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Variation in climate sensitivity and feedback parameters
during the historical period

J. M. Gregory1,2 and T. Andrews2

1NCAS-Climate, University of Reading, Reading, UK, 2Met Office Hadley Centre, Exeter, UK

Abstract We investigate the climate feedback parameter 𝛼 (W m−2 K−1) during the historical period
(since 1871) in experiments using the HadGEM2 and HadCM3 atmosphere general circulation models
(AGCMs) with constant preindustrial atmospheric composition and time-dependent observational sea
surface temperature (SST) and sea ice boundary conditions. In both AGCMs, for the historical period as a
whole, the effective climate sensitivity is ∼2 K (𝛼≃1.7 W m−2 K−1), and 𝛼 shows substantial decadal variation
caused by the patterns of SST change. Both models agree with the AGCMs of the latest Coupled
Model Intercomparison Project in showing a considerably smaller effective climate sensitivity of ∼1.5 K
(𝛼=2.3 ± 0.7 W m−2 K−1), given the time-dependent changes in sea surface conditions observed during
1979–2008, than the corresponding coupled atmosphere-ocean general circulation models (AOGCMs) give
under constant quadrupled CO2 concentration. These findings help to relieve the apparent contradiction
between the larger values of effective climate sensitivity diagnosed from AOGCMs and the smaller values
inferred from historical climate change.

1. Introduction

When radiative forcing F (W m−2) is imposed on the climate system, due, for instance, to changes in con-
centrations of greenhouse gases or other atmospheric components, the resulting global mean surface air
temperature change T is determined by the energy budget F=N + R, where R is the additional radiation by
the climate system to space caused by the perturbation to the climate, and N= F − R is the global mean net
downward radiative flux at the top of the atmosphere, which equals the rate of change of the heat content
of the climate system and is zero in a steady state. It is usual to write R as 𝛼T , so that N=F − 𝛼T , where the
climate feedback parameter 𝛼 (W m−2 K−1) is the increase in radiation to space per unit of global warming. Its
reciprocal s≡1∕𝛼 (K W−1 m2), called the climate sensitivity parameter, is the steady state global warming per
unit increase in radiative forcing. Note that negative contributions to 𝛼 are positive feedbacks on warming,
tending to increase the climate sensitivity parameter s.

The separation of radiative forcing from feedback 𝛼 (or sensitivity s) is convenient if 𝛼 is a constant property
of the climate system and independent of the nature and magnitude of the forcing. However, methods which
evaluate 𝛼 from the energy budget of the climate system using historical estimates of F, N, and T (where by
“historical” we mean during the period in which adequate observations of T are available, roughly since the
midnineteenth century [e.g., Gregory et al., 2002; Forest et al., 2006; Forster and Gregory, 2006; Aldrin et al., 2012;
Huber and Knutti, 2012; Otto et al., 2013; Lewis and Curry, 2015]) tend to give smaller s than exhibited under
scenarios of CO2 increase by atmosphere-ocean general circulation models (AOGCMs), which are formulated
on the basis of empirical and theoretical understanding to simulate the physical processes of the real world
[Collins et al., 2013, Box 12.2]. This difference presents a difficulty in assessing the likely range of s applicable
to the future anthropogenic climate change, which is an important quantity because of its implications for
many aspects of global and regional climate change which scale approximately with T .

A major reason why 𝛼 may not be a constant is that the global feedback results from the operation of local
feedbacks and is hence sensitive to the spatiotemporal patterns and gradients of change in temperature,
cloudiness, snow cover, etc. For example, the pattern of forced climate change may evolve in time, owing to
the inherent timescales of response of the climate system, especially in the ocean, yielding a time-dependent
𝛼 [Senior and Mitchell, 2000; Williams et al., 2008; Held et al., 2010; Armour et al., 2013; Winton et al., 2013; Rose
et al., 2014; Andrews et al., 2015; Roe et al., 2015]. In abrupt4xCO2 experiments, in which CO2 is instantaneously
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quadrupled from its control level at the start and then held constant, 𝛼 tends to decrease on a decadal
timescale in most AOGCMs [Gregory et al., 2004; Winton et al., 2010; Andrews et al., 2012; Geoffroy et al., 2013].
Andrews et al. [2015] related this effect to changes in the pattern of warming of sea surface temperature
(SST) in the equatorial Pacific and Southern Ocean. By prescribing SST changes from each of two AOGCMs
as boundary conditions to its atmosphere GCM (AGCM), they reproduced the time dependence of 𝛼 in
the AOGCM.

Although introduced to describe the response to forcing, 𝛼 has also been used to quantify the covariation of
R and T due to internally generated (unforced) variability of the climate system on interannual and decadal
timescales, e.g., El Niño–Southern Oscillation, the Pacific Decadal Oscillation, and the Atlantic Multidecadal
Oscillation. Such modes of variability are associated with patterns of surface climate change which differ from
those in response to radiative forcing and hence may give different and variable 𝛼 [Dessler and Wong, 2009;
Spencer and Braswell, 2010; Colman and Power, 2010; Colman and Hanson, 2013; Dalton and Shell, 2013; Dessler,
2013; Brown et al., 2014; Xie et al., 2015; Zhou et al., 2015].

In this work, we investigate the behavior of 𝛼 during the twentieth century, following up the finding of
Andrews [2014] that the climate sensitivity parameter of HadGEM2-A to the observed SST change of recent
decades is less than for abrupt4xCO2. To clarify the subsequent discussion, let us distinguish the climate feed-
back parameter 𝛼 = R∕T , as introduced above, and the differential climate feedback parameter �̃� = dR∕dT
[Gregory et al., 2004]. The former quantity considers the differences of R and T from the unperturbed steady
state, whereas the latter describes the covariation of R and T for small changes with respect to the prevailing
state. If climate feedback is constant, 𝛼 and �̃� are of course identical. In this work we are mostly concerned
with �̃�.

2. Climate Sensitivity Parameter With Time-Dependent SST and Sea Ice

We carry out AGCM experiments, denoted “amipPiForcing,” in which we prescribe time-varying observation-
ally derived fields of SST and sea ice concentration by interpolation in time from the monthly fields for 1871
to 2010 of the Atmosphere Model Intercomparison Project (AMIP) II data set [Gates et al., 1999; Taylor et al.,
2000; Hurrell et al., 2008]. We use the same AGCMs as Andrews et al. [2015], viz., HadGEM2-A and HadCM3-A,
respectively, the atmosphere components of the HadGEM2-ES [Collins et al., 2011] and HadCM3 [Gordon
et al., 2000] AOGCMs. The former contributed to the Coupled Model Intercomparison Project Phase 5 (CMIP5)
[Taylor et al., 2012], the latter to the preceding project CMIP3; being a lower resolution and less complex model,
HadCM3 is much faster to run. The HadCM3-A amipPiForcing experiment is an ensemble of four integrations
from different initial states and the HadGEM2-A an ensemble of two.

In the amipPiForcing experiments, atmospheric composition and all other forcing agents are constant, as for
preindustrial conditions (unlike in the CMIP5 protocol for AMIP experiments, discussed later). Hence, F is con-
stant in the energy balance F=N + 𝛼T . In fact, by the usual definition of forcing with respect to preindustrial,
F = 0 ⇒ N =−𝛼T , 𝛼 =−N∕T and �̃� =−dN∕dT . This situation contrasts with climate change in the real world
or an AOGCM driven by increasing time-dependent forcing, when F is balanced by the sum of 𝛼T and the
ocean heat uptake N. In the AGCM experiment, there is no ocean heat uptake; on the contrary, prescribing the
SSTs implies an unlimited ocean heat source which supplies𝛼T to the surface climate to balance the extra heat
loss to space as the climate becomes warmer. We assume that 𝛼 depends only on the sea surface boundary
conditions and is unaffected by the absence of the forcing agents. This is an aspect of the general assumption
that 𝛼 is a constant.

In the amipPiForcing experiments, T and N are not constant because the sea surface boundary conditions
force the simulated climate system largely to reproduce the time-dependent variations in climate which actu-
ally occurred in the historical period (by comparison with the HadCRUT4 observational estimate of Morice
et al. [2012]; Figure 1a), both the internally generated variability and the response to anthropogenic and
natural forcing. Because land surface temperatures are not prescribed, the reproduction of T is not exact,
owing to two mechanisms.

First, there is unforced variability over land areas which differs from the historical record and is different
between models and observations and among model ensemble members. However, this is small compared
with the enforced interannual variability from the SSTs; the intraensemble standard deviation of annual mean
T (pooled over years) is 0.037 K in HadGEM2-A and 0.031 K in HadCM3-A, while the interannual standard
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Figure 1. (a) Annual mean global mean surface air temperature change T with respect to the 1979–2008 time mean in
HadCRUT4 [Morice et al., 2012] and the ensemble means of the AGCM amipPiForcing experiments. (b, d) Maps of SST
patterns P(x) (KK−1), evaluated by regressing annual mean SST against its global mean, for two periods from the AMIP II
data set, which have high and low s̃, respectively, in HadCM3-A (Figure 2b); each of these fields has an area average of
unity over the sea and was used as a SST perturbation field in a HadCM3-A experiment (Figure 2d). (c) Map of annual
mean of the monthly patterns of SST change with respect to control, normalized by the global mean, for years 1–20
of abrupt4xCO2 in HadCM3, used to construct the SST perturbation fields for the HadCM3-A scaledSSTPiForcing
experiment.

deviation of T in HadCRUT4, after detrending, is 0.15 K. Therefore, most of the interannual variability would
remain in the ensemble mean even if the ensemble were infinitely large, as we discuss again later (section 4).

Second, T increases more over the historical period in the real world than in the amipPiForcing experiments
because additional warming over land arises as an adjustment due to changes in CO2 and other forcing agents
[Folland et al., 1998; Dong et al., 2009; Andrews, 2014]. (Note that the difference appears to be greatest at the
start of the time series in Figure 1a because T is shown relative to the 1979–2008 time mean.) In the amipPi-
Forcing experiment with HadGEM2-A, the increase in T is 85% of what it is in HadCRUT4, and with HadCM3-A
the fraction is 89%, according to orthogonal (total least squares) regression of annual mean T from the model
against observations, assuming that the observational uncertainty is the same as the model intraensem-
ble standard deviation. Excluding the period before 1910, during which T shows a weak cooling trend, the
fractions are 92% and 94%, respectively.

If �̃�=−dN∕dT is constant, we can estimate it from the slope of the ordinary least squares (OLS) regression of
annual means of N against T (Figures 2a and 2b). The use of OLS is consistent with regarding T as an indepen-
dent variable with no uncertainty, apart from the small contribution from the land area, because we prescribe
SST in these experiments. (In section 4 we return to this matter.) The ensembles of regression slopes from
individual integrations give similar values for the two models, of �̃�=1.72 ± 0.06 W m−2 K−1 for HadGEM2-A
and 1.66 ± 0.01 W m−2 K−1 for HadCM3-A, where the uncertainties are standard errors (the ensemble stan-
dard deviation of 0.085 multiplied by 1∕

√
2 for HadGEM2-A and 0.020∕

√
4 for HadCM3-A; see section 4 for

an alternative approach).

For comparison, regression of annual means for the first 20 years of abrupt4xCO2, during which these models
show a linear relationship N(T), gives significantly smaller and distinct values of 0.81 ± 0.09 W m−2 K−1 for
HadGEM2-ES and 1.25 ± 0.04 W m−2 K−1 for HadCM3 [Andrews et al., 2015]; i.e., s̃ is larger in the abrupt4xCO2
experiments. On longer timescales in abrupt4xCO2, s̃ in these and most other AOGCMs increases [Andrews
et al., 2012; Geoffroy et al., 2013; Andrews et al., 2015], increasing the difference from the low sensitivity shown
in amipPiForcing. In the AOGCM abrupt4xCO2 experiments, some rapid initial warming of the land as an
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Figure 2. (a, b) Differential climate feedback parameter �̃� evaluated by ordinary least squares regression of annual
mean top-of-atmosphere net downward radiation N against T (both expressed as differences from the time mean
of the CMIP5 AMIP period 1979–2008) in the amipPiForcing experiments for 1871–2010, and in Figure 2b for the two
30 year periods indicated. The dots indicate ensemble mean annual mean values, the lines the ensemble mean of
coefficients from regressions of the individual integrations, with the slope and its standard error shown in the legend.
(c, d) Time series of �̃� evaluated by regression in a sliding 30 year window in the amipPiForcing experiments, with
amipPiForcingClimI and scaledSSTPiForcing in Figure 2d. Ensemble members are shown with thin lines; the thick lines
are the ensemble means of the �̃�(t). The �̃� axis increases downward so that the largest s̃ values are at the top, and the
right-hand axis indicates values of s̃≡1∕�̃�. To convert to effective climate sensitivity (K), multiply s̃ by 3.4 W m−2, a
representative value of F2×. The dotted horizontal lines show �̃� from abrupt4xCO2 experiments [Andrews et al., 2015],
and in Figure 2d 𝛼 from experiments with the constant SST perturbations in Figures 1b and 1d for the two 30 year
periods indicated in Figure 2b. The dashed vertical lines indicate years of volcanic eruptions, named in Figure 2c.

adjustment to CO2 occurs within the first year [e.g., Williams et al., 2008; Andrews et al., 2012], but the regres-
sion slope in abrupt4xCO2 measures the response of N to global T driven by SST change during years after
the initial adjustment and is thus conceptually the same quantity as �̃� from amipPiForcing.

In time-dependent CO2-forced climate change experiments, it is customary to report the “effective climate
sensitivity” (K) [Murphy, 1995], which is sF2×=F2×∕𝛼, where F2× is the effective radiative forcing due to
doubling the CO2 concentration with respect to preindustrial; F2× is a model-dependent quantity, for which
3.4 Wm−2 is a representative value [Flato et al., 2013, Table 9.5]. If 𝛼 is constant, the effective climate sensitivity
equals the equilibrium climate sensitivity, defined as T in a steady state under doubled CO2 concentration,
since a steady state means N = 0 ⇒ T=F2×∕𝛼. However, 𝛼 is not constant in nonequilibrium states under
CO2 forcing in most AOGCMs [Andrews et al., 2012]. Therefore, the effective climate sensitivity must be qual-
ified by specifying the scenario and period to which it applies, and caution is needed when comparing
estimates of this quantity made from the various kinds of evidence available, including model simulations of
the future, observed present-day processes, and past time-dependent climate change. Evaluations of 𝛼 from
palaeoclimate change usually assume a steady state, thus giving estimates of equilibrium climate sensitivity.

The �̃� from amipPiForcing in HadGEM2-A and HadCM3-A corresponds to an effective climate sensitivity of
about 2 K, toward the lower end of the likely range of 1.5–4.5 K for equilibrium climate sensitivity in the
assessment of Collins et al. [2013], and similar to some observationally derived estimates [e.g., Otto et al., 2013].
In contrast, the first 20 years of abrupt4xCO2 give 4.0 K and 3.1 K for HadGEM2-ES and HadCM3, respectively,

GREGORY AND ANDREWS VARIATION IN CLIMATE SENSITIVITY 3914



Geophysical Research Letters 10.1002/2016GL068406

in the upper half of the range (using corresponding estimates of F2× from these models) [Andrews et al., 2015;
Gregory et al., 2015]. (Neither of these AOGCMs has been run to a steady state under elevated CO2, so their
equilibrium climate sensitivity is not known.)

3. Time Dependence of the Climate Sensitivity Parameter

We investigate the possibility of time dependence of �̃� by regressing N against T in a sliding 30 year window
(Figures 2c and 2d, also showing s̃≡1∕�̃�, the differential climate sensitivity parameter s̃). In both models,
�̃� exhibits pronounced time variation on multidecadal timescales, whose main features, apparent in all
ensemble members, are similar using window lengths of between about 20 and 60 years.

In HadGEM2-A, s̃ is maximum (�̃� is minimum) at the end of the nineteenth century and decreases during the
historical period (�̃� increases); this long-term trend is primarily due to changing longwave clear-sky feedback.
In HadCM3-A, s̃ has an intervening maximum centred around 1940, which is caused mostly by a temporary
change of the contribution to �̃� from cloud radiative effects from about +0.5 W m−2 K−1 (negative feedback
on warming) to −0.5 W m−2 K−1 (positive feedback, increasing s̃). This midcentury feature is discernible in
HadGEM2-A as well but less pronounced; conversely, the long-term trend is weaker in HadCM3-A. The most
important points, common to both models, are that �̃� is larger (s̃ is smaller) than its 4 × CO2 value throughout
the historical period (except briefly around 1885 and 1940 in HadCM3-A) and that �̃� for recent decades is
larger than earlier in the record.

The similar time variation in �̃� among ensemble members of each model, and the features common to both
models, can only be caused by the surface boundary conditions. We show that the effect of SST dominates that
of sea ice by comparison of HadCM3-A amipPiForcing with a four-member ensemble experiment, denoted
“amipPiForcingClimI,” having the same SST but with climatological monthly sea ice from the AMIP data set
for 1871–1900, i.e., no interannual variation. The time variations of �̃� in amipPiForcingClimI and amipPiForc-
ing are largely consistent (Figure 2d); the differences in the 1910s are due to cloud feedback and since about
1960 due to clear-sky shortwave feedback. Both models show dips in s̃ around the times of the explosive
volcanic eruptions of Agung, El Chichon, and Pinatubo, which caused climatic cooling due to forcing by strato-
spheric aerosol. Since time-dependent volcanic stratospheric aerosol, like other radiative forcing agents, is
not included in the AGCM simulations, the variation of s̃ must be due to the effect on patterns of SST.

Let us assume that 𝛼 is a function of P(x), which is the spatial pattern of SST change (KK−1) obtained by regres-
sion of annual mean SST(x, t), where x is geographical location and t is year, against global mean annual
mean SST(t). We evaluate P for 1926–1955 and 1979–2008 from the AMIP II data set (Figures 1b and 1d).
During these 30 year periods �̃� in HadCM3-A was, respectively, small and large (1.16 ± 0.07 W m−2 K−1 and
2.21 ± 0.08 W m−2 K−1, shown in Figure 2b), which are significantly different at the 5% level. By construction,
each P field has an area average of unity (over the sea). We add each P field (in K, i.e., the field of SST change
for a 1 K area average warming) to every monthly field in the annual cycle of climatological mean SST from
the AMIP II data set for 1871–1900. Using each of the two perturbed SST climatologies with climatological
mean monthly sea ice for 1871–1900, i.e., having no interannual variation in sea surface conditions, we carry
out a 30 year integration of HadCM3-A. The control for these two experiments is a 30 year integration with
the 1871–1900 climatological monthly sea ice and unperturbed SST (as if P = 0 everywhere).

For each P field, we estimate 𝛼=−N∕T from the 30 year mean changes in N and T with respect to the control,
and the values thus obtained are in good agreement with those from �̃� in the corresponding periods of
the time-dependent amipPiForcing integrations (Figure 2d), confirming that the variation in �̃� is due to the
patterns of SST change. A notable difference between these patterns (Figures 1b and 1d) is the cooling in
1979–2008 in the east Pacific, in regions where marine stratocumulus low cloud is generally thought to make
a positive contribution to climate sensitivity when the SST warms with the global mean [Boucher et al., 2013].
The reversal of the sign of the contribution from these regions to the global mean during 1979–2008 could
be part of the explanation for the low global sensitivity.

For both periods 𝛼 is larger than �̃� in abrupt4xCO2. We demonstrate that this is due to the SST patterns by
carrying out a four-member ensemble experiment, denoted “scaledSSTPiForcing,” with preindustrial atmo-
spheric composition, climatological monthly sea ice for 1871–1900, and monthly SST fields constructed
by the pattern-scaling method of Andrews et al. [2015, section 4b]. We calculate monthly mean fields of
climatological SST change with respect to preindustrial control for years 1–20 of abrupt4xCO2 in HadCM3,
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each divided by its global mean (giving a pattern in KK−1 with unit mean). The annual mean pattern has no
substantially negative areas (Figure 1c), like the similar field shown by Andrews et al. [2015, Figure 5a] for the
CMIP5 ensemble mean. We scale the monthly patterns by the monthly time series of HadCRUT4 T anomaly
with respect to the climatological mean of 1871–1900 and add them to the AMIP II climatological SST fields
for 1871–1900. Thus, we obtain SST fields whose global mean varies as observed historically but with the
geographical pattern of response to quadrupled CO2 forcing in HadCM3.

The �̃� of scaledSSTPiForcing has no trend and varies on decadal time series around the �̃� of HadCM3
abrupt4xCO2 years 1–20, from which the SST patterns were constructed (Figure 2d). It is thus consistently
smaller (s̃ larger) than in amipPiForcing, mainly because cloud radiative effects give a small net positive feed-
back on warming (negative contribution to 𝛼) in scaledSSTPiForcing but a generally negative feedback in
amipPiForcing. This is opposite to the finding of Zhou et al. [2015] in CMIP5 AOGCMs, where cloud feedbacks
give a weaker positive feedback for CO2-forced climate change than for unforced variability, the difference
also being attributed to SST patterns.

Since the SST patterns are the same in the amipPiForcing experiments with the two AGCMs but the outcome
is model dependent (Figures 2c and 2d), �̃� must also depend on the atmospheric feedbacks in each model. We
expect such dependence from much previous work in which the same SST perturbation has been prescribed
in a range of models [e.g., Cess et al., 1996; Ringer et al., 2014].

The two AGCMs agree on a value of �̃� ≃ 2.0 W m−2 K−1 (s̃≃ 0.5 K W−1 m2) for 1979–2008. In standard CMIP5
AMIP experiments, AGCMs are integrated with historical SSTs for this period. Unlike amipPiForcing, the AMIP
experiments have time-dependent forcing agents. Since F =N + 𝛼T , we can evaluate �̃� by regressing annual
mean F−N against T [Forster and Gregory, 2006; Tett et al., 2007], using the historical effective radiative forcing
F(t) from the assessment of Myhre et al. [2013]. (We have repeated the calculations using F(t) from Andrews
[2014], with the same qualitative conclusions and only small quantitative differences.) Across the ensemble
of 19 AGCMs, the mean and standard deviation of �̃� are 2.3 ± 0.7 W m−2 K−1 (s̃=0.46±0.13 K W−1 m2) for
1979–2008 (distributions shown in Figure S1 in the supporting information). The corresponding AOGCMs
give �̃�= 1.0±0.3 W m−2 K−1 (s̃=1.0±0.3 K W−1 m2) in years 1–150 of abrupt4xCO2 (following Andrews et al.
[2012]). Thus, HadGEM2-ES and HadCM3 are typical of the CMIP5 ensemble in indicating a lower s̃ for SST
changes observed in recent decades than predicted in response to CO2 increase.

4. Discussion

Our results suggest that the differential climate feedback parameter �̃� varied on multidecadal timescales
during the historical period and that it was generally larger than for abrupt4xCO2, in particular, during the
last three decades. In order to interpret these findings, we need to consider the influences on the relationship
between N and T , from which we determine �̃�.

Different geographical patterns of SST that produce the same global mean T can give different N; for instance,
Andrews et al. [2015] show a case where changing the pattern of SST alters N without changing T (the rapid
SST adjustment to quadrupling CO2). In addition, there is variability in N internally generated by the
atmosphere-land system. Including both of these phenomena, we may write Ni(t) =−𝛼T(t) + N′(t) + 𝜖i(t) in
a amipPiForcing integration, where i is the ensemble member number, 𝛼 is determined by the time mean
pattern of SST change (whose amplitude increases as forced climate change grows in magnitude), N′(t) is
the contribution that depends on interannual variation or trends in the pattern of SST, and 𝜖i(t) is variability
that is not forced by SST and therefore different in each ensemble member. We may alternatively write this as
Ni(t)=−�̃�(t)T(t) + 𝜖i(t), with time-dependent �̃�(t)=𝛼 − N′(t)∕T(t).

The estimated �̃� from the ensemble of regression slopes of N against T in individual amipPiForcing integra-
tions (reported in section 2) is 1.72 ± 0.06 W m−2 K−1 for HadGEM2-A and 1.66 ± 0.01 for HadCM3-A (mean
and standard error). Alternatively, from regression of the ensemble mean N against T , we obtain 1.74±0.08 W
m−2 K−1 and 1.67 ± 0.09 for the two models. The means are similar from the two methods, but the standard
error from the ensemble mean regression is larger.

If N′(t) was zero, the scatter around the regression line would be caused only by 𝜖i(t), which is different in
each ensemble member i. In that case, the standard error from the ensemble mean regression would decrease
with 1∕

√
M, where M is the size of the ensemble, just as the standard error estimated from the ensemble

of individual regressions does (formula in Appendix A in the supporting information). Actually, it does not
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decrease so much because most of the scatter is due to N′(t) caused by SST variation, which is the same
in every ensemble member. This contradicts the assumption made in deriving the OLS standard error, that
the scatter is due to uncertainty in N which is independent of SST and can therefore be estimated from the
residual of the fit. To clarify this, consider the special case of 𝜖(t) = 0. All the realisations will be identical, so
the standard error estimated from the spread of regression slopes will be zero, but N′ will cause a residual
deviation from the regression line and, hence, a nonzero standard error of the ensemble mean slope.

The OLS regression minimizes the root-mean-square residual, giving the best choice of �̃� to describe the rela-
tionship between R=−N, the increased radiation to space, and the SST change which causes it. However,
this minimum residual is large, because constant 𝛼 is not an accurate assumption, and the scatter is caused
mostly by the variation in �̃�. The small standard errors from the ensemble of slopes indicate that the time
dependence of �̃� is robust in each model, given the observed time dependence of the SST patterns. For the
cause of the latter, we consider three possibilities, which may all apply.

The first possibility is that unforced variability could have a strong influence on historical variation in the
patterns of SST and hence on �̃�. This possibility is suggested by studies of the spatiotemporal variation of
temperature change with reference to the recent hiatus in T [Dai et al., 2015; Xie et al., 2015]. It implies that �̃�
evaluated from a short period may not be applicable to forced climate change [Dessler, 2013; Zhou et al., 2015],
and using the entire observed historical record will yield the best estimate of �̃� for the response to forcing
by minimizing the influence of long-period variability. That the historical �̃� is larger (sensitivity smaller) than
expected for the response to forcing would be explained if patterns of unforced variability in SST generally
result in larger �̃�, and the observed record is not long enough to remove this effect.

The second possibility is that the time dependence in historical �̃� could arise from a nonlinear response of the
SST patterns to the magnitude of the forcing or of climate feedback processes to the amplitude of the forced
SST pattern. In HadCM3 [Good et al., 2012; Gregory et al., 2015] and CCSM3 [Jonko et al., 2012], s̃ for CO2 forcing
rises with CO2 concentration. If this is so in reality, given that the present CO2 concentration is about 1.5×
preindustrial, the historical s̃ would be smaller (�̃� larger) than the sensitivity to 4 × CO2. However, the trend in
HadGEM2-A goes in the opposite sense, toward smaller s̃ as time passes.

The third possibility is that the patterns of SST change and, hence, �̃� might vary during the amipPiForcing
experiment because of changes in relative importance of the various forcing agents, which have different
spatiotemporal “fingerprints” [Bindoff et al., 2013]. For example, s̃ might be smaller during recent decades
because of the effect of strong volcanic forcing on SST patterns, although this would not explain larger s̃ in
the late nineteenth century (Figures 2c and 2d). Since amipPiForcing does not include forcing agents, their
influence on �̃� can come only through their effect on historical SST, not directly through the tropospheric
energy balance.

Tropospheric anthropogenic aerosol exerts a negative and particularly heterogeneous radiative forcing,
which may partly have driven variations in the patterns of SST in the Atlantic and Pacific [e.g., Booth et al.,
2012; Allen et al., 2015; Boo et al., 2015]. Its global mean magnitude has increased less rapidly or stabilized
since the 1970s [Gregory and Forster, 2008; Boucher et al., 2013; Regayre et al., 2014; Rotstayn et al., 2015]. There
is some evidence that 𝛼 for this forcing is about 40% smaller (s 40% larger) than for well-mixed greenhouse
gases [Shindell, 2014; Kummer and Dessler, 2014; Rotstayn et al., 2015], though this depends on how the forcing
is evaluated [Paynter and Frölicher, 2015; Marvel et al., 2016]. This would make the net s during the historical
period smaller than for CO2 alone (Appendix B in the supporting information), but the decreasing ratio of the
magnitude of the (net negative) anthropogenic aerosol forcing to the magnitude of other anthropogenic forc-
ings (net positive, especially from greenhouse gases) implies an increasing net climate sensitivity parameter
over recent decades (and into the future), the opposite trend to the amipPiForcing experiments.

5. Conclusions

It is evident that both forced response and unforced variability can affect the patterns of SST change and hence
�̃�. Our models agree on historical �̃� ≃ 1.7 W m−2 K−1 (effective climate sensitivity of about 2 K) for the historical
period as a whole, i.e., smaller effective climate sensitivity than for 4 × CO2, and they agree with other AMIP
models that �̃� ≃ 2.2 W m−2 K−1 (effective climate sensitivity of about 1.5 K) for 1979–2008. Coincidentally,
these recent decades, in which we have most observational information, especially from satellite and ocean
observation, have �̃� which is markedly larger than for the historical period in general.
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Both of our models show time variation in �̃�, but the similarities in the details are limited, indicating a large
influence from their different representations of feedbacks. The trends in �̃� in the amipPiForcing simulations
are not consistent with the expected effects of increasing CO2 concentration and the declining fraction of
anthropogenic forcing due to tropospheric aerosol, which may imply that unforced or naturally forced vari-
ability is more important and produces a larger �̃�, but our results do not support a clear conclusion about
which influences are dominant. Further research into this issue is called for.

The Cloud Feedback Model Intercomparison Project of CMIP6, the successor to CMIP5, includes the amipPi-
Forcing experiment and various other AGCM experiments with different fixed patterns of SST change, while
the Radiative Forcing Model Intercomparison Project will diagnose F(t) in AOGCMs, so that it will be possible
to estimate �̃� consistently in AOGCM historical experiments from F−N and T . It would be informative also
to carry out AGCM experiments using sea surface conditions from AOGCM experiments with individual
forcing agents for comparison with �̃� calculated from N and T in the absence of the forcing agent. These new
experiments will show whether other AGCMs exhibit variation like ours do in the climate sensitivity param-
eter during the historical period and will allow analysis to identify the feedback mechanisms responsible for
the dependence on patterns of SST change, such as the low climate sensitivity parameter of recent decades
indicated by the CMIP5 AMIP simulations.

If CMIP6 results corroborate our finding that the climate sensitivity parameter indicated by GCMs under large
CO2 increases is greater than for historical SST change simulated by the same GCMs, it would help to relieve the
apparent contradiction between the different sources of evidence that have been used to assess the effective
climate sensitivity. Further investigation would be needed to explain the difference, for which some possible
explanations are that the climate sensitivity parameter for CO2 forcing is underestimated from observed
climate change because of a large influence from unforced variability, that it is overestimated by GCMs, or that
it cannot easily be inferred from observed climate change because of the time-dependent relative importance
of various forcing agents.
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