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Abstract. In this work a new method for clustering and building a
topographic representation of a bacteria taxonomy is presented. The
method is based on the analysis of stable parts of the genome, the
so-called “housekeeping genes”. The proposed method generates topo-
graphic maps of the bacteria taxonomy, where relations among differ-
ent type strains can be visually inspected and verified. Two well known
DNA alignement algorithms are applied to the genomic sequences. To-
pographic maps are optimized to represent the similarity among the
sequences according to their evolutionary distances. The experimental
analysis is carried out on 147 type strains of the Gammaprotebacteria
class by means of the 16S rRNA housekeeping gene. Complete sequences
of the gene have been retrieved from the NCBI public database. In the
experimental tests the maps show clusters of homologous type strains
and present some singular cases potentially due to incorrect classifica-
tion or erroneous annotations in the database.

1 Introduction

Microbial identification is crucial for the study of infectious diseases. The classi-
cal method to identify bacterial isolates is based on the comparison of morpho-
logic and phenotypic characteristics to those described as type or typical strains.
Recently a new naming approach based on bacteria genotype has been proposed
and is currently under development. In this new approach phylogenetic relation-
ships of bacteria could be determined by comparing a stable part of the genetic
code. The part of the genetic code commonly used for taxonomic purposes for
bacteria is the 16S rRNA “housekeeping” gene. The 16S rRNA gene sequence
analysis can be used to obtain a classification for rare or poorly described bac-
teria, to classify organisms with an unusual phenotype in a well defined taxon,
to find misclassification that can lead to the discovery and description of new
pathogens.

The aim of this work is to obtain a topographic representation of bacteria
clusters to visualize the relations among them. Moreover, we intend to achieve
this objective by using directly the genotype information, without building a
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feature space. Many clustering approaches are based on a feature space where
objects are represented. Biological datasets usually contain large objects (long
nucleotides sequences or images); a vector space representation of such objects
can be difficult and typically results in a high dimensional space where the
euclidean distance is a low contrast metric. The definition of a vector space also
requires the choice of a set of meaningful axes that represent some measurable
qualities of the objects. In DNA sequences this approach is not straightforward
and may be hindered by an arbitrary choice of features. According to these
considerations we do not adopt a vector space representation, but a matrix of
pairwise distances obtained directly from the genetic sequences. Such a matrix
can be computed in terms of string distances by means of well understood and
theoretically sound techniques commonly used in genomics.

The paper is organized as follows: in section 2 we refer to works that focus
on similar classification problems of biological species; in sections 3 and 4 we
describe the algorithms we have adopted for the similarity measure and the
generation of topographic maps; in section 5 we present an experimental analysis
of the proposed method and provide an interpretation of the results.

2 Related Work

In recent years, several attempts to reorganize actual bacteria taxonomy have
been carried out by adopting 16S rRNA gene sequences. Authors in [1] focused
on the study of bacteria belonging to the prokaryothic phyla and adopted the
Principal Component Analysis method [2] on matrices of evolutionary distances.
Clarridge [3], Drancourt et al. [4, 5] carried out an analysis of 16S rRNA gene
sequences to classify bacteria with atypical phenotype: they proposed that two
bacterial isolates would belong to different species if the dissimilarity in the 16S
rRNA gene sequences between them was more than 1% and less than 3%. Clus-
tering approaches for DNA sequences [7] and for protein sequences [9] adopted
Median Som, an extension of the Self-Organizing Map (SOM) to non-vectorial
data. Chen et al. [11] proposed a protein sequence clustering method based on
the Optic algorithm [12]. Butte and Kohane [8] described a technique to find
functional genomic clusters in RNA expression data by computing the entropy
of gene expression patterns and the mutual information between RNA expression
patterns for each pair of genes. INPARANOID [13] is another related approach
that performs a clustering based on BLAST [14] scores to find orthologs and
in-paralogs in two species.

Among other algorithms for the clustering of pairwise proximity data, it is
worth to mention an approach to segment textured images [29]. Dubnov et al. [16]
proposed a nonparametric pairwise clustering algorithm that iteratively extracts
the two most prominent clusters in the dataset, thus generating a hierarchical
clustering structure. A hierarchical approach was also followed in [17, 18]. Other
works, e.g. [19, 20], adopted Multidimensional Scaling [22] to embed dissimilarity
data in a Euclidean space.
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3 Genetic Sequence Similarity

3.1 Sequence Alignment

Sequence alignment allows to compare homologous sites of the same gene be-
tween two different species. For this purpose, we used two of the most popular
alignment algorithms: ClustalW [23] for multiple-alignment; and Needleman-
Wunsch [24] for pairwise alignment. The ClustalW algorithm aims to produce
the best alignment configuration considering all the sequences at the same time,
whereas Needleman-Wunsch algorithm provides a global optimum alignment be-
tween two sequences even of different length. Sequence alignment algorithms
usually insert gaps in the input sequences in order to stretch them and to find
the best matching configuration: gaps represent nucleotide insertions or deletions
and are very important in terms of molecular evolution. An example of pairwise
alignment is shown in Figure 1.

Fig. 1. Pairwise alignment between two gene sequences

3.2 Evolutionary Distance

The evolutionary distance is a distance measure between two homologous se-
quences, previously aligned. There are several kinds of evolutionary distances:
the simplest one is the number of nucleotide substitutions per site. The number
of substitutions observed between sequences is often smaller than the number
of substitutions that have actually taken place. This is due to many genetic
phenomena such as multiple substitutions on the same site (multiple hits), con-
vergent substitutions or retro-mutations. As a consequence, it is important to
use stochastic methods in order to obtain an exact estimate of evolutionary dis-
tances. Many stochastic models exist that differ from each other on the basis of
their a priori assumptions.
The most common a priori assumptions are:

– all sites evolve in an independent manner;
– all sites can change with the same probability;
– all kinds of substitution are equally probable;
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– substitution speed is constant over time.

In our study, we used the method proposed by Jukes and Cantor [25], where all
the assumptions above are valid. According to [25], the evolutionary distance d
between two nucleotide sequences is equal to:

d = −3
4

ln
(

1− 4
3
p

)
, (1)

where p is the number of substitutions per site, defined as:

p =
number of different nucleotides

total number of compared nucleotides
. (2)

It is important to note that sites containing gaps or undefined bases are not
considered in the computation of distances.
Evolutionary distances computed with (1) constitute the elements of a dissimi-
larity matrix that represents the input for the algorithm described in the next
section.

4 Soft Topographic Map Algorithm

A widely used algorithm for topographic maps is the Kohonen’s Self Organizing
Map (SOM) algorithm [31], but it does not operate with dissimilarity data.

According to Luttrell’s work [26], the generation of topographic maps can
be interpreted as an optimization problem based on the minimization of a cost
function. This cost function represents an energy function and takes its minimum
when each data point is mapped to the best matching neuron, thus providing
the optimal set of parameters for the map.

An algorithm based on this formulation of the problem was developed by
Graepel, Burger and Obermayer [27, 28] and provides an extension of SOM to
arbitrary distance measures. This algorithm is called Soft Topographic Map
(STM) and creates a map using a set of units (neurons or models) organized in
a rectangular lattice that defines their neighbourhood relationships.

The cost function for soft topographic mapping of proximity data (in our
case a dissimilarity matrix) can be formulated as follows:

E({ctr}) =
1
2

∑
t,t′

∑
r,s,u

ctrhrsct′uhus∑
t′′
∑

v ct′′vhvs
dtt′ , (3)

where dtt′ is the generic element of the dissimilarity matrix, namely the pairwise
distance among nucleotide sequences of bacteria t and t′. Two constraints hold
in (3):

∑
r ctr = 1, ∀t, i.e. each data vector can belong only to one neuron r, and∑

s hrs = 1, ∀r. The function hrs is equivalent to the neighborhood function of
classic SOM algorithm and represents the coupling between neurons r and s in
the map grid. hrs is usually chosen as a normalized Gaussian function such as:

hrs ∝ exp

(
−|r− s|2

2σ2

)
, ∀r, s. (4)
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Table 1. Soft Topographic Map algorithm.

1. Initialization Step:
(a) etr ← ntr,∀t, r, ntr ∈ [0, 1]
(b) compute lookup table for hrs as in Eq. (4)
(c) compute dissimilarity matrix from input data as in Eq. (1)
(d) put β ∼= β∗

(e) choose βfinal, increasing temperature factor η, convergence threshold ε
2. Training Step:

(a) while β < βfinal (Annealing cycle)
i. repeat (EM cycle)

A. E step: compute P (xt ∈ Cr)∀t, r as in Eq. (5)
B. M step: compute anew

tr ,∀t, r as in Eq. (7)
C. M step: compute enew

tr ,∀t, r as in Eq. (6)
ii. until

∥∥enew
tr − eold

tr

∥∥ < ε
iii. put β ← ηβ

(b) end while

In order to optimize the cost function the deterministic annealing [29, 30] tech-
nique has been used. This technique is based on the optimization of a family of
cost functions, representing free energy, that depend on the parameter β, the so
called inverse temperature. This parameter represents the amount of smoothing
that is done to the original cost function.

The minimization of this function leads to the probability of the assignment
of the data vector t to the node r (i.e. to its cluster Cr):

P (xt ∈ Cr) =
exp(−βetr)∑
u exp(−βetu)

, ∀t, r. (5)

In Equation (5), etr is the partial assignment cost of data vector xt to be
assigned to cluster Cr, and it is defined as:

etr =
∑
s

hrs

∑
t′

at′s

(
dtt′ − 1

2

∑
t′′

at′′sdt′t′′

)
, ∀t, r. (6)

Equation (6) is obtained considering that diagonal elements of the dissimi-
larity matrix are equal to zero and that the dissimilarity matrix is symmetric.
The weighting factors atr are given by:

atr =
∑

s hrsP (xt ∈ Cs)∑
t′
∑

s hrsP (xt′ ∈ Cs)
, ∀t, r (7)

and can be seen as weighted averages over data vectors.
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The Soft Topographic Map algorithm for proximity data described above can
be summarized in the pseudo code of Table 1. Minimization procedure can be
done in two steps, formed by two nested loops. The inner loop 2(a)i constitutes an
expectation-maximization (EM) algorithm: starting from a random initialization
of partial costs, equations (5), (7), (6) are computed in sequence for a fixed value
of β until the difference between current partial costs and previous partial costs
is lower than a certain threshold. Then, in the outer loop 2a, in order to find
the global minimum of the cost function, β is gradually increased and the inner
loop repeated. β is increased according to the annealing scheme β ← ηβ, with
η = 1.1 . . . 2.0, up to a previously chosen βfinal.
As seen in [27], the initial value of β should be just above a certain value β∗

calculated as:
β∗ =

1
λC

maxλG
max

, (8)

where λC
max is the largest eigenvalue of the covariance matrix C of the data and

λG
max is the largest eigenvalue of a matrix G, whose elements are equal to:

grt =
∑
s

hrs

(
hst − 1

M

)
. (9)

5 Experimental Analysis

5.1 Bacteria dataset

In order to test our approach, we have built a database of 16S rRNA bac-
teria gene sequences. The choice of the bacteria set has been done according
to the current taxonomy [1]. We focused on the bacteria belonging to Phylum
BXII, Proteobacteria; Class III, Gammaproteobacteria: this class includes some
of the most common and dangerous bacteria related to human pathologies. In
the Gammaproteobacteria class there are 14 orders, each of them containing one
or more family. Each family is divided in genera; for each genus we selected the
type strains, as shown in Figure 2.

For each type strain we selected the 16S rRNA gene sequence, which contains
approximately 1400 nucleotides. The resulting 147 sequences were retrieved from
GenBank [33] in FASTA format [15].

Each gene sequence is labelled according to its order in the actual taxonomy.

5.2 Experimental results

We carried out a set of experimental tests using the algorithm described in the
section 4 with the bacteria dataset of section 5.1. We used both the dissimilarity
matrices obtained from multiple alignment of sequences and pairwise alignment
of sequences in order to compare the results. More specifically, we used two
well known bioinformatic tools: Mega software [34], that implements ClustalW
algorithm, and Emboss tools [35] for Needleman-Wunsch algorithm. In both
situations, we used default options.
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Fig. 2. Actual taxonomy of the bacteria dataset

We applied a slightly tuned version of Soft Topographic Map algorithm: in
order to speed up processing time, neighbourhood functions associated to each
neuron have been set to zero if they referred to neurons outside a previously
chosen radius in the grid. The radius has been put to 1/3 of the side of maps.
As for the other parameters of the algorithm, we put the annealing increasing
factor η = 1.1, and threshold convergence ε = 10−5, as suggested by [27]. After
several tests we chose, as a good compromise between processing time and clus-
tering quality, the final value of inverse temperature equal to 10 times the initial
value, leading as a consequence 25 learning epochs; finally we put the width of
neighbourhood functions σ to 0.5.

We generated several maps of different dimensions, from 8× 8 up to 20× 20
neurons. The dimensions of the maps were set by considering the number of input
patterns (147 gene sequences) and the number of expected clusters (14 orders in
the taxonomy). We compared each pair of maps of the same dimension obtained
from multiple alignment and pairwise alignment. The results were quite similar
and we can state that the alignment technique does not affect final results.

In Figures 3, 4, 5, we show the results provided by 12× 12, 16× 16, 20× 20
maps, trained with the dissimilarity matrix using the pairwise alignment. In the
maps, bright areas denote proximity and dark zones represent distance, according
to the U-Matrix style [32].

It should be noticed that in larger maps the units tend to classify homo-
geneous patterns better. Namely, comparing the maps we can observe that the
number of bacteria belonging to mixed clusters, i.e units containing bacteria of



8

Fig. 3. 12× 12 topographic map of bacteria dataset

different orders, decreases as the number of neurons increases (Figure 6). There-
fore, the 20× 20 map is the most accurate. In all the maps most of the bacteria
are classified according to their order in the actual taxonomy. We can also see
that bacteria belonging to the order “Enterobacteriales” are split into a series
of adjacent clusters in the central part of the map. This could mean that the
order “Enterobacteriales” could be subdivided into distinct families rather than
the single one of the actual taxonomy (see Figure 2).

Finally, an interesting result is that there are some anomalies that are con-
stant for all the tests regardless of the chosen map dimension and alignment algo-
rithm. For example, in small maps (not shown here) the “Alterococcus agarolyti-
cus” bacterium of the “Enterobacteriales” order is incorrectly clustered together
with bacteria of other orders, whereas in larger maps it is isolated in an indi-
vidual cluster, usually at the border of the map (e.g. at the lower left corner of
Figure 3 and at upper left conrner of Figures 4 and 5). Another interesting ex-
ample is given by “Legionella pneumophila” bacterium of “Legionellales” order:
that in all maps is located in a corner of the grid and surrounded by a dark grey
area. This would suggest that it can be considered to have an order of its own.
In general, we noticed that in the transition from smaller maps to larger ones
there is always a set of bacteria that show the following anomalies:

– bacteria belonging to mixed clusters and far from their homologous bacteria,
– isolated bacteria in a single cluster far from their homologous bacteria.

In the former case, it is possible that those bacteria were either incorrectly
classified or incorrectly registered into GenBank. In the latter, it is very likely
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Fig. 4. 16× 16 topographic map of bacteria dataset

that those bacteria could form new orders or families that have not been discov-
ered by analyzing only phenotypic features.

In conclusion, although the topographic maps have shown a clustering that
generally reflects the current taxonomy, some singular cases have been detected.
The proposed approach is a first attempt to provide an innovative tool to support
the correction of genetic sequence submission systems (e.g. GenBank) and to
build a genotypic features based taxonomy.

6 Conclusions

In recent trends for the definition of bacteria taxonomy, genotypical characteris-
tics are considered very important and type strains are compared on the basis of
the stable part of the genetic code. In this paper the Soft Topographic Map algo-
rithm has been applied to the clustering and classification of bacteria according
to their genotypic similarity. In the similarity measure we have adopted the 16S
rRNA gene sequence, as commonly used for taxonomic purposes. A characteris-
tic of the proposed approach is that the topographic map is built directly from
the genetic data, without using a vector space representation. The generated
maps show that the proposed approach provides a clustering that generally re-
flects the current taxonomy with some singular cases. The map allows an easy
identification of cases that could represent incorrect classification or incorrect
registration in the database. In future research activities we intend to extend
the analysis to other “housekeeping” genes and to combine different genotypical
characteristics in order to obtain finer clustering and classification.
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Fig. 5. 20× 20 topographic map of bacteria dataset
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