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Abstract East Asian summer monsoon (EASM) rainfall impacts the world’s most populous regions. Accurate
EASM rainfall prediction necessitates robust paleoclimate reconstructions from proxy data and quantitative
linkage to modern climatic conditions. Many precisely dated oxygen isotope records from Chinese stalagmites
have been interpreted as directly reflecting past EASM rainfall amount variability, but recent research suggests
that such records instead integratemultiple hydroclimatic processes. Using a Lagrangian precipitationmoisture
source diagnostic, we demonstrate that EASM rainfall is primarily derived from the Indian Ocean. Conversely,
Pacific Ocean moisture export peaks during winter, and the moisture uptake area does not differ significantly
between summer and winter and is thus a minor contributor to monsoonal precipitation. Our results are
substantiated by an accurate reproduction of summer and winter spatial rainfall distributions across China.
We also correlate modern EASM rainfall oxygen isotope ratios with instrumental rainfall amount and our
moisture source data. This analysis reveals that the strength of the source effect is geographically variable, and
differences in atmosphericmoisture transport may significantly impact the isotopic signature of EASM rainfall at
the Hulu, Dongge, and Wanxiang Cave sites. These results improve our ability to isolate the rainfall amount
signal in paleomonsoon reconstructions and indicate that precipitation across central and eastern China will
directly respond to variability in Indian Ocean moisture supply.

1. Introduction

The East Asian summer monsoon (EASM) and Indian summer monsoon (ISM) are driven by both seasonal
reversals in continent-ocean temperature gradients, which generate low-pressure anomalies over land, and
seasonal shifts in mean tropical wind vectors [Ding and Sikka, 2006; Molnar et al., 2010]. Rapid seasonal
Hadley circulation reversal and cross-equatorial flow largely drive the onset of the extratropical EASM in
June, coinciding with the boreal summer northward shift of the intertropical convergence zone (ITCZ), but
frontal EASM precipitation extends farther north than the ITCZ [Schneider et al., 2014]. These seasonal
changes in atmospheric circulation cause warm, moisture-bearing air masses to migrate inland, engendering
extreme wet seasons; approximately 80% of eastern China’s total annual precipitation is received between
May and August [Webster et al., 1998]. ISM precipitation is derived from southerly transport from equatorial
latitudes and subsequent westerly transport across the northern Indian Ocean into the Indian subcontinent.
EASM precipitation is generated by convergence of southwesterly moisture transport, northward ITCZ shift,
and easterly Pacific Ocean trade winds [Liu et al., 2014]. However, the relative contributions of these
transport mechanisms to precipitation across monsoonal China remain unquantified.

Reliable prediction of future EASM rainfall variability is a matter of considerable scientific and societal concern
and depends upon the availability of robust paleoclimate reconstructions from high-resolution proxy
archives [Intergovernmental Panel on Climate Change (IPCC), 2013], which place present-day monsoon
trends in a longer-term context. In many paleomonsoon reconstruction studies, precipitation amount
[Wang et al., 2001; Zhang et al., 2008] or monsoon intensity (summer-winter precipitation ratio) is inferred
directly from absolute-dated stalagmite δ18O records [Cheng et al., 2009] based on a negative correlation
between precipitation δ18O and precipitation amount or rate (the “amount effect”), which is apparent in
modern instrumental data, particularly from low-latitude regions [Rozanski et al., 1992], albeit with
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considerable spatial variability [Johnson and Ingram, 2004]. These proxy records track summer northern
hemisphere insolation on millennial to glacial-interglacial time scales [Cheng et al., 2009] and evince
monsoonal fluctuations in response to high-latitude climate change, particularly North Atlantic
temperature [Li et al., 2014]. However, within the EASM region, disparate δ18O trends have been reported
from southern China [e.g., Cosford et al., 2008; Hu et al., 2008] and near to the northerly EASM limit [e.g.,
Tan et al., 2009; Zhang et al., 2008]. Potentially, such spatial heterogeneity in apparent precipitation
patterns is evidence for a complex monsoon response to relatively moderate climate forcing. Therefore,
using proxy δ18O data to explicate past EASM dynamics requires a full understanding of the controls on
δ18O variability across monsoonal Asia.

Recent studies based on instrumental data [Dayem et al., 2010; Johnson and Ingram, 2004] and climate
modeling [Clemens et al., 2010; Liu et al., 2014; Pausata et al., 2011] demonstrate that local and mesoscale
processes cause spatiotemporal variability in δ18O-climate correlations. Specifically, these studies present
evidence for a strong response of precipitation δ18O within monsoonal China to upstream depletion
during atmospheric moisture transport from tropical oceanic sources rather than to local rainfall variability
exclusively [Liu et al., 2014]. This highlights a critical challenge for paleomonsoon reconstructions: the need
to isolate the precipitation amount signal from other processes which affect precipitation (and therefore
stalagmite) δ18O. Moreover, reconciling mismatches between stalagmite δ18O and other terrestrial proxy
paleoprecipitation records from China (e.g., magnetic susceptibility records from loess-paleosol
successions) necessitates quantitative interpretations of stalagmite δ18O [Maher and Thompson, 2012].

Numerous studies [e.g., Breitenbach et al., 2010; Clemens et al., 2010; Sodemann et al., 2008a] demonstrate that
moisture source seasonality plays an important role in precipitation δ18O variability by determining the initial
evaporation conditions and, subsequently, the isotopic evolution of air parcels during moisture transport
[Sodemann et al., 2008a]. At present, Lagrangian models are ideally suited to obtaining detailed,
quantitative moisture source information at the spatial and temporal scales appropriate for comparison
with observational precipitation δ18O data. In this paper, we quantitatively investigate two critical yet
poorly understood controls on Chinese precipitation δ18O: (i) present-day precipitation moisture source
region variability and (ii) the seasonal characteristics of moisture transport. We then discuss their
implications for developing accurate, quantitative paleomonsoon reconstructions.

2. Data and Methods
2.1. Lagrangian Moisture Source Diagnostic

We characterized the moisture origin of continental precipitation across central and eastern China
quantitatively. This was achieved using a Lagrangian moisture source diagnostic [Sodemann et al., 2008b],
which detects specific humidity changes along three-dimensional, kinematic backward trajectories of
atmospheric air parcels delivering precipitation to a target area, thus quantifying the evaporative
contributions of moisture sources to precipitation. The examined period is November 1999 to March 2005,
which fully exploits the currently available data and is comparable in length to previous studies using this
Lagrangian technique, which provided quantitative constraints on the modern moisture source climatology
in disparate climate regions such as Greenland [Sodemann et al., 2008b], Belize [Kennett et al., 2012], the
European Alps [Sodemann and Zubler, 2010], and Antarctica [Sodemann and Stohl, 2009]. Trajectories were
computed with the widely used particle dispersion model FLEXPART (version 8.2) [Stohl et al., 2005] and in
the simulation used for this study [Stohl, 2006], the global atmosphere was divided homogenously into 1.4
million particles, representing infinitesimal air parcels, each traced for 20 days using three-dimensional wind
field data from the European Centre for Medium-Range Weather Forecasting operational analyses, available
every 6 h at a 1° × 1° horizontal resolution and at 60 vertical levels. Only trajectories delivering precipitation
to a target area defined over China, the minimum (maximum) longitude and latitude of which are 95 (121)°E
and 20 (40)°N, respectively (Figure 1), were considered. This target area is based on the known present-day
spatial EASM precipitation distribution and encompasses the area influenced by the Meiyu Front, a stationary
subtropical frontal system, which demarcates the mean northerly extent of the EASM (Figure 1). Additionally,
we excluded areas whose elevation above mean sea level exceeds 2 km, such as the eastern Tibetan Plateau,
to accurately isolate lowland regions of central and eastern China affected by the EASM. Based on air parcel
latitude, longitude, altitude, pressure, and specific humidity output at each 6h time step, the temporal
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sequence of evaporation and precipitation was determined along the trajectory of each air mass precipitating
within the target area using a threshold specific humidity criterion of 0.2 g kg�1 6 h�1 to definemoisture uptake
and rainout. A full list of input parameters and values is given in Table S1 in the supporting information. From
this along-trajectory sequence of uptake and rainout, and the relative contribution to air parcelmoisture at each
time step, a quantitative estimate of moisture source contributions is calculated, following Sodemann et al.
[2008b]. Estimated Lagrangian precipitation is calculated from the specific humidity change in each
trajectory during the 6h before arrival at the target area.

Potential limitations to this Lagrangian method are (i) a weak sensitivity of the absolute moisture source
strength to the threshold specific humidity criterion, which is minimized by considering specific humidity
thresholds below 0.5 g kg�1 6 h�1 [James et al., 2004]; (ii) the assumption that evaporation and
precipitation can be separated on a time scale of 6 h; (iii) and the inability to consider subgrid-scale
moisture changes (e.g., due to evaporating precipitation). We assert that not accounting for subgrid-scale
processes does not significantly afflict our study because modeled precipitation across central and eastern
China reproduces an observational, 30 year precipitation climatology. There are important advantages to
the Lagrangian approach. First, precipitation source regions are diagnosed quantitatively because the
degree of local evaporation contribution to the total moisture in the air parcels is calculated. Previous
studies have relied on trajectory end points [Helsen et al., 2007] or the superposition of evaporation minus
precipitation along trajectories [James et al., 2004]. Second, direct evaporative moisture uptake is only
diagnosed for a given air parcel if it is below the atmospheric boundary layer (ABL) at a point of specific
humidity increase. Thereby, this method distinguishes evaporative moisture uptake originating within the
ABL from moistening of air parcels in the free troposphere (FT), predominantly due to convective
processes. By combining ABL and FT moisture contributions, we were able to attribute moisture sources to
93.5% of mean annual precipitation during 1999–2005 (Table S2 in the supporting information).

Figure 1. Target areas for precipitation moisture source diagnostic study (white dotted lines) and defined moisture source
sectors: northwest Indian Ocean (blue), northeast Indian Ocean (green), South China Sea (orange), Philippine Sea (red), and
terrestrial regions (dark grey). Sector color coding corresponds to Figure 7. Sectors were first demarcated by meridians and
parallels; oceanic and land areas within each were subsequently separated, giving the source sectors shown (see supporting
information). The black arrows indicate the traditionally assumed bulk transport direction of moisture masses in the tropical
ISM and extratropical EASM subsystems based on mean boreal summer atmospheric pressure patterns. The GNIP (black
markers) andmeteorological stations (whitemarkers) fromwhich datawere obtained for multivariate correlation analyses and
the locations of each cave site discussed in the text are shown (color markers). Cave site colors correspond to those on Figure 8.
For clarity, remaining land areas are shaded pale grey.
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We quantified source signal variability in precipitation δ18O (see supporting information) at cave sites in key
locations (Figure 1): eastern China (Hulu Cave: 33°30′N, 119°10′E), southern China (Dongge Cave: 25°17′N, 108°
08′E), and near the northerly EASM limit (Wanxiang Cave: 33°19′N, 105°00′E; Dayu Cave: 33°08′N, 106°18′E). To
achieve this, we ran the Lagrangian diagnostic with additional 2° × 2° target areas centered on each selected
cave site (Figure 1 and Table S3 in the supporting information). From the output for each target area, specific
humidity-weighted mean monthly source longitude and latitude were computed. These data and
precipitation amount data, obtained from nearby meteorological stations, were used as predictor variables
in multivariate correlations with instrumental precipitation δ18O data, obtained from the Global Network
for Isotopes in Precipitation (GNIP) database [International Atomic Energy Agency/World Meteorological
Organization, 2014]. For each cave site, we selected GNIP stations (Nanjing, Guiyang, and Chengdu,
respectively) and meteorological stations (Hulu, Hechi, Wudu, and Hanzhong, respectively) that are both
within or proximal to their respective target areas (Figure 1) and within the area of significant spatial
precipitation correlation found by Dayem et al. [2010].

2.2. Moisture Source Sectorization

We divided continental Asia, the Philippine Sea, northern and low-latitude Indian Ocean, and the surrounding
terrestrial and oceanic areas into 11 separate sectors (Table S3 in the supporting information) and
determined the moisture contribution from each to precipitation within the regional and site-specific
target areas. These raw, sectorized data are provided in Tables S4–S8 in the supporting information. ABL
and FT moisture uptake data for individual sectors were further segregated into their constituent land and
oceanic areas and used to compute the mean and total area-weighted contributions from four oceanic
source regions and from terrestrial areas (Figure 1) to precipitation within monsoonal China during
November 1999 to March 2005. These data not only establish the seasonality of eastward versus westward
moisture advection but also help to characterize the importance of particular moisture source regions for
proxy record sites by providing a way to quantify the strength of the source effect in precipitation δ18O.
Therefore, this information may be used to better isolate the precipitation amount signal in δ18O-based
paleomonsoon reconstructions.

3. Results and Discussion
3.1. Comparison of Lagrangian and Instrumental Precipitation Data

To first establish the credibility of the Lagrangianmethod adopted, we comparedmodeled and observational
precipitation data: the seasonally composited precipitation modeled by the Lagrangian diagnostic was
compared with the Global Precipitation Climatology Centre version 6 (GPCC6) data set [Schneider et al.,
2011] for the climatological period of 1981–2010 (Figure 2). Precipitation amount within the target area is
calculated from any specific humidity decrease during the final 6 h time step, following Sodemann et al.
[2008b]. This Lagrangian precipitation estimate is generally biased high, which is a commonly observed
characteristic due to neglecting the influence of cloud microphysics in generating model-derived
precipitation [Sodemann and Zubler, 2010]. However, in this study the Lagrangian estimate compares
favorably with the GPCC6 data. The mean seasonal Lagrangian precipitation captures the seasonal
spatiotemporal distribution of rainfall across China accurately (Figure 2). The mean Lagrangian data for
December to February show relatively high precipitation in southeast China and immediately northeast of
the Himalaya compared with the GPCC6 data (Figure 2, December-January-February (DJF)). A similar spatial
rainfall distribution is exhibited by both data sets during March-May, although the Lagrangian data do not
capture the relatively low levels of precipitation in east India and peninsular Indochina during spring
(Figure 2, March-April-May (MAM)). Data for June-August exhibit a well-defined gradient orientated WSW-
ENE, likely representing the Meiyu Front [Sampe and Xie, 2010], and reproduce high monsoonal
precipitation in northeast India (Figure 2, June-July-August (JJA)). During June to August, when ~80% of
the total annual rainfall is received, the mean Lagrangian and GPCC6 precipitation values averaged over
the target area are similar: 170 and 176mmmonth�1, respectively. Precipitation distribution and
magnitude during September to November are also reproduced well (Figure 2, September-October-
November (SON)). These Lagrangian precipitation data also reproduce GPCC6 precipitation averaged over
our study period (November 1999 to March 2005), indicating that this period does not differ significantly
from the mean spatiotemporal climatological precipitation distribution for central and eastern China
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(Figure S1 in the supporting information). Modeled precipitation is also in agreement with the globally
gridded interpolation of precipitation monitoring observations of Legates and Willmott [1990] (not shown).
These results establish the credibility of the Lagrangian method adopted in this study and firmly
substantiate the diagnosed moisture source patterns for China discussed below.

3.2. EASM Moisture Source Patterns

The seasonal cycle of moisture sources of precipitation across monsoonal China shows a marked transition
between a dry winter period, with easterly moisture contributions, and an intense summer monsoon
phase, with extensive contributions from the northern Indian Ocean and moisture recycling over
continental areas (Figure 3). During December to February, evaporative contributions of up to
15mmmonth�1 occur principally over the western Philippine Sea, and relatively low evapotranspiration
(up to 35mmmonth�1) is detected over southern China. The geographic extent of moisture uptake is
relatively invariant over central China during these winter months, which is consistent with global oceanic

Figure 2. (left) Composited mean seasonal Lagrangian-estimated precipitation within China exhibit a close spatial and
seasonal agreement with (right) Global Precipitation Climatology Centre version 6 (GPCC6) data [Schneider et al., 2011].
These data were obtained from Deutscher Wetterdienst (available at www.dwd.de), and both data sets are averaged over
December to February (DJF), March to May (MAM), June to August (JJA), and September to November (SON). Topographic
contours (solid lines) are in meters above mean sea level.
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evaporation simulations [Gimeno et al., 2010; van der Ent and Savenije, 2013]. We note, however, that these
studies are based on relatively idealized diagnostic methods (e.g., vertically integrated horizontal moisture
fluxes). During March to April, prior to ISM onset, the moisture uptake region expands westward toward
India, with ongoing uptake from the westernmost Philippine Sea. Greater evapotranspiration is detected
over Bangladesh and northeast India, with additional contributions from the eastern Tibetan Plateau.
Increased evaporation during ISM onset (May to June) is observed over the Bay of Bengal, substantiated
by recent back trajectory results over comparably small target areas [Breitenbach et al., 2010; Chen et al.,
2013; Liu et al., 2011]. ISM onset also induces evaporation over the Arabian Sea, synchronous with the
seasonal timing of increased latent heat supply to the Asian summer monsoon (ASM) from the equatorial
and southern Indian Ocean and the associated lower troposphere moisture budget distributions [Ding
et al., 2004; Martius et al., 2013]. Indian Ocean uptake extends westward and southward during EASM
onset (June), following prevailing horizontal wind directions, which are also consistent with National
Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis 1000 hPa mean

Figure 3. Mean monthly evaporative moisture uptake (within the ABL) contributing to precipitation across central and eastern China for the period of November
1999 to March 2005, showing mean precipitation within the target area (red box) projected back over its respective source locations. The EASM season is June to
September; ASM months are in blue text. The area shown in Figures 5 and 6 is outlined in the December panel (red dashed box). Note that areas >2 km elevation
were excluded from the Lagrangian model runs and numerical analyses.
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wind vectors [Clemens et al., 2010]. This uptake region develops during peak EASM (July to August) and
recedes during the cessation of EASM precipitation over China (September). However, evaporation over
the Philippine and South China Seas during the EASM is not markedly different from that during winter.
The seasonal timing of this expansion and contraction behavior is also concurrent with the seasonal
development and decay of the Siberian High. Evapotranspired moisture is primarily sourced from southern
and eastern China and the Indian subcontinent during summer months. During the ASM,
evapotranspiration contributes the greatest mean monthly uptake values (up to 70mmmonth�1), and
recycled moisture does not fully recede to its dry winter state until November.

3.3. Free Troposphere Moisture Contributions

The Lagrangian diagnostic we use [Sodemann et al., 2008b] distinguishes evaporative moisture uptake within
the ABL from convective moistening of air parcels in the FT. Seasonally composited FT moisture contributions
do not represent moisture sources directly because such moistening occurs above the ABL. Rather, these
contributions represent convective moistening of air parcels, with shallow and deep convective
detrainment of upper ABL moisture into the FT. The geographic distribution of the FT moisture
contribution to precipitation within monsoonal China is similar to that of ABL uptake but exhibits a
broader spatial pattern (Figure 4), particularly over the northern Indian Ocean, from which contributions
are up to 40mmmonth�1. The area of moisture uptake from the northwest Pacific Ocean is present
throughout the ASM season but represents a lower contribution (up to 10mmmonth�1) that is likely
associated with the mean boreal summer position of the ITCZ.

During the ASM, two differences from direct evaporative contributions near the surface are identified: (i) the
branch of Indian Ocean moisture contribution during June to August is significantly more expansive and (ii) a
comparatively minor region of moistening is detected over the central Philippine Sea at ~20°N out to ~160°E
during June to November.

Figure 4. Mean seasonal free troposphere (above the ABL) moisture uptake contributing to precipitation within the regional
target area (red box) from Lagrangian diagnostics for 1999–2005. The region shown in Figures 5 and 6 is outlined in the DJF
panel (red dashed box).

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022919

BAKER ET AL. EAST ASIAN RAINFALL MOISTURE SOURCES 5856



3.4. Moisture Source Distribution Across Central and Eastern China

To characterize the spatial distribution of moisture sources across monsoonal China, we mapped Lagrangian
forward projections of seasonal mean source longitude (Figure 5) and latitude (Figure 6) data. During
December to February, source longitude exhibits a southeast-northwest gradient and shows a strong
influence of the Westerlies in northwest China. We also observe areas where a topographic influence on
moisture source distribution is apparent. The southeastern margin of the Tibetan Plateau, over the Ganges-

Figure 6. Mean seasonal source latitude of moisture masses responsible for precipitation within monsoonal China. Source
latitude data are forward projected over the target area. Annotations are as per Figure 5.

Figure 5. Mean seasonal source longitude of moisture masses responsible for precipitation within monsoonal China. Source
longitude data are forward projected over the target area. Topographic contours (solid lines) are in meters above mean sea
level. Summer precipitation within the target area is sourced from westerly longitudes, and this zonal moisture advection into
eastern China is most intense during June (Figure S2 in the supporting information). Locations of selected cave sites are shown
(white circles; see also Figure 1). Note that although areas >2 km elevation were excluded from the Lagrangian model runs
and numerical analyses consistently, these forward projections show a larger data set which includes these areas for clarity.
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Brahmaputra deltaic region, and over
the Chengdu basin, central China, each
show graduation in source longitude
which broadly follows topographic
contours. During March to May, this
axis of this winter gradient shifts to a
meridional orientation, which is most
marked between April and May (Figure
S2 in the supporting information),
representing incipient ISM onset.
During May to August, monsoonal
precipitation over eastern and southern
China is sourced from relatively
westerly locations (90°E–105°E), derived
from the substantial Indian Ocean
evaporation identified with the
Lagrangian diagnostic (Figure 3). The
winter southeast-northwest gradient
resumes from October. Over the
examined period, moisture source
longitude variability at Hulu Cave (86°E–
117°E), Dongge Cave (93°E–115°E),
Wanxiang Cave (88°E–108 °E), and Dayu
Cave (90°E–110°E) exceeds 20°.

Seasonal Lagrangian forward projections of moisture source latitude (Figure 6) exhibit a zonal gradient
throughout the year, with precipitation sourced between 20 and 35°N during winter (December to
February) and expanding to 10 and 40°N during peak EASM, again concurrent with the seasonal
development and decay of the Siberian High. Within the target area, particularly in southern China,
summer monsoonal precipitation is derived from a greater amount of moisture migrating from relatively
southerly latitudes than winter precipitation, consistent with uptake maps (Figures 3 and 4). Moreover,
summer moisture uptake occurs up to ~40°N, which represents increased evapotranspiration feeding
recycled moisture to EASM precipitation. Over the examined period, moisture source latitude variability at
Hulu Cave (20°N–33°N), Dongge Cave (17°N–25°N), Wanxiang Cave (27°N–36°N), and Dayu Cave (25°N–35°N)
is less than that exhibited by source longitude data.

3.5. Moisture Transport Seasonality

The total moisture contribution (combined ABL and FT) from different oceanic regions varies both seasonally
and interannually, and a clear contrast in the seasonality of Indian versus Pacific Ocean contributions to
EASM rainfall is apparent (Figure 7). Nonmonsoon season moisture uptake from the northern Indian Ocean is
low (less than 5mmmonth�1) and increases rapidly after ISM onset (up to 20mmmonth�1) then decreases
following peak EASM activity. Northwest and northeast Indian Ocean contributions are in-phase with the
EASM, and the area-weighted northwest Indian Ocean contribution is higher due to uptake from the
western Indian Ocean (Figure 3). South China Sea uptake minima, unlike those of the other oceanic source
regions, never reach near-zero values during the study period; a small moisture contribution
(~7mmmonth�1) to the farthest southeastern (coastal) areas of China and to Taiwan is therefore entrained
during northward ASM advancement (Figures 3 and 7). These observations are consistent with the available
satellite-based scatterometry data, which show precipitation across China and Indochina are generally in-
phase with Indian Ocean evaporation [Liu and Tang, 2004]. Philippine Sea contributions exhibit limited
seasonality, and peak South China Sea contributions occur during winter months. The combined ABL
moisture uptake and FT contributions from the northern Indian and northwest Pacific Oceans are
summarized in Figure S3 in the supporting information (see also Table S7 in the supporting information).
Zonal moisture advection from the Indian Ocean increases rapidly at the point of ASM onset, with maxima
during June and July. Total Pacific Ocean contributions (combining the South China and Philippine Seas)

Figure 7. Time series of monthly (a) terrestrial moisture contribution to
precipitation over the target area expressed as a percentage of total ABL
uptake, (b)mean Lagrangianmodeled precipitation over the target area, and
total moisture contributions from (c) Pacific and (d) Indian Ocean source
regions (see also Figure 1) to precipitation within monsoonal China. Indian
Ocean and Pacific Ocean contributions exhibit opposite seasonality (see also
Figure S3 in the supporting information). Data in Figure 7b are areaweighted
and show evaporative (ABL) uptake only, representing the evapotranspira-
tion (“Et”) signal. Data in Figures 7c and 7d are also area weighted but show
combined ABL and FT moisture, giving the total contribution.
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exhibit comparatively limited seasonality
(Figure S3 and Table S7 in the supporting
information), with two anomalously high
values of Pacific moisture export in
December 1999 and December 2001.

Moisture exported to monsoonal China
from the identified source regions
is subsequently recycled, inducing
terrestrial moisture fluxes. This
terrestrially derived, recycled moisture
constitutes a substantial contribution
to total precipitation across central and
eastern China, particularly during the
EASM (Figure 7). Precipitation recycling,
estimated here as the percentage of
ABL moisture uptake (principally via
evapotranspiration) from all terrestrial
sources, exhibits no clear seasonality
(Figure 7a). Moreover, no clear
phase relationship with monthly mean
Lagrangian (modeled) precipitation
over the target area exists (Figure 7b).
Although there is a lack of clear
seasonality, due to evaporative terrestrial
moisture contributions being present
throughout the year (Figure 2), we
note that summer values tend to be
lower during the examined period,
resulting from increased relative

moisture contributions from distal oceanic sources. The mean annual terrestrial moisture uptake is
62mmmonth�1, which represents a substantial contribution (74.2%) to precipitation over central and
eastern China.

3.6. Geographically Variable Source Effect in EASM Precipitation δ18O

Moisture transport processes strongly affect precipitation (and therefore proxy) δ18O [Lachniet, 2009; Pausata
et al., 2011]. Reliable paleomonsoon reconstructions from speleothem δ18O require a detailed understanding
of amount effect variability [Dayem et al., 2010], extraregional forcings (e.g., oceanic source conditions) [Lewis
et al., 2010; Pausata et al., 2011], and moisture source variability [Breitenbach et al., 2010]. We report here an
initial attempt to evaluate variability in the expression of source effects by precipitation δ18O (see supporting
information) at Hulu, Dongge, Wanxiang, and Dayu Caves (Figure 1) by running the Lagrangian diagnostic
with additional 2° × 2° target areas centered on each selected cave site (Figure 1 and Table S3 in the
supporting information). Our goal is not to quantify absolutely the extent to which source effects explain
total precipitation δ18O variability at the selected sites but instead to assess whether any geographic
variability exists. We calculated correlation coefficients between mean monthly precipitation δ18O and the
following predictor variables: mean monthly precipitation amount and specific humidity-weighted source
longitude and source latitude. The correlation coefficients r2precip and r2source represent regression between
precipitation δ18O and precipitation amount and between δ18O and specific humidity-weighted mean
source location (longitude and latitude), respectively. R denotes the multivariate correlation coefficient for
precipitation δ18O regressed against mean monthly amount, source longitude, and source latitude (Figure 8).

We observe a spatially variable source effect between the selected cave sites (Figure 8), as indicated by mean
source longitude and latitude data. For each site, a combination of precipitation amount, source longitude,
and source latitude explains a greater degree of precipitation δ18O variability than individual site-specific
amount or source effects alone (Figure 8). This is particularly true for Hulu, where amount and source

Figure 8. Map of selected cave sites (filled circles), their respective mean
June to August moisture source locations (open circles), and moisture
source-weighted mean annual range (bars). Contoured data (grey scale)
show themodeledmean June to August moisture transport distance (km)
from uptake location to precipitation location. Correlation coefficients (r2)
for mean monthly precipitation δ18O versus mean precipitation amount
(r2precip) and specific humidity-weighted mean moisture source longitude
and latitude (r2source) for the four selected cave sites are given. Also shown
is the multivariate r2 for precipitation δ18O against amount, source long-
itude, and source latitude (R), which is geographically variable and higher
than individual amount and source correlations at each site. Topographic
contours (pale blue) are in meters above mean sea level.
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effects appear similarly important (34% and 29%, respectively), and for Dongge, where individual amount
and source effects explain only a limited proportion of the precipitation δ18O variability (18% and 26%,
respectively). Precipitation δ18O variance not explained by amount and source effects for the selected sites
is likely due to the influence of other hydroclimatic parameters, such as cloud temperature or convective
intensity [Risi et al., 2008], which require further investigation in future studies focused on monsoonal
China. Nevertheless, these results indicate that precipitation δ18O across monsoonal China integrates a
significant and geographically variable source signal.

Northeast India and the Ganges-Brahmaputra deltaic region receive moisture transported over the greatest
mean distance from the Indian Ocean (Figures 3 and 4). In the EASM region, a southeast-northwest gradient
in moisture transport distance exists (Figure 8). Mean source regions for EASM precipitation at Hulu and
Dongge are located ~1700 and ~1000 km southwest of each site, respectively, and for Dayu and
Wanxiang, ~500 and ~400 km south, respectively. Raw moisture uptake data (within the ABL) are given in
Table S8 in the supporting information). Each site predominantly receives moisture advected from the
west, and the relative proximity of the northern Dayu and Wanxiang sites to their mean source regions
demonstrates that they receive a greater proportion of recycled moisture, where mean June to August
moisture transport distance is relatively short (Figure 8). The intensity of summer moisture recycling
apparent within monsoonal China exceeds that over northeast India, where mean moisture transport
distance is higher. (Note that the lowest moisture transport distance values are found over the Tibetan
Plateau.) However, our results show no obvious “transitional zone” between the ISM and EASM regions
[Wang and Lin, 2002], instead evincing strong westerly moisture transport across continental eastern Asia,
predominantly from the Indian Ocean domain.

4. Conclusions

In summary, we quantified the seasonal progression of evaporative moisture contributions to precipitation
across central and eastern China from the Indian and Pacific Oceans, comprising a subcontinental-scale
investigation of moisture transport to the world’s most populous monsoonal region. The seasonal cycle of
moisture sources shows a rapid transition from a dry winter period, with predominately easterly moisture
contributions, to an intense summer monsoon phase, with extensive contributions from the northern
Indian Ocean and moisture recycling over continental areas. Modeled precipitation data accurately
reproduce the observed climatological EASM precipitation distribution across southern and eastern China,
firmly substantiating the diagnosed moisture transport patterns. Despite distinct differences in the onset
and characteristics of the monsoon season over India, eastern China, and the western North Pacific [Wang
and Lin, 2002], the Indian Ocean moisture contribution to EASM precipitation in China is considerable.
These results present a significant challenge to the previously assumed Pacific Ocean origin for EASM
precipitation in China [e.g., Ran and Feng, 2013; Xu et al., 2004], are entirely consistent with ISM-EASM
mechanistic linkage [Cheng et al., 2012], and provide a highly plausible explanation for precipitation proxy
covariation between China and India during late Holocene warm phases [Rehfeld et al., 2013].

Interestingly, our data show that transport of rain-bearing moisture from the northwestern and low-latitude
Pacific Ocean during the EASM is minimal and largely indistinguishable from that during winter (Figure 3).
Additionally, we detected no significant contribution to EASM rainfall from the high-latitude Westerlies,
previously indicated by a smaller-scale analysis [Liu et al., 2014]. Rather, the results of this study quantify a
significant Indian Ocean contribution across the EASM region, predominately originating from the
northern Indian Ocean, and demonstrate that zonal westerly advection reaches China’s eastern continental
margin and the wettest southern region during peak EASM (Figures 3 and 4). The spatial extent of Pacific
Ocean moisture contributions is comparatively limited and seasonally invariant (Figures 3 and 7); Pacific
free tropospheric convective moistening is also less widespread than that over Indian Ocean regions
(Figure 4).

General circulation model (GCM) studies project significant anthropogenic CO2-induced warming over the
tropical oceans [IPCC, 2013], one consequence of which is lower atmosphere moisture budget increase
[Hsu et al., 2013; Lee and Wang, 2014; Ueda et al., 2006]. Considering this, our results indicate that changes
in Indian Ocean, rather than Pacific Ocean, sea surface temperature and moisture export will directly
influence future EASM rainfall variability across central and eastern China. Given the projected increase in
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the geographical Asian monsoonal domain [Lee and Wang, 2014], quantifying the EASM precipitation
response to Indian Ocean surface warming is an important area for future research.

The expression of the source effect in modern precipitation δ18O within monsoonal China is significant and
varies in strength between the Hulu, Dongge, Dayu, and Wanxiang Cave sites, which is most likely due to
differences in mean moisture transport distance during summer. Precipitation δ18O at each site is more
accurately interpreted as reflecting both rainfall amount and moisture transport history. Given our data
and existing GCM evidence for a strong response of precipitation δ18O across China to upstream rainout
[Liu et al., 2014; Pausata et al., 2011], it is now increasingly clear that δ18O does not directly and exclusively
record local precipitation variability at sites within monsoonal China. Our moisture source data provide a
widely applicable basis for quantifying source effects in precipitation and proxy δ18O, thereby isolating
local or regional precipitation amount signals that are crucial for accurate paleomonsoon reconstruction.
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