hormonally-based herbicides (Tottman, 1982); applied to allow optimal 

resource capture such as nitrogen applied for canopy formation (Sylvester-Bradley et al. 1987); and 

used to protect important yield components such with fungicides applied to maintain the life of the 

flag leaf and therefore grain filling (Dimmock & Gooding, 2002). 

As with other scores, however, caution is required when using DGS for comparative and 

statistical purposes. Except for when all scores are within categories 1, 2, 4, 5 or 6 (Table 1) the 

arithmetic mean of a sample of scores has no ready interpretation. Categories of the DGS or 

divisions within them do not necessarily reflect relative durations or agronomic importance (e.g. 

Fig. 1). Finally, as acknowledged by both Tottman (1987) and Zadoks et al. (1974b), DGS can be an 

unreliable predictor for physiological development as defined by the status of the meristems. It is the 

developmental stage of the meristem and growing spike that plays the crucial role in defining shoot 

vulnerability, patterns of dry matter partitioning (Craufurd & Cartwright, 1989) and yield 

components likely to be influenced  by genetic, agronomic and environmental factors (Slafer et al., 

2009; Reynolds et al., 2012). The potential disparity between DGS and the internally-defined stages 

of physiological development could, therefore, limit further precision of timing of inputs based on 

DGS, and wider application of the DGS for understanding crop adaptation. Here we first assess the 

extent to which DGS does reflect the status of meristems, and then address relationships between 

DGS and adaptive traits. 

 

Crop development and coincidence with the Decimal Growth Stage 

The development of the shoot apex, and its role in the origin of leaves, tillers, stem and ear is 

described by Kirby & Appleyard (1987). The apical meristem is initially vegetative, giving rise to 

leaves, tillers and adventitious roots while the apex often remains below ground level. Leaves 



originate as primordia which are attached at nodes on the stem. Tillers develop from buds in the 

axils where the leaf joins the stem. The reproductive development of the meristem begins as it 

elongates from 0.1 to 0.3 mm with the appearance of primordia as single ridges. At this stage the 

stem apex is still close to ground level. The buds in the axils of the apex ridges are spikelet 

primordia and, with their leaf initials form double ridges as the developing spike elongates to between 

0.8 and 1 mm. It does not seem possible to assign, precisely, the start of reproductive development 

or double ridges to a DGS: Tottman (1987) recognised that DGS 30 usually occurred after double-

ridges but Hay (1986) failed to find a correlation between double ridges and leaf or tiller number, or 

when considering different reports, leaf sheath lengths. After double ridges the spike continues to 

elongate and as it does so the central spikelets swell while additional double ridges are formed 

acropetally until the terminal spikelet is formed at the apex. At this stage the embryonic spike may be 

1.5 to 4 mm long and Tottman (1987) says it can be broadly coincident with DGS 31. Hay (1986), 

however, found the terminal spikelet stage to commonly occur when the developing ear was 10 mm 

above the crown, i.e. possibly earlier than DGS 31. Tottman (1987) only conceded that ‘the apex will 

be beyond the double ridge stage and floret initiation is likely to be in progress’ when the apex was 10 mm 

above the soil surface.  In some environments, therefore, the ear being 10 to 30 mm above ground 

level would normally encompass the terminal spikelet stage, coinciding with DGS 31 to 32, 

although this also depends on variety (Wibberley 1989). Despite the slight apparent divergence of 

opinion, the ‘ear above 10 mm’ is still used as the timing of terminal spikelet formation in studies of 

wheat development (e.g. Sanna et al., 2014), and given the speed of stem elongation thereafter 

(Craufurd & Cartwright, 1989) discrepancies may be small. 

 Differentiation of the spikelets continues, having started before the terminal spikelet stage and 

being most advanced in the lower midpart of the spike. The florets differentiate from primordia in 

the axils of floret bracts. The floret apex, surrounded by the carpel, develops into the ovule. A single 

egg (megaspore) mother cell is formed from one archesporial cell in each ovule and undergoes 

meiosis. Each anther contains many archesporial cells, each forming four pollen mother cells which 

each undergo meiosis while the anthers are green and apparently about 1 mm long (Kirby & 

Appleyard, 1981) and when the ear is 20 to 25 mm long (Tottman, 1987). The structures of the ear 



develop as it is simultaneously elevated through the leaf sheaths of the canopy by the extending 

stem. Booting describes the swelling of the sheath of the ultimate leaf, the flag leaf, as the developing 

ear expands within it. Tottman (1987) associates meiosis with DGS 37, i.e. the appearance of the flag 

leaf. Zadoks et al. (1974b) state that meiosis in wheat occurs in the the early booting stage, i.e. DGS 

41 but concede that coincidence is likely to be strongly influenced by environment. It should also be 

noted that meiosis within a single floret can last for about 1 to 2 days (at 20oC to 15oC respectively; 

Bennett et al., 2011), but within an ear meiosis in different florets may be separated by three or more 

days (Saini & Aspinall, 1982) and the asynchrony can be expected to be greater between ears, 

particularly between tillers of different ages. In work on the effects of drought on photosynthesis 

Fábián et al. (2013) detect the start of meiosis in the middle third of the spike with cytology, but 

correlate this with the position of the spike within the leaf sheath and consider the meiotic period of 

whole plants to last for five days. Booting is soon followed by emergence of the ear above the flag 

leaf and, when applying stresses broadly targeted at meiosis, authors have imposed treatments for a 

duration lasting several DGS: from at least as early as the flag leaf ligule visible stage (DGS 39) 

until ear emergence (DGS51) of the main stems (Subedi et al., 1998; Westgate et al., 1996; Alghabari 

et al., 2014).  

Heading date is often recorded when assessing genotypes, e.g. Pask et al. (2014) and Lopez et al. 

(2014) define heading date as when 50% of ears have fully-emerged, i.e. when 50% of ears are at 

DGS 59. The adaptive significance of heading date is principally due to its association with anthesis 

(Reynolds et al., 2012; Kamran et al., 2014), which commences typically between 3 and 8 days after 

ear emergence, depending on temperature and variety. Flowering starts in the basal florets of 

central spikelets and proceeds basipetally and acropetally within the ear, and acropetally within the 

spikelet. Flowering within a spike is usually complete within 2 to 5 days while over a whole plant or 

crop may extend over 5 to 10 days due to variations in tiller maturity.  The DGS can capture the 

development of anthesis within a spike although within a field crop the time of flowering is often 

stated as when half of ears are in flower (Marcello & Single, 1971; Griffiths et al., 2009). It should be 

noted that the DGS relies on the appearance of the anthers, which is not always precisely coincident 

with when the stigmas are receptive to pollen (Lukac et al., 2012). 



Grain filling with dry matter from anthesis to harvest maturity can often be adequately described 

with an ordinary logistic function with constant omitted (Gooding et al., 2005). Grain development, 

can, however, be described as proceeding in three phases (Jenner et al., 1991) which can be roughly 

demarcated by reference to water fluxes. The first phase is one of grain enlargement as cells 

multiply and expand with a rapid accumulation of water into the grain (Pepler et al., 2006). Division 

of the endosperm nucleus occurs within a few hours of fertilization. The first cell walls appear about 

3 days later. Rate of cell division slows until a maximum cell number (typically around 105) is 

attained from around 12 days after anthesis (Gao et al., 1992), at about the time when rapid water 

accumulation stops. The second phase of endosperm development is one of a near linear increase in 

grain dry matter, starting between 10 and 15 days after anthesis and continuing, depending on 

genotype and temperature, for 15 to 30 days. Mass of water per grain during this phase is relatively 

constant (Pepler et al., 2006), and appears to broadly coincide with the period from the milky ripe 

(DGS 75) to the soft dough (DGS 85) stages (Noda et al., 1994). The third phase describes processes 

subsequent to the attainment of maximum dry matter per grain. The time of maximum dry matter is 

often taken as physiological-, rather than harvest-, maturity; and coincides with the start of rapid net 

water loss from the seed (Pepler et al., 2006), and the acquisition of dormancy. Lopez et al. (2014) 

take the end of dough development (DGS 89) as being representative of physiological maturity, but 

assume it to coincide with 100% loss of green tissue on the spike. Hanft & Wych (1982) also 

associate physiological maturity with senesce, although it is possible to delay flag leaf death until 

after the end of grain filling in certain field conditions (Pepler et al., 2005). 

The imprecise coincidence between DGS and meristem and ear development has led to the latter 

often being preferentially used within crop models that define development in terms of, for example, 

double ridges, floral initiation, terminal spikelet, and anthesis (Porter et al., 1987; Jamieson et al., 

2007); although observers in the field have still resorted to using particular DGS as assumed 

equivalents (e.g. Sanna et al., 2014). More latterly, however, a degree of co-ordination between 

vegetative and reproductive growth (Kirby et al., 1994) has led to models that predict development 

and DGS through to DGS39 (Jamieson et al., 2007); or conversely, use canopy measurements at 

specific DGS such as 31, 39 and 61 to parametise models (M. A. Semenov, personal communication). 



The DGS is, therefore, deployed when providing parameters and calibration for crop models which 

are then used to predict crop performance in climate change scenarios (Asseng et al., 2013).  

 

The Decimal Growth Stage and crop adaptation 

The effect of light, temperature, water and other environmental aspects on phenological 

development itself, and also on growth within developmental phases has been reviewed (Evans et al., 

1975; Acevedo et al., 2002). It is evident that adaptation of wheat for maximising yield potential in a 

particular location and environment relies on: ensuring that particularly vulnerable developmental 

stages (Craufurd et al., 2013) do not coincide with abiotic stresses (Worland et al., 1998) such as cold, 

heat, drought and nutrient deficiencies; maximising resource (light, water, nutrients) capture, 

particularly during certain critical developmental periods (Fischer, 1985); and by improving 

resource utilization efficiencies, such as by increasing harvest indices which is also influenced by 

developmental periods (Reynolds et al., 2012). It is clear that the phasing of phenological 

development (Slafer et al., 2009), and therefore potentially DGS, can help in understanding crop 

adaptation and yield potential in a particular environment. The power of DGS analysis for 

interpreting and predicting effects on grain yield, however, depends on: the degree of compensation 

and plasticity in response between different yield components; the developmental synchrony of 

different plants and stems within a crop; and as mentioned previously the coincidence between DGS 

and phenological development. 

The rate of wheat development depends largely on variety, temperature, the need for a cold 

period (vernalization) and day length (photoperiod). The vernalization requirement is particularly 

influenced by alleles at the Vrn-1 loci, located on each of the long arms of the group 5 chromosomes, 

i.e. Vrn-A1, Vrn-B1 and Vrn-D1, and their regulation by minor vernalization genes (Loukoianov et 

al., 2005; Reynolds et al., 2012). Wheats with a significant vernalization requirement (winter wheats) 

are maintained in a vegetative state until the requirement has been met. Acevedo et al., (2002) found 

spring wheats to require 7 to 18oC for 5 to 15 days for floral initiation while winter wheats required 

0 to 7 oC for 30 to 60 days. Development can also be accelerated by exposure to long days, i.e. 

photoperiod sensitive varieties are quantitative long day plants. Major genes controlling 



photoperiod sensitivity in wheat are found on the short arms of group 2 chromosomes, i.e. Ppd-D1, 

Ppd-B1 and Ppd-A1, with dominant (notated a) alleles conferring plants with insensitivity to 

photoperiod.  Presence of Ppd-D1a has, for instance, been associated with plants flowering up to 

fourteen days earlier than photoperiod sensitive genotypes in typical UK field conditions (Snape et 

al., 2001; Fig. 1).  

Even when vernalization and photoperiod requirements are fully met developmental rates still 

vary between varieties. These differences can be ascribed to variations in earliness per se. Because 

varieties vary in their response to temperature, vernalization and photoperiod, in the extent to 

which these factors interact, and in relative sensitivity to them at different growth stages (Sanna et 

al., 2014), varieties vary, apparently continuously, in their rates of maturation, thus contributing to 

the wide adaptation and distribution of wheat in world agriculture. Fig. 1 shows the wide 

distribution of growth stages attained in 64 doubled haploid progeny of Renesansa x Savannah 

(Simmonds et al., 2006) when grown in the UK (Addisu et al., 2010). Savannah had high yield 

potential in NW Europe as listed for the UK in 1998 while Renesansa had high yield potential in 

southern Europe and listed in 1995. The large effect of Ppd-D1a deriving from Renesansa is clearly 

evident, as is much variation that cannot be solely attributed to this source of photoperiod 

insensitivity. 

 

Avoidance and tolerance of abiotic stresses 

The yields of wheat crops are at risk of abiotic stresses throughout plant development, until 

physiological maturity. Varieties can vary in their tolerance of stresses applied for ranges of DGS 

(Bányai et al., 2014). It is evident that some growth stages are particularly sensitive to the 

environment (Craufurd et al., 2013). Much adaptation involves the deployment of genetic resources 

and agronomic intervention such that: the crop’s tolerance of stress is improved; and/or markedly 

sensitive periods of development do not coincide with particularly inclement conditions. With 

extreme weather events predicted to become more frequent in climate change scenarios (Semenov et 

al., 2014) a greater understanding of how stresses at specific growth stages influence yield and yield 



stability is required. Whether the DGS is adequate to describe developmental status in this context 

needs to be addressed.   

 

Winter hardiness and cold tolerance 

The requirement for vernalization and long days can delay the onset of floral initiation and this in 

itself may contribute to the avoidance of cold damage if reproductive development is not initiated 

until after the harshest weather has passed. However, Vrn-1 genes are closely linked to, and also 

interact with, other genes conferring cold tolerance (Reddy et al 2006), and therefore, survival over 

winter. The requirement for vernalization and the exposure of photoperiod sensitive varieties to 

short days helps maintain plants in the vegetative state and thereby better able to acclimatize to 

low-temperature; ability largely lost once the plants have moved to the reproductive state, defined 

here as approximating to double ridges (e.g. Mahfoozi et al., 2000; Limin & Fowler, 2006; Fowler 

& Limin, 2007). The inability for DGS to delineate the double ridge stage remains a weakness 

of this and other externally-based scores.  

 

Meiosis 

The timing of meiosis appears critical for crop adaptation as it is particularly susceptible to 

disruption by biotic (De MeloSereno et al., 1981) and abiotic stresses such as cold (Subedi et al., 1998; 

Tang et al., 2011), heat (Saini & Aspinall, 1982; Barnabäs et al., 2008; Jaeger et al., 2008; Omidi et al., 

2014) and drought (Saini & Aspinall, 1981; Dorion et al., 1996; Lalonde et al., 1997a; 1997b; Jaeger et 

al. 2008; Barnabäs et al., 2008); ultimately leading to grain set failure. As described previously, it is 

not possible to directly relate a single DGS to the onset of meiosis as coincidence is likely to depend 

on environment and genotype. However, as meiosis within florets, spikes and tillers occurs over a 

period of up to five days, it should be possible to broadly map susceptibility to abiotic stresses 

occurring during periods loosely demarcated by DGS. Fig. 2 is a reanalysis with new data from a 

complete factorial replicated pot (4 litre, four plants per pot) experiment, previously described as 

Experiment 2 in Alghabari et al. (2014). Factors included genotype (11 elite and near-isogenic lines 

of winter wheat varying for reduced height alleles), day temperature (20, 27, 30, 33, 36, 39°C), 



timing of stress (booting or anthesis) and irrigation (withholding water during heat stress or 

irrigating to field capacity). Environment treatments were imposed by transferring pots to matched 

growth cabinets at 15:30h GMT for three 16 h day, 8 h night cycles (8°C below day temperature) 

before returning to the original, completely randomized, position outside. Each mainstem and tiller 

was scored and tagged for their DGS when the pot was transferred. It is clear that grain set is 

particularly susceptible to withholding water at the booting DGS (Fig. 2a), a weakness that is 

further exacerbated by the imposition of high temperatures (Fig. 2b, c). In contrast, mean grain 

weight in this experiment was largely unaffected by drought imposed during booting (Fig. 2d), and 

when just heat was considered high temperature stress at booting resulted in heavier grains (Fig. 2e) 

in partial compensation for the poor grain set (Fig.2b). The effects of heat and drought on grain set 

are consistent with meiosis being a susceptible period of development and that this coincides with 

booting. However, any genotype-dependant variation in the coincidence between DGS and meiosis 

reduces the interpretative certainty from screens of genotypes against stresses applied according to 

DGS. e.g. an apparently tolerant genotype may have ‘escaped’ the stress if meiosis occurred at a 

different DGS to other more ‘susceptible’ genotypes. A laborious approach to overcoming this issue 

is to impose shorter duration stresses to different plants on successive days and DGS. Fig. 3 shows 

the results from this approach. The experimental system was similar to that used for Fig. 2 and 

comprised 496 pots accommodating two cultivars (Savannah and Renesansa) × two day 

temperatures (20°C and 35°C) × 31 single day transfers × four randomised blocks. It was hoped that 

the contrasting target environments of the cultivars would reveal a variation in stress tolerance at 

and after meiosis.  Each mainstem was tagged and scored for growth stage on the day of transfer. 

Renesansa was clearly earlier maturing than Savannah, consistent with differences in the 

photoperiod sensitivities of the two lines (Fig. 3e vs. 3f). Pots were not watered whilst in the 

cabinets. Ears of Renesansa and Savannah were harvested at DGS 89. For mean weight per spikelet 

there were strong interacting effects between temperature and day and between cultivar and day. 

Both cultivars showed susceptibility to the high temperature treatment during booting (Fig. 3), but 

this was particularly marked in Savannah, during a five-day period when 80% of the ears were 

between DGS 37 and 45. 



 

Anthesis 

In addition to meiosis, grain set in wheat can be compromised by temperatures above 30oC shortly 

before and during flowering (Stone & Nicolas, 1995a,b,c; Wheeler et al., 1996; Ferris et al., 1998; 

Barnabás et al., 2008).  Although drought can exacerbate the effect of heat (Fig. 2), drought at 

moderate temperatures is much less damaging to grain set when it occurs at anthesis, compared 

with at meiosis (Fig. 2; Saini & Aspinall, 1981; Alghabari et al. 2014). In terms of DGS, grain set 

tends to be more susceptible to heat stress in the earlier stages of flowering: DGS 59-65, compared 

with DGS 69 (Fig. 2) consistent with observations of stress mid-way through (Mitchell et al., 1993), 

or shortly before (Wheeler et al., 1996) flowering. It appears that grain set becomes comparatively 

tolerant of stresses three days after fertilization. The earliest flowers on ears assessed as having just 

completed anthesis at DGS 69 may have been fertilized four or five days earlier (Lukac, personal 

communication), and hence beyond the vulnerable growth stage (Saini & Aspinall, 1982; Stone & 

Nicolas, 1995a,b,c) for grain set. Hence, at GS 69 Semenov et al. (2014) still report 1.5 grains per 

spikelet being set at temperatures as high as 40°C under irrigated conditions. Such grains can, 

however, be significantly reduced in final mean grain weight (Fig. 2; Semenov et al.,2014). As well as 

heat there is also a large effect of drought shortly after anthesis on final mean grain weight even 

when subsequent water availability is high before the end of grain growth (Gooding et al., 2003). 

Renesansa appeared particularly susceptible to the high temperature during a period when over 80% 

of ears were between GS 59 and 65 (Fig. 3). This early flowering period, however, appeared to be 

relatively resistant to heat in Savannah. Indeed, when the duration from booting to flowering is 

considered Renesansa appeared more susceptible to heat than Savannah, confirming previous pot 

experiments (Semenov et al. 2014). This emphasises the likely importance of ‘escape’ for the 

adaptation of the S European wheat conferred by more rapid development through photoperiod 

insensitivity (Worland et al., 1998; Snape et al. 2001). Growing Renesansa in the UK out of its 

intended region of adaptation, however, also resulted in less synchronous development (Fig. 3e,f) 

and it is possible that any consequent reduced co-ordination of reproductive and flowering processes 



may have been exacerbated by abiotic challenges. We found no evidence that greater diversity in 

flowering time improved resilience as suggested by Lukac et al. (2012) , rather the reverse. 

 

Maximizing resource capture and dry matter partitioning 

Figs 4 and 5 show results from the Renesansa x Savannah doubled haploid population averaged over 

the 2007/08 (as described in Addisu et al., 2010), 2011/12 and 2013/14 field growing seasons in the 

UK. Accumulated light interception from sowing until DGS89 is clearly important for production of 

above ground biomass (Fig. 5o; Gallagher & Biscoe, 1978). Extending the growing season in 

clement and high light availabilty conditions, and as rotational system factors allow, can therefore 

increase yields, particularly when light interception is increased late in the season (Fig. 4o, 5d; 

Sylvester-Bradley et al., 2005; Gooding et al., 2005). Early season growth, however, may be less 

important, particularly if it is at the expense of harvest index (Figs. 4f, 5f).  Extending the duration 

and/or light interception during particular stages of development can, therefore, have a 

disproportionate effect on yield because of influences on specific yield components, dry matter 

partitioning, and radiation-use efficiency (Figs. 4, 5; Slafer et al., 2009; Reynolds et al., 2012). For 

example grain number per unit area is often the major yield component, and still limits yield in 

many areas of the world. It is necessary to increase this yield component to improve yields to satisfy 

future demand. Grain number per unit area is often positively related to light interception and 

radiation-use efficiency during the so-called critical period when the spikes are actively growing 

during the stem elongation phase until immediately after anthesis. Increasing light interception 

during this phase can increase the number of florets that become fertile and avoid floret death 

(Reynolds et al., 1999; Miralles et al., 2000; Gonzalez et al., 2003), and also increase the number of 

tillers per unit area and reduce the numbers that die.  Fischer (1985) initially defined the critical 

period for the effects of light interception on grain number determination as being from when the 

penultimate leaf had emerged until anthesis. The stem-elongation phase has, however, also been 

defined as from DGS 31 to DGS 65 (Garcia et al., 2014). In the Renesansa x Savannah population 

grain yield was positively associated with light interception in the stem elongation phase up to 

around 275 MJ PAR/m2 (Fig. 5b). As light interception increased further, grain yields decreased 



because here increasing PAR was achieved with excessive delays in anthesis and a consequential 

reduction in harvest index (Fig. 4g). 

 

Conclusions 

To conclude, DGS provides a simple, useable framework that can help to optimise agronomic 

applications as well as identify vulnerable stages of plant development to environmental stresses. 

The Zadoks scale is the most widely used due to its simple, yet effective layout. However, care must 

be taken when assessing certain phases of crop development using DGS as timings can differ 

depending on genotype and environment. Although DGS are an excellent tool for optimising 

agronomic timings, they fail to identify in detail key reproductive stages, such as the double ridge 

stage and meiosis. This is largely due to the influence environment and genotypic factors can have 

on the timing of these physiological stages relative to external DGS. Despite this, DGS can still be 

used as a broad marker when assessing for the effect of environmental stresses. DGS has also been 

used in phenotypic trials to help identify relationships between light interception between different 

DGS and the effects this has on various yield components.  
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Figure Legends 

Fig.1. Distribution of DGS for 64 doubled haploid progeny of Renesansa x Savannah when 

field grown in the UK in two seasons. Boxes are limited by 25 and 75 percentiles, whiskers 

by 10 and 90 percentiles; points are outliers beyond 10 and 90 percentiles, and the line 
within the box is the median where appropriate. Heavy solid line connects median for 
progeny carrying the marker for Ppd-D1a (photoperiod insensitive); dashed line is for Ppd-
D1b (photoperiod sensitive). 

 

Fig. 2. The effect of stem growth stage at the start of 3 day transfers to controlled 
environment cabinets for the imposition of heat and drought stresses (Alghabari et al., 

2014). In each panel the horizontal dashed line represents the mean result from plants 
transferred to temperatures 20, 27 and 30oC, irrigated to field capacity. Vertical bars are 

S.E.D. for comparison between the points and the dashed line.  

 

Fig. 3. Effects of wheat cultivar and successive 1-day transfers to controlled environment 

cabinets at 20/12 and 35/27°C day/night temperature (16h day) on mean weight per 
spikelet of main stems. e and f give the growth stage distributions of the mainstems at the 

time of transfer in to the cabinets (boxes are limited by 25 and 75 percentiles, whiskers by 

10 and 90 percentiles; points are outliers beyond 10 and 90 percentiles, and the line within 
the box is the median where appropriate). S.E.D. in a is for comparing temperatures within 

day and cultivar for both a and b. Dashed lines correspond to days and growth stages 

denoting the most susceptible 5-day period to 35°C for each cultivar.  

 
Fig. 4. Durations between different decimal growth stages (Zadoks et al., 1974b) of 64 

doubled haploid progeny of Renesansa x Savannah and associations with radiation use 

efficiency (RUE), and dry matter accumulated and partitioned by harvest. Points are means 

of two replicate field-grown plots in each of three growing seasons. Error bars are S.E.D. for 
comparing points. Fitted lines are incorporate polynomial effects when significant (P<0.05). 

 

Fig. 5. Interception of photosynthetically active radiation between different decimal growth 
stages (Zadoks et al., 1974b) of 64 doubled haploid progeny of Renesansa x Savannah and 

associations with radiation use efficiency (RUE), and dry matter accumulated and 

partitioned by harvest. Points are means of two replicate field-grown plots in each of three 

growing seasons. Error bars are S.E.D. for comparing points. Fitted lines are incorporate 
polynomial effects when significant (P<0.05).  



Table 1. Summary of the decimal growth stage (DGS) scoring system (Zadoks et al., 1974b; 
Tottman, 1987). 
 
DGS Abbreviated description 

0n Germination (n indicates pre-leaf emergence development from dry seed (n=0) to first 
leaf at coleoptile tip (n=9)) 

1n  Leaf production (seedling growth) on the main stem (n=number of leaves unfolded to 
the extent that the ligule is visible, to maximum of 9) 

2n Tiller production (n=number of tillers per plant to maximum of 9) 
3n  Stem elongation (n=0 refers to ‘pseudostem erect’ when the ear is at least 10mm above 

where the lowest leaves are attached; for n= 1–6, n = number of nodes detectable, to 
maximum of 6; then n=7 for flag leaf just visible, and n=9 flag leaf ligule visible). 

4n  Booting (n indicates degree of swelling) 
5n  Ear emergence (n indicates proportion of ear emerged) 
6n Anthesis (n indicates degree of completion) 
7n  Grain expansion (milk development) (i.e. grain fluid exuded when caryopsis squeezed 

changes from watery (n=1) to milky (n=7)) 
8n  Dough development (i.e. no droplet exuded from squeezed caryopsis, thumbnail imprint 

not retained (n=3) to thumbnail imprint retained (n=5+) 
9n Ripening (describes harvest ripeness (n=2), to seed with no primary dormancy (n=7)). 
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