
Re-examining the U.K.'s greatest tornado 
outbreak: forecasting the limited extent of 
tornadoes along a cold front 
Article 

Published Version 

Apsley, M. L., Mulder, K. J. and Schultz, D. M. (2016) Re-
examining the U.K.'s greatest tornado outbreak: forecasting the
limited extent of tornadoes along a cold front. Weather and 
Forecasting, 31 (3). pp. 853-875. ISSN 0882-8156 doi: 
10.1175/WAF-D-15-0131.1 Available at 
https://centaur.reading.ac.uk/61279/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1175/WAF-D-15-0131.1 

Publisher: American Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Reexamining the United Kingdom’s Greatest Tornado Outbreak: Forecasting
the Limited Extent of Tornadoes along a Cold Front

MIRIAM L. APSLEY,a KELSEY J. MULDER, AND DAVID M. SCHULTZ

Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of

Manchester, Manchester, United Kingdom

(Manuscript received 5 October 2015, in final form 28 March 2016)

ABSTRACT

On 23November 1981, a strong cold front swept across the United Kingdom, producing tornadoes from the

west to the east coasts. An extensive campaign to collect tornado reports by the Tornado and StormResearch

Organisation (TORRO) resulted in 104 reports, the largest U.K. outbreak on record. The front was simulated

with a convection-permitting numerical model down to 200-m horizontal grid spacing to better understand its

evolution and meteorological environment. The event was typical of tornadoes in the United Kingdom, with

convective available potential energy (CAPE) less than 150 J kg21, 0–1-km wind shear of 10–20m s–1, and a

narrow cold-frontal rainband forming precipitation cores and gaps. A line of cyclonic absolute vorticity ex-

isted along the front, with maxima as large as 0.04 s21. Some hook-shaped misovortices bore kinematic

similarity to supercells. The narrow swath along which the line was tornadic was bounded on the equatorward

side by weak vorticity along the line and on the poleward side by zero CAPE, enclosing a region where the

environment was otherwise favorable for tornadogenesis. To determine if the 104 tornado reports were

plausible, first possible duplicate reports were eliminated, resulting in as few as 58 tornadoes to as many as 90.

Second, the number of possible parent misovortices that may have spawned tornadoes is estimated from

model output. The number of plausible tornado reports in the 200-m grid-spacing domain was 22 and as many

as 44, whereas the model simulation was used to estimate 30 possible parent misovortices within this domain.

These results suggest that a number of 90 reports was plausible.

1. Introduction

On 23November 1981, a strong cold front swept across

the United Kingdom, producing an unprecedented 104

reports of tornadoes (Fig. 1). Called Britain’s greatest

tornado outbreak (Rowe and Meaden 1985), this event

had many more tornadoes than the next largest event

just a month earlier on 20 October 1981, which spawned

only 29 tornadoes (Turner et al. 1986; Rowe 2016). For

comparison, evenmodest outbreaks byU.S. standards are

relatively uncommon in the United Kingdom. Specifi-

cally, over 90% of U.K. tornado days between 1980 and

2012 had fewer than eight tornadoes (Fig. 14 in Mulder

and Schultz 2015). The November 1981 outbreak is so

exceptional that it distorts the historical record and cli-

matologies of tornadoes in the United Kingdom and

Europe. For example, in the U.K. tornado climatology by

Mulder and Schultz (2015), several figures had to be

plotted with the outbreak excluded (e.g., their Figs. 5–7, 9,

12, and 13), and, in their review of tornadoes across Eu-

rope, Antonescu et al. (2016) found that the large number

of reports produced a bias in their synthesized results and

capped the total number of reports from this outbreak at

58. Given the large number of reports distorting the cli-

matologies and that a scientific study of this event has not

been performed in nearly 35 years, we believe that the

time is right to reexamine this event.

The locations of these 104 reports (Fig. 1) come from

the Tornado and Storm Research Organisation

(TORRO). TORRO is a U.K.-based not-for-profit or-

ganization responsible for collecting tornado reports
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from the media, from over 350 observers in the United

Kingdom, and from the public through TORRO’s

website (http://www.torro.org.uk) (e.g., Elsom et al.

2001; Doe 2016). Of the 104 reports on 23 November

1981, 35 came from media reports, 30 came from the

public after a call for reports on Anglia Television, and

39 were the result of TORRO’s appeal in local news-

papers (Rowe 1985). The challenges of severe-weather

event verification can be immense, even when events are

well observed by expert meteorologists (Speheger et al.

2002; Trapp et al. 2006). The challenges are com-

pounded when reports are collected well after the event

from primarily nonmeteorologists, as was the case in

this event.

The first tornadoes of the day occurred in Anglesey,

on the west coast ofWales (Fig. 1), where there were five

reports around 1000 UTC; 20 houses were damaged

there, and a summer house (comparable to a small tem-

porary building or mobile home) was turned upside down

(Kemp and Morris 1982). The next seven tornado reports

occurred nearAughton (nearLiverpool) at 1100UTC, and

there were four more in greater Manchester at 1200 UTC.

A further 11 reports in the early afternoon came from

Birmingham, Nottinghamshire, and the East Midlands

(east of Birmingham), where 20 large caravans (camper

vans) were blown over (Rowe and Meaden 1985). Seven

tornado reports clustered near Hull in the early afternoon.

Many of the reports (43), however, came fromEastAnglia

(northeast of Cambridge) between 1300 and 1600UTC.

The last tornadoes occurred in southeast Essex (east-

northeast of London) just before 1600 UTC.

Despite the large number of reports and despite

occurring in conjunction with an extensive southwest–

northeast-oriented cold front advancing southeastward

across nearly the entirety of the United Kingdom, these

tornado reports only occurred along a narrow swath

200–250kmwide and 400 km long (Fig. 1). Thus, the first

goal of this article is to determine why the tornadoes

occurred in a narrow swath along an otherwise extensive

cold front.

There are few exact details given with most of the

tornado reports, so the duration of each tornado is un-

known; some eyewitnesses, however, estimated life-

times of 20–30 s or less (Rowe 1985). Eight tornado

reports included damage track lengths between 0.3 and

4km long.Where estimated, damage tracks are believed

FIG. 1. Locations of the 104 tornado reports from the TORRO database for 23 Nov 1981. Numbers represent their

strength on the T scale, U represents unknown intensity, and half values represent intensities between two classes

(e.g., 2.5 represents T2–T3). Reports verified by TORRO (58) are classified as definite and plotted in black. Reports

that have not been verified (46) are classified as probable and are plotted in red. Locations discussed in the text are

labeled in blue. Locations of reports that appear to be located over water are a result of a coarse representation of

geography.

854 WEATHER AND FORECAST ING VOLUME 31

http://www.torro.org.uk


to have had widths of 10–20m. The direction of travel

was reported in 16 cases, with 14 coming from between

west and north-northwest, consistent with the move-

ment of the front; the other 2 came from the south and

southwest. Ninety-nine of the 104 reports were assigned

values on the International Tornado Intensity Scale or

T scale (Meaden 1983; Meaden et al. 2007). Compared

to the Fujita (F) scale, the T scale has twice as many

classifications. Conversion between the F and T scales

can be performed using the equation F ’ 0.5T and

rounding down to the nearest integer (Brooks and

Doswell 2001; Meaden et al. 2007). Figure 2 shows that

most (96, or 97%) of the tornadoes were T0–T3 (or F0–

F1); three tornadoes, however, reached T4 (or F2). This

distribution is similar to the national distribution from

the Kirk (2014) and Mulder and Schultz (2015) clima-

tologies in which 94%–95% were between T0 and T3

(or F0–F1).

Because tornado reporting in this event relied on re-

sponses from a media campaign, the figure of 104 tor-

nado reports has been controversial. Extrapolating

based on the density of reports and the sparsely popu-

lated areas over which most of the cold front traveled,

Rowe and Meaden (1985) suggested that the number of

tornadoes may possibly have been as high as 400–500.

On the other hand, only 58 of these reports (56% of the

104 reports) were later verified by TORRO experts

according to the TORRO database and classified as

definite; the other 46 reports were deemed to show

reasonable evidence of a tornado having occurred, but

not enough to be certain; these were classified as prob-

able. Thus, the lack of confirmation of nearly half of the

reports and the extreme magnitude of the outbreak in

the historical context suggest that the 104 reports might

be an overestimate.

In this article, we use two different approaches to in-

vestigate the tornado reports. First, we undertake a

reexamination of the individual tornado reports for the

possible occurrence of multiple reports of the same

tornado. Second, we use a cloud-resolving model to

simulate the cold front and possible parent circulations

to the tornadoes. The number of parent circulations

might give us some insight into the number of tornadoes.

Thus, the second goal of this article is to reexamine the

tornado reports and the meteorological conditions on

that day to see if we can constrain the minimum and

maximum numbers of tornadoes that likely occurred.

2. Background on tornadoes along cold fronts

Tornadoes forming along cold fronts are a challenging

forecasting problem. Such tornadoes are often associ-

ated with a class of convective storms occurring along

cold fronts called narrow cold-frontal rainbands. Nar-

row cold-frontal rainbands have been described by

Browning and Harrold (1970), Browning and Pardoe

(1973), Carbone (1982), Hobbs and Persson (1982),

Browning and Reynolds (1994), Browning and Roberts

(1996), Browning et al. (1997), Jorgensen et al. (2003),

and Viale et al. (2013), among many others. Narrow

cold-frontal rainbands have been synthesized by con-

ceptual models in Browning (1990) and Houze (2014,

section 11.4.4). In the United States, narrow cold-frontal

rainbands are a subset of what have been termed quasi-

linear convective storms (QLCSs; Trapp et al. 2005).

Trapp et al. (2005) applied this term for their in-

vestigation of tornadoes that form along such line con-

vection (i.e., distinct from supercell convective storms).

Tornadoes along linear convective systems are chal-

lenging because they tend to have shorter lead times

than tornadoes associated with supercells (Trapp et al.

2005). Even if the specific location and timing of the

tornadoes cannot be predicted well in advance, pre-

dicting the general location along the line where torna-

does formwould be an operationally useful tool. Indeed,

Atkins et al. (2004) showed that tornadoes were more

likely to form from parent misovortices along the con-

vective line that had greater rotation rates, implying that

the strongest vortices may favor tornadogenesis.

Before discussing how tornadoes form along linear

convective storms, we need to distinguish between the

parent circulations that precede the tornadoes and the

tornadoes themselves. One of the characteristics often

observed in narrow cold-frontal rainbands is the pres-

ence of precipitation cores and gaps, aligned anti-

cyclonically relative to the front. These core-and-gap

regions have been reported for cold fronts over the

eastern North Pacific Ocean (e.g., Hobbs and Biswas

1979; Hobbs and Persson 1982; Jorgensen et al. 2003),

near the Alps (Hagen 1992), over eastern North

America and the Atlantic Ocean (Locatelli et al. 1995;

Wakimoto and Bosart 2000), and over the United

FIG. 2. Distribution on the T scale of intensities of the 99 tornado

reports on 23 Nov 1981 associated with an intensity rating from the

TORRO database.
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Kingdom (e.g., James and Browning 1979; Browning and

Roberts 1996). Specifically, other tornadic cold fronts in

the United Kingdom also possessed this core-and-gap

structure (e.g., Smart andBrowning 2009; Clark and Parker

2014; Mulder 2015), as well as in Japan (e.g., Kobayashi

et al. 2007; Sugawara and Kobayashi 2009).

The cores are often associatedwith heavier precipitation

and relative maxima in vorticity (hereafter misovortices),

whereas the gaps are associated with weaker precipitation

or the absence of precipitation and relative minima in

vorticity. Misovortices have diameters of 1–4km (Fujita

1981) and have been suggested to be the parent circula-

tion from which the tornadoes form. Different explana-

tions have been offered to explain misovortex formation,

including the release of horizontal shearing instability

(e.g., Carbone 1982; Hobbs and Persson 1982; Lee and

Wilhelmson 1997b; Jorgensen et al. 2003; Wheatley and

Trapp 2008; Kawashima 2011), advection of hydrome-

teors (Locatelli et al. 1995), trapped gravity waves

(Brown et al. 1999), tilting of vorticity along the cold front

(Carbone 1983), or combinations of the above.

How tornadoes form along linear convective storms is

less well known compared to supercellular tornadoes,

primarily because detailed field observations of torna-

does forming along linear convective storms have not

been collected and because of the large computational

expense of producing a tornado within a numerical

model. Because of the shorter lead time and the differ-

ent parent-storm morphology to supercells, Trapp et al.

(1999) suggested that a different tornadogenesis mode

may be responsible for tornadoes from linear convective

systems than tornadoes from supercells. Carbone (1983)

found that the downdraft was coincident with the tor-

nado, suggesting the importance of tilting and a similarity

with tornadogenesis in supercells. In contrast, Lee and

Wilhelmson (2000) found the importance of the stretch-

ing of strong initial vorticity in their simulations of non-

supercell tornadogenesis. Nevertheless, the data and

simulations in this article will be insufficient to address the

issue of tornadogenesis in this case. Thus, we focus on the

misocyclones, the locations of the tornadoes, and an ap-

proach to forecasting the occurrence of tornadoes along

FIG. 3. Excerpts from Met Office Daily Weather Summary sur-

face weather charts at (a) 1200 UTC 22 Nov and (b) 1200 UTC 23

Nov 1981. Plotted are sea level pressure contours every 4 hPa,

surface fronts, surface temperatures (8C) and weather at selected

cities, and occasionally wind barbs (standard notation). (Crown

copyright.)

FIG. 4. Excerpt fromMetOfficeDailyWeather Summary 500-hPa

chart at 1200 UTC 23 Nov 1981. Plotted are 500-hPa geopotential

height (solid lines every 6 dam) and 1000–500-hPa thickness (dashed

lines every 6 dam). (Crown copyright.)
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lines, as demonstrated for the case of Britain’s greatest

tornado outbreak on 23 November 1981.

3. Observations: Synoptic and mesoscale overview

At 1200 UTC 22 November 1981, archived Met Office

charts identified a broad region of low pressure with two

centers of 994 and 996hPa centered southeast of Iceland

and north of the United Kingdom (Fig. 3a). Twelve hours

later, the cyclone consolidated with a central pressure of

986hPa (not shown). By 1200UTC 23November, the low

had rapidly deepened another 18hPa to 968hPa and

was moving toward Norway (Fig. 3b), making landfall

by 0600 UTC 24 November with a central pressure of

959hPa (not shown). The cyclone was associated with a

sharp trough in 500-hPa geopotential height and strong

geostrophic cold advection in the lower troposphere, as

indicated by the 1000–500-hPa thickness contours (Fig. 4).

Associated with this cold advection was a strong cold

front at the surface. Archived hourly Met Office surface

maps show the front extending to the south of the cy-

clone across the United Kingdom and its southeastward

progression (Fig. 5). As the cold front crossed England

and Wales, temperatures fell by 68–78C in the first hour,

and the pressure rose by as much as 4–5 hPa in the first

hour after frontal passage and 3hPah21 thereafter

(Rowe and Meaden 1985; Fig. 5). The wind direction

veered suddenly from 1908–2308 before the front, a di-

rection roughly parallel to the front, to 3208–3408 after
the front, a postfrontal direction nearly perpendicular

to the orientation of the front (e.g., Fig. 5c). By 1800UTC,

the cold front had cleared England and moved over

the North Sea (Rowe 1985; Rowe and Meaden 1985).

Moderate rain preceded and was associated with

the front in northwestern England at the hour ending

1200 UTC (as much as 10mmh21; Fig. 6). The infrared

FIG. 5. Excerpts from the Met Office Central Forecasting Office hourly U.K. working charts at (a) 1000 UTC 23

Nov 1981. Plotted are sea level pressure (solid lines every 2 hPa), cold front (dashed line), and standard station

models. (Crown copyright.)
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satellite image at 1325 UTC (Fig. 7) showed the low

center to the north of the United Kingdom and the

broad band of clouds associated with the cold front and

a prefrontal band. As the front moved southeastward

into central England, the precipitation weakened dra-

matically to less than 2mmh21 during the hour ending at

1400 UTC (Fig. 6).

Unfortunately, none of the operational soundings that

daywere ideal for sampling the prefrontal air. The nearest

proximity sounding occurred at Aughton near Liverpool,

about 11 h before frontal passage at 0000 UTC (Fig. 8).

This sounding exhibited only 13 J kg21 convective

available potential energy (CAPE), a steep lapse rate

between 850 and 700hPa, and a strong 60-kt (31m s21)

westerly wind at 850hPa (Fig. 8). A sounding from the

NCEP–NCAR reanalysis (Kalnay et al. 1996) for a lo-

cation in western England (52.58N, 2.58W) at 1200 UTC

23 November had a surface-based CAPE of 147Jkg21,

which is only slightly higher than the 50–100Jkg21 of

CAPE from the model simulation initialized from the

European Centre for Medium-Range Weather Forecasts

(ECMWF) reanalyses (jump ahead to Fig. 13).

These conditions—strong cold front, small CAPE,

prefrontal winds nearly parallel to the front, and post-

frontal winds nearly perpendicular to the front—are

consistent with weather conditions associated with other

tornado outbreaks in the United Kingdom (e.g., Bolton

et al. 2003; Holden and Wright 2004; Clark 2009, 2013;

Clark and Parker 2014; Mulder 2015). Given the syn-

optic situation, the morphology of the convective storm

(also called its convective mode) is likely consistent with

previous tornadic convective storms over the United

Kingdom, which tend to occur along cold fronts in linear

convective storms. Linear convective storms account for

42% of the tornadoes and 51% of the tornado outbreaks

in the United Kingdom (Mulder and Schultz 2015), un-

like in the United States where linear storms account for

only 18%–25% of the tornadoes (Trapp et al. 2005;

Smith et al. 2012). [In comparison, supercells produce

79% of U.S. tornadoes (Trapp et al. 2005).] Clark (2013)

FIG. 5b. As in (a), but for 1200 UTC with sea level pressure plotted every 4 hPa.
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examined 103 convective lines in the United Kingdom

and found that 27% were associated with at least one

tornado, further evidence for the importance of these

lines in producing tornadoes in this region.

Because radar data for this event (Doppler winds or

even reflectivity) are unavailable, the precipitation struc-

ture of the cold front on that day is unknown. Therefore,

we investigate this event further with a model simulation.

4. Model simulation: Setup

As has been demonstrated for other cases, model

simulations can be an effective tool for understanding

tornadic fronts in the United Kingdom (e.g., Smart and

Browning 2009; Groenemeijer et al. 2011; Mulder 2015).

Therefore, we performed a convection-permitting sim-

ulation to construct a four-dimensionally consistent

dataset to explore a likely meteorological evolution for

this event. A successful simulation would be useful for

examining the conditions favorable for the tornadoes

within the narrow swath and help interpret the 104 re-

ports of tornadoes.

The simulation was performed using the Advanced

Research version of the Weather and Forecasting

Model, version 3.4.1 (ARW; Skamarock et al. 2008). The

simulationwas initialized at 0600UTC23November 1981

from the ECMWF reanalysis at 0.258 3 0.258 grid

spacing interpolated onto a Lambert conformal grid.

Lateral boundary conditions were provided by the

ECMWF reanalyses every 6 h. Otherwise, the simula-

tion was set up exactly the same as that inMulder (2015)

for the more modest U.K. tornado outbreak of 29

November 2011, which featured seven reported torna-

does across Wales and northern England. The simula-

tion featured 90 vertical levels and four domains,

ranging from the outermost domain with 25-km hori-

zontal grid spacing, to three two-way nested domains

of 5-km, 1-km, and 200-m horizontal grid spacing (the

innermost two domains are shown in Fig. 9). Even at

200-m grid spacing, the model would have been

FIG. 5c. As in (a), but for 1400 UTC.
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inadequate to resolve any possible tornadoes. Instead,

the innermost domain is analyzed for the existence of

misocyclones, small-scale circulations along linear con-

vective systems that may precede tornadoes. Only out-

put from the 1-km and 200-m domains is shown in the

present article. Model output was saved for further di-

agnosis every 30min for the 1-km domain and every 10 s

for the 200-m domain.

The Kain–Fritsch convective parameterization (Kain

and Fritsch 1990; Kain 2004) was employed on the out-

ermost 25-km domain only. Other physical parameteri-

zations included the five-layer thermal diffusion land

surface scheme (Skamarock et al. 2008, their section

8.4.1), Thompson et al. (2008) cloud microphysics, and

the Mellor–Yamada–Janjić boundary layer (Mellor and

Yamada 1982; Janjić 1994, 2002). These parameteriza-

tions were chosen because Mulder (2015) found that

they produced the most successful simulation of her

case. Testing three different microphysical parameteri-

zations [WRF single-moment 6-class scheme; Morrison

et al. (2009); Thompson et al. (2008)] did not produce

different structures for the core-and-gap regions along

the cold front in this case.

5. Model simulation: Mesoscale analysis

The meteorology on the 1-km domain is presented in

this section. Subsequent analysis in this article occurs at

1000 UTC, around the time the first tornadoes were

reported in Anglesey, and at 1400 UTC, just before the

majority of tornadoes were reported in East Anglia. To

illustrate the intensity of the front, surface temperature,

wind, and sea level pressure at 1000 and 1400 UTC are

presented in Fig. 10. The passage of the front was as-

sociated with a sharp pressure trough, a temperature

drop of 68–88C, and nearly a 908 veering of the wind

(Fig. 10). The winds on either side of the front changed

direction from 1808–2308 on the warm side to 3108–3308
on the cold side, although the wind speeds were roughly

the same across the front at about 5–10ms21. The

FIG. 6. Hourly rainfall amounts (mm) from (left) 213 rain gauges ending at 1200 UTC and (right) 212 rain gauges

ending at 1400 UTC 23 Nov 1981.

FIG. 7. Infrared satellite imagery (channel 5, 11.5–12.5mm) at

1325 UTC 23 Nov 1981. (Courtesy of Dundee Satellite Receiving

Station.)
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simulation is consistent with the observations reported

in section 3, except for its being an hour behind the

observations (cf. Figs. 5a and 10a; cf. Figs. 5c and 10b).

At 1000 UTC 23 November, the simulated radar

reflectivity factor reveals poorly organized precipitation

along the pressure trough over most of the domain, with

reflectivities of up to 45dBZ, ahead of the wind shift

along the cold front around the time the band first ar-

rived in the United Kingdom (Fig. 11a). Along the cold

front in the northwest part of the domain, a shorter,

narrower, more organized, and more intense (45–

50dBZ) line of convection developed (Fig. 11a). As

the rainband progressed across the United Kingdom,

the areal coverage of the precipitation decreased as the

alongfront extent of the rainband increased, consistent

with the observations (cf. Figs. 6 and 11). In particular,

as the line passed over the Pennine mountain range in

the center of northern England, much of the pre-

cipitation weakened, and the band split into a higher

reflectivity line positioned along the front and a line of

precipitation tens of kilometers ahead of the front

(Fig. 11b). The observed counterpart to the modeled

prefrontal band, although present in the satellite imag-

ery (Fig. 7 at 1325 UTC), did not appear to produce any

measurable precipitation at the rain gauges (Fig. 6 dur-

ing 1300–1400 UTC). Whether this is because the band

was poorly forecast or the stations did not receive rain is

unclear at this time. In any case, this prefrontal band is

not the focus of the article, as it is not associated with the

formation of the tornadoes. At maturity of the convec-

tive line, cores of stronger precipitation became sepa-

rated by gaps of about 10 km in length of lighter or no

precipitation, similar to previously published work

summarized in section 2.

The front was associated with a line of absolute vor-

ticity maxima at 500m above sea level (ASL), which was

strongest to the north and weakest to the south (Fig. 12)

FIG. 8. Prefrontal sounding from Aughton, near Liverpool, at 0000 UTC 23 Nov 1981.

(Courtesy of the University of Wyoming; http://weather.uwyo.edu/upperair/sounding.html.)

FIG. 9. The two innermost domains used in this simulation.
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because the zone of wind shift across the front broad-

ened in association with a weaker pressure trough

(Figs. 5b,c and 10b). This line of absolute vorticity

maxima was between 0.005 and 0.01 s21 and contained

small maxima of 0.01–0.02 s21, as calculated on the 1-km

grid. The line of vorticity moved across Britain with the

cold front (Fig. 12); there were maxima in vorticity over

Anglesey at 1100UTC, nearLiverpool at about 1200UTC,

and in southeast England at 1500–1600 UTC, passing

southeast of theUnitedKingdomby1730UTC.These times

correspond within about an hour of reported tornado times

(Rowe and Meaden 1985), which is all that can be ex-

pected given that the resolution of the tornado reports is

only hourly, providing additional faith in the ability of the

simulation to reproduce observed features of the front.

An examination of the three ingredients for deepmoist

convection [lift, moisture, and instability; e.g., Johns and

Doswell (1992)] shows that lift as much as several meters

per second was present (not shown), associated with the

strong convergence along the cold front inferred from the

wind field (Fig. 11b). Moisture and instability can be di-

agnosed by CAPE (determined from the parcel with the

maximum equivalent potential temperature in the col-

umn) (Fig. 13). At 1000 UTC, CAPE appeared as patchy

areas east of the front but was, generally, less than

50Jkg21 (Fig. 13a). By 1400 UTC, CAPE increased

ahead of the front, with widespread areas over 25 Jkg21

and localized maxima approaching 125Jkg21, forming a

slightly curved narrow (40–70km wide) crescent of

CAPE ahead of the front (Fig. 13b). (Interestingly, a

second maximum of CAPE of 25–125 Jkg21 was also

present in a 20–50-km-wide band about 150km ahead of

the front associated with the prefrontal rainband, al-

though this maximum is not part of this story.) Therefore,

the three ingredients for deep moist convection (i.e., in-

stability, lift, and moisture) were present along the front.

These large gradients in CAPE occurring over such

short distances raise issues about the proximity sound-

ings for U.K. tornadoes. Given that the large gradients

in CAPE occur over distances as small as tens of kilo-

meters, this raises questions about the choice of prox-

imity sounding criteria used in Mulder and Schultz

(2015) of 180 km and 3h. Mulder and Schultz (2015)

derived their criteria from previous proximity sounding

studies in the United States, specifically Brooks (2009).

Indeed, the prefrontal sounding for this outbreak in

Fig. 8 does not meet these criteria. Other U.K. sound-

ings on that day were even farther away from the tor-

nadoes. Thus, the large variability in CAPE ahead of the

front in this case is consistent with the recommendations

for proximity sounding criteria for significant tornadoes

in the United States of a range of 40–80km and no more

than 2h (Potvin et al. 2010). Potentially noteworthy is

the fact that detailed analysis of CAPE and convective

inhibition near supercells in the central United States

shows variations of hundreds of joules per kilogram over

distances as small as a few kilometers (e.g., Markowski

et al. 2002). Therefore, perhaps our results of such

strong gradients over tens of kilometers should not be

too surprising.

Given the reasonable timing and structure of the

modeled front compared to the observations, we can

FIG. 10. Simulation of sea level pressure (hPa; blue lines), surface temperature (8C; colored according to scale), and
surface winds (pennant; full barb, and half barb denote 25, 5, and 2.5m s–1, respectively; separation between displayed

wind vectors is 30 km) on the domain with 1-km horizontal grid spacing at (a) 1000 and (b) 1400 UTC 23 Nov 1981.
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interrogate the model output to determine the reasons

that the tornado reports occurred within a relatively

narrow swath along the front. Given the existence of

organized deep moist convection, the potential for tor-

nadogenesis can be explored with plots of lifting con-

densation level (LCL), 0–1-km wind shear, and 0–1-km

storm-relative helicity. These are quantities known for

their ability to discriminate tornadic from nontornadic

storms in the United States (e.g., Rasmussen and

Blanchard 1998; Thompson et al. 2003, 2012; Craven and

Brooks 2004) andEurope (e.g., Pú�cik et al. 2015;Mulder

and Schultz 2015).

At 1000 UTC, the lowest LCL along the front was be-

tween 600 and 1000m (Fig. 14a). By 1400 UTC, the LCL

had dropped along a similar crescent-shaped spatial dis-

tribution of low LCL (200–600m) in the south with

patches less than 200m, and significantly higher LCL

(greater than 2200m) behind the front and to the north

along the front (Fig. 14b). These results are consistent

with conditions for tornadoes in the United Kingdom.

Specifically, Mulder and Schultz (2015) found that low

LCL height was a statistically significant factor in pre-

dicting tornado formation in the United Kingdom, with

outbreaks having ameanLCLof about 700m, as opposed

to a null set of convective stormswith lightning or hail that

had an LCL of 900m. Therefore, we would expect tor-

nadic storms to be found along the line toward the south

where the LCL is lower and the CAPE is higher.

The vertical shear of the horizontal wind over the

surface–1-km layer (i.e., 0–1-km wind shear) displayed a

sharp change in magnitude across the front (Fig. 15).

Just ahead of the front in the swath where the tornadoes

formed, the shear was 10–20m s21, with values over

30ms21 in the prefrontal rainband (Fig. 15b). Behind

the front, the shear was only around 5–10ms21. Storm-

relative helicity over 0–1 km also showed rather large

values ahead of the front (Fig. 16). In the immediate

vicinity of the front in the prefrontal environment, 0–

1-km storm-relative helicity ranged from zero to several

hundred meters squared per second squared (Fig. 16).

Thus, despite the cold front extending across nearly

the entirety of the United Kingdom (Figs. 5b,c), the

narrow swath of tornado reports occurred in what was

apparently a sweet spot for the conditions favoring deep

moist convection and tornadogenesis along squall lines.

Specifically, the swath of tornado reports in this case was

limited on the poleward side by the rapidly increasing

LCL heights and decreasing CAPE and limited on the

equatorward side by the rapidly decreasing absolute

vorticity along the cold front, in a prefrontal environment

with adequate low-level wind shear and storm-relative

helicity all along the front. Although forecasting tornadoes

along linear convective systems remains a challenging

forecasting problem, this sweet spot may provide insight

into providing more specificity for nowcasting tornado

development along future linear convective systems in

the United Kingdom or elsewhere.

6. Model simulation: Misovortex structure and
evolution

The majority of tornado reports occurred within the

model domain with 200-m horizontal grid spacing as the

modeled front passed through this domain between 1300

FIG. 11. As in Fig. 10, but for simulation of radar reflectivity factor (dBZ; colored according to scale) and

surface winds.
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and 1640 UTC (Fig. 12). Analysis of vorticity, reflectivity,

and surface winds from this domain exhibits more detail

along the front where the majority of tornado reports

occurred. This region is also where this apparent sweet

spot favorable for tornadogenesis occurred.

At this higher resolution, more detail in the structure

and evolution of the misovortices is apparent. Specifi-

cally, regions of larger 500-m absolute vorticity (0.02–

0.03 s21) developed into maxima of 0.035–0.04 s21

within the line, with 500-m updrafts of 5–10m s21 (e.g.,

Fig. 17). Pairing of absolute vorticity maxima and min-

ima was common both within the line and in a few

patches slightly ahead of the line, where there was some

higher reflectivity as well. Some merging and splitting of

downdrafts and maxima, which has been shown to in-

crease vorticity (Lee and Wilhelmson 1997a), was ob-

served, as well. Background reflectivity of 35–45dBZ

occurred within the rainband, with some patches of

higher reflectivity of 50–55dBZ. Similar to the core-and-

gap structures observed by Mulder (2015), the shapes of

the misovortices at their maximum intensity are quite

similar to each other, specifically, an updraft (usually

5–10ms21) located poleward of the misovortex and a

downdraft (3–6ms21, although some downdrafts were as

large as 6–9ms21) located equatorward of themisovortex.

Where the rainband looked like a hook or breaking

wave at its edge, the misovortex was typically located at

the rear edge of the rainband in the area of lower

reflectivity (10–15 dBZ) and, eventually, developed a

hook shape (Fig. 18). Many misovortices intensified at

the center of the rainband and weakened as they moved

backward relative to the rainband, leaving the miso-

vortices on the cold side. Some evolved from a line of

vorticity that curled up and split into two hooks, often

described as a broken S (McAvoy et al. 2000; Clark

2011), signatures similar to the line-echo wave pattern

(Nolen 1959) and the frontal type of misovortices ob-

served in squall lines (Jewett and Wilhelmson 2006).

The hook-shaped echo is likely a response to the circu-

lation around the misovortex. The kinematics of miso-

vortices appear to be similar to that of supercells and

may suggest that tornadoes along lines may form similar

FIG. 12. Simulation of absolute vorticity at 500mASL (s21; colored according to scale) every

30min from 0900 to 1800 UTC (labeled every hour) on the domain with 1-km horizontal grid

spacing. The red box indicates the location of the domain with 200-m horizontal grid spacing.
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to that inside a supercell, as suggested by Weisman and

Trapp (2003). Further investigation is required to con-

firm whether the dynamics are similar.

To estimate how important these hook-shaped cells

were in the model, all the misovortices with absolute

vorticity greater than 0.02 s21 were plotted every minute

between 1350 and 1450 UTC over the 200-m domain

when the front was in the plotted area of Fig. 12

(110 km 3 70 km). Previous simulations of vortices in

different storm types have produced vortices of about

this magnitude. For supercells, Adlerman et al. (1999)

found vorticity of up to 0.054 s21. For bow echoes,

vorticity magnitudes ranged from 0.009 to 0.02 s21

(Weisman and Trapp 2003; Trapp and Weisman 2003;

Wheatley and Trapp 2008; Atkins and St. Laurent 2009).

For narrow cold-frontal rainbands, Smart and Browning

(2009) found vorticity of up to 0.04 s21. Although the

modeled vorticity magnitudes depend on the case, they

also depend on model grid spacing with higher-

resolution models producing higher vorticity values.

We determined that 0.02 s21 was a good balance be-

tween choosing a smaller value with vorticity maxima

everywhere and choosing a higher value with relatively

few vorticity maxima. If the numbers of vortices and

FIG. 14. As in Fig. 10, but for simulation of LCL (m; colored according to scale) and surface winds.

FIG. 13. As in Fig. 10, but for simulation of CAPE (J kg21; colored according to scale) and surface winds.
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vortices with hooks are calculated every 10min during

that 60-min period (seven times), then an average of 39

(with a standard deviation of 3) misovortices existed, of

which 20.4% (with a standard deviation of 2.6%) dis-

played hooks at any one time. Thus, this evolution is

relatively common within the model simulation.

7. Reassessment of the number of reports

We can use the simulation, in conjunction with a

reexamination of the reports, to reexamine this event.

First, according to the TORRO database, 58 of these

reports (56% of the 104 reports) were later verified by

TORRO experts, and classified as definite by them; the

other 46 reports were deemed to show reasonable evi-

dence of a tornado having occurred, but not enough to

be certain; these were classified as probable. So, the

minimum number of credible tornadoes was deemed

to be 58.

Second, the remaining 46 probable tornado reports

were examined for likely duplicate reports. The fol-

lowing approach was employed. Each of the 46 probable

FIG. 15. As in Fig. 10, but for simulation of 0–1-km vertical shear of the horizontal wind in magnitude (m s21; colored

according to scale) and direction.

FIG. 16. As in Fig. 10, but for simulation of 0–1-km storm-relative helicity (m2 s22; colored according to scale) and

surface winds.
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reports was checked to see if it might have duplicated

another report. Duplicate reports were defined in this

article as those reports occurring close in space and time,

generally 5 km or closer and reported at the same time.

Because the reports in the TORRO database are re-

corded by the hour, in practice this meant tornadoes

reported during the same hour. If the duplicate probable

report overlapped with a definite report, then the defi-

nite report was retained and the probable report was

discarded. If a definite tornado report with unknown

intensity was combined with a probable tornado report

with known intensity, then the intensity was assigned

to the single definite report. If the duplicate probable

report overlapped with another probable report, then

the more trustworthy probable report was retained and

the other report was discarded. Those reports that had

been checked by TORRO experts or were possessing

tornado tracks, direction of travel, or high T-scale value

were deemed to be the most trustworthy and retained.

This check reduced the number of probable reports

by 14 to 32. These two checks reduced the number of

tornadoes on 23 November 1981 to as few as 58 and as

many as 90 tornadoes (Fig. 19).

Does the simulation provide support for this many

tornadoes? The innermost model domain over a section

of southeast England contained a subset of 52 of the 104

FIG. 17. Simulation of radar reflectivity factor (black lines every 10 dBZ), absolute vorticity at 500mASL (positive

values are contoured in dark blue solid lines every 0.005 s21, starting from 0.01 s21; negative values are contoured in

light blue solid lines every 20.005 s21), 500-m updrafts (red fill above 5m s21), and 500-m downdrafts (green fill

above 2m s21) from the 200-m horizontal grid-spacing domain, plotted everyminute from 1431:50 to 1434:50UTC 23

Nov 1981.

FIG. 18. Characteristic structure and evolution of a simulated misovortex within the domain at 200-m horizontal grid spacing, plotted

every 60 s around the time that it matures: radar reflectivity factor (dBZ; colored according to scale in Fig. 16), absolute vorticity at 500m

ASL (black contours every 0.005 s21, starting from 0.01 s21), 500-m updraft (red contours every 5m s21), and 500-m downdraft (pink

contours every 2m s21). Each panel is about 4 km 3 4 km, and the vortex is about 500m across.
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reports and included part of the area targeted by Anglia

Television with their 30 reports, which is why this area

had a relatively high percentage of probable reports

(e.g., Fig. 1). The reexamination above reduced these

52 reports to 42 tornadoes (22 definite and 20 probable

tornadoes).

To produce tracks of these misovortices that might be

parent circulations for tornadoes, absolute vorticity

greater than 0.02 s21 was plotted every minute over the

200-m domain (Fig. 20a). Taking 30min (62min because

the data interval is every minute) as an approximate

minimum lifetime for a parent misovortex to produce a

tornado (e.g., Wakimoto and Wilson 1989; Brady and

Szoke 1989), the number of misovortices produced by the

model was counted. This plot was repeated for absolute

vorticity maxima greater than 0.025 s21, updrafts greater

than 5, 6, and 7ms21, and downdrafts greater than 2, 3,

and 4ms21 (Fig. 20). The results of counting these tracks

are summarized in Table 1, which includes the average

and median duration of tracks lasting 30min or more

(termed long lived), and the longest duration and track

lengths. These results show a substantial number of long-

lived tracks of various intensities (e.g., nine misovortices

of 0.025 s21 or more, 23 updrafts of 5ms21 or more, 10

downdrafts of 2ms21 or more). Most of the model tracks

were from the northwest (note the line of constant lon-

gitude in the panels in Fig. 20), consistent with the

TORRO reports of tracks being mostly from the north-

west. A few tracks from the west or southwest, however,

were also present (e.g., Figs. 20a,c), which was also con-

sistent with a few of the tornado reports.

Although some of the tracks of misovortices with

vorticity greater than or equal to 0.02 s21 on the 200-m

grid are within 5 km of each other, tornado reports less

than 5km apart are more likely to represent the same

tornado than ones say 20km apart. We can never claim

that our approach is perfect but merely suggests a

plausible way to filter possibly duplicate reports. Also,

there was some ambiguity in how the locations of the

reports were recorded (which may have been as specific

as the name of a town, rather than a quantitative

latitude–longitude coordinate). Such ambiguities would

complicate the assessment of the duplicate reports.

Finally, the tornado reports that were discounted were

listed as only probable by TORRO, so there is no risk

of eliminating definite tornadoes. Thus, we are confident

in the model’s ability to produce a large number of

misovortices that are consistent with the large number

FIG. 19. Locations of the 90 revised tornado reports from the TORRO database for 23 Nov 1981. Numbers rep-

resent their strength on the T scale. Reports verified by TORRO (58) are classified as definite and plotted in black.

Reports that have not been verified (32) are classified as probable and are plotted in red. Locations discussed in the

text are labeled in blue. The red box indicates the location of the domain with 200-m horizontal grid spacing.

Locations of reports that appear to be located over water are a result of a coarse representation of geography.
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FIG. 20. Tracks of (a) 500-m absolute vorticity (0.02 and 0.025 s21), (b) 500-m updrafts (5, 6, and 7m s21), and (c) 500-m downdrafts

(2, 3, and 4m s21) plotted every minute from 1300 to 1600 UTC in the domain with 200-m horizontal grid spacing.
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of tornado reports widespread over a large region of

England and Wales.

If the tornadoes on this day developed from parent

misovortices that were formed by the tilting-shear

mechanism (e.g., Trapp and Weisman 2003), we would

expect horizontal vorticity to develop first, increase, be

tilted vertically by an updraft–downdraft dipole, and then

weaken. Thus, we would expect the parent misocyclone

to have a shorter lifetime than the updraft. From Fig. 20

and Table 1, examples of tracks of updrafts (5–10ms21)

and tracks of vorticity greater than 0.02 s21 had similar

lengths. The vorticity increased to above 0.025 s21 along

the tracks and then toward the end of the tracks. Down-

drafts of 3–6ms21 also appeared alongside these tracks

for shorter lengths than the updrafts and of only slightly

shorter lengths than the higher-vorticity tracks. Counting

the number of absolute vorticity maxima of 0.02 s21 or

more that last for 30min or longer yields 41 misovortices,

with some of the longer-lasting updrafts forming multiple

misovortices. Of these 41 misovortices, 30 have updrafts

TABLE 1. Properties of tracks of 500-m absolute vorticity (0.02 and 0.025 s21), updrafts (5, 6, and 7m s21), and downdrafts (2, 3, and

4m s21) in the domain with 200-m horizontal grid spacing between 1300 and 1600 UTC. ‘‘Long lived’’ refers to features lasting 30min or

more (62min because the data interval is every minute). The longest duration track being listed as ‘‘1011’’ means that a track started

within the plotting domain but continued to the edge of the domain, indicating that the track could have existed longer than 101min. N/A

represents no features meeting the designated criteria.

No. of

long-lived

maxima

Avg duration of

long-lived tracks

(min)

Median duration of

long-lived tracks

(min)

Longest

duration track

(min)

Longest track

length

(to nearest 5 km)

Vorticity (.0.02 s21) tracks 41 40.3 37 64 75

Vorticity (.0.025 s21) tracks 9 33.2 33 38 45

Updraft (.5m s21) tracks 23 55.3 48 1011 175

Updraft (.6m s21) tracks 5 54.2 56 76 100

Updraft (.7m s21) tracks 0 N/A N/A 28 35

Downdraft (.2m s21) tracks 10 34.2 33.5 40 75

Downdraft (.3m s21) tracks 0 N/A N/A 22 35

Downdraft (.4m s21) tracks 0 N/A N/A 12 20

FIG. 21. Simulation of 0.02 and 0.025 s21 absolute vorticity at 500m ASL (black contours),

5 m s21 updrafts at 500m (red contours), and 3m s21 downdrafts at 500m (green contours)

plotted everyminute from 1300 to 1600UTCon the domainwith 200-m horizontal grid spacing.
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of 5ms21 or more and downdrafts of 3ms21 or more

each lasting longer than 4min, meaning that there are

roughly 30 possible parent circulations in the 200-m do-

main alone (Fig. 21). Of these 30 tracks, the average

lifetime of the tracks was 47.6min (median of 39min),

and the longest track was 175km and lasted for 109min.

When linkedwith favorable environmental conditions for

tornadogenesis in the model and the results of Atkins

et al. (2004), who found that tornadoes were more likely

to form from parent misovortices along the convective

line that had greater rotation rates, the potential existed

for the model misovortices to have been tornadic. Thus,

these roughly 30 intense misovortices within the in-

nermost domain are sufficient to explain the 22–44 tor-

nado reports within this domain.

Figure 22 combines the half-hourly absolute vorticity

isochrones with the regions with favorable CAPE and

vorticity values, and the observed 90 tornado reports.

The majority of the tornado reports (89 out of 90) were

within the favorable locations (high vorticity along the

cold front and nonzero CAPE). Also, there was agree-

ment between the modeled misocyclone tracks and the

locations of the tornado reports, providing additional

veracity of the simulation. The possibility also existed

that these misovortices could have produced multiple

tornadoes each. Therefore, these statistics give an in-

dication of the potential of high-resolution modeling

to resolve features potentially responsible for the tor-

nadoes, as convection-permitting simulations did 15

years ago for the 3 May 1999 Oklahoma–Kansas su-

percellular tornado outbreak (e.g., Roebber et al. 2002),

and provides justification for a potentially large num-

ber of possible parent circulations for tornadogenesis

in this event.

FIG. 22. Simulation of absolute vorticity at 500mASL (s21; colored according to scale) every

30min from 0900 to 1800 UTC on the domain with 1-km horizontal grid spacing. Purple lines

separate approximate areas with simulated absolute vorticity less than 0.002 s21 on the 1-km

domain during the time of frontal passage. Blue lines separate approximate areas with simu-

lated positive CAPE during the time of frontal passage. Locations of reports that appear to be

located over water are a result of a coarse representation of geography. Locations of the 90

tornado reports from the TORRO database for 23 Nov 1981. Numbers represent their strength

on the T scale. Reports verified by TORRO (58) are classified as definite and plotted in black.

Reports that have not been verified (32) are classified as probable and are plotted in red.
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8. Conclusions

The U.K. tornado outbreak of 23 November 1981

is analyzed through a convection-permitting model simula-

tion and a reexamination of the 104 tornado reports col-

lected by TORRO. This case has been called Britain’s

greatest tornado outbreak (Rowe and Meaden 1985) be-

cause its 104 reports were so much greater than the next

highest outbreak of 29. A synoptic situation with a strong

cold front, weak CAPE (less than 125Jkg21), prefrontal

winds nearly parallel to the front, and postfrontal winds

nearly perpendicular to the front is consistent with weather

conditions associated with other tornado outbreaks in the

United Kingdom (Clark 2009; Clark and Parker 2014).

The model simulation produced a narrow cold-frontal

rainband along a line of absolute vorticity exceeding

0.02 s21 on the 200-m grid with embedded maxima of

0.035–0.04 s21, similar to those in previous simulations

of misovortices along cold fronts in the United Kingdom

(Smart and Browning 2009). Misovortices along the

front formed a variety of different structures and evo-

lutions and may have been parent circulations for the

tornadoes. A line of reflectivity along the cold front was

characterized by precipitation cores and gaps. Updrafts

of 5–10m s21 occurred poleward of these maxima of

absolute vorticity, and weaker downdrafts of 3–6m s21

occurred equatorward, suggesting the potential for tilt-

ing to be involved in tornadogenesis.

The line of absolute vorticity weakened rapidly to the

south in conjunction with a weakened pressure trough.

Nearly all of the tornadoes reported occurred within a

sweet spot where the absolute vorticity was strong

enough (more than 0.002 s21 on the 1-km grid) and the

CAPE was positive in an environment that was other-

wise favorable for tornadoes (0–1-km storm-relative

helicity and 0–1-km shear). This approach suggests a

means by which regions favorable for tornadoes along

squall lines could be forecast in theUnitedKingdom and

elsewhere. The narrow (tens of kilometers) region of

positive CAPE in advance of the front also raises con-

cerns about large distances used in determining prox-

imity soundings in previous studies (100–200 km).

Within the model domain with 200-m horizontal grid

spacing, 30 possible parent misovortices were present

with the following characteristics: absolute vorticity

greater than 0.02 s21, updrafts between 5 and 10m s21

for longer than 30min, and downdrafts between 3 and

6m s21 were present for at least 4min. This number of

parent misovortices was comparable to the figure of 22–

44 tornado reports in this area. We conclude that the

number of reports in this area was potentially credible.

Reassessing the quality, timing, and location of the

reports allows us to place revised boundaries on the

lower and upper limits of the number of tornadoes that

day. A final figure was produced of 90 tornadoes: 58 defi-

nite and 32 probable, a slight reduction from the 104 total

reports. This revision does not eliminate the problemof the

event distorting the historical record (Mulder and Schultz

2015; Antonescu et al. 2016). Even if the lower limit were

closer to 58 reports, this event would still be the largest

documented tornado outbreak in the United Kingdom.
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