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Abstract. A new global synthesis and biomization of long

(> 40 kyr) pollen-data records is presented and used with sim-

ulations from the HadCM3 and FAMOUS climate models

and the BIOME4 vegetation model to analyse the dynamics

of the global terrestrial biosphere and carbon storage over

the last glacial–interglacial cycle. Simulated biome distribu-

tions using BIOME4 driven by HadCM3 and FAMOUS at

the global scale over time generally agree well with those in-

ferred from pollen data. Global average areas of grassland

and dry shrubland, desert, and tundra biomes show large-

scale increases during the Last Glacial Maximum, between

ca. 64 and 74 ka BP and cool substages of Marine Isotope

Stage 5, at the expense of the tropical forest, warm-temperate

forest, and temperate forest biomes. These changes are re-

flected in BIOME4 simulations of global net primary pro-

ductivity, showing good agreement between the two models.

Such changes are likely to affect terrestrial carbon storage,

which in turn influences the stable carbon isotopic composi-

tion of seawater as terrestrial carbon is depleted in 13C.

1 Introduction

Variations in global climate on multi-millennial timescales

have caused substantial changes to terrestrial vegetation dis-

tribution, productivity, and carbon storage. Periodic varia-

tions in the Earth’s orbital configuration (axial tilt with a

∼ 41 kyr period, precession with ∼ 19 and 23 kyr periods,

and eccentricity with ∼ 100 kyr and longer periods) result in

small variations in the seasonal and latitudinal distribution

of insolation, amplified by feedback mechanisms (Berger,

1978). For the last ∼ 0.8 million years, long glacial peri-

ods have been punctuated by short interglacials on roughly

a 100 kyr cycle. Glacial periods are associated with low at-

mospheric CO2 concentrations, lowered sea level, and exten-

sive continental ice sheets; interglacial periods are associated

with high (similar to pre-industrial) CO2 concentrations, high

sea level, and reduced ice sheets (Petit et al., 1999; Peltier et

al., 2004; Lüthi et al., 2008).

During glacial–interglacial cycles the productivity and car-

bon storage of the terrestrial biosphere are influenced by or-

bitally forced climatic changes and atmospheric CO2 con-

centrations. Expansion of ice sheets during glacial periods

caused a significant loss of land area available for coloniza-

tion, but this was largely compensated for by the exposure

of continental shelves due to lower sea level. The terrestrial

biosphere (vegetation and soil) is estimated to contain around

2000 PgC (Prentice et al., 2001) plus a similar quantity stored

in peatlands and permafrost (Ciais et al., 2012). During the

last glacial period the terrestrial biosphere was significantly

reduced. It has been estimated that the terrestrial biosphere

contained 300 to 700 PgC less carbon during the Last Glacial

Maximum (LGM, 21 ka BP) compared with pre-industrial

times (Bird et al., 1994; Ciais et al., 2012; Crowley et al.,

1995; Duplessy et al., 1988; Gosling and Holden, 2011; Köh-

ler and Fischer, 2004; Prentice et al., 2011). As first noted

by Shackleton et al. (1977), the oceanic inventory of carbon

isotopes (δ13C) is influenced by terrestrial carbon storage be-

cause terrestrial organic carbon has a negative signature, due

to isotopic discrimination during photosynthesis. Many of

the estimates of the reduction in terrestrial carbon storage at

the LGM have therefore been based on the observed LGM

lowering of deep-ocean δ13C. A reduction in the terrestrial

biosphere of this size would have contributed a large amount

of CO2 to the atmosphere, although ocean carbonate com-

pensation would have reduced the expected CO2 increase to

15 ppm over about 5 to 10 kyr (Sigman and Boyle, 2000).

Many palaeoclimate data and modelling studies have fo-

cused on the contrasts between the LGM, the mid-Holocene

(6 ka BP), and the pre-industrial period. The BIOME 6000

project (http://www.bridge.bris.ac.uk/resources/Databases/

BIOMES_data) synthesized palaeovegetation records from

many sites to provide global data sets for the LGM and

mid-Holocene. Data syntheses are valuable in allowing re-

searchers to see the global picture from scattered, individual

records, and to enable model–data comparisons. The data

can be interpreted in the context of a global, physically

based model that allows the point-wise data to be seen

in a coherent way. There are continuous, multi-millennial
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Figure 1. Locations and altitudes of pollen records superimposed

on pre-industrial HadCM3 orography (m).

pollen records that stretch much further back in time than

the LGM but they have not previously been brought together

in a global synthesis to study changes of the last glacial–

interglacial cycle. These records can provide a global picture

of transient change in the biosphere and the climate system.

Here we have synthesized and biomized (Prentice et al.,

1996) a number of these records (for locations see Fig. 1),

providing a new data set of land biosphere change that

covers the last glacial–interglacial cycle. In Sect. 2.1 we

outline the biomization procedures applied to reconstruct

land biosphere changes.

To improve understanding of land biosphere interac-

tions with the ocean–atmospheric reservoir, we have mod-

elled the terrestrial biosphere for the last 120 kyr, from

the previous (Eemian) interglacial to the pre-industrial pe-

riod. Details of the atmosphere–ocean general circulation

model (AOGCM) climate and vegetation model simula-

tions are provided in Sect. 2.2. In Sect. 3 we evaluate

biome reconstructions based on our model outputs using

the BIOME 6000 project (www.bridge.bris.ac.uk/resources/

Databases/BIOMES_data), and our new biomized synthe-

sis of terrestrial pollen-data records, focusing on the pre-

industrial period and 6 (mid-Holocene), 21 (LGM), 54 (a

relatively warm interval in the last glacial period), 64 (a

relatively cool interval in the glacial period), 84 (the early

part of the glacial cycle), and 120 ka BP (the Eemian inter-

glacial). The effects of rapid millennial-scale climate fluctua-

tions were not simulated. Finally, in Sect. 4 we use our biome

simulations to estimate net primary productivity.

2 Methods

2.1 Biomization

Biomization assigns pollen taxa to one or more plant func-

tional types (PFTs). The PFTs are assigned to their respec-

tive biomes and affinity scores are calculated for each biome

(sum of the square roots of pollen percentages contributed

by the PFTs in each biome). This method was first devel-

oped for Europe (Prentice et al., 1996) and versions of it

have been applied to most regions of the world (Jolly et al.,

1998; Takahara et al., 1999; Tarasov et al., 2000; Thomp-

son and Anderson, 2000; Williams et al., 2000; Elenga et al.,

2004; Pickett et al., 2004; Marchant et al., 2009). We ap-

ply these regional PFT schemes (Table 1) to pollen records

that generally extend > 40 kyr, assigning the pollen data to

megabiomes (tropical forest, warm-temperate forest, tem-

perate forest, boreal forest, savanna/dry woodland, grass-

land/dry shrubland, desert, and tundra) as defined by Harri-

son and Prentice (2003) in order to harmonize regional vari-

ations in PFT to biome assignments and to allow globally

consistent model–data comparisons.

Table 2 lists the pollen records used. Biomization matrices

and megabiome score data can be found in the Supplement.

For taxa with no PFT listing, the family PFT was used if

part of the regional biomization scheme. Plant taxonomy was

checked using itis.gov, tropicos.org, and the African Pollen

Database. Pollen taxa can be assigned to more than one PFT

either because they include several species in the genus or

family, with different ecologies, or because they comprise

species that can adopt different habitats in different environ-

ments.

Age models provided with the individual records were

used. However, in cases where radiocarbon ages were only

provided for specific depths (e.g. Mfabeni, CUX), linear in-

terpolations between dates were used to estimate ages for

the remaining depths. Some age models may be less certain,

especially at sites which experience variable sedimentation

rates and/or erosion. Sometimes more than one age model

accompanies the data, illustrating the range of ages and also

that there can be large uncertainties. To aid comparison,

for several southern European sites (e.g. Italy and Greece)

it has been assumed that vegetation changes occurred syn-

chronously within the age uncertainties of their respective

chronologies, for which there is evidence (e.g. Tzedakis et

al., 2004a).

2.2 Model simulations

Global simulations of vegetation changes over the last glacial

cycle were produced using a vegetation model (BIOME4)

forced offline using previously published climate simulations

from two AOGCMs (HadCM3 and FAMOUS). By using two

models we test the robustness of the reconstructions to differ-

ent climate forcings.

2.2.1 HadCM3

HadCM3 is a general circulation model, consisting of cou-

pled atmospheric model, ocean, and sea ice models (Gordon

et al., 2000; Pope et al., 2000). The resolution of the atmo-

spheric model is 2.5◦ in latitude by 3.75◦ in longitude by 19

www.clim-past.net/12/51/2016/ Clim. Past, 12, 51–73, 2016
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Table 1. Details of the various biomization schemes applied for the different regions.

Africa Jolly et al. (1998)

Southeast Asia, Australia Pickett et al. (2004)

Japan Takahara et al. (1999)

Southern Europe Elenga et al. (2004)

Northeastern Europe Tarasov et al. (2000)

North America: western north Thompson and Anderson (2000)

North America: east and northeast Williams et al. (2000)

Latin America Marchant et al. (2009)

unequally spaced levels in the vertical. The resolution of the

ocean is 1.25 by 1.25◦ with 20 unequally spaced layers in the

ocean extending to a depth of 5200 m. The model contains

a range of parameterizations, including a detailed radiation

scheme that can represent the effects of minor trace gases

(Edwards and Slingo, 1996). The land surface scheme used

is the Met Office Surface Exchange Scheme 1 (MOSES1;

Cox et al., 1999). In this version of the model, interactive

vegetation is not included. The ocean model uses the Gent–

McWilliams mixing scheme (Gent and McWilliams, 1990),

and sea ice is a thermodynamic scheme with parameteriza-

tion of ice drift and leads (Cattle and Crossley, 1995).

Multiple “snapshot” simulations covering the last 120 kyr

have been performed with HadCM3. The boundary con-

ditions and setup of the original set of simulations have

been previously documented in detail in Singarayer and

Valdes (2010). The snapshots were done at intervals of every

1 ka between the pre-industrial (PI) and LGM (21 ka BP),

every 2 ka between the LGM and 80 ka BP, and every 4 ka

between 80 and 120 ka BP. Boundary conditions are variable

between snapshots but constant for each simulation. Orbital

parameters are taken from Berger and Loutre (1991). Atmo-

spheric concentrations of CO2 were taken from a stacked ice

core record of Vostok (Petit et al., 1999) prior to 62 kyr, in-

corporating Taylor Dome (Indermühle et al., 2000) to 22 kyr

and EDC96 (Monnin et al., 2001) up to 0 kyr. CH4 and N2O

were taken from EPICA (Spahni et al., 2005; Loulergue et

al., 2008), and all greenhouse gas concentrations were on

the EDC3 timescale (Parrenin et al., 2007). The prescription

of ice sheets was achieved with ICE-5G (Peltier, 2004) for

0–21 ka BP, and extrapolated to the pre-LGM period from

the ICE-5G reconstruction using the method described in

Eriksson et al. (2012). The simulations were each spun up

from the end of previous runs described in Singarayer and

Valdes (2010) to adjust to the modified ice-sheet bound-

ary conditions for 470 years. The monthly climatologies de-

scribed hereafter are of model years 470–499. The model

performs reasonably well in terms of glacial–interglacial

global temperature anomaly (HadCM3 is in the middle of

the distribution of global climate models and palaeoclimate

reconstructions) and high-latitude temperature trends (al-

though as with all models, the magnitude of the tempera-

ture anomalies in the glacial is underestimated), as well as

at lower latitudes (Singarayer and Valdes, 2010; Singarayer

and Burrough, 2015).

2.2.2 FAMOUS

FAMOUS (Smith, 2012) is an Earth System model, derived

from HadCM3. It is run at approximately half the spatial res-

olution of HadCM3 to reduce the computational expense as-

sociated with AOGCM simulations without fundamentally

sacrificing the range of climate system feedbacks of which

it is capable. Pre-industrial control simulations of FAMOUS

have both an equilibrium climate and global climate sensitiv-

ity similar to that of HadCM3. A suite of transient FAMOUS

simulations of the last glacial cycle, conducted with speci-

fied atmospheric CO2, ice sheets, and changes in solar inso-

lation resulting from variation in the Earth’s orbit, compare

well with the NGRIP, EPICA, and MARGO proxy recon-

structions of glacial surface temperatures (Smith and Gre-

gory, 2012). For the present study, we use the most realis-

tically forced simulation of the Smith and Gregory (2012)

suite (experiment ALL-ZH), forced with Northern Hemi-

sphere ice sheets taken from the physical ice-sheet modelling

work of Zweck and Huybrechts (2005), atmospheric CO2,

CH4, and N2O concentrations from the EPICA project (Lüthi

et al., 2008 and Spahni et al., 2005, mapped onto the EDC3

Parrenin et al., 2007, age scale) and orbital forcing from

Berger (1978). The composite CO2 record contained in Lüthi

et al. (2008) uses data from the Vostok core (Petit et al., 1999)

between 22 and 393 kyr. The Vostok record is now believed

(Bereiter et al., 2012) to be erroneously low during the early

part of Marine Isotope Stage 3. For this reason, the FAMOUS

results during this period are likely biased too cold. Although

of a lower spatial resolution than HadCM3, these FAMOUS

simulations have the benefit of being transient and represent-

ing low-frequency variability within the climate system, as

well as using more physically plausible ice-sheet extents be-

fore the LGM than were used in the HadCM3 simulations. To

allow the transient experiments to be conducted in a tractable

amount of time, these forcings were all “accelerated” by a

factor of 10, so that the 120 kyr of climate are simulated in

12model kyr – this method has been shown to have little ef-

fect on the surface climate (Timm and Timmerman, 2007;

Ganopolski et al., 2010), although it does distort the response

Clim. Past, 12, 51–73, 2016 www.clim-past.net/12/51/2016/
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of the deep ocean. In addition, we did not include changes in

sea level, Antarctic ice volume, or meltwater from ice sheets

to enable the smooth operation of the transient simulations.

The impact of ignoring the continental shelves exposed by

lower sea levels will be discussed later; the latter two approx-

imations are unlikely to have an impact over the timescales

considered here. Although within the published capabilities

of the model, interactive vegetation was not used during this

simulation, with (ice sheets aside) the land surface charac-

teristics of the model being specified as for a pre-industrial

simulation.

2.2.3 BIOME4

BIOME4 (Kaplan et al., 2003) is a biogeochemistry–

biogeography model that predicts the global vegetation dis-

tribution based on monthly mean temperature, precipitation,

and sunshine fraction, as well as information on soil tex-

ture, depth, and atmospheric CO2. It derives a seasonal maxi-

mum leaf area index that maximizes NPP for a given PFT by

simulating canopy conductance, photosynthesis, respiration,

and phenological state. Model grid boxes are then assigned

biome types based on a set of rules that use dominant and

sub-dominant PFTs, as well as environmental limits.

Two reconstructions of the evolution of the climate

over the last glacial cycle were obtained by calculating

monthly climate anomalies with respect to the simulated pre-

industrial for the HadCM3 and FAMOUS glacial climate

simulations, respectively, then adding these anomalies, on

the native FAMOUS and HadCM3 grids, to an area aver-

aged interpolation of the Leemans and Cramer (1991) ob-

served climatology provided with the BIOME4 distribution.

These climate reconstructions were then used to force two

BIOME4 simulations. The climate anomaly method allows

us to correct for known systematic errors in the climates of

HadCM3 and FAMOUS and produce more accurate results

from BIOME4, although the method assumes that the pre-

industrial errors in each model are systematically present and

unchanged over ice-free regions throughout the whole glacial

cycle. We chose to use the actual climate model grids for

the BIOME4 simulations, rather than interpolating onto the

higher-resolution observational climatology grid, to avoid

concealing the significant impact that the climate model res-

olution has on the vegetation simulation, and to highlight the

differences between the physical representation of the cli-

mate between the two different models. Because of its lower

resolution, FAMOUS cannot represent geographic variation

at the same scale as HadCM3, which affects not only the

areal extent of individual biomes but also how altitude is

represented in the model, which can have a significant ef-

fect on the local climate and resulting biome affinity. The

frequency of data available from the FAMOUS run also lim-

its the accuracy of the minimum surface air temperature it

can force BIOME4 with, as only monthly average temper-

atures were available. This results in some aspects of the

FAMOUS-forced BIOME4 simulation seeing a less extreme

climate than it should, and may artificially favour more tem-

perate vegetation in some locations.

Soil properties on exposed shelves were extrapolated from

the nearest pre-industrial land points. There is no special cor-

rection for the input climate anomalies over this exposed

land, which results in a slightly subdued seasonal cycle at

these points (due to smaller inter-seasonal variation of ocean

temperatures). The version of the observational climatology

distributed with BIOME4 includes climate values for these

areas. The BIOME4 runs used the time-varying CO2 records

that were used to force the corresponding climate models,

as described in Sects. 2.2.1 and 2.2.2. As well as affecting

productivity, the lower CO2 concentrations found during the

last glacial favour the growth of plants that use the C4 photo-

synthetic pathway (Ehleringer et al., 1997), which can affect

the distribution of biomes as well. All other BIOME4 pa-

rameters as well as soil characteristics were held constant at

pre-industrial values.

The results of the HadCM3-forced BIOME4 simulation

will be referred to in this paper as B4H, and those from the

FAMOUS-forced BIOME4 simulation as B4F.

3 Results

In this section, the results of both the pollen-based biomiza-

tion for individual regions and the biome reconstructions

based on the GCM climate simulations will be outlined. The

biomized records and biomization matrix can be found in the

Supplement. Biome changes relating to millennial-scale cli-

mate oscillations are discussed elsewhere (e.g. Harrison and

Sanchez Goñi, 2010, and references therein).

3.1 Biomization

This method translates fossil pollen assemblages into a form

that allows direct data–model comparison and allows the re-

construction of past vegetation conditions. Biome affinity

scores for each location are shown in the Supplement.

3.1.1 North America

Two regional PFT schemes were used for sites from North

America: the scheme of Williams et al. (2000) for north-

ern and eastern North America and the scheme of Thomp-

son and Anderson (2000) for the western USA. For their

study of biome response to millennial climate oscillations be-

tween 10 and 80 ka BP, Jiménez-Moreno et al. (2010) applied

one scheme for the whole of North America, with a subdivi-

sion for southeastern pine forest. All biomization matrices

and scores for individual sites used in our study, generally at

1 kyr resolution, as well as explanatory files can be found in

the Supplement. The Arctic Baffin Island sites (Amarok and

Brother of Fog) have highest affinity scores for tundra during

the ice-free Holocene and last interglacial.

www.clim-past.net/12/51/2016/ Clim. Past, 12, 51–73, 2016
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At Lake Tulane (Florida) the grassland and dry shrub-

land biome has the highest affinity scores for the last 52 kyr,

apart from two short intervals (∼ 14.5 to 15.5 ka BP and

∼ 36.5 to 37.5 ka BP) where warm-temperate forest and tem-

perate forest have highest scores. According to Williams et

al. (2000), present day, 6 ka BP, and LGM records of most

of Florida and the southeast of the USA should be character-

ized by highest affinity scores for the warm-temperate for-

est biome (Williams et al., 2000). The discrepancy in our

biomization results with those of the regional biomization

results of Williams et al. (2000) is due to high percentages

of Quercus, Pinus undiff. (both are in the grassland and dry

shrubland and warm-temperate forest biomes), and Cyper-

aceae and Poaceae that contribute to highest affinity scores

of the grassland and shrubland biome. Interestingly, the tem-

perate forest biome has highest affinity scores in a short inter-

val (∼ 15 ka BP) during the deglaciation. In Jiménez-Morene

et al. (2010) Pinus does not feature in the grassland and dry

shrubland biome, but comprises a major component of the

southeastern pine forest; hence their biomized Lake Tulane

record fluctuates between the “grassland and dry shrubland”

biome and “southeastern pine forest biome”.

In western North America pollen data from San Felipe (16

to 47 ka BP), Potato Lake (last 35 kyr), and Bear Lake (last

150 kyr) all show highest scores for the grassland and dry

shrubland biome. Potato Lake is currently situated within a

forest (Anderson, 1993). In our biomizations Pinus pollen

equally contribute to scores of boreal forest, temperate forest,

warm-temperate forest, and the grassland and dry shrubland

biomes. In addition, high contributions of Poaceae occur, so

that the grassland and dry shrubland biome has highest affin-

ity scores throughout the last 35 kyr. Again, in the Jiménez-

Morene et al. (2010) biomizations Pinus does not feature in

the grassland and dry shrubland biome and hence the forest

biomes have highest affinity scores in their biomizations. At

Carp Lake the Holocene is characterized by alternating high-

est affinity scores between the temperate forest and grassland

and dry shrubland biomes, whereas during the glacial only

the grassland and dry shrubland biome attains highest affin-

ity scores. The age model of Carp Lake suggests this record

goes back to the Eemian, and if so, the last interglacial cli-

mate was lacking the alternation between the temperate for-

est and grassland and dry shrubland biomes as found during

the late Holocene. Modern and LGM biomizations at Carp

Lake and Bear Lake are similar to those of Thompson and

Anderson (2000). Biomizations for Carp Lake between 10

and 80 ka BP by Jiménez-Morene et al. (2010) generally

look similar to ours, apart from 36, 57–70, and 72–80 ka

BP, where the temperate forest biome shows highest affin-

ity scores because Pinus undiff. is treated as insignificant

in their biomization. Biomizations of Bear Lake between 10

and 80 ka BP are similar to Jiménez-Morene et al. (2010).

3.1.2 Latin America

The regional biomization scheme of Marchant et al. (2009)

was used for Latin American locations. Hessler et al. (2010)

discuss the effects of millennial climate variability on the

vegetation of tropical Latin America and Africa between

23◦ N and 23◦ S, using similar biomization schemes. In our

study eleven sites from Central and South America are con-

sidered covering a latitudinal gradient of 49◦ (from 20◦

to −29◦) and an elevation range of 3900 m (from 110 to

4010 m a.s.l.) (Table 2). Five of the sites are from relatively

low elevations (< 1500 m a.s.l.); from north to south these are

Lago Quexil and Petén-Itzá in Guatemala and Salitre, Colo-

nia, and Cambara in southeastern Brazil. The high-elevation

records (> 1500 m a.s.l.), with the exception of the most

northerly site in Mexico (Lake Patzcuaro), are distributed

along the Andean chain: Ciudad Universitaria X (Colombia),

Laguna Junin (Peru), Lake Titicaca (Bolivia/Peru), and Salar

de Uyuni (Bolivia).

The five lowland sites indicate the persistence of forest

biomes for much of the last 130 kyr. In Central America, the

Lago Quexil record stretches back to 36 ka BP and has high-

est affinity scores for the warm-temperate forest biome dur-

ing the early Holocene. During glacial times the temperate

forest biome dominates, intercalated with mainly the grass-

land and dry shrubland and desert biomes during the LGM

and last deglaciation. At Lago Petén-Itzá (also Guatemala)

highest affinity scores for the warm-temperate forest biome

are recorded for the last 86 kyr. The Salitre and Colonia

records are the only Latin American sites that fall within

the tropical forest biome today. The majority of the Salitre

record shows high affinities for tropical forest from ∼ 64 ka

BP to present day, apart from an interval coinciding with

the Younger Dryas which displays highest affinity scores for

the warm-temperate forest biome. The southern-most Brazil-

ian record, at Colonia, has highest affinity scores for trop-

ical forest for the last 40 kyr, except between 28 and 21 ka

BP (∼ coincident with the LGM), when scores were high-

est for the warm-temperate forest biome. Between 120 and

40 ka BP, highest affinity scores alternate between the tropi-

cal forest and warm-temperate forest biome at Colonia. The

biomized Colonia record of Hessler et al. (2010) generally

shows the same features, apart from an increase in affinity

scores of the drier biomes between 10 and 18 ka BP. To the

south, at Cambara (Brazil), highest affinity scores are found

for warm-temperate forest during the Holocene and between

38 and 29 ka BP, whilst during the interval in between they

alternate between warm-temperate forest and grassland and

dry shrubland.

Apart from Laguna Junin, higher-elevation sites

(> 1500 m: Lake Patzcuaro, Titicaca, Uyuni, and CUX)

do not show a strong glacial–interglacial cycling in their

affinity scores; Mexican site Lake Patzcuaro (2240 m) and

Colombian site CUX (2560 m) have highest affinity scores

mainly for warm-temperate forest over the last 35 kyr,
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Table 2. Details of the locations of pollen-data records synthesized in this study.

Core Latitude Longitude Altitude (m a.s.l.) Age ∼/(ka BP) Reference Biomization reference

North America

Canada (short) Brother of Fog 67.18 −63.25 380 Last interglacial Frechette et al. (2006) Williams et al. (2000)

Canada (short) Amarok 66.27 −65.75 848 Holocene and last

interglacial

Frechette et al. (2006) Williams et al. (2000)

USA Carp Lake 45.92 −120.88 714 0 to ca. 130 Whitlock and Bartlein (1997) Thompson and Anderson (2000)

USA Bear Lake 41.95 −111.31 1805 0 to 150 Jiménez-Moreno et al. (2007) Thompson and Anderson (2000)

USA Potato lake 34.4 −111.3 2222 2 to ca. 35 Anderson et al. (1993) Thompson and Anderson (2000)

USA San Felipe 31 −115.25 400 16 to 42 Lozano-Garcia et al. (2002) Thompson and Anderson (2000)

USA Lake Tulane 27.59 −81.50 36 0 to 52 Grimm et al. (2006) Williams et al. (2000)

Latin America

Mexico Lake Patzcuaro 19.58 −101.58 2044 3 to 44 Watts and Bradbury (1982) Marchant et al. (2009)

Guatemala Lake Petén-Itzá 16.92 −89.83 110 0 to 86 Correa-Metrio et al. (2012) Marchant et al. (2009)

Colombia Ciudad Universitaria X −4.75 −74.18 2560 0 to 35 van der Hammen

and González (1960)

Marchant et al. (2009)

Peru Laguna Junin −11.00 −76.18 4100 0 to 36

(LAPD1?)

Hansen et al. (1984) Marchant et al. (2009)

Peru/Bolivia Lake Titicaca −15.9 −69.10 3810 3 to 370

(shown until 140)

Gosling et al. (2008),

Hanselman et al. (2011),

Fritz et al. (2007)

Marchant et al. (2009)

Guatemala Lago Quexil 16.92 −89.88 110 9 to 36 Leyden (1984),

Leyden et al. (1993, 1994)

Marchant et al. (2009)

Brazil Salitre −19.00 −46.77 970 2 to 50

(LAPD1)

Ledru (1992, 1993),

Ledru et al. (1994, 1996)

Marchant et al. (2009)

Brazil Colonia −23.87 −46.71 900 0 to 120 Ledru et al. (2009) Marchant et al. (2009)

Brazil Cambara −29.05 −50.10 1040 0 to 38 Behling et al. (2004) Marchant et al. (2009)

Peru/Bolivia Lake Titicaca ∼ −16 to −17.5 ∼ −68.5 to −70 3810 3 to 138 Hanselman et al. (2011),

Fritz et al. (2007)

Marchant et al. (2009)

Bolivia Uyuni −20.00 −68.00 653 17 to 108 Chepstow Lusty et al. (2005) Marchant et al. (2009)

Europe

Russia Butovka 55.17 36.42 198 Holocene, early

glacial and Eemian

Borisova (2005) Tarasov et al. (2000)

Russia Ilinskoye 53 37 167 early glacial & Eemian Grichuk et al. (1983),

Velichko et al. (2005)

Tarasov et al. (2000)

Poland Horoszki Duze 52.27 23 ∼ 75 to Eemian Granoszewski (2003) Tarasov et al. (2000)

Germany Klinge 51.75 14.51 80 early glacial,

Eemian & Saalian

(penultimate glacial)

Novenko et al. (2008) Tarasov et al. (2000)

Germany Füramoos 47.59 9.53 662 0 to 120 Müller et al. (2003) Prentice et al. (1992)

Germany Jammertal 48.10 9.73 578 Eemian Müller (2000) Prentice et al. (1992)

Germany Samerberg 47.75 12.2 595 Eemian and early

Würmian

Grüger (1979a, b) Prentice et al. (1992)

Germany Wurzach 47.93 9.89 650 Eemian and early

Würmian

Grüger and Schreiner (1993) Prentice et al. (1992)

Italy Lagaccione 42.57 11.85 355 0 to 100 Magri (1999) Elenga et al. (2004)

Italy Lago di Vico 42.32 12.17 510 0 to 90 Magri and Sadori (1999) Elenga et al. (2004)

Italy Valle di Castiglione 41.89 12.75 44 0 to 120 Magri and Tzedakis (2000) Elenga et al. (2004)

Italy Monticchio 40.94 15.60 656 0 to 120 Allen et al. (1999) Elenga et al. (2004)

Greece Ioannina 39.76 20.73 470 0 to 120 Tzedakis et al. (2002, 2004b) Elenga et al. (2004)

Greece Tenaghi Philippon 41.17 24.30 40 0 to 120 Wijmstra (1969),

Wijmstra and Smith (1976),

Tzedakis et al. (2006)

Elenga et al. (2004)

Africa

Uganda ALBERT-F 1.52 30.57 619 0 to 30 Beuning et al. (1997) Jolly et al. (1998)

Uganda Mubwindi Swamp 3 −1.08 29.46 2150 0 to 40 Marchant et al. (1997) Jolly et al. (1998)

Rwanda Kamiranzovy Swamp 1 −2.47 29.12 1950 13 to 40 Bonnefille and Chalie (2000) Jolly et al. (1998)

Burundi Rusaka −3.43 29.61 2070 0 to 47 Bonnefille and Chalie (2000) Jolly et al. (1998)

Burundi Kashiru Swamp A1 −3.45 29.53 2240 0 to 40 Bonnefille and Chalie (2000) Jolly et al. (1998)

Burundi Kashiru Swamp A3 −3.45 29.53 2240 0 to 40 Bonnefille and Chalie (2000) Jolly et al. (1998)

Tanzania Uluguru −7.08 37.62 2600 0 to > 45 Finch et al. (2009) Jolly et al. (1998)

Madagascar Lake Tritrivakely −19.78 46.92 1778 0 to 40 Gasse and Van Campo (1998) Jolly et al. (1998)

South Africa Tswaing (Saltpan) Crater −25.57 28.07 1100 0 to 120 (although

after 35 probably

less secure based)

Scott (1988),

Partridge et al. (1993),

Scott (1999a, 1999b)

Jolly et al. (1998)

South Africa Mfabeni Swamp −28.13 32.52 11 0 to 43 Finch and Hill (2008) Jolly et al. (1998)

Asia/Australasia

Russia Lake Baikal 53.95 108.9 114 to 130

Japan Lake Biwa 35 135 85.6 0 to 120 Nakagawa et al. (2008) Takahara et al. (1999)

Japan Lake Suigetsu 35.58 135.88 ∼ 0 0 to 120 Nakagawa et al. (2008) Takahara et al. (1999)

Thailand Khorat Plateau 17 103 ∼ 180 0 to 40 Penny (2001) Pickett et al. (2004)

Australia Lynch’s Crater −17.37 145.7 760 0 to 120 Kershaw (1986) Pickett et al. (2004)

New Caledonia Xero Wapo −22.28 166.97 220 0 to 120 Stevenson and Hope (2005) Pickett et al. (2004)

Australia Caldeonia Fen −37.33 146.73 1280 0 to 120 Kershaw et al. (2007) Pickett et al. (2004)

New Zealand Okarito −43.24 170.22 70 0 to 120 Vandergoes et al. (2005) Pickett et al. (2004)
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although they alternate between warm-temperate forest

and temperate forest during the Holocene and at CUX also

during the LGM. Lake Patzcuaro and CUX biomization

results for the Holocene, 6 ka BP, and LGM compare well

with those derived by Marchant et al. (2009). At Uyuni

(3643 m) highest affinity scores are for temperate forest and

grassland and dry shrubland biome between 108 and 18 ka

BP. At Titicaca (3810 m) high affinity scores are found for

temperate forest over the last 130 kyr, apart from during the

previous interglacial (Eemian), when highest affinity scores

for the desert biome occur. Finally, at Lago Junin highest

affinity scores alternate between warm-temperate forest and

temperate forest during the Holocene and temperate forest

and grassland and dry shrubland during the glacial period.

3.1.3 Africa

For the biomization of African pollen records the scheme of

Elenga et al. (2004) was applied. What is specifically differ-

ent from southern European biomizations is that Cyperaceae

are not included as this taxon generally occurs in high abun-

dances in association with wetland environments, where they

represent a local signal (Elenga et al., 2004). It is noted that

most African sites are from highland or mountain settings,

with the exception of Mfabeni (11 m a.s.l.).

At the mountain site Kashiru Swamp in Burundi the

Holocene is characterized by an alternation of highest affin-

ity scores for tropical forest, warm-temperate forest, and the

grassland and dry shrubland biomes. During most of the

glacial, scores are highest for the grassland and dry shrub-

land biome, preceded by an interval where warm-temperate

forest showed highest scores. Our results are similar to those

obtained by Hessler et al. (2010). Highest affinity scores for

tropical forest and warm-temperate forest are found during

the Holocene at the Rusaka Burundi mountain site, whereas

those of the last glacial again have highest scores for the

grassland and dry shrubland biome. At the Rwandan Kami-

ranzovy site the grassland and dry shrubland biome dis-

play highest scores during the last glacial (from ∼ 30 ka BP)

and deglaciation, occasionally alternating with the warm-

temperate forest biome. In Uganda at the low mountain site

Albert F (619 m), the Holocene and potentially Bølling–

Allerød is dominated by highest affinity scores for tropi-

cal forest, whereas the Younger Dryas and last glacial show

highest affinity scores for the grassland and dry shrubland

biome. In the higher-elevation Ugandan mountain site Mub-

windi Swamp (2150 m), the Holocene pollen record shows

alternating highest affinity scores between tropical forest and

the grassland and dry shrubland biome, whereas the glacial

situation is similar to the Albert F site (e.g. dominated by

highest scores for the grassland and dry shrubland biome).

In South Africa, the Mfabeni Swamp record shows highest

affinity scores for the grassland and dry shrubland biome

for the last 46 kyr, occasionally alternated with the savanna

and dry woodland and tropical forest biome during the late

Holocene. At the Deva Deva Swamp in the Uluguru Moun-

tains highest affinity scores are for the grassland and dry

shrubland biome for the last ∼ 48 kyr. At Tswaing Crater

the grassland and dry shrubland biome dominates through-

out the succession, including the Holocene and glacial. At

Lake Tritrivakely (Madagascar) the grassland and dry shrub-

land biome dominates, apart from between 3 and 0.6 ka BP,

when the tropical forest biome shows highest affinity scores.

Our results compare well with those of Elenga et al. (2004),

who show a LGM reduction in tropical rainforest and lower-

ing of mountain vegetation zones in major parts of Africa.

3.1.4 Europe

For European pollen records three biomization methods

were used that are region-specific. For southern Europe the

biomization scheme of Elenga et al. (2004) was used, where

Cyperaceae are included in the biomization as they can occur

as an “upland” species characteristic of tundra. For sites from

the Alps the biomization scheme of Prentice et al. (1992)

was used, and for northern European records the biomization

scheme of Tarasov et al. (2000). Fletcher et al. (2010) use one

uniform biomization scheme to discuss millennial climate in

European vegetation records between 10 and 80 ka BP.

In southern Europe at the four Italian sites (Monticchio,

Lago di Vico, Lagaccione, and Valle di Castiglione) the

Holocene and last interglacial show highest affinity scores

for warm-temperate forest and temperate forest biomes. Dur-

ing most of the glacial and also cold interglacial substages

the grassland and dry shrubland biome has highest affinity

scores, whereas during warmer interstadial intervals of the

last glacial the temperate forest biome had highest affinity

scores. At Tenaghi Phillipon and Ioannina a similar biome

sequence may be observed, with highest affinity scores for

temperate forest and warm-temperate forest biomes during

interglacials. During the last glacial and cool substages of

the previous interglacial the grassland and dry shrubland

biome showed highest affinity scores at Tenaghi Philippon.

At Ioannina the LGM and last glacial cool stadial intervals

have highest affinity scores for grassland and dry shrub-

land, whereas affinity scores of glacial interstadial periods

are highest for temperate forest. Our biomization results for

southern European sites agree well with those of Elenga et

al. (2004), who also found a shift to drier grassland and dry

shrubland biomes during glacial times. Instead of a desert

and tundra biome, Fletcher et al. (2010) define a xyrophytic

steppe and eurythermic conifer biome in their biomizations

for Europe, giving subtle differences in the biomization

records, with the Fletcher et al. (2010) biomized records

showing an important contribution of affinity scores to the

xerophytic steppe biome. Characteristic species for the xe-

rophytica steppe biome include Artemisia, Chenopodiaceae

and Ephedra, which in the southern Europe biomization

scheme of Elenga et al. (2000) feature in the desert biome

and grassland and dry shrubland biome (only Ephedra).
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All four alpine sites are from altitudes between 570 and

670 m and for all four sites the last interglacial period was

characterized by having highest scores for the temperate for-

est biome. At Füramoos the last glacial showed highest affin-

ity scores for the tundra biome, whilst during the Holocene

the temperate forest biome shows highest affinity scores. In

the Fletcher scheme, characteristic pollen for the eurythermic

conifer biome includes Pinus and Juniperus. In our biomiza-

tion Pinus and Juniperus contribute to all biomes except for

the desert and tundra biomes.

Most northern European sites are mainly represented for

the last interglacial period, apart from Horoszki Duze in

Poland. At most sites the temperate forest biome and boreal

forest biome show highest affinity scores during the last in-

terglacial (Eemian), whereas cool substages and early glacial

(Butovka, Horoszki Duze) show high affinity scores for the

grass and dry shrubland biome These results compare well

with Prentice et al. (2000), who suggest a southward dis-

placement of the Northern Hemisphere forest biomes and

more extensive tundra- and steppe-like vegetation during the

LGM.

3.1.5 Asia

For the higher latitude site Lake Baikal the biomization

scheme of Tarasov et al. (2000) was used. For the two

Japanese pollen sites we used the biomization scheme of

Takahara et al. (1999). At Lake Baikal, during the Eemian the

highest affinity scores are for the boreal and temperate forest

biomes; the penultimate deglaciation and cool substage show

highest affinity scores for the grassland and dry shrubland

biome, similar to northern European sites. Pollen taxa such as

Carpinus, Pterocarya, Tilia cordata, and Quercus have prob-

ably been redeposited or transported over a large distance;

however, they all make up less than 1 % of the pollen spec-

trum and therefore did not influence the biomization much.

At Lake Suigetsu in Japan the warm-temperate forest

biome shows highest affinity scores over the last 120 kyr;

those of other biomes (including tundra) show increasing

affinity scores during glacial times but never exceed those of

the warm-temperate forest biome. At Lake Biwa the warm-

temperate forest biome shows highest affinity scores during

interglacial times, whilst in between they alternate between

the warm-temperate forest biome and the temperate forest

biome. These results agree well with those of Takahara et

al. (1999) and Takahara et al. (2010).

3.1.6 East Asia/Australasia

For East Asian and Australasian sites the scheme of Pickett

et al. (2004) was used. In Thailand the Khorat Plateau site

shows highest affinity scores for the tropical forest biome

over the last ∼ 40 kyr. At New Caledonia’s Xero Wapa, the

warm-temperate forest and tropical forest biomes show high-

est affinity scores over the last 127 kyr. In Australia’s Cale-

donia Fen interglacial times (Holocene and previous inter-

glacial) show highest affinity scores for the savanna and dry

woodland biome. During the glacial the grassland and dry

shrubland biome generally shows highest affinity scores, oc-

casionally alternated with highest scores for the savanna and

dry woodland biome during the early part of Marine Iso-

tope Stage (MIS) 3 and what would be MIS 5a (ca. 80–85 ka

BP). Over most of the last glacial–interglacial cycle highest

affinity scores at Lynch’s Crater are for the tropical forest

and warm-temperate forest biomes. The savanna and dry for-

est biome becomes important during MIS 4 to 2 and gener-

ally shows highest affinity scores between 40 and 7 ka BP,

probably as a result of increased biomass burning (human

activities) causing the replacement of dry rainforest by sa-

vanna. In addition, the significance of what is considered to

be tundra from MIS 4 is due to an increase in Cyperaceae

with the expansion of swamp vegetation over what was pre-

viously a lake. At Okarito (New Zealand), the temperate for-

est biome has highest affinity scores throughout (occasion-

ally alternated with warm-temperate forest), apart from dur-

ing the LGM and deglaciation (∼ 25–14 ka BP), where those

of savanna and dry woodland as well as grassland and dry

shrubland show highest affinity scores. Biomization results

for the Australian mainland and Thailand agree well with

those obtained by Pickett et al. (2004) for the Holocene and

LGM.

3.2 HadCM3–FAMOUS model comparison

Although the source codes of HadCM3 and FAMOUS are

very similar, differences in the resolution of the models and

the setup of their simulations result in a number of differ-

ences in both the climates they produce and the vegetation

patterns seen in B4H and B4F over the last glacial cycle. Spe-

cific regions and times where they disagree on the dominant

biome type will be discussed later, but there are a number of

features that apply throughout the simulations.

Both B4H and B4F keep the underlying soil types constant

as for the pre-industrial throughout the glacial cycle. The

HadCM3 snapshot simulations allowed for the exposure of

coastal shelves as sea level changed through the glacial cycle,

with reconstructions based on Peltier and Fairbanks (2006),

who used the SPECMAP δ18O record (Martinson et al.,

1987) to constrain ice volume/sea level change from the last

interglacial to the LGM. FAMOUS, on the other hand, kept

global mean sea level as for the present day throughout the

whole transient simulation. As a consequence the area of land
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available to vegetation expands and contracts with falling and

rising sea level in B4H but remains unchanged in B4F. Inclu-

sion of changing land exposure with sea level therefore al-

lows for significant additional vegetation changes as will be

discussed further later.

Full details of the climates produced by FAMOUS and

HadCM3 in these simulations can be found in Smith and Gre-

gory (2012) and Singarayer and Valdes (2010). In general,

land surface temperature anomalies in the HadCM3 simula-

tions are a degree or so colder than in FAMOUS. This dif-

ference in temperature, present to some degree throughout

most of the simulation, is attributed mainly to differences in

surface height and ice-sheet extent, although differences in

the CO2 forcing play a role in MIS 3. FAMOUS model re-

sults are also, on average, slightly drier compared with those

of HadCM3. This is additionally related to the model res-

olution, with HadCM3 showing much more regional varia-

tion (some areas become wetter and some drier), whilst FA-

MOUS produces a more spatially uniform drying as the cli-

mate cools. A notable exception to this general difference

is in northwestern Europe, where FAMOUS more closely

reproduces the temperatures reconstructed from Greenland

ice cores (Masson-Delmotte et al., 2005), compared to the

HadCM3 simulations used here which have a significant

warm bias at the LGM. Millennial-scale cooling events and

effects of ice rafting are not features of our model runs, which

present a relatively temporally smoothed simulation of the

last glacial cycle.

3.3 Data–model comparison

We present here an overview of the vegetation reconstruc-

tions for the last glacial–interglacial cycle simulated in B4H

and B4F. We compare the simulated biomes in B4H and

B4F with each other and with the dominant megabiome de-

rived from the pollen-based biomizations, restricting our de-

scription of the results to major areas of agreement and dis-

agreement. Maps of the dominant megabiomes produced by

B4H and B4F with superimposed reconstructed dominant

megabiomes for these periods are shown in Fig. 2.

We focus on a few specific periods, detailed below, since

reviewing every detail present in this comparison is unfeasi-

ble. The pre-industrial period serves as a test bed to identify

biases inherent in our model setup, before climate anomalies

have been added. The 6 ka BP mid-Holocene period repre-

sents an orbital and ice-sheet configuration favouring gener-

ally warm Northern Hemisphere climate (Berger and Loutre,

1991). The LGM simulation at 21 ka BP is at the height of

the last glacial cycle, when ice sheets were at their fullest ex-

tent, orbital insolation seasonality was similar to present and

CO2 was at its lowest concentration (∼ 185 ppm), and the

resulting climate was cold and dry in most regions. These

three time periods form the basis of the standard PMIP2

simulations and were used in the BIOME 6000 project. We

thus additionally compare our simulations with the BIOME

6000 results for these time periods. The 54 ka BP interval is

representative of peak warm conditions during Marine Iso-

tope Stage 3 (MIS 3), where both the model climates and

some proxy evidence suggest relatively warm conditions, at

least for Europe (Voelker et al., 2002), associated with tem-

porarily higher levels of greenhouse gases, an orbital con-

figuration that favours warmer Northern Hemisphere sum-

mers, and Northern Hemisphere ice sheet volume roughly

half that of the LGM. The time slice 64 ka BP represents MIS

4, both greenhouse gases and Northern Hemisphere insola-

tion were lower, and Northern Hemisphere ice volume was

two-thirds higher than at 54 ka BP, resulting in significantly

cooler global climate. The time slice 84 ka BP is representa-

tive of stadial conditions of the early part of the glacial (at

the end of MIS 5), after both global temperatures and atmo-

spheric concentrations of CO2 have fallen significantly and

the Laurentide ice sheet has expanded to a significant size

but before the Fennoscandian ice sheet can have a major in-

fluence on climate. The 84 ka BP period can be compared

with the Eemian (120 ka BP, the earliest climate simulation

used here), which represents the end of the last interglacial

warmth (MIS 5e), before glacial inception. The Eemian pe-

riod (120 ka BP) differs from the pre-industrial mainly in in-

solation. The earlier parts of the Eemian (e.g. 125 ka BP) are

often studied due to their higher temperature and sea level

compared to the Holocene (Dutton and Lambeck, 2012), but

120 ka BP is the oldest point for which both FAMOUS and

HadCM3 climates were available.

3.3.1 Pre-industrial

Our BIOME4 simulations were forced using anomalies from

the pre-industrial climates produced by HadCM3 and FA-

MOUS. Differences between B4H and B4F for this period

thus only arise from the way the pre-industrial climate forc-

ing has been interpolated onto the two different model grids

we used. Differences between B4H and B4F and the pollen-

based reconstructions for this period highlight biases that are

not directly derived from climates of HadCM3 and FAMOUS

but are inherent to BIOME4, the pollen-based reconstruction

method, or simply the limitations of the models’ geographi-

cal resolution.

Although few of the long pollen records synthesized in

this study extend to the modern period and their geograph-

ical coverage is sparse, a comparison with previous high-

resolution biomizations of BIOME6000 (see Table 1 for de-

tails; these studies include the sites synthesized here amongst

many others) and Marchant et al. (2009) show that they are

generally representative of the regionally dominant biome.

The biomized records of Carp Lake and Lake Tulane in

North America are exceptions, showing dry grassland con-

ditions rather than the forests (conifer and warm mixed, re-

spectively) that are more typical of their regions (Williams et

al., 2000).
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Figure 2.
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Figure 2. Reconstructed biomes (defined through highest affinity score) superimposed on simulated biomes using FAMOUS (B4F, left) and

HadCM3 (B4H, right) climates for selected marine isotope stages (denoted in ka BP).

Clim. Past, 12, 51–73, 2016 www.clim-past.net/12/51/2016/



B. A. A. Hoogakker et al.: Terrestrial biosphere changes over the last 120 kyr 63

There is generally very good agreement between B4H and

B4F for this period and the high-resolution BIOME6000 and

Marchant et al. (2009) studies. A notable exception, common

to both B4H and B4F, can be seen in the southwest USA

being misclassified compared to the regional biomization of

Thompson and Anderson (2000). The open-conifer wood-

land biome they assign to sites in this region appears to be

sparsely distributed (their Fig. 2) amongst larger areas likely

to favour grassland and desert, and thus may be unrepresenta-

tive of areas on the scale of the climate model grid boxes. The

limitations of HadCM3 and FAMOUS’s spatial resolution

appear most evident in South America, where the topographi-

cally influenced mix of forest and grassland biomes found by

Marchant et al. (2009) cannot be correctly reproduced, with

disagreement at the grid-box scale between B4F and B4H.

Eurasia is generally well reproduced, although the Asian bo-

real forest biome does not extend far enough north, and over-

runs what should be a broad band of steppe around 50◦ N

on its southern boundary. Australia, with a strong gradient in

climate from the coasts to the continental areas also shows

the influence of the coarse model resolutions, with B4F more

accurately reproducing the southern woodlands but neither

simulation reproducing the full extent of the desert interior.

Both Australian records are from the eastern coastal ranges;

there are no long continuous records in the interior because

of the very dry conditions. Overall, our comparison with the

full BIOME6000 data set gives reasonable support to our

working hypothesis that BIOME4, operating on the relatively

coarse climate model grids we use here, is capable of produc-

ing a realistic reconstruction of global biomes, although local

differences may occur.

3.3.2 6 ka BP mid-Holocene

As for the pre-industrial period, in both the mid-Holocene

and LGM periods the high-resolution biomizations of the

BIOME6000 project (see Table 1) provide a better base for

comparison of our model results than the relatively sparse,

long time-series pollen records synthesized in this study. A

common thread in the BIOME 6000 studies is the global

similarity between the reconstructions for 6 ka BP and the

pre-industrial period, and this is, by and large, also the re-

sult seen in B4H and B4F. An increase in vegetation on the

northern boundary of the central Africa vegetation band is the

most notable difference compared to the pre-industrial in the

regional biomizations (Jolly et al., 1998), which is also sug-

gested by the long central African pollen records synthesized

here. Both climate model-based reconstructions show grass-

land on the borders of pre-industrial desert areas in North

Africa, although the additional amount of rainfall in both

models is too low, and the model resolution insufficient to

represent any significant “greening” of the desert. B4F shows

a smaller change in tropical forest area in central Africa than

B4H does, agreeing better with the regional biome recon-

structions. Both HadCM3 and FAMOUS predict similar pat-

terns and changes in precipitation for this period, but the

magnitude of the rainfall anomaly in FAMOUS is slightly

lower. The reduction in forest biomes at the tip of South

Africa in B4F has some support from Jolly et al. (1998), al-

though B4F initially overestimates forest in this area.

B4H and B4F show limited changes elsewhere too. In

North America, FAMOUS’s increase in rainfall anomalies

produces more woodland in the west in B4F compared to the

pre-industrial period, which is not seen in B4H. This is not

a widespread difference shown in the regional biomization,

although individual sites do change. Marchant et al. (2009)

suggest drier biomes than the pre-industrial for some north-

ern sites in Latin America, agreeing with B4F but not B4H.

For Eurasia and into China, Prentice (1996), Tarasov et

al. (2000), and Yu et al. (2000), all suggest greater areas

of warmer forest biomes to the north and west across the

whole continent, with less tundra in the north. However, nei-

ther BIOME4 simulation shows these differences, with some

additional grassland at the expense of forest on the south-

ern boundary in B4H, and B4F predicting more tundra in

the north. Although both FAMOUS and HadCM3 produce

warmer summers for this period, in line with the increased

seasonal insolation from the obliquity of the Earth’s orbit

at this time, the colder winters they also predict for Eurasia

skew annual average temperatures to a mild cooling which

appears to prevent the additional forest growth to the north

and west seen in the pollen-based reconstructions.

3.3.3 21 ka BP (Last Glacial Maximum)

For the LGM, both the BIOME4 simulations and pollen-

data-based reconstructions predict a global increase in grass-

lands at the expense of forest, with more tundra in north-

ern Eurasia and desert area in the tropics than during the

Holocene. Along with the cooler, drier climate, lower levels

of atmospheric CO2 also favour larger areas of these biomes.

Our long pollen records do not have sufficient spatial cover-

age to fully describe these differences, showing only smaller

areas of forest biomes in southern Europe, central Africa, and

Australia, but there is again good general agreement between

our two BIOME4 simulations and the regional biomizations

of the BIOME6000 project.

The FAMOUS and HadCM3 grids do not seem to have

sufficient resolution to reproduce much of the band of tun-

dra directly around the Laurentide ice sheet in either B4H or

B4F, but the forest biomes the simulations show for North

America are largely supported by Williams et al. (2000).

However, Thompson and Anderson (2000) suggest larger ar-

eas of the open-conifer biome in the southwestern USA than

in the Holocene that the BIOME4 simulations again do not

show. Both B4H and B4F predict a smaller Amazon rainfor-

est area. Marchant et al. (2009) suggest that the Holocene

rainforest was preceded by cooler forest biomes, whereas

both HadCM3 and FAMOUS simulate climates that favours

grasslands. Marchant et al. (2009) also provide evidence for
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cool, dry grasslands in the south of the continent; FAMOUS

follows this climatic trend but B4F suggests desert or tundra

conditions, whilst B4H shows a smaller area of the desert

biome. For Africa, Elenga et al. (2004) show widespread

grassland areas where the Holocene has forest, with which

the simulations agree, and dry woodland in the southeast,

which neither B4H or B4F show; HadCM3 and FAMOUS

appear to be too cold for BIOME4 to retain this biome.

Elenga et al. (2000) also shows increased grassland area in

southern Europe, which is not strongly indicated by either

B4H or B4F, which have some degree of forest cover here.

The large areas of tundra shown by Tarasov et al. (2000)

in northern Eurasia to the east of the Fennoscandian ice

sheet are well reproduced by the BIOME4 simulations, al-

though HadCM3’s slightly wetter conditions produce more

of the boreal forest in the centre of the continent in B4H.

The generally smaller amounts of forest cover in Europe in

B4F agree with the distribution of tree populations in Eu-

rope at the LGM proposed by Tzedakis et al. (2013) better

than those from B4H, possibly due to HadCM3’s warm bias

at the glacial maximum. Both B4H and B4F agree with the

smaller areas of tropical forest in China and southeast Asia

reconstructed by Yu et al. (2000) and Pickett et al. (2004)

compared to the Holocene but have too much forest area in

China compared to the biomization of Yu et al. (2000). Nei-

ther BIOME4 simulation reproduces the reconstructed areas

of xerophytic biomes in southern Australia, or the tropical

forest in the north (Pickett et al., 2004).

3.3.4 54 ka BP (early Marine Isotope Stage 3)

There are fewer published biomization results for periods be-

fore the LGM, so our model–data comparison is restricted

to the pollen-based biomization results at sites synthesized

in this paper. Of these sites, only two sites show a different

megabiome affiliation when compared to the LGM: in South

America, Uyuni shows highest affinity scores for the forest

biome, and in Australia, Caledonia Fen shows highest affin-

ity scores for the dry woodland biome (both sites show high-

est affinity score for grassland during the LGM). Overall, the

few sites where data are available show few differences com-

pared with the LGM. This is perhaps a surprise given the ev-

idence that this was a relatively warm interval within the last

glacial, at least in Europe (Voelker et al., 2002). These mostly

unchanged biome assignments derived from our pollen-data

records are supported by our BIOME4 simulations in that,

although both FAMOUS and HadCM3 do produce relatively

warm anomalies compared to the LGM, both B4H and B4F

simulations at 54 ka BP are similar to the LGM close to the

pollen sites in the Americas, most of southern Europe (apart

from Ioannina, where the data show highest affinity scores

for temperate forest) and east Africa.

In other parts of the world, the biomes simulated at 54 ka

BP in B4H and B4F do differ significantly from those of

the LGM. Both BIOME4 simulations show increased vege-

tation in Europe and central Eurasia due to the climate in-

fluenced by the smaller Fennoscandian ice sheet, as well

as reduced desert areas in North Africa and Australia, gen-

erally reflecting a warmer and wetter climate under higher

CO2 availability than at the LGM. However, our simulations

disagree on both the climate anomalies and the likely im-

pact on the vegetation in several areas in this period. These

include differences, both local and far-field, related to pre-

scribed ice sheets, particularly in North America, where the

ice-sheet configuration in FAMOUS shows largely separate

Cordilleran and Laurentide ice sheets compared to the more

uniform ice coverage of the continent in HadCM3. Further

afield, B4H has significantly more tropical rainforest, espe-

cially in Latin America, and predicts widespread boreal for-

est cover right across Eurasia. B4F, however, reproduces a

more limited forest extent, with more grassland in central

Eurasia. The differences in the tropics appear to be linked to

larger rainfall anomalies in HadCM3 than FAMOUS, whilst

the west and interior of northern Eurasia is cooler in FA-

MOUS than HadCM3. This may be due to the erroneously

variable and low CO2 applied to FAMOUS from the Vostok

record around this period, or it may indicate a stronger re-

sponse to precessional forcing in FAMOUS, with a greater

influence from the Fennoscandian ice sheet.

3.3.5 64 ka BP (Marine Isotope Stage 4)

There are only a few differences between biomized records

at the LGM and 54 and 64 ka BP. Apart from one south-

ern European site (Ioannina), which has a highest affilia-

tion with grassland (compared with temperate forest during

the LGM), the pollen biome affiliations are much the same

as at the LGM for the sites presented here. The two sites

in northern Australasia show a highest affiliation with the

warm-temperate forest biome during this period, compared

with tropical forest at 54 ka BP; however, affinity scores be-

tween the two types are close, so this is unlikely to be related

to different climates. The BIOME4 simulations support this

as they also do not show major differences at the pollen sites.

Both B4H and B4F are, in general, similar for 64 and 54 ka

BP. The 64ka BP climate in HadCM3 is cooler and drier than

for 54 ka BP, with B4H producing larger areas of tundra in

north and east Eurasia and patchy tropical forests. There is

less difference between 64 and 54 ka BP in the FAMOUS

reconstructions, which simulates a cooler climate at 54 ka BP

compared to HadCM3, so B4F and B4H agree better in this

earlier period than at 54 ka BP. North American vegetation

distributions primarily differ between B4H and B4F in this

period due to the different configurations of the Laurentide

ice sheet imposed on the climate models.

3.3.6 84 ka BP (Marine Isotope Stage 5b)

The pollen-based biomization for 84 ka BP clearly reflects

the warmer and wetter conditions with more CO2 available
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than at 64 ka BP, especially in Europe, with the majority of

sites showing highest affinity scores for the temperate forest

biomes. Sites in other parts of the world show similar affin-

ity scores to those at the 64 ka BP time slice, although there

are not many sites and it is less clear whether they reflect

widespread climatic conditions.

The BIOME4 simulations reflect the warmer European cli-

mate resulting from the smaller Fennoscandian ice sheet at

84 ka BP than 64 ka BP, with B4F showing some European

forest cover, and B4H extending Eurasian vegetation up to

the Arctic coast. However, B4H shows more of this vegeta-

tion to be grassland rather than forest, probably a result of

a slightly cooler climate in HadCM3. Around the southern

European pollen sites themselves, however, B4H shows little

difference from the dry grassland biomes present at 64 ka BP

and B4F predicts dry woodlands, perhaps a result of the mod-

els’ representation of the Mediterranean storm tracks that

would bring moisture inland which are often poorly repro-

duced in lower-resolution models (Brayshaw et al., 2010).

Although there are differences in the configuration of the

Laurentide ice sheet between HadCM3 and FAMOUS, both

B4H and B4F reproduce dry vegetation types in the US Mid-

west and significant boreal forest further north at 84 ka BP.

Both BIOME4 simulations show significantly smaller desert

areas in North Africa and larger areas of forest in the trop-

ical belt than at 64 ka BP, reflecting significant precipitation

and higher CO2 levels here, although both also show a dry

anomaly over Latin America. Because of increased rainfall in

Australia, B4H shows a smaller desert compared with 54 ka

BP.

3.3.7 120 ka BP (last interglacial period, Marine Isotope

Stage 5e)

This time slice represents the previous interglacial, and

would be expected to have the smallest anomalies from the

pre-industrial control climate of the climate models. The

pollen-based biomization shows widespread forest cover for

Eurasia, with the only other difference from both the 84 ka

BP period and the pre-industrial control being Lake Titicaca,

which has the highest affinity toward desert for this period.

The affinity scores for temperate forest are almost as high for

this site, and neither HadCM3 nor FAMOUS has the resolu-

tion to reproduce the local climate for this altitude well (Bush

et al., 2010), although both do reflect dry conditions near the

coast here.

The models do indeed produce relatively small climate

anomalies and vegetation similar to the pre-industrial con-

trol and each other. Both models produce widespread forest

cover north of 40◦ N, much as for the pre-industrial climate,

although FAMOUS is slightly too wet over North America

for B4F to produce Midwest grasslands as seen in B4H. Both

B4H and B4F increase the extent of their tropical forests,

although FAMOUS has a relative dry anomaly over cen-

tral Africa, and B4F has less tropical forest than for the

pre-industrial or B4H, which once again appears to have a

stronger response to precessional forcing.

4 Global terrestrial vegetation changes

The BIOME4 simulations compare reasonably with biomiza-

tions of BIOME 6000 (pre-industrial period, 6 ka BP, and

LGM) and those presented in this paper. Below we calcu-

late changes in the biome areas and net primary productiv-

ity, keeping in mind that these calculations carry some un-

certainties relating to several mismatches. As is discussed

in Sect. 3.1 there are several occasions where the modern

biomized pollen data do not agree with actual biome pres-

ence, for example Potato Lake and Lake Tulane in North

America. In both cases high contributions of Pinus and some

other taxa skewed the affinity scores towards drier biomes

(grassland and dry woodland). For the past, not knowing

whether a pollen distribution is representative for an area

puts restrictions on the biomization method. It is, however,

noted that in most cases the biomized pre-industrial pollen

agree with pre-industrial biomes. The climate models pro-

duce some differences in climate forcing of the vegetation

due to (1) difference in resolution, affecting the biome areal

extent and altitude and (2) ice-sheet extent, affecting tem-

perature (Sect. 3.2). We can use the pre-industrial period as

a test bed to compare model outputs and pollen reconstruc-

tions (using the BIOME 6000 database), showing that there

are some biases that can be attributed to biases in BIOME4,

some to the biomization method, and some to the models’

limiting geographical resolution.

4.1 Biome areas

Whilst there is general agreement between B4H and B4F,

there are also areas and periods with significant regional dif-

ferences. A clearer picture of the effect on the global bio-

sphere can be seen by using the global total areas of each

megabiome for the two simulations (Fig. 3). Cooler temper-

atures, reduced moisture, and lower levels of CO2 through

the glacial result in a general reduction of forest biomes and

increases in grassland, desert, and tundra. Lower levels of

atmospheric CO2 also preferentially favour plants using the

C4 photosynthetic pathway (Ehleringer et al., 1997), con-

tributing to the expansion of the grassland and desert biomes

during the glacial. The changes in atmospheric CO2 lev-

els through the glacial cycle are largely common to all the

BIOME4 simulations, so CO2 fertilization effects and C3/C4

competition are generally not responsible for differences in

vegetation response between B4F and B4H. The exception

to this rule comes between 40 and 60 kyr BP, where the FA-

MOUS runs sees erroneously strong CO2 variations in this

time interval from the Vostok record which may affect both

the climate used to force B4F and the fertilization effects.

B4F predicts consistently lower areas of warm-temperate and

boreal forest than B4H, and higher amounts of grassland and
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Figure 3. Global area coverage of megabiome types in the model reconstructions. S indicates the inclusion of potentially vegetated continen-

tal shelves after sea level lowering, and NS indicates no vegetated continental shelves following sea level lowering. FAMOUS megabiome

areas are represented by a dotted line between 30 and 60 ka BP in the period where the Vostok CO2 data used to force the simulation is

thought to be erroneously low.

desert. FAMOUS also neglects the additional area of land

that HadCM3 sees as continental shelves are exposed, re-

ducing the area of land available to the biosphere, although

some of this additional land is occupied by the Northern

Hemisphere ice sheets in HadCM3. The global total areas

of biomes highlights a significant oscillation in the areas of

the different megabiomes of ∼ 20 kyr in length – this is par-

ticularly notable between 60 and 120 ka BP in the grassland

megabiome and results from the 23 kyr cycle in the preces-

sion of the Earth’s orbit. The precession cycle exerts a signif-

icant influence on the seasonality of the climate, as noted in

tropical precipitation records (e.g. the East Asian monsoon;

Wang et al., 2008; Carolin et al., 2013). Such variations are

not explicitly evident in the dominant megabiome types at

any of the pollen sites, but the precession oscillation does

appear in the individual biome affinity scores of several sites

(Supplement), lending support to this feature of the model

reconstructions.
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Figure 4. Net primary production throughout the last glacial cycle

derived from the model-based biome reconstructions. B4H includes

the additional influence of land exposed by sea-level changes, while

B4H_NS and B4F do not. B4F NPP is represented by a dotted line

between 30 and 60 ka BP in the period where the Vostok CO2 data

used to force the FAMOUS simulation is thought to be erroneously

low.

4.2 Net primary productivity

Net primary productivity (NPP) is the net flux of carbon into

green plants (in this case terrestrial plants) due to photosyn-

thesis, after accounting for plant respiration. Global NPP de-

rived from our BIOME4 simulations for the PI is 74 for B4H

and 78 PgC yr−1 for B4F (Fig. 4). These values are some-

what higher than previously estimated present-day ranges of

46 to 62 PgC yr−1 (Tinker and Ineson, 1990; Nemani et al.,

2003). Recent estimates using eddy covariance flux data es-

timate global NPP as ∼ 62 PgC yr−1 (assuming 50 % carbon

use efficiency to convert from GPP to NPP; Beer et al., 2010).

Some other model estimates for the PI are also lower

(e.g. Prentice et al., 2011: 59.2 PgC yr−1). As mentioned in

Sect. 3.3.1, BIOME4 is driven solely by an observational cli-

mate data set for the pre-industrial due to the anomaly ap-

proach used to reduce the impact of climate model biases (see

Methods Sect. 2.2.3). Therefore, any overestimate in NPP is

not a result of the climate model forcing but possibly due to

biases in the vegetation model, and/or biases in the observa-

tional climatology used to drive the model, and the spatial

resolution used. For example, the lower-resolution topogra-

phy does not represent mountainous regions such as the An-

des well nor its topographically induced variation in vegeta-

tion (see Sect. 3.3.1), which may positively skew NPP values.

The model may also overestimate NPP compared to obser-

vationally based techniques for the modern or pre-industrial

period, partly because it does not contain any representation

of non-climatically induced changes, e.g. cultivation or land

degradation.

The LGM BIOME4 simulations show a global NPP de-

cline to ∼ 42 in B4F and 48 PgC yr−1 in B4H (Fig. 4). While

these are also higher than some other model-based estimates

of 28–40 PgC yr−1 (e.g. François et al., 1999, 2002), the rel-

ative decrease in the LGM in our simulations to approx-

imately two-thirds of PI is consistent with several previ-

ous studies. A calculation based primarily on isotopic evi-

dence has produced an even lower estimate of LGM NPP

of 20 ± 10 PgC yr−1 (Ciais et al., 2012), with LGM primary

productivity approximately 50 % lower than their PI esti-

mate.

The PI–LGM difference is greater in B4F than in B4H

(Fig. 4), primarily due to the fact that HadCM3’s glacial land

area increases as sea level lowers, enabling additional NPP

on continental shelf regions, whereas FAMOUS land area re-

mains the same. This is demonstrated by recalculating global

NPP for B4H neglecting exposed shelf regions (B4H_NS),

which then matches the values from B4F (Fig. 5a, green

line). The effect of vegetating continental shelves on global

NPP is small in comparison to the overall decrease during

the glacial period; NPP reduction at the LGM is 40 % for

B4H_NS and 35 % for B4H compared to the PI. The impact

of large continental ice sheets reducing the land surface area

available for primary production has a negligible effect on

NPP compared to reduced CO2 and glacial climate change.

These high-latitude areas only contribute a small fraction of

global NPP in any case, and if the area covered in ice at the

LGM is excluded from NPP calculations of the PI, global

NPP only decreases by a maximum of ∼ 5 PgC yr−1. In addi-

tion, sensitivity tests with B4H, with and without CO2, varia-

tion suggests that CO2 fertilization, rather than climate, is the

primary driver of lower glacial NPP in the model (accounting

for around 85 % of the reduction in global NPP at the LGM).

Some differences in the timing of some multi-millennial

peaks/troughs in NPP between B4H and B4F are apparent,

especially in the earlier half of the simulation. These differ-

ences, all of the order of a few thousand years, can largely

be ascribed to the different CO2 forcings used for B4H and

B4F as well as the multiple snapshot setup of the HadCM3

run, which only produces simulations at 2 or 4 ka intervals,

compared to the 1 ka resolution of B4F. Differences in the

forcing provided by the ice-sheet reconstructions used in the

models, as well as in the strength of their responses to orbital

forcing in the early part of the glacial (e.g the oscillations in

area coverage of various biomes in Fig. 3), may also play a

role.

Both BIOME4 simulations predict slightly lower NPP dur-

ing the Eemian (3–5 PgC yr−1 lower), compared with pre-

industrial times. The first large-scale decrease in NPP oc-

curs during the initial glaciation following the Eemian, be-

tween 120 and 110 ka BP (in both simulations). There is then

a second large drop of −10 (HadCM3_S) to −20 PgC yr−1

(B4H_NS, B4F) between 75 and 60 ka BP, associated with

MIS 4. NPP then increases during MIS 3, followed by the

final reduction (−10 PgC yr−1) to lowest values during the

LGM (Fig. 4). We note here that the details of the magnitude

and timing of the NPP variations will be highly dependent on

the prescribed CO2 curve given that CO2 fertilization is the
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predominant factor driving the changes. A recent composite

CO2 curve derived from several ice core records (Bereiter

et al., 2013) has CO2 that is 5–20 ppm higher during MIS 3

and MIS 4 than Vostok. Further sensitivity tests with B4F

forced with higher CO2 levels suggest that NPP could be up

to 8 PgC yr−1 higher at certain time slices (see Supplement

Fig. S1).

Changes in NPP will likely affect terrestrial carbon stor-

age, which in turn influences the stable carbon isotope com-

position (δ13C) of seawater because terrestrial organic carbon

is depleted in 13C. Various early modelling studies and data-

based reconstructions produced a range of 270–1100 PgC de-

crease in terrestrial carbon storage during the LGM com-

pared with pre-industrial time (see summary Table 1 in Köh-

ler and Fischer, 2004). These early estimates were unreliable,

however, because (a) they do not account for variation in car-

bon storage within biomes and (b) they neglect the substan-

tial influence of atmospheric CO2 concentration on carbon

storage (see Prentice and Harrison, 2009, for a fuller discus-

sion). More recent studies have narrowed the range of LGM

terrestrial carbon storage decreases to 300–700 PgC. Using

isotopic and modelling methods Ciais et al. (2012) suggested

that only 330 PgC less carbon was stored in the terrestrial

biosphere at the LGM than PI Holocene. They included a

large inert carbon pool to represent permafrost and peatland

carbon storage in their modelling, and their optimization pro-

cedure suggested that this inert carbon pool was larger by

700 PgC at the LGM than PI, meaning the reduction in their

active terrestrial biosphere was therefore larger than most

other studies have suggested, at approximately 1000 PgC.

Globally decreased LGM deep ocean stable carbon isotope

ratios (δ13C), as recorded by benthic foraminifera at −0.3 to

−0.4 ‰, have also been used as an alternative method to cal-

culate the decrease in global LGM terrestrial carbon storage

compared with the PI (e.g. Broecker and Peng, 1993; Du-

plessy et al., 1988; Bird et al., 1996; Kaplan et al., 2002;

Beerling et al., 1999). A recent estimate derived from a com-

pilation of 133 ocean cores is −0.34 ± 0.13 ‰ (Ciais et al.,

2012), and an ensemble of ocean circulation model simula-

tions suggests a similar decrease of −0.31 ± 0.2 ‰ (Tagli-

abue et al., 2009). Robust reconstructions of terrestrial car-

bon storage could be used in a similar but inverted approach

to estimate global ocean δ13C changes over the same time

period.

From our simulations of changes in NPP over the glacial

cycle we would expect lower terrestrial carbon storage

shortly following the last interglacial period, with lowest val-

ues during the LGM. We would also expect, given the com-

pensation in terms of NPP, that the vegetation on the ex-

posed continental shelves would be an important considera-

tion for changes in total terrestrial carbon storage. However,

the large uncertainties associated with both the climate and

biome models and their forcings, as well as those involved

in deriving full estimates of carbon storage and ocean δ13C

from the variables that are explicitly produced in the mod-

els, currently prohibit the robust quantitative reconstruction

of these quantities from our results.

5 Summary

We have created a new global synthesis and biomization of

long pollen records, and used it in conjunction with model

simulations to analyse the sensitivity of the global terrestrial

biosphere to climate change over the last glacial–interglacial

cycle. Model output and biomized pollen data generally

agree, showing a reduction in the global average areas of

tropical forest, warm-temperate forest, and temperate forest

biomes during the LGM, MIS 4, and cool substages of MIS

5, whilst showing an increase in the global average areas of

the grassland and dry shrubland, desert, and tundra biomes.

BIOME4 simulations of global net primary productivity also

indicate significant reductions at those intervals, driven by

changes in vegetated land area and CO2 fertilization.

Existing data coverage is still low, and so there are still

large areas of uncertainty in our knowledge of the palaeo-

Earth system. Better spatial and temporal coverage for all

parts of the globe, especially lowland areas, is required, and

for this we need data from new sites incorporated into global

data sets that are easily accessible by the scientific commu-

nity.

The synthesized biomized data set presented in this paper

can be downloaded as a supplement to this paper, or may be

obtained by contacting the authors. Outputs from the climate

and biome model simulations are also available from the au-

thors.

The Supplement related to this article is available online

at doi:10.5194/cp-12-51-2016-supplement.
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