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Filter degeneracy is the main obstacle for the implementation of particle filter in non-

linear high-dimensional models. A new scheme, the implicit equal-weights particle filter

(IEWPF), is introduced. In this scheme samples are drawn implicitly from proposal

densities with a different covariance for each particle, such that all particle weights are

equal by construction.

We test and explore the properties of the new scheme using a 1,000-dimensional simple

linear model, and the 1,000-dimensional non-linear Lorenz96 model, and compare the

performance of the scheme to a Local Ensemble Kalman Filter. The experiments show

that the new scheme can easily be implemented in high-dimensional systems and is never

degenerate, with good convergence properties in both systems.
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1. Introduction

Geophysical systems such as atmosphere or ocean systems are

inherently nonlinear in nature. Numerical models which are used

to simulate the true geophysical systems often have a state space

of over one million variables, which results from discretising

physical variables in a 3-D spatial grid. The dimension of state

space keeps on growing due to the sustainable increase in model

resolution and the computation capacity of the super computers.

†Please ensure that you use the most up to date class file, available from the QJRMS
Home Page at
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1477-870X

Numerical models describing atmosphere or ocean processes

are discretisations of partial differential equations which need

accurate initial and boundary conditions. The uncertainty in model

equations and in initial and boundary conditions can be reduced by

bringing in information from observations.

The prior knowledge of the state variables is described by the

prior probability density function (pdf). The probability of each

model state can be updated using Bayes’ theorem by multiplying

it with the probability of observations given that specific model

state, the likelihood, resulting in the posterior probability density

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls [Version: 2013/10/14 v1.1]
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function, or posterior pdf of that model state. This update process

is called data assimilation (DA). Present-day DA methods are

tailored to specific statistics of the posterior pdf, e.g. mean,

covariance, modes, etc. Variational methods such as 3DVar and

4DVar (?) search for the mode of the posterior pdf through the

minimisation of a cost function. It cannot be guaranteed that the

mode variational methods find is the global mode of the posterior

pdf, which means that the search may stop at a local mode.

Furthermore, it is hard to generate an uncertainty estimate of

a variational solution due to its implicit use of the covariances

involved. The Ensemble Kalman Filter (EnKF) (??) estimates

the mean and covariance of the posterior pdf under the implicit

assumptions of linearity and Gaussianity. Neither of these two

popular methods can describe non-Gaussian posterior pdfs in an

accurate manner, and it is still unclear what they estimate in

a multimodal posterior pdf. Hybrids between the two methods

like Ens4DVar, in which the ensemble from an EnKF is used to

inform the background covariance of 3- or 4DVar about previous

observations and flow structures, and 4DEnsVar, in which the

space-time covariances in the 4DVar are explicitly generated from

a forecast ensemble, like in an Ensemble Kalman Smoother, do

not solve this issue.

The particle filter (PF) is a sequential Monte-Carlo method,

which uses an ensemble of particles to represent the posterior pdf

directly without linear or Gaussian assumptions, see e.g. (?). It has

been successfully applied in systems with low dimensions, e.g.

(??). But for geophysical systems with high dimensions, limited to

the computation resources of modern super-computers, we cannot

run enough model simulations to simulate the posterior pdf while

avoiding the so-called “curse of dimensionality”.

Different flavours of PFs exist, but all of them share two

steps: forecast (also known as mutation) and weighting. When

the numerical model equations contain errors (as they always

do, of course, but these are often ignored), it is advantageous to

slightly change the stochastic forecast model to stir the model

closer to future observations. This is allowed in particle filtering

as long as the weight of that model run is lowered accordingly

in a well-specified way. Statistically this is known as drawing

from a proposal density. When the model reaches the observation

time these weights are multiplied by the likelihood of these

observations assuming that they have been generated from that

model state. The closer the model run to the original model, and

the closer the model is to the observations the higher its weight

will be. Most of the particle weights degenerate to a very small

value as time evolves simply because it is hard to stay close to all

observations. In high-dimensional situations with a large number

of independent observations one particle obtains a weight close

to one, while the others have weights very close to zero. The

degeneracy of the particle weights leads to a loss of statistical

information since the effective ensemble size reduces to 1. This

is the main obstacle for PF to be applied operationally as an

alternative in DA (?). ??? argue that the ensemble size must scale

exponentially with respect to the “effective size” of the problem

(proportional to the number of independent observations) for a

particle filter to avoid degeneracy. They show that this is even

the case for the proposal density that has the lowest variance

in the weights, which they showed to be equal to the so-called

Optimal Proposal Density, which is known to be optimal in a

slightly different way. The analytical calculations were backed up

by convincing experiments using a simple linear test case.

? and ? introduce an implicit proposal density method that

choose a map from the implicit sampling space to the original

state space. Examples on 100-500 dimensional spaces show that

the method is more robust than the original particle filter with

resampling, but it is easy to show that the method reduces to the

optimal proposal density when observations are present at every

time step and when the model noise is state independent, having

the same degeneracy issues.

The equivalent-weights particle filter (EWPF) of ?? and ??

explore a particle filter that uses a proposal density of a different

class than studied before. It allows for a proposal density for

each particle that depends not only on the position of the particle

at previous time, but on all particles at previous time. Since all

particles are involved it is straightforward to ensure that the final

weights of part, or al, of the particles are equal. It has been

shown to be non-degenerate in even high-dimensional spaces, e.g.

the 65,000 dimensional barotropic vorticity model, and recently

the over 2 million dimensional climate model HadCM3 (?). The

scheme has a few tuning parameters that can be adjusted for

optimal performance, measured by e.g. rank histograms. It can

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls
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be shown, however, that such a scheme is biased. It is well known

that particle filters that explore resampling are always biased, but

the bias is of a stronger nature in this filter. A bias is not an

issue in itself as long as the bias is smaller than the statistical

noise in the method. In the IWPF, in order to enforce weights

that are close together, the particles are forced to be positioned

close to a hyper-ellipsoidal shell, one for each particle. This

means that the proposal density of all particles together does not

explore the full state space. The equivalent-weights PF works

extremely well for small ensemble sizes of order 10-100 for

high-dimensional (order 1,000 or much more) systems, when the

statistical noise is relatively large, but this scheme does perform

less favourably when large ensemble sizes are used and the bias

becomes apparent. Although we typically cannot afford more that

10-100 particles in geophysical systems this limits the usefulness

of this scheme.

In this article, a new PF is proposed, which we label the

implicit equal-weights particle filter (IEWPF). This scheme uses

a proposal transition density in which each particle is drawn

implicitly from a slightly different proposal density, the difference

being a factor in front of the covariance of the proposal. .

This factor depends on all other particles such that the equal-

weight property is fulfilled. This scheme is applied during the last

transition step before the observations. In between observation

times a simple relaxation scheme is used, as in the equivalent-

weights particle filter. One strong advantage of this new scheme is

that the number of tuning parameters has been reduced drastically,

and we will show that the bias is much smaller than for the EWPF.

This article is organised as follows. Section 2 describes the

implicit equal-weights particle filter in detail, and its performance

on the linear model used by ? and 1,000 dimension Lorenz96

model are discussed in section 3, together with a comparison with

the LETKF. A summary and conclusions are provided in section

4.

2. Implicit Equal-Weights Particle Filter

2.1. The basic idea

Bayes’ theorem shows how the prior density p(x) is changed when

multiplying it with the density of observations y given a specific

model state x, the likelihood. The posterior pdf of the model state

given observations p(x|y) is thus given by:

p(x|y) =
p(x)p(y|x)

p(y)
(1)

The posterior pdf of a filter is the probability of the state

variable xn at time-step n given the observations y1:n at time

1, · · · , n. For a Markovian system with observational errors that

are independent from one time to another, the posterior pdf can be

written as

p(xn|y1:n) =
p(yn|xn)

p(yn)

∫
p(xn|xn−1)p(xn−1|y1:n−1)dxn−1

(2)

The transition density p(xn|xn−1) is related to the model

equation via

xn =M(xn−1) + βn (3)

in which M(.) is the nonlinear deterministic model equation,

and βn is a stochastic perturbation with mean zero that can, in

principle, depend on xn−1.

Let us assume for the moment that we run a particle filter and

that the particle weights in the ensemble at previous time-step

n− 1 are equal:

p(xn−1|y1:n−1) =
1

N

N∑
i=1

δ(xn−1 − xn−1i ) (4)

When plugging equation (4) into equation (2), we find that:

p(xn|y1:n) =
1

N

N∑
i=1

p(yn|xn)p(xn|xn−1i )

p(yn)
(5)

One can now multiply the numerator and denominator of

equation (5) by the same factor q(xn|xn−1, yn), in which xn−1

is defined as the collection of all particles at time n− 1.

p(xn|y1:n) =
1

N

N∑
i=1

p(yn|xn)

p(yn)

p(xn|xn−1i )

q(xn|xn−1, yn)
q(xn|xn−1, yn)

(6)

where the support of q(xn|xn−1, yn) should be equal to or larger

than that of p(xn|xn−1i ). q(xn|xn−1, yn) is the so-called proposal

transition density.

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls
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The assumption that observations appear at every time-step

is made and we draw samples from the proposal transition

density q(xn|xn−1, yn), instead of the original transition density

p(xn|xn−1i ). This leads the posterior pdf to be expressed as:

p(xn|y1:n) =
1

N

N∑
i=1

p(yn|xni )

p(yn)

p(xni |x
n−1
i )

q(xni |xn−1, yn)
δ(xn − xni ) (7)

Consequently, the posterior pdf of model state at time-step n

can be written as

p(xn|y1:n) =
1

N

N∑
i=1

wiδ(x
n − xni ) (8)

where wi is the particle weights given by

wi =
p(yn|xni )

p(yn)

p(xni |x
n−1
i )

q(xni |xn−1, yn)
(9)

Now assuming that the model system is Markovian and using

Bayes’ theorem, the numerator in the expression for the weights

can be expressed as

p(yn|xn)p(xn|xn−1i ) = p(xn|xn−1i , yn)p(yn|xn−1i ) (10)

Therefore the particle weight of ensemble member with index i

at observed time-step becomes

wi =
p(xni |x

n−1
i , yn)p(yn|xn−1i )

p(yn)q(xni |xn−1, yn)
(11)

In the so-called optimal proposal density (?) one chooses

q(xni |x
n−1, yn) = p(xni |x

n−1
i , yn), leading to weights

wi ∝ p(yn|xn−1i ). For systems with a large number of

independent observations these weights are degenerate, see

e.g. (?).

The implicit part of our scheme follows from drawing samples

implicitly from a standard Gaussian distributed proposal density

q(ξ) instead of the original one q(xn|xn−1, yn) (?). These two

pdfs are related by:

q(xn|xn−1, yn) =
q(ξ)

||dxdξ ||
(12)

where ||dxdξ || denotes the absolute value of the determinant of the

Jacobian matrix of the RNx →RNx transformation xi = g(ξi).

In the Implicit Equal-Weights Particle Filter this function g(.) is

defined via

xni = xai + α
1/2
i P 1/2ξni (13)

with xai the mode of q(xni |x
n−1, yn), P is a measure of the width

of that pdf, and αi is a scalar. In the implicit particle filter of ?

αi is determined by choosing the proposal density as the optimal

proposal density, so again q(xni |x
n−1, yn) = p(xni |x

n−1
i , yn),

and using the expression for xni directly in

p(xni |x
n−1
i , yn) =

q(ξ)

||dxdξ ||
(14)

leading to a nonlinear scalar equation for αi.

Our scheme is different in that we choose the αi such that all

particles get the same weight wtarget, so we determine the scalar

αi for each particle from:

wi =
p(xni |x

n−1
i , yn)p(yn|xn−1i )

Np(yn)q(xni |xn−1, yn)
= wtarget (15)

This equation is at the heart of the IEWPF, showing the equal-

weights part of the scheme. It ensures that the filter is not

degenerate in systems with arbitrary large dimensions and with

an arbitrary large number of independent observations.

We can expand this as follows. Sampling implicitly from q(ξ)

instead of q(xni |x
n−1, yn), the particle weights are now given by

wi =
p(xni |x

n−1
i , yn)p(yn|xn−1i )

q(ξ)

∣∣∣∣∣∣∣∣dxdξ
∣∣∣∣∣∣∣∣ · wprevi (16)

where q(ξ) is the standard Gaussian distribution and wprevi

introduces the weight from previous time-steps. This equation

demonstrates the implicit part of the scheme.

The determinant of the Jacobian depends only on the

transformation from ξ to x, and is independent of the pdfs of the

these variables. Hence, we can simply obtain it from (13) and get

∣∣∣∣∣∣∣∣dxdξ
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣α1/2
i P 1/2 + P 1/2ξni

∂α
1/2
i

∂ξni

∣∣∣∣∣∣∣∣ (17)

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls
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Factorising α1/2
i P 1/2 out from the right hand side leads to:

∣∣∣∣∣∣∣∣dxdξ
∣∣∣∣∣∣∣∣ = α

Nx/2
i

∣∣∣∣∣∣∣∣P 1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣I +
ξni

α
1/2
i

∂α
1/2
i

∂ξni

∣∣∣∣∣∣∣∣ (18)

The last factor in this equation can be simplified to a scalar

by using Sylvester’s determinant lemma. Hence, the equation for

||dxdξ || reduces to:

∣∣∣∣∣∣∣∣dxdξ
∣∣∣∣∣∣∣∣ = α

Nx/2
i

∣∣∣∣∣∣∣∣P 1/2

∣∣∣∣∣∣∣∣ ∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣ (19)

2.2. Gaussian observation and model errors, and linear

observation operator

In this section the new scheme is explored for the case when

observation errors and model errors are assumed to be Gaussian,

and the observation operator H ∈ RNy×Nx is assumed to be

linear. With these assumptions we can write:

p(yn|xn)p(xn|xn−1i )

=
1

A
exp

[
−1

2
(yn −Hxn)TR−1(yn −Hxn)

− 1

2
(xn − f(xn−1i ))TQ−1(xn − f(xn−1i ))

]
=

1

A
exp

(
−1

2
(xn − x̂ni )TP−1(xn − x̂ni )

)
exp(−1

2
φi)

= p(xn|xn−1i , yn)p(yn|xn−1i ) (20)

where

P = (Q−1 +HTR−1H)−1 (21)

x̂ni = f(xn−1i ) + (Q−1 +HTR−1H)−1HTR−1(yn −Hf(xn−1i ))

(22)

φi = (yn −Hf(xn−1i ))T (HQHT +R)−1(yn −Hf(xn−1i ))

(23)

xai in equation (13) is the mode of p(xn|xn−1i , yn), given by

xai = x̂ni = f(xn−1i ) +QHT (HQHT +R)−1(yn −Hf(xn−1i ))

(24)

For ease of presentation we introduce:

αi = 1 + εi (25)

Taking minus the logarithm of the expression for the weights

derived in the previous section leads to:

−2 logwi = −2 logwprevi

+

{
−2 log

(
p(xni |x

n−1
i , yn)p(yn|xn−1i )

q(ξ)

∣∣∣∣∣∣∣∣dxdξ
∣∣∣∣∣∣∣∣)}

(26)

Let Ji and Jprevi stand for 2 times the logarithmic particle

weights of analysis time and previous time-steps respectively, then

the last equation can be rewritten as:

Ji = Jprevi − 2 log

(
p(xni |x

n−1
i , yn)p(yn|xn−1i )

q(ξ)

∣∣∣∣∣∣∣∣dxdξ
∣∣∣∣∣∣∣∣) (27)

Substituting the Jacobian factor obtained in equation (19) we

find:

Ji = Jprevi + (xni − x̂ni )TP−1(xni − x̂ni ) + φi

− ξnTi ξni − 2 log

(
α
Nx/2
i

∣∣∣∣∣∣∣∣P 1/2

∣∣∣∣∣∣∣∣∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣) (28)

in which the constant term common to all particles is ignored as it

plays no role in the following.

Since xni = x̂ni + α
1/2
i P 1/2ξni and αi = 1 + εi, the equation of

Ji can be simplified as

Ji = Jprevi + αiξ
nT
i P 1/2P−1P 1/2ξni + φi

− ξnTi ξni − 2 log

(
α
Nx/2
i

∣∣∣∣∣∣∣∣P 1/2

∣∣∣∣∣∣∣∣∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣)
= Jprevi + εiξ

nT
i ξni + φi

− 2 log

(
α
Nx/2
i

∣∣∣∣∣∣∣∣P 1/2

∣∣∣∣∣∣∣∣∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣) (29)

For ease of presentation we also introduce ξnTi ξni = γi, such

that Ji is given by

Ji = Jprevi + εiγi + φi

− 2 log

(
α
Nx/2
i

∣∣∣∣∣∣∣∣P 1/2

∣∣∣∣∣∣∣∣∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣) (30)

Setting the weights of all particles equal to the target weight

wtarget is equal to putting all Ji equal to a constant number C,

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls
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leading to the following equation for εi:

εiγi − 2 log(α
Nx/2
i )− 2 log(||P 1/2||)

− 2 log

(∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣)+ φi + Jprevi − C = 0 (31)

in which −2 log(||P 1/2||) is absorbed in C as it is also a constant.

Although this is a scalar equation, the derivative makes this

implicit equation hard if not impossible to solve in general. Since

we are interested in high-dimensional problems we consider this

equation in the limit of large state dimension Nx. As detailed in

Appendix A we can integrate this equation in this limit, leading to

the much simpler equation:

εiγi −Nx log(1 + εi) + φi + Jprevi − C = 0 (32)

If this equation could be solved and the real solutions of εi

could be obtained, an absolute equal weights particle filter method

that avoids filter degeneracy is discovered. The equation can be

solved by iterative methods, such as Newton method, etc., but

interestingly analytical solutions exist. The analytical solutions

are based on the so-called Lambert W function, as detailed in the

next section.

2.3. Analytical Solutions

2.3.1. Lambert W Function

The Lambert W function (??), also called the omega function or

the product logarithm function, is the inverse function of

z = f(W ) = W (z)eW (z) (33)

where eW (z) is the exponential function and z is any complex

number.

The W function is multivalued (except at zero point) because

f(·) is not injective. In this new scheme, our attention is restricted

to real-valued W , the complex variable notation z is replaced by

the real variable notation x, and W (x) exists when x ≥ −1/e, and

is double-valued on (−1/e, 0), see Figure 1. The branch satisfying

W (x) ≥ −1 is denoted by W0(x) and the branch satisfying

W (x) ≤ −1 is denoted by W−1(x) as indicated in Figure 1.

Figure 1. Lambert W function in real-valued W (x)

As can be seen in the figure, W0(0) = 0 and W0(−1/e) = −1.

The Lambert W function decreases from W−1(−1/e) = −1 to

W−1(0−) = −∞ in the branch W−1(x). Crucial identities of

Lambert W function are its derivative

dW

dz
=

W (z)

z(1 +W (z))
(34)

where z /∈ {0,−1/e} and the equation

W (x · ex) = x (35)

which follows directly from its definition.

Its interest for our problem is that the Lambert W function gives

the solution of the generalized problem:

log(A+Bx) + Cwx = logD (36)

as

x =
1

Cw
W

[
CwD

B
exp

(
ACw
B

)]
− A

B
(37)

This allows us to solve equation (32) to obtain an analytical

solution for εi.

2.3.2. Solutions for αi

Equation (32) could be generalized as

ax− b log(1 + x)− c = 0 (38)

in which a = γi, b = Nx, c = C − φi − Jprevi and x = εi.

Following equation (36), the analytical solution of x is found as

x = − b
a
W

[
−a
b
· e−

a
b · e−

c
b

]
− 1 (39)

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls
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so that

εi = −Nx
γi
W

[
− γi
Nx
· e−

γi
Nx · e−

c
Nx

]
− 1 (40)

and

αi = 1 + εi = −Nx
γi
W

[
− γi
Nx
· e−

γi
Nx · e−

c
Nx

]
(41)

To ensure real-valued solutions c must satisfy

− γi
Nx
· e−

γi
Nx · e−

c
Nx > −e−1 (42)

so

c > Nx log(
γi
Nx

)− γi +Nx (43)

In accordance with the charactersitics of Lambert W function,

we find the following characteristics for αi. First, there are two

real solutions for W (·), and for εi and thus αi. εi has a positive

real solution give by W−1 branch and a negative real solution

given by the negative x part of W0 branch which is always larger

than −1. Second, if the value of c is zero, the value of αi becomes

a single constant solution 1 because of identity equation (35):

αi = −Nx
γi
W

[
− γi
Nx
· e−

γi
Nx

]
= −Nx

γi
·
{
− γi
Nx

}
= 1 (44)

Practically, the solutions can be derived numerically via the

Lambert W function, or by using numerical approximation

methods for the original equation (32). The Lambert W function

could be approximated using Newton’s method or Halley’s

method (?).

2.3.3. Structure of solutions

The analytical solution for αi is a complicated form of Lambert

W function of γi. Since γi is a χ2 variable with Nx degrees of

freedom a typical range for γi is [Nx −
√

2Nx, Nx +
√

2Nx]. The

order of magnitude of c is O(
√
Nx). Figure 2 shows the plot of

αi as a function of γi with varying c values under different state

space dimensions.

The solution for αi has two branches related to Lambert W

function. In Figure 2, the dashed line is the -1 branch of the αi

solutions and the full line is the 0 branch. Different line colours

represent different c values.

(a) αi(γi) with Nx = 100.

(b) αi(γi) with Nx = 1000.

Figure 2. αi(γi) with varying c under different Nx values.

The αi values tend to be closer to 1 when Nx becomes larger,

mainly because the fluctuation of γi
Nx

tends to be smaller whenNx

increases.

When c = 0, the two branches of αi meet in one point where

γi = Nx. With increasing c, the gap between two branches

becomes larger and larger and the values of αi are further away

from 1.

2.3.4. Discussion

Figure 2 illustrates how αi performs with varying c. There is a gap

when c 6= 0, restricting the state space that α1/2
i P 1/2ξni explores.

Since P 1/2 is a constant matrix, we ignore it in this section. We

define function f(ξni ) as

f(ξni ) = α
1/2
i ξni (45)

The full expression is given by

f(ξni ) =

√
− Nx

ξnTi ξni
W

[
−
ξnTi ξni
Nx

· e−
ξnT
i

ξn
i

Nx · e−
c
Nx

]
ξni (46)

We choose Nx to be 1 as the simplest case, and c/Nx has three

values, 0, 1/2 and 1. Figure 3 shows the state space that f(ξni )

explores with varying c/Nx values when Nx = 1.
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Figure 3. Function f(ξni ) with different c/Nx values

With varying c/Nx, the changing behaviour of the solution can

be seen clearly in Figure 3. The gap exists for other particles

except the one with c/Nx = 0 and it becomes larger when c/Nx

is becoming larger in this case. The gap becomes a hyper-sphere

for high dimensional systems.

The importance of the gap lies in the fact that the proposal

density does not explore the full state space for those particles

that have a gap, so all particles except one. This means that the

new scheme will be biased, although it is unclear what form this

bias takes. The gap position will be different for each particle, so

the space missed out by several particles will be much smaller

than the gap of an individual particle. And, because one particle

has no gap, the ensemble as a whole will explore full state space.

The scheme is tailored to high-dimensional systems, so we

studied the importance of the gap when Nx increases. For each

particle there are two high probability hyper-spheres surrounding

the gap, and we show in the appendix B that the ratio of the gap

volume and the volumes of the two high probability hyper-spheres

will become smaller when the state space dimension increases,

suggestion that the bias decreases when Nx increases.

2.4. Multi Time-steps Between Observations

In typical geophysical systems several model time-steps exist

between observations times. In principle one can extend the

formulation above for a number of time steps, as e.g. the implicit

particle filter does. In that case xai becomes a model trajectory over

time, and can be found as weak-constraint 4DVar solution with

fixed initial condition. The random vector ξni will now extend over

space and time, and so will P . This will again result in a highly

nonlinear equation for αi, which can be solved numerically.

In this paper we use a simpler approach and use the relaxation

proposal density also explored in e.g. ?. If it is assumed that the

original model error is Gaussian with known covariance matrixQ,

then the model transition density is expressed as

p(xj |xj−1i ) ∼ N(M(xj−1i ), Q) (47)

The relaxation proposal transition density of the time-steps

before the last time step towards the observations is chosen as

q(xji |x
j−1
i , yn) ∼ N(M(xj−1i ) +B(τ)[yn − hM(xj−1i )], Q̂)

(48)

In this equation B(τ)[yn − hM(xj−1i )] is the relaxation term

forcing the model state towards the observations at time-step

n. Q̂ is the covariance of the random forcing in the modified

model, which we choose equal to Q in our experiments. Sampling

from the proposal transition density instead of the original model

equation leads to:

p(xji |x
j−1
i )

q(xji |x
j−1
i , yn)

∝ exp

[
−1

2
vTQ−1v +

1

2
(d̂βji )TQ−1(d̂βji )

]
(49)

where we introduced the short-hand notation v for

B(τ)[yn − hM(xj−1i )] + d̂βji .

The relaxation strength B(τ) is given by

B(τ) = bτQHTR−1 (50)

where τ increases linearly from zero to one at the previous time-

steps and b is a constant. B(τ) controls the strength of relaxation,

but, via its dependence on Q, also spreads the information from

the observed grid points to unobserved grid points.

This expression for p/q allows to generate wprevi simply by

multiplying the particle weight by the p/q factor for each time-

step, see ? for more details.

3. Experiments

3.1. Linear Model Experiments

Although geophysical models tend to be high-dimensional non-

linear systems, linear models are still a simple benchmark for

testing new DA schemes. Furthermore, analytical solutions are

usually available in these cases. Consider the model equation and
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the observations (?):

xn = xn−1 + ηn−1 (51)

yn = xntruth + εn (52)

where xn is the state variable at time-step n and yn is the

observation vector at time-step n. Random model perturbations

η are drawn from the model error pdf N(0, Q), observation

errors ε are drawn from observation eror pdf N(0, R). We sample

the ensemble members x0i from the background errors N(0, B).

Observation and background errors are mutually uncorrelated, so

the three matrices are diagonal. This means that effectively we

are running Nx independent data assimilation systems at the same

time, in which Nx is the dimension of the state space. We choose

Nx = 1000 and observations are taken at every grid point and

every time-step. The diagonal elements of Q, B and R are 0.04, 1,

and 0.12 respectively.

Rank histograms are used to evaluate the spread and quality

of the ensemble over all the observation time steps. They are

generated by ranking the observations in the set of perturbed

forecast state variable ensemble members. In general, a flat

histogram means that the observations are indistinguishable for

any of the perturbed ensemble members and a humped rank

histogram reveals too much spread for the ensemble. A U-shaped

rank histogram is the evidence of being too little spread for the

ensemble, see ?.

Different percentages of the positive εi are chosen to test the

rank histograms of this new scheme, 100%, 50% and 0%. In the

50% case εi is chosen positive or negative randomly with equal

probability. After running the linear model for 10,000 time-steps

with 20 ensemble members, the rank histograms of the particles

are shown in Figure 4.

The figure shows that a different percentage of positive εi

results in a different shape of the rank histogram. The humped

histogram seen in Figure 4 indicates that all positive εi brings too

much spread in the ensemble, while a U-shaped histogram seen

in the third all negative εi histogram in Figure 4 is the evidence

of too little spread. Fifty percent of randomly chosen positive
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(a) 100% positive εi
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(b) 50% randomly chosen positive εi
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(c) 0% positive εi

Figure 4. Rank histograms of grid point 200 using different percentage of positive
εi in linear model experiment.

εi generates a flat rank histogram that indicates a good quality

ensemble.

Comparing the ratio of RMSE and the spread of the analysis

ensemble for the first 200 time-steps in Figure 5, fifty percentage

of positive εi shows a stable ratio almost equal to one after some

spin-up time-steps. Increasing or decreasing the percentage of

positive εi causes a degradation in spread of the ensemble, which

can be seen clearly from Figure 5.

We can also look at the shape and structure of the posterior

pdf. Since we know the true posterior pdf is a Gaussian we can

test how good our ensemble is. However, since the ensemble size

is small a direct calculating of the posterior pdf is not very useful.
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Figure 5. Ratio of RMSE and spread of the ensemble with different percentage of
positive εi.

Instead we run the model for 1000 time steps and choose one grid-

point, 200 in this case. The first 7 time steps are abandoned as the

initial ensemble is quite wide, leading to statistical noise in the

estimates. Then we move the mean of the ensemble at every time-

step to zero and scale the ensemble values with
σstarttimesample

σjsample
. The

resulting ensembles at every time-step are then taken as one big

ensemble, and a pdf is created, see Figure 6.

The red line is the true posterior pdf which is perfectly

consistent with the 50% positive sample posterior pdf case. The

sample posterior pdf becomes narrower when the percentage of

positive εi decreases, consistent with the spread of the ensemble

found in the rank histograms. Meanwhile, the sample posterior pdf

becomes wider as the percentage of positive εi increases, again

consistent with the rank histograms.

To check whether this scheme feasible for large number of

ensemble members case, the number of ensemble members is

increased to 1000, which leads to bias issue in the equivalent

weights particle filter. Figure 7 shows that a choice of 50%

positive εi leads to a pdf that is slightly too wide. Decreasing the

percentage to 35 gives a better result. This result suggests that

we might be able to choose εi in a better way, e.g. according to

the probability mass on each side of the gap. This will be left for

future research.

3.2. High-Dimensional Lorenz96 Model Experiments

In this section the new scheme is compared to the LETKF in a

moderately high-dimensional setting of the Lorenz 1996 model.

The Lorenz 96 model (?) is a dynamical model often used as a

test model for new DA methods. It is defined as

dxi
dt

= −xi−2xi−1 + xi−1xi+1 − xi + F (53)
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(b) 50% randomly chosen positive εi
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(c) 0% positive εi

Figure 6. Posterior pdf represented by the particles using different percentage of
positive εi in linear experiment.

where xi is the state variable of the model at position i and

F is a forcing constant, which is typically chosen as 8 for

chaotic behaviour. The dimension of the Lorenz 96 model can be

easily extended from 40 to 1,000, or more. In this section, 1,000

dimension Lorenz 96 model with 20 ensemble members is chosen

for all the experiments.

As described in the previous section, the εi has two different

real solutions in this new scheme, one is positive and the

other is negative. We will explore the sensitivity to different

choices of εi. To mimic realistic geophysical situations the grid

points are observed every five time steps and three scenarios of

spatial observation densities will be explored. The first one is

observations at every grid point, the second one is observations
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(a) 50% randomly chosen positive εi
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(b) 35% randomly chosen positive εi

Figure 7. Posterior PDF in 1000 ensemble members with different percentage of
positive εi.

at every other grid point and the last one is observations at the

first half of the domain. We choose the model error covariance

matrixQ and background error covariance matrixB as tridiagonal

matrices. We used a time step of ∆t = 0.05 with an RK4 scheme

for the deterministic and an Euler scheme for the stochastic part

of the model.

The LETKF uses same background error covariance matrix,

model error covariance matrix, observation error covariance

matrix and observation operator, and the initial ensemble of

the two methods is the same. After some experimentation the

localization radius of the LETKF is set to one grid point for

best performance on RMSE, which is the standard measure of

performance of the LETKF.

3.2.1. Parameter setting for the IEWPF

In this section we explore the parameter values of the IEWPF to

determine the optimal setting for the Lorenz96 model, in which

all variables are observed directly, every 5th timestep.

3.2.1.1. IEWPF without Relaxation Term In this experiment

the relaxation term in the IEWPF is not used. The background

covariance matrix B is a tridiagonal matrix with main diagonal

value 1 and sub-diagonal value and super-diagonal value 0.25. The

main diagonal value ofQ is 0.10 and both sub- and super- diagonal

values are 0.025. R is a diagonal matrix with main diagonal value

0.16. We observe every grid point every 5th time step. We use

50% positive εi.
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Figure 8. Trajectories of grid point 345 in this new scheme without relaxation term.
The black line is the truth and the blue lines depict the evolution of the particles.
Note the different time resolutions in the different plots.

The ensemble needs some spin-up time to reach a more-or-less

steady spread, as depicted in Figure 8.
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Figure 9. Rank histogram of grid point 345 after a 10,000 time steps model running.

Figure 9 illustrates rank histogram of observations with respect

to the perturbed forecast ensemble members after a 10,000 time-

steps model running for grid point 345. The flatness of the

histogram shows that the ensemble has a good spread and quality.

3.2.1.2. IEWPF with Relaxation Term The relaxation makes

particles move towards the high probability area at the time-

steps between two adjacent observations. b and τ are the control

parameters for the relaxation term in this new scheme, which

decide the relaxation strength. b and τ are selected to be 0.25 and

0.50 as the best values in this scheme. The matrix parameters in

this experiment are the same as those in the previous experiment
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without relaxation term, and the observational scheme is also the

same. εi is randomly chosen to be 50% positive.
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Figure 10. Trajectories of grid point 856 in this new scheme with relaxation term.
The black line is the truth and the blue lines depict the evolution of the particles.

Figure 10 shows that only 20 ensemble trajectories can follow

the truth properly under implicit equal-weights particle filter.

Furthermore, the ensemble members are closer to the truth when

the relaxation term is present. The spin-up time of ensemble model

runs could be seen to be around 90 time-steps in Figure 10.

Ensemble member bins
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
u
m

b
e
r 

o
f 
ti
m

e
s
te

p
s

0

20

40

60

80

100

120
Grid Point No.856

Figure 11. Rank histogram of grid point 856 after a 10,000 time-steps model
running.

Figure 11 shows the rank histogram of observations with

respect to the perturbed forecast particle ensemble members

after a 10,000 time steps model running of grid point 856. The

flatness of the histogram elucidates that the observations are

indistinguishable from any perturbed ensemble member in the

situation of observations at every grid point. The distribution

histogram of the state variable is not Gaussian (not shown).

To investigate the sensitivity of IEWPF to the sign of εi, Figure

12 and Figure 13 illustrate the trajectories and rank histograms

of the ensemble members for all positive (left) and all negative

(right) εi. The system is still 1,000 dimensions and 20 ensemble

members, and every grid point is observed every 5 time-steps.
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(b) all negative εi

Figure 12. Trajectories of grid point 856 in this new scheme with different
percentage of positive εi. The black line is the truth and the blue lines depict the
evolution of the particles.
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(a) all positive εi
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Figure 13. Rank histogram of grid point 856 after a 10,000 time steps model
running.

Figure 13 shows the rank histogram of the observations with

respect to the perturbed forecast particle ensemble members of
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grid point 856 accumulated over 10,000 time steps. The hump of

the left histogram shows that ensemble has too much spread for

all-positive εi. The right figure is a U-shaped rank histogram for

the all-negative situation. There is no clear metric in measuring the

sensitivity of rank histogram to the percentage of positive εi in a

more quantitative way. For Figure 13, the sensitivity is moderate

and not steep.

Comparing these two experiments, the IEWPF with relaxation

term performs better than that without relaxation term, but the

relaxation parameters need to be tuned. It is similar to the

ensemble Kalman filters for systems that are not too nonlinear:

the raw schemes are consistent, and by tuning the inflation factor

and the localisation area a better performance can be achieved.

This relaxation strength is used for all further experiments on this

model, with 50% of the εi positive.

3.2.2. Comparison of IEWPF and LETKF

In this section the IEWPF will be compared to the LETKF. The

localisation radius of the LETKF is set to 2 grid points, and the

covariance inflation factor is 1.05, found as giving the lowest root-

mean-square error (RMSE) after extensive experimentation.

Three experiments are compared, observing the whole state

(exp1), every other grid point (exp2), and half of the state (exp3),

all with observations every 5th time step. For the IEWPF we use

b = 0.25 and τ = 0.5 for exp1, b = 1.2 and τ = 0.6 for exp2, and

b = 0.25 and τ = 0.5 for exp3.
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Figure 14. Root-mean-square error (RMSE) of the two methods for the different
experiments, red for the IEWPF and blue for the LETKF. The subscript ’all’ means
RMSE over all gridpoint, ’o’ denotes RMSE over only the observed grid points, and
’u’ denotes RMES over only the unobserved grid points.

Figure 14 shows that the RMSE of the LETKF is systematically

lower than that of the IEWPF apart from at the unobserved points.

There it is outperformed by the IEWPF. Arguably importantly

than the actual RMSE is the ratio of the RMSE to the spread in

the ensemble. Figure 15 shows that both methods perform well on

this measure for the first two experiments, and that the spread in

the LETKF is way too low in experiment 3, while the IEWPF still

performs well.
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Figure 15. Ratio of the RMSE to the ensemble spread for the different experiments,
red for the IEWPF and blue for the LETKF.

As a further comparison we look at the histograms for all

experiments in figure 16. The LETKF is slightly over dispersive

for the observed grid points in experiment 3, and strongly under

dispersive on the unobserved grid points in that experiment. In

contrast, the IEWPF performs well in all settings.
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Figure 16. Rank histograms for the LETKF and the IEWPF for the different
experiments.

4. Conclusions

A new DA method, the implicit equal-weights particle filter, has

been presented in this paper. A flexible proposal density with a

covariance that varies with the performance of each sample is used

to make the particle weights all equal. It is essential that a model

error term is included for this new method to work. This is not

a serious drawback as it is well recognised that model errors are

present and significant, but in practical applications model errors

tend to be ignored. A relaxation term is included in the time-

steps between two adjacent observations to make this new scheme

more efficient. The addition of the relaxation term is included

in the proposal density weights. The equal-weights conditions

leads to a complicated matrix determinant ordinary differential

equation that is hard to solve in general. We concentrated on the
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high-dimensional systems, which allows for approximations that

make the problem tractable. Interestingly, one particle can explore

the full state space while all others experience a gap with zero

proposal probability. However, this gap diminishes with the size

of the system, making the new filter ideal for high-dimensional

geophysical applications.

The IEWPF can be easily implemented in high-dimensional

chaotic models. Two series of high-dimensional model experi-

ments have been conducted, using 1,000 dimensional linear model

and 1,000 dimensional non-linear Lorenz 96 model.

The linear model experiment using only 20 ensemble members

shows that the particle weights does not degenerate as the

dimension of the model state increases, without the exponential

growth of the ensemble members reported by ?. The new scheme

preserves the posterior Gaussian pdf in linear model experiment.

Increasing the ensemble size to 1,000, the simulated posterior

pdf shows a Gaussian distribution which is slightly too wide.

After decreasing the percentage of positive εi for 1,000 ensemble

members, the simulated posterior pdf does resemble the true

posterior. This bias is subject to further study and is likely related

to the fact that we should choose the percentage of positive εi

equal to the percentage of probability mass that has positive εi.

The performance of implicit equal-weights particle filter is

also examined in 1000-dimensional non-linear Lorenz 96 model.

Again the experiments show that this new scheme has very good

consistency and convergence properties without filter degeneracy.

A comparison with a tuned LETKF reveals that the RMSE errors

of the latter tend to be smaller than those of the IEWPF, but the

ensemble spread in the LETKF is too small when the observation

density decreases. The ensemble spread is always equal to the

RMSE in the IEWPF. This is also reflected in the rank histograms,

which are too narrow for the LETKF when large portions of

the system are unobserved. A lesson to learn from this is that

concentrating only on the RMSE is not good practise in nonlinear

data-assimilation systems.

The IEWPF was implemented with a weak relaxation term

between observations to control the spread and to achieve a better

converging trajectories of the ensemble members. This is a weaker

part of the scheme, also it needs tuning. More sophisticated

proposal densities can be used to improve performance further,

and increase robustness of the scheme. For instance, one could

extend the implicit equal weights staep over the whole trajectory

between observations, as the Implicit Particle Filter does. The

drawback of such a proposal is that an adjoint of the model is

needed to make this efficient, although ensemble schemes like

4DEnsVar might also be explored.

The new scheme has been implemented into the EMPIRE

data-assimilation software system (?), and experiments on high-

dimensional geophysical systems are being planned.

Appendices

A. The high-dimensional limit

We need to solve the equation:

(αi − 1)γi − 2Nx logα
1/2
i − 2 log

(∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣)
− 2 log |P 1/2|+ φi + Jprevi = C (A1)

in which we have absorbed the constant factor ||P 1/2|| in the

constant C.

Let us now introduce the notation a = α
1/2
i , g = γi, n = Nx,

ξ = ξni and c = C + 2 log |P 1/2| − φi − Jprevi . So each particle

will have a different g, ξ and c and we need to solve for a. The

equation to solve now becomes:

(a2 − 1)g − 2n log a− 2 log

(∣∣∣∣1 +
∂a

∂ξ

ξ

a

∣∣∣∣) = c (A2)

To proceed we look for solutions in which αi, so a, is only a

function of ξi via γi = ξTi ξi. The derivative now becomes:

∂a

∂ξ
=
da

dg

∂g

∂ξ
= 2

da

dg
ξT (A3)

so that we end up with:

(a2 − 1)g − 2n log a− 2 log

(∣∣∣∣1 + 2
da

dg

g

a

∣∣∣∣) = c (A4)
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We proceed by pulling all log terms together as follows:

(a2 − 1)g − 2 log

[
an
(∣∣∣∣1 + 2

da

dg

g

a

∣∣∣∣)] = c (A5)

The argument of the log can be evaluated as:

an
(

1 + 2
da

dg

g

a

)
= an−2

(
a2 + 2ga

da

dg

)
= an−2

da2g

dg
(A6)

To proceed we introduce a new variable b = a2g so that a2 = b/g,

leading to:

b− g + 2 log gn/2−1 − 2 log

(
bn/2−1

∣∣∣∣ dbdg
∣∣∣∣) = c (A7)

Now pull all terms with b and g together to find:

log

(
e−b/2bn/2−1

∣∣∣∣ dbdg
∣∣∣∣) = log(e−g/2gn/2−1)− c

2
(A8)

We take the exponential of both sides, leading to:

e−b/2bn/2−1
∣∣∣∣ dbdg

∣∣∣∣ = e−g/2gn/2−1e−c/2 (A9)

This equation can be integrated over g to find:

∫
e−b/2bn/2−1db =

∫
e−g/2gn/2−1dge−c/2 (A10)

Now use ∫
xme−βxdx = −Γ(m+ 1, βx)

βm+1
(A11)

to find:

± Γ(n/2, a2g/2) = Γ(n/2, g/2)e−c/2 (A12)

The usefulness of this expansion comes from the fact that we can

expand the Γ(m,x) function for large arguments m and x in the

following way (?). Write

Q(m,x) =
Γ(m,x)

Γ(m)
(A13)

Now define y = x/m and

z = y − 1− log y (A14)

According to ? we do not need to worry about the sign of z and

we can write in general:

Q(m,x) =
1

2
erfc(

√
mz) +

e−mz√
2πm

[
1

y − 1
− 1√

2z
+O(

1

m
)

]
(A15)

Furthermore, the error function erfc can be approximated for

large arguments as

erfc(
√
mz) =

e−mz√
πmz

[
1− 3

2mz
+O(

1

(mz)2
)

]
(A16)

where we note that

mz = x−m−m log y = O(Nx) (A17)

Combining the two expansions we find for large x and m:

Q(m,x) =
e−mz√

2πm

[
1

y − 1
+O(

1

m
,

1

mz
)

]
(A18)

We thus find for our equation for a:

± e−w√
2π

[
1

a2g/n− 1

]
=

e−v√
2π

[
1

g/n− 1

]
e−c/2 (A19)

in which

w = mz =
1

2
(a2g − n− n log a2g + n logn) (A20)

and

v = mz =
1

2
(g − n− n log g + n logn) (A21)

This can be evaluated with the absolute value as:

e−1/2[(a
2−1)g−n log a2]

∣∣∣∣ g − na2g − n

∣∣∣∣ = e−c/2 (A22)

which, taking the logarithm, results in:

(a2 − 1)g − n log a2 − 2 log

∣∣∣∣ g − na2g − n

∣∣∣∣ = c (A23)
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In original variables we find:

γiαi −Nx logαi + 2 log(|αiγi −Nx|)

= c+ γi + 2 log(|γi −Nx|) (A24)

We can extract Nx from the logarithms on right and left hand

side of the equation, leading to:

γiαi −Nx logαi + 2 log

(∣∣∣∣αi γiNx − 1

∣∣∣∣)
= c+ γi + 2 log

(∣∣∣∣ γiNx − 1

∣∣∣∣) (A25)

We now note that the third term on the left-hand side is much

smaller than the second term, and similarly on the right-hand side,

leading to equation (32):

(αi − 1)γi −Nx logαi = C − φi − Jprevi (A26)

Now that we have found a solution for αi we need to check if

γi and αiγi are much larger than zero. We know that for large Nx

that γi is distributed according to χ2Nx , so γi is large. For αiγi we

use the solution we generated equation (41), adopting the short-

hand notation:

αi = a2 = −n
g
W

[
− g
n
e−g/ne−c/n

]
(A27)

Two solutions exist, αi > 1 and αi < 1. The former fulfils our

requirement because if αi > 1 then αiγi � 1. So we have to

check if αiγi � 1 for the W0 solution, for any γi. We find

a2g = −nW0

[
− g
n
e−g/ne−c/n

]
(A28)

We know g ∼ χ2n, so it has mean n and standard deviation
√

2n.

Hence g/n = O(1). Hence the smallness of the argument of W0

comes from e−c/n. For small arguments we can approximate:

lim
z→0

W0(z) = z +O(z2) (A29)

so that, for c large:

a2g = n
g

n
e−g/ne−c/n = ge−g/ne−c/n ≈ nec/n (A30)

To understand the size of this term we can estimate c as:

c = C − φi − Jprevi

= max
i

(φ+ Jprev)− φi − Jprevi ≈ max
i

(φ)− φi (A31)

The standard deviation in φ ≈ δ
√
Ny in which δ a con-

stant of order 1, and Ny is the number of indepen-

dent observations. This suggests that c = O(
√
Ny), such that

e−c/n ≈ e−
√
Ny/Nx = O(1). This suggests that a2g � 1 always,

and the full proof is given.

B. The size of the gap

As discussed in the main text there is one particle that explores

state space fully, but all others experience a part of state space

that cannot be reached. We show in this appendix that this

gap decreases compared to the high-probability area that can be

reached when the system size increases. First we calculate the

width of the hypersphere in the high probability region of state

space. We concentrate on the f0 branch as the width of the f−1

branch will be larger. This will be followed by an estimate of the

width of the gap.

The high-probability region is defined as the area in state

space resulting from varying |ξ| within its standard deviation (or

a multiple of that, but that factor won’t matter in the order of

magnitude calculation).

We introduce the short-hand notation x = |ξ|. The dis-

tribution of x can be found as follows. We know that

y = x2 ∼ N(Nx, 2Nx). Hence we find:

px(x) = py(y)
dy

dx
= 2xpy(x2) =

2x√
4πNx

exp

[
− (x2 −Nx)2

4Nx

]
(B1)

Typical variations in x are given by its standard deviation, so we

calculate its variance:

δ2x =

∫ ∞
0

x3√
πNx

exp

[
− (x2 −Nx)2

4Nx

]
dx (B2)

The transformation z = (x2 −Nx)/
√

4Nx, so dz = 2xdx/
√

4Nx

leads to:

δ2x = 2

√
Nx
π

∫ ∞
−
√
Nx/2

(
z +

√
Nx
2

)
exp

[
− z2

]
dz (B3)
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This can be evaluated as:

δ2x =−
√
Nx
π

exp
[
− z2

]z=∞
z=−

√
Nx/2

+
Nx√
π

∫ ∞
−
√
Nx/2

exp
[
− z2

]
dz (B4)

which, for Nx large, becomes:

δ2x =
Nx√
π

√
π

2
erfc

[
−
√
Nx/2

]
=
Nx
2

(
1− erf

[
−
√
Nx/2

])
(B5)

For Nx large the erf approaches −1, so we find:

δ2x ≈ Nx (B6)

leading to a standard deviation of

δ ≈
√
Nx (B7)

We now estimate the size of the width as:

dR0 = f
(√

Nx + δx

)
− f
(√

Nx

)
= 2
√
Nx

√
−1

4
W (−4 exp(−4− c/Nx))

−
√
Nx
√
−W (− exp(−1− c/Nx))

=
√
Nx

[√
−W (−4 exp(−4− c/Nx))

−
√
−W (− exp(−1− c/Nx))

]
=
√
Nx

[√
−W (−4 exp(−4− c/Nx))− 1

]
≈
√
Nx (B8)

Our next step is to calculate the size of the gap. The gap

is situated around the transition from the f0 solution to the

f−1 solution. The asymptotic expansion of Lambert W function

around z = −e−1 is given by

W0(z) = −1 + p0 −O(p20) (B9)

and

W−1(z) = −1 + p−1 −O(p2−1) (B10)

in which p0 =
√

2(ez + 1) and p−1 = −p0. As detailed in

Appendix C , the gap is the difference between the two solutions

from the two branches situated at γi = Nx. Therefore, the

analytical expression for f−1 − f0 at the gap with z = −e−x−1

and x = c/Nx is given by:

dRgap = f−1 − f0

=
√
Nx[
√

(−W−1(z))−
√

(−W0(z))]

=
√
Nx[

√
(1 +

√
2(ez + 1))−

√
(1−

√
2(ez + 1))]

≈
√
Nx
√

2(ez + 1) =
√
Nx
√

2(1− e−x)

≈
√
Nx
√

(2x) =
√

(2c). (B11)

We now find that the ratio of the gap width, so the forbidden area,

to the width of the allowed area with high probability is given by:

dRgap
dR0

≈
√

2c√
Nx

(B12)

Since the typical value of c is c ≈
√
Ny which can be maximised

by
√
Nx, we find that the relative area of the forbidden part

decreases faster than N−1/4x , proving our point.

C. The position of the gap

We have found in the main text that there are two branches of

solutions that do not connect for all but one particle. In this

appendix we determine where the branches are closest, which

allows us to find the width of the gap, explored in Appendix B.

To this end we need the position in ξ space where the maximum

of the f0 branch and the minimum of the f−1 branch are. Since

there is no directional preference for random ξ we can evaluate

the derivative along one arbitrary direction. We choose for ξ the

vector ξi = (s, 0, 0, · · · )T in which s =
√
γi. This means that the

functions are now scalar functions of scalar s, with derivative:

∂f(s)

∂s
= α

1/2
i + s

∂α
1/2
i

∂s
(C1)

To evaluate this we go step by step. ∂α
1/2
i
∂s is calculated firstly. We

use

∂α
1/2
i

∂s
=

1

2
α
−1/2
i

∂αi
∂s

(C2)
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and calculate ∂αi
∂s using the analytical solution of αi to find

∂αi
∂s

= −Nx
∂ 1
s2

∂s
W [g(s)]− Nx

s2
· ∂W [g(s)]

∂ξni

= −Nx
−2

s3
W [g(s)]− Nx

s2
· ∂W [g(s)]

∂g(s)
· ∂g(s)

∂s
(C3)

where g(s) = − γi
Nx
· e−

γi
Nx · e−

c
Nx .

Progressively do the calculation of ∂W [g(s)]
∂g(s)

∂g(s)
∂s ,

∂W [g(s)]

∂g(s)
· ∂g(s)

∂s

=
W (·)

g(s)(1 +W (·))

{
−2s

Nx
· e−

γi
Nx · e−

c
Nx

− s2

Nx
· −2s

Nx
· e−

γi
Nx · e−

c
Nx

}
=

W (·)
g(s)(1 +W (·)) · e

− γi
Nx · e−

c
Nx

{
− 2s

Nx
+

2s3

N2
x

}
=

W (·)
g(s)(1 +W (·)) (− 2s

Nx
)e−

γi
Nx · e−

c
Nx

{
1− s2

Nx

}
=

W (·)
1 +W (·) ·

2

s

(
1− s2

Nx

)
(C4)

where W (·) is the representation of W [g(ξ)].

Now we go backward to achieve the full expression of the

original equation. Plug equation (C4) into (C3), it is easy to see

that

∂αi
∂s

= −Nx
−2

s3
W [g(s)]− Nx

s2
· W (·)

1 +W (·) ·
2

s

(
1− s2

Nx

)
=

2Nx
s3

W [g(ξ)]

{
1−

(
1

1 +W [g(s)]

)(
1− s2

Nx

)}
= −2

s
αi

{
1−

(
1

1 +W [g(s)]

)(
1− s2

Nx

)}
(C5)

Turn back to equation (C2), to find:

∂α
1/2
i

∂s
= α

1/2
i

(
−1

s

){
1−

(
1

1 +W [g(s)]

)(
1− s2

Nx

)}
(C6)

Therefore, we get that

∂f(s)

∂s
= α

1/2
i − α1/2

i

W (·) + s2

Nx

W (·) + 1

= α
1/2
i

(
1−

W (·) + γi
Nx

W (·) + 1

)
(C7)

from which we immediately see that the gap appears where γi =

Nx.
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