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Abstract 

An extensive experimental and simulation study is carried out in conventional 

magnetorheological fluids formulated by dispersion of mixtures of carbonyl iron 

particles having different sizes in Newtonian carriers. Apparent yield stress data are 

reported for a wide range of polydispersity indexes (PDI) from PDI = 1.63 to PDI = 

3.31, which for a log-normal distribution corresponds to the standard deviation ranging 

from 38.0  to 76.0 . These results demonstrate that the effect of polydispersity 

is negligible in this range in spite of exhibiting very different microstructures. 

Experimental data in the magnetic saturation regime are in quantitative good agreement 

with particle-level simulations under the assumption of dipolar magnetostatic forces. 

The insensitivity of the yield stresses to the polydispersity can be understood from the 

interplay between the particle cluster size distribution and the packing density of 

particles inside the clusters. 

 

Keywords 

Magnetorheology, magnetorheological fluids, yield stress, polydispersity, particle size 
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INTRODUCTION 

Conventional magnetorheological (MR) fluids are dispersions of carbonyl iron 

microparticles in non-magnetic carriers. In the absence of magnetic fields, the 

dispersions exhibit a liquid-like behavior. However, upon the application of a large 

enough magnetic field ( 10 kA/m), the particles are magnetized and interact with each 

other to form elongated structures in the direction of the magnetic field. This results in a 

field-controllable increase in the viscosity and the eventual appearance of an apparent 

yield stress at appropriate particle loadings and field strengths (so-called MR effect) 

(Parthasarathy and Klingenberg 1996, Bossis et al. 2002, Gonzalvez et al. 2006, Park et 

al. 2010, de Vicente et al. 2011).  

 

Enhancing the yield stress under external fields is a priority for commercial applications. 

In this sense, it is well known that increasing the particle concentration results in an 

increase of the yield stress under the field (on-state) (e.g. Segovia-Gutierrez et al. 2012), 

but it also gives place to a large off-state (no field) viscosity (Barnes 1989) and 

eventually leads to a reduction in the MR effect (Foister  1997). One way to increase the 

particle volume fraction without increasing the off-state shear viscosity is by using 

polydisperse MR fluids (i.e., dispersions of magnetizable particles with different sizes). 

In fact, polydisperse MR fluids inherently exhibit a lower off-state viscosity than 

monodisperse MR fluids due to the different particle packing characteristics; larger 

packing fractions are achieved with polydisperse systems. This means that using 

polydisperse MR fluids, the particle volume fraction can be increased, without 

increasing the off-state viscosity, hence developing a larger MR effect.  

 

The effect of particle size in the case of monodisperse systems has been largely reported 

in the literature for MR fluids, ER fluids and inverse ferrofluids (Lemaire et al. 1995, 

Tan et al. 1999, de Gans et al. 2000, Trendler and Bose 2005); in general, larger 

particles exhibit a larger yield stress under the presence of magnetic fields (e.g. Lemaire 

et al. 1995, Foister 1997, Trendler and Bose 2005). On the contrary, the understanding 

of polydisperse MR fluids is still not complete. As a first approximation towards the full 

understanding of the effect of particle size polydispersity, in recent years, a number of 

studies have focused on bimodal distributions (i.e. mixtures of particles having only two 

different sizes) (Ahn and Klingenberg 1994, Weiss et al. 1999, Weiss et al. 2000, 

Bombard et al. 2005, Golden and Ulciny 2005, Song et al. 2009). Experiments and 
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simulations demonstrate that it is possible to substantially increase the yield stress of an 

initially monodisperse MR fluid with the addition of a small amount of smaller particles 

(at the same total particle concentration), while simultaneously reducing the viscosity of 

the suspension (Foister  1997, Weiss et al. 1999). In most cases, particle packing 

arguments are employed to explain such an increase (e.g. Weiss et al. 2000 for MR 

fluids; e.g. See et al. 2002 for ER fluids). However, more recently, Kittipoomwong et al. 

2005 proposed an alternative mechanism for the enhanced yield stress in bidisperse 

suspensions by using particle level simulations. Interestingly, microstructure analysis 

revealed that the enhanced stress transfer in bidisperse suspensions was not associated 

with an increase in particle packing. Instead, the enhanced yield stress was associated 

with the presence of more highly anisotropic clusters of large particles than observed in 

monodisperse suspensions. 

 

A complete understanding of the effect of particle size distribution in the MR effect of 

sphere-based suspensions is still missing in the literature. Actually, there are very few 

papers involving a continuous size distribution. To the best of our knowledge, there are 

only three papers addressing this issue from the simulation side. Wang et al. 1997 

reported a two-dimensional (2D) simulation study of ER fluids under the assumption of 

Gaussian distribution of particle sizes and negligible thermal and inertial terms. They 

introduced a local-field approximation to take into account the mutual polarization 

effects between the particles. Shear stresses were simulated for a constant shear rate 

value at different standard deviations of the Gaussian distribution (from s = 0 to 3). It 

was found that the stresses first dropped quickly with increasing polydispersity and then 

gradually saturate as s > 0.5 (corresponding to PDI > 1.07, considering that the particle 

sizes were limited in a range of within 50% from the mean size). The decrease in the 

shear stress was interpreted as a result of the formation of imperfect chain-like 

structures by particles of different sizes that are easier to break under shear than those 

formed by particles of uniform size. Recently, Sherman and Wereley 1997 carried out a 

comprehensive 3D simulation study under the assumption of log-normal distribution, 

again neglecting thermal and inertial terms. Their results demonstrate that as the particle 

distribution size parameter increases, particles tend to form more irregular structures 

and a 25 % reduction in the shear stress at low Mason numbers is observed. More 

recently, Fernández-Toledano et al. 2015 carried out 3D Brownian dynamic simulations 

of MR fluids with PDI = 1.12 (i.e., the standard deviation of log-normal distribution
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2.0 ). The results obtained were compared with purely monodisperse systems. The 

effect of polydispersity was very small and basically only noticeable in the yielding 

region: a slightly more abrupt decrease in viscosity was found in viscosity curves for 

polydisperse suspensions. 

 

Also, very few papers have been published on the effect of a continuous size 

distribution in the MR performance from the experimental point of view. The reason for 

this is that generally polydispersity is achieved by mixing only two populations having 

different particle sizes at different proportions (e.g. See et al. 2002 for ER fluids; e.g. 

Bombard et al.
 
2005 for MR fluids) and in most cases the particle size ratio is either 

large or extremely large (Song et al. 2009, Wu and Conrad 1998). To the best of our 

knowledge, there is only one paper in the scientific literature that addresses a continuous 

distribution by mixing more than two systems (Chiriac and Stonian 1998). In their paper, 

Chiriac and Stonian 1998 carried out an experimental investigation to elucidate the 

effect of particle size distribution on MR effect. Distributions were obtained first by 

sieving commercial micrometric iron particles (Sigma-Aldrich) to obtain narrow 

distribution powders and then mixing the finer powders in order to obtain three batches 

with tailored size distributions. MR fluids investigated were formulated at a 10 vol% by 

mixing the powders in mineral oil. Unfortunately, although some changes were detected 

when measuring the MR response, the mean particle size changed among the batches 

prepared and this complicated the interpretation of their results. 

 

In this work we carry out an extensive experimental study on the effect of particle size 

polydispersity in conventional MR fluids prepared by dispersion of mixtures of three 

varieties of carbonyl iron microparticles that only differ in size and having all other 

physical properties essentially the same (chemical composition and magnetic properties). 

Particle concentrations and size distributions explored are within the range of those of 

interest in commercial applications (clearly larger than that reported by Fernández-

Toledano et al. 2015). Special care is taken for the mean particle size of the 

distributions to remain constant (variations less than 5 %). Also, experimental results 

are compared to particle-level simulation data. 
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EXPERIMENTAL 

Three types of carbonyl iron particles were obtained from BASF SE and used without 

further purification (grades HQ, HS and OM). These three powders were conveniently 

mixed to further produce mixed particle systems with different particle size distribution 

and polydispersity but similar mean size and magnetic properties. MR fluids were 

prepared by dispersion of the carbonyl iron powders in a silicone (PDMS) oil of 

viscosity 20 mPa·s (Sigma-Aldrich). The particle concentration was fixed at 10 vol%. 

Table 1 summarizes relevant information on the polydispersity and magnetic properties 

of the iron grades and mixtures used in this manuscript. Magnetic properties of carbonyl 

iron powders were modelled using the Fröhlich-Kenelly law (Jiles 1991). Figure 1 

contains the particle size distributions for the different MR suspensions investigated.  

 

A MCR302 magnetorheometer (Anton Paar, MRD70/1T) was used in plate-plate 

configuration (20 mm diameter and 300 microns gap thickness). The magnetic field 

applied was always perpendicular to the plates and the temperature was maintained at 

25 ºC during the test. Experiments were carried out in saturation ( mkAH /8850  ) for 

better comparison with the simulation results where the dipolar approximation is 

assumed. 

 

The rheological protocol was as follows. First the sample was preconditioned at a high 

constant shear rate (100 s
-1

) for a duration of 30 s to remove history effects. Next, the 

suspension was left to equilibrate at rest for 60 s under the presence of a magnetic field. 

Finally, the rheological test started. It consisted of a logarithmic stress ramp from 1000 

Pa to 10000 Pa. The logarithmic increase of the stress was done at a rate of 50 

points/decade and the acquisition time was 5s. The static yield stress was obtained from 

the stress corresponding to a sudden change in shear rate in log-log stress versus shear 

rate representations. For the dynamic yield stress, a regression fit was carried out in lin-

lin representation for the data points measured at the largest shear rates. All 

experimental data reported in this work were averages of at least three independent 

measurements with fresh new samples. As an example, the referred static and dynamic 

yield stress are shown for a typical rheogram ( 76.0  and 10.0 ) in the Supporting 

Material (Figure S1). 
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SIMULATION TECHNIQUES 

Molecular dynamic simulations were carried out in order to understand the microscopic 

mechanisms behind the performance of polydisperse MR fluids under shearing flow. 

The simulation method was an extension of the methodology developed by Klingenberg 

and coworkers (Parthasarathy and Klingenberg 1996, Ahn and Klingenberg 1994, 

Kittipoomwong et al. 2005) for polydisperse particles taking the expressions for the 

forces from a previous work by Fernandez-Toledano et al. 2015 The method concerns 

non-Brownian inertialess simulations. In general, this restriction can be easily accepted 

in the case of conventional MR fluids, since the so-called Lambda ratio (i.e. the ratio 

between the magnetostatic energy and the thermal energy) is generally large enough to 

safely neglect the thermal motion. MR fluids were thus modeled as 1000N  neutral 

buoyant particles in a continuous Newtonian medium. Hydrodynamic interactions were 

also neglected and the Stokes’ law approximated the drag force. This approximation is 

generally adopted because of computational reasons. Also, a recent study by Lagger et 

al. 2015 demonstrated that hydrodynamic interactions can be safely neglected if the 

hydrodynamic stress is not the main contribution to the total stress. Considering these 

approximations, the equation of motion of a particle i , can be expressed as follows: 

 

ii
i

i Fu
dt

rd 










             [1] 

 

where ici  3 is the friction coefficient of the particle with c  the Newtonian 

medium viscosity and i  the diameter of the particle, respectively. ir


 is the position 

vector of the particle. xii ezu 





 is the ambient fluid velocity at the particle center with 

  the magnitude of the shear rate tensor, iz  the z-coordinate of the particle and xe  the 

unit vector in the x-direction in Cartesian coordinates. Finally, iF


 is the total force 

acting on the particle. 
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In Equation [1], the term iF


 includes the pair-wise magnetostatic forces exerted by all 

other particles on particle i , 



ij

mag

ij

mag

i FF


. Magnetostatic interaction force between 

two particles was modeled in the dipolar approximation as follows: 

 

]ˆ2sinˆ)1cos3[( 2

42

33

0 



ee

r
FF ijrij

ijm

jimag

ij 


        [2] 

 

Here, 16/3
22

0

2

00 mcr HF   stands for the typical magnetic interaction force 

between two particles with sizes of the average diameter m . 0 is the magnetic 

permeability of the vacuum, cr is the relative permeability of the continuous medium, 

)2/()( crprcrpr    is the so-called contrast factor (or coupling parameter), 

pr  is the magnetic permeability of the particles, 0H  is the external magnetic field 

strength, ijr  is the center-to-center distance between two particles i  and j , ij  is the 

angle between the line joining the centers of the two particles and the magnetic field 

direction, and rê  and ê  are the unit vectors in the directions r  and   using a spherical 

coordinate system. 

 

Exponential short-range repulsive forces were included to avoid overlapping between 

particles, rep

ijF


, and between each particle and the two confining walls, 
topwall

iF ,


 and 

bottomwall

iF ,


. Exponential forces are applied instead of stiff power law forces, since it was 

shown that exponential forces help the formation of thicker aggregates as already 

observed in experiments (Melrose and Heyes 1993, Segovia-Gutiérrez et al. 2013). 

Expressions for the exponential forces used in this manuscript for continuous particle 

size distributions can be found in the work of Fernández-Toledano et al. (2015). 

 

The equation of motion was made dimensionless using the following units: msl  ,

0FFs   and 0

2
/3 Ft mcs  . In simulations of continuously polydisperse systems we 

used a Log-normal distribution. The Log-normal distribution is a continuous probability 
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distribution where the logarithm of the random variable is normally distributed. The 

Log-normal random variable was obtained, thus, by first calculating a normal variable 

of mean mln  and standard deviation   and then calculating the Log-normal random 

variable by taking the exponential of the normally distributed variable. Simulations also 

involved tri-disperse particle size distributions (i.e., mixtures of particles with three 

different sizes) to better understand the relationship between the field-induced 

microstructures and the rheological performance of the polydisperse MR fluids. Tri-

disperse particle sizes, bas   , for each given polydispersity index were obtained 

by taking three different average diameters from the Log-normal distribution with fixed 

probabilities of 16.0)()(  bs PP   and 68.0)( aP  . Table 2 summarizes tri-

disperse diameters as a function of the standard deviation,  , and so correspondingly 

the polydispersity index. From now on, we will also refer   as the polydispersity index.  

 

Once the total force acting on a particle was calculated, its equation of motion was 

solved using the Euler algorithm. Time variation was calculated at every step such that 

the maximum displacement of any particle, i , in one direction was no larger than 

i05.0
 
in order to avoid particles to be ejected from the box due to the fact that big-

small particle interactions can provoke the smallest particle to move outside the box. 

This condition typically reduced the time variation and the total simulation time 

increases specially for the highest polydispersity indexes. 

 

Stress growth tests (start-up tests) were carried out at a small-normalized shear rate, 

3* 10 . This velocity was found to provide a stress value close to the yield stress 

(Fernández-Toledano et al. 2015). Simulations were composed of three stages: (i) 

Particles were randomly distributed in the simulation box, (ii) Particles were allowed to 

move under the presence of the magnetic field in quiescent state until reaching a 

stationary state. The stationary state was found to be established for all polydispersity 

indexes at a dimensionless time 3000
*
statt ; (iii) Start-up test was properly initiated 

and steady shear flow was fully achieved when reaching a total strain of 3 . The 

stress tensor was calculated at each time step as follows: 
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



ji

ijij Fr
V




1
            [3] 

 

where   is the --component of the stress tensor, V  is the volume of the simulation 

box, 


ijr  is the -component of the distance between particles i  and j  and 


ijF  is the -

component of the total pair-wise interaction between the two particles. Three regions 

were clearly identified in the stress versus time (or strain) curves: elastic, peak and 

steady regions (Fernández-Toledano et al. 2015). The elastic region corresponds to the 

low-strain regime where the stress is found to be proportional to the shear strain. Then, 

a maximum in the stress (peak) is observed. Finally, for large enough strain values the 

stress levels off to a nearly constant value as a function of time in a steady region. As 

the shear rates imposed were very low, the static yield stress can be assimilated as the 

stress peak. Also, the dynamic yield stress was calculated as the shear stress averaged 

over 4000 configurations saved from strain 2  to 3 . Simulation results were the 

average values of at least 3 different tests for each case. In order to obtain a better 

estimation of the static yield stress, more simulation runs (at least 10) were carried out 

up to a reduced total strain of 1 . 

 

To better understand the rheological performance of polydisperse MR fluids, we ran a 

microstructural analysis through the calculation of the particle pair distribution function. 

In the canonical ensemble, the probability of finding a pair of particles at positions 1r


 

and 2r


 respectively is given by the pair distribution function: 

 

]/),...,,(exp[...
)1(

),( 21432212 TkrrrUrdrdrd
Z

NN
rrg BNN

NVT





 

       [4] 

 

where   is the number density of the particles, NVTZ  is the partition function,   

),...,,( 21 NrrrU


 is the total interaction potential, Bk  is the Boltzmann constant and T  is 

the temperature of the system.  
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Due to the spherical and azimuthal symmetries in the pair dipolar magnetic interaction, 

Equation [4] could be reduced to a function of the radial distance between two particles, 

r  , and the angle between the direction vector linking the centers of these two particles 

and the direction of the magnetic field,  . Then the pair distribution function is 

converted to ),(),(2  rgrg  . In simulations, this function could be obtained simply 

by the following expression (Allen and Tildesley 1987):  





i ij

ijijrr
N

V
rg )()(),(

2
      [5] 

 

where the bracket refers to a volume average. Also, a radial distribution function could 

be easily obtained from the radial and angular distribution function by the integration of 

this function as a function of  : 
2/

0
),()sin()(



 rgdrg . 

 

RESULTS AND DISCUSSION 

Experimental yield stresses 

In Figure 2 we show the rheograms (steady-state shear stress versus shear rate curves) 

corresponding to MR fluids having different polydispersity levels (from 38.0  to 

76.0 ) at particle volume fraction 10.0 . For low stress levels the shear rate 

remains below 10
-3

 s
-1 

suggesting that the sample is not flowing (data not shown in the 

figure). However, for stresses above 6000-7000 Pa the shear rate dramatically increases 

in accordance to the initiation of flow. As observed, the curves essentially overlap 

suggesting that the effect of polydispersity is not important within the standard 

deviation of the data. 

 

These results are in qualitative agreement with the simulation work of Fernández-

Toledano et al. 2015. In that work, a simulation study was carried out for both mono- 

and polydisperse (with 2.0 ) MR fluids. These two MR fluids exhibited very similar 

behavior, the only difference being in the transition region between the solid and liquid-

like regimes. Actually, for polydisperse MR fluids a slightly sharper transition was 

found if compared to the monodisperse case.  
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Figure 3 contains experimental (static and dynamic) yield stresses for a particle 

concentration of 10.0 . As observed, the yield stresses do not depend much on the 

polydispersity index. They remain basically constant over the range of  values we 

studied, with the dynamic yield stress being higher than the static one (see Figure S1 for 

the measurement of the two stresses). Only a very slight local maximum in the yield 

stress was measured for a polydispersity index of 7.0 . Experiments were also 

carried out for other particle concentrations including 01.0 , 05.0  and 20.0 , 

all giving very similar results. These experiments are not shown for brevity. To get a 

better insight into the effect of polydispersity we pursued particle-level simulations. 

 

Simulated yield stresses for MR systems with continuous particle size distributions 

The static and dynamic yield stresses of the MR systems with continuous particle size 

distributions were determined using particle-level simulations. The start-up tests were 

performed at a low shear rate (
3* 10 ) similar to that used by Fernández-Toledano et 

al. 2015. As an example, typical stress-strain curves for 10.0  and 64.0  are 

presented in Figure 4 for a total of 13 independent runs for strains up to 1  (4 runs for 

strains up to 3 ) to appreciate the repeatability of the simulations. In general, three 

regions can be identified: a first elastic region where the stress grows linearly with 

strain, a maximum (peak) in the stress, and finally a monotonous decay of the stress 

towards a final steady region marked by the long-time plateau. On the one hand, the 

maximum of the stress in each stress-strain curve is taken here as an estimate for the 

static yield stress in the suspension. On the other hand, the long-time stress plateau is 

taken as the dynamic yield stress of the suspension. In this sense, the dynamic yield 

stress was obtained as the average of the stress values from 2  to 3 . It is 

worthwhile to note that the high number of repetitions was necessary to obtain a good 

estimation for the static yield stress (more than 10 independent runs). In the case of the 

dynamic yield stress, as it was already taken as a time average in each individual test, 

less (but at least 3) repetitions were needed to get a reasonably good estimation. 

 

Simulated yield stresses are reported in Figure 5 for the particle concentration 10.0 . 

In good agreement with the experimental observations (c.f. Figure 3), both the static and 

dynamic yield stresses exhibit very minor changes with the variation of the degree of 
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polydispersity. Despite many simplifications made in the simulation model, the 

simulation data fall well into the same quantitative range as the yield stresses measured 

in experiments. It is useful to remark that the definitions of the static and dynamic yield 

stresses differ between the experimental and simulation cases, as described in the 

previous sections. This difference, however, has no qualitative effect on the observed 

behavior of the yield stresses with respect to the level of polydispersity. 

 

The mechanical properties of the MR fluids are inherently correlated to the 

microstructures formed by the particles. For convenience of structural analysis, we have 

also decided to carry out simulations on tri-disperse MR systems. 

 

Simulated yield stresses for MR systems with tri-disperse particle size distributions 

Simulation results on the static and dynamic yield stresses of the tri-disperse MR fluids 

are also contained in Figure 5. It can be seen that these stress values are very similar to 

those obtained from the MR systems with continuous size distributions, suggesting that 

the tri-disperse suspensions can closely capture the behavior of the experimental 

systems with continuous particle size distributions. Simulations of penta-disperse model 

systems have also performed. As expected, they provided consistent results (not shown 

for simplicity) with the case of tri-disperse suspensions, suggesting again that the tri-

disperse model suspension is sufficient to represent the continuous size distribution. We 

can then analyze the structural properties of these model systems for getting insights 

into the physical reasons of the negligible dependence of the yield stresses on the 

polydispersity.  

 

Characterizing structural formation in simulated MR systems with continuous size 

distributions 

To explore the structural characteristics of the particle aggregates formed in the MR 

systems, we calculated the average number of clusters cN , the average number of 

particles in each cluster 
cc

i

ipc NNNnN   and the weight-averaged number of 

particles in each cluster NnnnS
i

i

i

i

i

i  
22

2

 

for the cases both prior to and 

under shear. Here, in  is the number of particles in the cluster i . The simulation results 
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on pcN
 
are shown in Figure 6, while those for cN and 2S are given in Figures S2 and 

S3 in the Supporting Information. Note that there is a simple inverse relationship 

between cN  and pcN because of the use of constant number of particles in the 

simulation box. 

 

Simulation results in the absence of shear demonstrate a monotonic increase of cN , 

and a concomitant decrease of pcN
 
and 2S  with the increased polydispersity. For the 

highest polydispersities, the stationary state is difficult to achieve but the number of 

clusters only varies in less than 1 for reduced times higher than 2700. Considering the 

insensitivity of the yield stresses to the polydispersity, these simulation results reveal 

the importance of the internal microstructure of the aggregates for understanding the 

experimentally observed trends in the yield stress. They indicate that the yield stress 

depends not only on the number and sizes of the aggregates, but also on their 

mechanical strength to deformation. This is further supported by the simulation data 

upon shear, which show qualitatively similar structural changes with respect to 

polydispersity. 

 

Particle radial distribution function for MR systems with continuous particle size 

distributions 

The particle radial distribution functions can provide more detailed information about 

the particle packing inside the clusters. The 𝑔(𝑟) curves obtained from the MR systems 

with continuous particle size distributions are shown in Figure 7. These functions are 

calculated at three different stages of the deformation process: at 1.0  within the 

elastic region, at the stress peak, and in the steady regime from 2  to 3 . As can 

be seen, all pair distribution functions exhibit a maximum (first peak) close to the 

average particle diameter. The width of the peak increases with increasing 

polydispersity, which is expected as a result of the connections between particles of a 

broader range of sizes. Interestingly, the height of this peak is also found to grow with 

the increased polydispersity. This means that on average each particle in the suspension 

with higher polydispersity finds more nearest neighbors than the particles in the less 

polydisperse suspensions. In other words, the particle packing density is higher in the 

former case. This phenomenon can be easily understood from the fact that small 
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particles can get into the voids left by large particles in the clusters. The more 

heterogeneous packing of particles in the highly polydisperse systems leave only one 

peak in their 𝑔(𝑟) curves. On the contrary, the particle pair distribution functions of the 

less polydisperse systems possess a long-distance peak at reduced distance of 𝑟∗ ≈ 5 or 

6. The long-distance peak is related to the mean distance between clusters since ),( rg

is higher for angles from [60º,90º] that in angles from [0º,30º]. 

 

Comparing the simulation results in Figures 6 and 7, it can be seen that although the 

aggregates or clusters formed in the more polydisperse systems are of smaller sizes, the 

packing density of particles in these clusters are higher. Since the higher packing 

density may allow the clusters to sustain stronger mechanical load or deformation, this 

contribution could effectively cancel out the stress reduction effect caused by the 

decrease in cluster sizes. It is the interplay between the two opposite effects that leads to 

the nearly invariant yield stress upon changes of polydispersity. 

  

The particle packing effect on the yield stress can be further examined by analyzing the 

angle-dependent pair distribution function ),( rg  [Equation (5)]. Figure 8 presents the 

polydispersity dependence of the maximum (peak) value of the pair distribution 

function averaged within different angle limits, 



2

1

2

1
21

)sin(),()sin()( ],[








  drgdrg . Two angle intervals are included. We 

show the simulation data for the (dipolar) energetic-favorable angles, ]º30,0[  and for 

the energetic-unfavorable angles, ]º90,º60[ . Although in both cases the peak values 

show a monotonic increase with increasing polydispersity, the corresponding increases 

in the packing densities at different angles contribute to the total interaction energy and 

consequently the yield stress of the system in very different ways. The increase in the 

peak value of the pair distribution function at the energetic-favorable angles ( ]º30,0[ ) 

suggests the formation of well-arranged and so stronger structures along the magnetic 

field direction. But the increase of the pair distribution function at the energetic-

unfavorable angles ( ]º90,º60[ ) implies that the structures also contain more bonds 

that are easier to break. As will be seen below, it is not only the average local density of 

particles what contributes to the yield stress, but also the direction-dependent 

microscopic arrangements of the particles inside the clusters. It is also important to 
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remark that the maximum value of the pair distribution function for the smallest angles 

decreases in the steady region compared with the elastic region, suggesting the break-up 

of the column- or chain-like structures along the field direction.  

 

These results in Figure 8 are in agreement with the results from Fernandez-Toledano et 

al. 2015 (see Figure 4 in that work) where the particle connectivities in the polydisperse 

system demonstrated a continuous distribution as a function of the connecting angle, 

instead of individual peaks marking the more favorable connections in the 

monodisperse system, for ]º60,0[ . The dependence of particle connections on their 

sizes can be identified more easily for the tri-disperse systems, as shown below.  

 

Radial distribution function for tri-disperse MR systems 

In Figure 9 we show the radial distribution function curves for the tri-disperse MR 

suspensions. We observe that there are very reproducible peaks associated with the 

discrete particle sizes, namely the distances between particles of different sizes (small, 

average and big). In the case of the lowest polydispersity, another long-distance peak (at 

𝑟∗ ≈ 5 − 6) is found, which does not occur in the highly polydisperse systems. This 

peak cannot be associated to the three different sizes of the particles, but can be well 

understood from microstructural snapshots shown in Figure 10 for two different 

polydispersities, 𝜈 = 0.52 and 𝜈 = 0.72. These snapshots demonstrate that bunches of 

average-size particles serve as bridges connecting big particles to from chain-like 

structures. As in the continuous case, for larger polydispersities, the pair distribution 

function and the interparticle connections suggest a stronger cluster formation, which 

implies a higher yield stress. However, these microstructural differences are not enough 

to provide a significantly higher yield stress, and so only a slight enhancement can be 

observed in experiments and simulations. 

 

First row in Figure 11 contains the maximum (peak) values in the radial distribution 

functions shown in Figure 9 for different polydispersity indexes, taking into account all 

possible connections between particles of different sizes. At first sight, these figures 

suggest that the average-average (a-a) particle connections dominate the response. 

However, this could be misleading, because the probability of finding a big or small 

particle is much lower than the probability of finding an average-size particle. It is more 
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helpful to obtain the relative importance of the connections among particles. In the 

simulations, we have 68.2 % of average-size particles and only 15.9 % of small-big 

particles, respectively. Hence, the results in the first row of Figure 11 were normalized 

by the probabilities of finding the different pairs of particles and presented in the second 

row of the figure. It then becomes evident that the small-small, small-big and big-big 

connections present a higher relative importance in determining the yield stress. 

 

Similar results have been found in the radial distribution functions in the peak and 

steady shear regions (these results are included in Figure 11). Interestingly, the long-

distance peak observed in the elastic region of the lowest polydisperse systems is not 

observed now in the peak and steady shear regions due to the breakage of large 

columnar structure. The heights of the peaks are also lower in the steady region than 

those found in the elastic region. 

  

CONCLUSIONS 

In this work we investigate the role of the particle size polydispersity using 

experimental and simulation start-up tests. Polydispersity index was varied in a wide 

range containing typical experimental polydispersities, from PDI = 1.63 to PDI = 3.31. 

In this PDI range, the effect of the polydispersity on the yield stress can be considered 

as negligible in experiments; only a very slight maximum can be observed in the 

experimental case for PDI = 2.88 ( 64.0 ). 

 

Two different particle size distributions were used in simulations: a continuous log-

normal particle size distribution and a tri-disperse (i.e. three fixed different particle sizes) 

distribution. The results for the yield stress in both particle size distributions are in 

agreement with the experimental data and a slight but non-significant increase of the 

yield stress is found for the highest polydispersities. 

 

Although variations in the yield stress were of minor importance, differences in the 

microscopic structures were found in simulations in the continuous and tri-disperse 

distributions. Analysis results on the particle cluster sizes and the particle radial 

distribution function show that increasing the level of polydispersity of the MR system 

leads to a smaller average number of particles per cluster but a higher packing density 

of the particles inside the clusters. Although the smaller cluster sizes may result in a 
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reduction in the yield stress, the higher packing density can enhance the sustainability of 

the clusters to stronger mechanical load or deformation. It is the interplay between the 

two opposite effects that lead to the nearly negligible dependence of the yield stresses 

on the polydispersity.  

 

Moreover detailed analysis of the angle-dependent pair distribution functions reveals 

that at high level of polydispersity particle connections are increased at all the angles 

with respect to the magnetic field direction (both energetic-favorable and energetic-

unfavorable directions). This suggests another effect that, although the structure gets 

denser with increasing polydispersity, the bonds between particles can become weaker. 

This also contributes to maintain nearly constant yield stress upon variation of 

polydispersity. 
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Table 1.- Physical characteristics of the MR fluids used in this work. m  stands for the 

mean particle diameter, PDI is the polydispersity index and  the standard deviation of 

log-normal distribution. sM  is the saturation magnetization of the suspensions using a 

mixing rule.  

 

 MR fluid Fraction in mixed suspensions (wt%) 

m (m) PDI   sM  (kA/m) 
HQ HS OM 

S 100 0 0 1.26 1.64 0.42 1691 

M 0 100 0 2.20 1.63 0.38 1703 

L 0 0 100 4.30 1.85 0.52 1550 

P1 13 80 7 2.22 2.48 0.52 1691 

P2 20 70 10 2.22 2.71 0.58 1685 

P3 25 60 15 2.28 2.88 0.64 1677 

P4 33 50 17 2.25 3.02 0.68 1673 

P5 40 40 20 2.24 3.13 0.72 1668 

P6 50 30 20 2.15 3.31 0.76 1666 
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Table 2.- Dimensionless particle diameters, 
***

,, bas  , as a function of the 

polydispersity index   for tri-disperse molecular dynamic simulations. Probabilities for 

finding particles of different sizes were fixed at 16.0)()(  bs PP 
 
and 

68.0)( aP  . 

 

 s
* 

a
*
 b

*
 

0.38 0.567 1.021 1.713 

0.52 0.464 1.040 2.277 

0.58 0.425 1.050 2.515 

0.64 0.391 1.061 2.780 

0.72 0.350 1.077 3.183 

0.76 0.330 1.086 3.409 
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Figure 1. Particle size distributions for the polydisperse MR fluids investigated in 

experiments. 
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Figure 2. Experimental rheograms (shear stress versus shear rate) for different 

polydispersity levels in 10.0  MR fluids. The shear stress window corresponds to the 

range 4-12 kPa. 
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Figure 3. Experimental static and dynamic apparent yield stresses as a function of 

polydispersity index   for 10.0  MR fluids. 
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Figure 4. Typical example of the simulated shear stress-strain curves for 10.0  and 

64.0 . Every curve corresponds to an independent simulation run. a) Tests up to 

strain 1 . b) Tests up to 3 . Dimensionless shear rate is 
3* 10  .  
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Figure 5. Experimental and simulation static and dynamic yield stresses as obtained 

from the maximum and long-time plateau in stress-strain curves reported in Figure 4 for 

different polydispersity indexes in the 10.0  MR fluids. Squares correspond to 

continuous particle size distributions. Circles correspond to tri-disperse distributions. 

Triangles correspond to experimental data. 
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Figure 6. Simulation results on the average number of particles per cluster, pcN , for 

MR fluids with continuous particle size distributions at fixed particle concentration 

10.0  . a) Prior to shear; b) Under shearing. 
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Figure 7.- Particle radial distribution function in MR fluids with continuous particle 

size distributions and 10.0  at three different stages of the deformation: a) elastic 

region (at 1.0 ), b) stress peak, c) steady region. The results in the steady region were 

calculated by averaging over 4000 configurations saved from 2  to 3 .  
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Figure 8.- Polydispersity dependence of the maximum value of the pair distribution 

function, ),( rg , averaged within different angle limits for the 10.0  MR fluids. 

 

0.4 0.6 0.8
0

10

20

30

40

     [0º,30º]     [60º,90º]

 Elastic   Elastic

 Peak     Peak

 Steady   Steady

g
(r

,
) 

m
ax

 (
-)

 (-)

 

 

 

  



30 

 

Figure 9.- Radial distribution function for tri-disperse particle size distributions. 

10.0 . a) elastic region, b) stress peak, c) steady region. The steady region was 

calculated by averaging over 4000 configurations from 2  to 3 .  
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Figure 10.- Snapshots of the microstructure prior to shear for 10.0 : a) 52.0  and 

b) 72.0 .  
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Figure 11.- Peak heights of the radial distribution functions in tri-disperse simulations 

as a function of the polydispersity index. The particle concentration is 10.0 . a) 

elastic region, b) peak region and c) steady region. Normalization of the peak heights by 

the probabilities: d) elastic region, e) peak region and f) steady region. 
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Supporting information 

 

Figure S1.- Experimental static yield stress and the dynamic yield stress for an MR 

fluid with 76.0  and 10.0 . 
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Figure S2.- Simulation results on the average number of cluster, cN  for MR fluids with 

continuous particle size distributions at particle concentration 10.0  . a) prior to 

shear, b) under shearing. The total number of particles in the simulation box is N = 1000. 
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Figure S3.- Simulation results on the weight-averaged number of particles in each 

cluster 2S  for MR fluids with continuous particle size distributions at fixed particle 

concentration 10.0 . a) prior to shear; b) under shearing. 
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