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Abstract
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure

is often applied to reduce the number of points to a set of s points, s� n, which also con-

tains the same hull. We present an algorithm to precondition 2D data with integer coordi-

nates bounded by a box of size p × q before building a 2D convex hull, with three distinct

advantages. First, we prove that under the conditionmin(p, q)� n the algorithm executes

in time withinO(n); second, no explicit sorting of data is required; and third, the reduced set

of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n)
time convex hull algorithm. This paper empirically evaluates and quantifies the speed up

gained by preconditioning a set of points by a method based on the proposed algorithm

before using common convex hull algorithms to build the final hull. A speedup factor of at

least four is consistently found from experiments on various datasets when the condition

min(p, q)� n holds; the smaller the ratiomin(p, q)/n is in the dataset, the greater the

speedup factor achieved.

Introduction
Computing the convex hull on a set of n 2D points is a first computational step to many geo-
metric algorithms [1]. It has many practical applications; in ecology [2], neuroscience [3], com-
puter vision [4] and palaeontology [5] to name a few. Most known convex hull algorithms are
of time complexity O(nlogn) [6]; these algorithms are general in the sense that they do not
impose any restriction on the order in which points are considered. Linear complexity (O(n))
time algorithms do exist but require a set of points that are ordered in some way; for example
[7] requires an order where the points form a simple polygonal chain. Such orderings are not
always easy to produce given the process of data collection. Regardless of the time complexity
of an algorithm, reducing the set of n points down to a set of s� n points would result in faster
computations, provided that the smaller set preserves the convex hull of the original (bigger)
set, and provided that the time taken to perform the reduction offsets the cost of preprocessing
n − s points for any convex hull building algorithm. This kind of reduction is often used as the
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first step in practical implementation of convex hull algorithms seeking to reduce execution
time [8]. Here, a new and surprisingly simple method to perform a reduction of 2D points
bounded in a box of size p × q with integer coordinates is empirically analyzed [9]. The method
is based on a proposed algorithm that exhibits three distinct advantages over other methods.

• First, we prove that under the conditionmin(p, q)� n the method is linear and can be
applied before any known 2D convex hull algorithm.

• Second, no explicit sorting of points is required.

• Third, by construction, the reduced set of points forms a simple polygonal chain and hence
directly prepares the points for linear convex hull algorithms such as the one of Melkman [7].

The second bullet point is significant because common reduction methods require an
explicit call to a sorting procedure of the points along a particular direction [8].

First we measure the amount of reduction of points achieved by the proposed method; we
find higher amounts of reduction than the ones obtained by the most common method [8].
We also show, through experimental evaluation, that the method makes faster convex hull
computations for both linear and non-linear algorithms. Experiments were carried out on four
different datasets having different p/n ratios (assuming p� q). In order to benchmark the
speedup benefit of the proposed preconditioning method, the experiments use the most com-
mon convex hull computational algorithms readily available in the CGAL computational
geometry library in order to build the final hull [10] (and briefly from OpenCV [11]). Since our
method directly forms a polygonal chain, for completeness, we also apply it to the method of
Melkman, which is not possible with the most common method [8]. We have also included
results using the convex hull algorithm from Chan [12].

Materials and Methods

Proposed algorithm
Assume a 2D box with sides p × q, with integer points whose x, y coordinates are in the range
[1, . . ., p], and [1, . . ., q] respectively. Without loss of generality, assume p� q. As a small
example consider the set of (x, y) points on the left of Fig 1, given in any order as an array P.

Assume an array L of p entries as points, with each point initialized to (q + 1,−1). The pro-
posed algorithm is presented in pseudo-code in Algorithm 1 listing. After all n points of P have
been processed by the routine in Algorithm 1, L = [(1, 4), (2, 4), (2, 5), (3, 3), (2, 3)]. L[1] = (1,
4) since, y = 1 is the minimum point (min); and y = 4 is the maximum (max) point for column
x = 1. This reduced set is shown in the center of Fig 1. Intuitively the convex hull on the left is
the same as the convex hull on the center of the figure. Since local convexities of the boundary
points are conserved and collinear points are removed we need only to consider the min and
max points on an x (or y) dataset when deriving a convex hull [6].

Algorithm 1 Reduction of points
Input: An array P of n points with (x, y) coordinates, x 2 [1. . .p] and y 2 [1. . .q]
Require: Initialize L[i] = (q+1,−1), 8i 2 [1, p]
Output: An array L of p entries with each entry either point (u, v) or (q+1,−1)

1: foreach point in P do
2: xi, yi = point
3: u, v = L[xi]
4: u( min(yi, u)
5: v( max(yi, v)
6: L[xi]((u, v)
7: end for
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Building a polyline. Scanning L along x builds a simple polygonal chain, since joining all
points of the reduced set of points s� n creates edges that do not intersect. For each valid point
in L (one different to (q+1,−1)) joining u to v (min to max), and then from v (max) to u (min)
of the next valid point, forms a simple polygonal chain. We formalize this principle with the
following lemma.

Lemma 1. For a bounding box of m = p × q points with integer coordinates, and given an
array L with entries (ui, vi), i 2 [1. . .p] so that 1� ui, vi� q are the minimum and maximum
points respectively at x coordinate i, there exists a simple chain joining all the minimum and
maximum points.

Proof (by construction). The chain is formed by scanning entries of L along i = 1, . . ., p. Each
entry i of L contains one or two points or no points of the bounding box. Let’s refer to an entry
(ui, vi) of L such that 1� ui, vi � q as corresponding to a valid point. An entry (ui, vi) = (q + 1,
−1) corresponds to a column in the bounding box with no valid points. An entry i in L with no
valid points is skipped. If the entry i has a single valid point (ui = vi), that point is kept. Two
valid points in an entry i are joined with an edge that runs from (i, u) to (i, v). The whole chain
is formed by connecting edges in an entry i (or single point in entry i or skipping entry i) to
edges in adjacent entries (or single point in adjacent entry or skipping adjacent entry) until all
valid points are connected. Adjacent entries i and i + 1 are connected by an edge from (i, v) to
(i + 1, u) or from (i, v) to (i + k, u) where entries i + 1, . . ., i + k − 1 have no valid points. This
creates a simple chain covering all the valid points in L since no edges intersect.

Quick analysis. The routine of Algorithm 1 visits each point of P once, therefore L is built
in O(n) time. It can be argued the running time is within O(n + p) but as we restrict points to
the case p� n, then the running time is O(n). Scanning L to recover valid points builds the
polygonal chain, Lemma 1, takes O(p) time and provided that p� n the whole method of

Fig 1. A small example of 2D points with integer coordinates. Left: (x, y) integer points on a 2D grid with
p = 5. Center: Points with minimum and maximum y values for each x coordinate. Right: A polyline.

doi:10.1371/journal.pone.0149860.g001
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building the polygonal chain takes O(n) time. As the maximum number of valid points that
remain after the reduction by Algorithm 1 is s = 2p then a potential reduction of the number of

original points is given by the factor 1� 2p
n
. Clearly, the smaller the ratio p/n the greater the

reduction that will be achieved. For the case p> n this paper does not make any claim of any
advantages for Algorithm 1 for two reasons. Firstly, the algorithm takes O(n + p) time and sec-
ondly, in practice it corresponds to sparse datasets, where few points would be removed, and
thus it is not worth attempting any preconditioning of points.

Correctness of Algorithm 1. See Appendix.

Common method to reduce a set of 2D points
A simple algorithm to compute the convex hull on a set of 2D points is presented in [8]. In the
general case, the algorithm has a worst case time complexity ofO(nlogn), mainly due to an explicit
sort on points based on their x coordinate. It is composed of three steps, with a first step being a
pre-processing procedure, with running timeO(n), that finds extreme points from where a reduc-
tion of points is made before attempting to build the final convex hull. The preprocessing follows
by determining the minimum and maximum values along x and y coordinates. With these points,
four or fewer external regions are formed. All the points found inside these external regions are
discarded since they cannot belong to the convex hull. Applying this method to the small example
on the left of Fig 1, three external regions are formed (outside the convex hull and inside the box).
All points internal to the pentagon (convex hull of the figure, shaded) can be discarded. In this
trivial example, this method has not left any points to be further considered. In general, it is
reported that for large values of n the number of points is reduced to less than half [8].

Proposed method to reduce a set of 2D integer points
Determining the minimum and maximum values along the x coordinate gives p as p = xmax −
xmin + 1, and thus, resolving whether the condition p� n holds or not, carries the same time
cost O(n) as the first step of the common preconditioning method in [8]. This includes any
translation of points if necessary. We propose the following preconditioning method.

1. Determinemin(p, q) and n from the dataset. This takes O(n) time.

2. Check the conditionmin(p, q)� n. If the condition holds, precondition points by Algo-
rithm 1 (if p> q Algorithm 1 is applied with array L along the y coordinate instead of x).
Execute Step 3 below with the remaining s points after the reduction. If the condition does
not hold, skip Algorithm 1 and execute Step 3 below with the original n points. This step
also takes at most O(n) time.

3. Call any convex hull algorithm to build the final hull.

The overall effect is that determining whether to apply the proposed method and applying
the method will not make the computation of a convex hull any worse regardless of the cho-
sen convex hull algorithm. From the previous analysis it follows that for datasets with ratios
p/n< 1/4, the reduction of points will be of more than half.

Results

Empirical evaluation on four datasets
A quantitative evaluation on four datasets is presented. The datasets are: a dataset with random
numbers referred to as the synthetic dataset, a dataset with points densely distributed in a box,
a typical image dataset, and a dataset with a low density of points in a box or sparse dataset.
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The first three datasets correspond to cases where the condition p� n holds. The points in the
sparse dataset present the condition p> n.

The amount of reduction of points that results using the most common preconditioning
method of Akl and Toussaint [8] and the reduction that results by applying the proposed pre-
conditioning method are presented. The result of the reduction of points is shown in Fig 2. It is
clear that Akl and Toussaint’s method gives reductions of over half the points as claimed [8].
As previoulsy noted, the proposed method struggles to reduce points substantially under the
condition p> n, as seen in the sparse dataset. The figure also shows that the preconditioning
method proposed here gives a reduction in the number of points of over 95% when the condi-
tion p� n holds; this reduction is clearly greater than the reduction obtained by the method of
Akl and Toussaint for this conditions on the same datasets. A greater reduction compared to

Fig 2. Percentage of reduction of points of four datasets of 2D points with integer coordinates. The result of two methods of reductions are shown: The
one of Akl and Toissant as presented in [8] and the one proposed here.

doi:10.1371/journal.pone.0149860.g002
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Alk and Toissaint’s, like the observed in Fig 2, is useful in practice if the time to perform this
reduction plus the time to compute the convex hull on the remaining smaller set of points gives
an overall speedup running factor. This is examined next.

Synthetic dataset. For the first dataset many circles and super-ellipses were generated inside
p × q boxes of typical image sizes (from under 1 Mpixel to 40 Mpixels) each having n random
points. For each circle or super-ellipse the convex hull was computed using the algorithm (and
preconditioning method) in [8] as available from CGAL and the execution time annotated as tn.
The proposed preconditioning method was applied to each circle and superellipse to reduce the
original number of n points to s points and the execution time for this reduction was annotated
as tr. The execution time to get the convex hull on each reduced set was annotated as ts (including
the time to extract valid points from array L). A speedup factor was then computed as tn

trþts
. This

speedup factor is seen in Fig 3 as a function of p/n (referred to as sparsity). A speedup factor of at
least four is consistently observed in Fig 3 when computing the convex hull with the proposed
preconditioning method. For this random dataset, the condition p� n always holds.

Dense dataset. For the second dataset we post-processed a dataset of a 3D point cloud rep-
resenting complete models of each of 13 large-bodied mammals [5] (data available from http://
www.animalsimulation.org). A series of 2D projections along one axis on a plane with integer
coordinates was performed for each mammal’s 3D model to generate very dense datasets; these
have n of up to 8 million points. We used 2D boxes of size p × q with p ranging from 1024 to
10320. A speedup factor of at least a factor of 16 is consistently observed in Fig 4 when comput-
ing the convex hull with the proposed preconditioning method. Note that the final hull was
built by six algorithms available from CGAL, as well as Chan’s algorithm (algorithm CGAL is
without the preconditioning in [8]). For this dataset the condition p� n always holds.

Fig 3. Speedup factor as a function of p/n for a random set of circles and superellipses. A set of n
points in a box of p × q were preconditioned first by the method proposed here and the convex hull found by
the algorithm in [8] as available from CGAL [10].

doi:10.1371/journal.pone.0149860.g003
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Typical image dataset. For the third dataset we took a collection of 49 brain MRI midsag-
ittal planes. The intercranial volume in each MRI image was manually segmented [13]. We
extracted the midsagittal plane as a 2D binary image, with a pixel size of 0.94mm × 3.00mm.
For this dataset, a speedup factor of at least a factor of eight is consistently observed when com-
puting the convex hull with the proposed preconditioning method (Fig 5). For this dataset the
condition p� n always holds.

Sparse dataset. For the fourth dataset we have used seven recordings of 2D spatial distri-
bution of wildlife in Kenya [14]. These datasets annotate the area where animals move around
in search of food or their homerange. The data annotate area positions using a 2D Cartesian
coordinate referred to as Universal Transverse Mercator system (UTM) that we have resolved
to distances of 1 meter. This results in cases where the homerange area is bound to p values
close to a million meters. Each dataset recorded at most 120 thousand positions and as such we
have a sparse case where condition p� n does not hold. The potential acceleration obtained by
using the proposed preconditioning method for these datasets is shown in Fig 6; Chan’s convex
hull algorithm was used to build the final hull. The graph shows that the closer to 1 the ratio p/
n is, the better the speedup factor achieved. However, for this case, p> n, the proposed precon-
ditioning method is not worth using as we have already noted; as expected, no practical advan-
tage by reducing the number of points was achieved.

Discussion
For the case of n integer points inside a box of sides p × q, reducing the set to s points by the
method proposed in this paper is empirically found to be better than reducing the points by the
most common preconditioning method [8] under the conditionmin(p, q)� n. This condition

Fig 4. Speedup factor for a dense dataset. The points of a dataset of 13 mammals were first
preconditioned with the method proposed here and then the convex hull was computed with seven
algorithms.

doi:10.1371/journal.pone.0149860.g004
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Fig 5. Speedup factor for a typical image dataset. The points of a dataset of 49 brain images were first
preconditioned with the method proposed here and then the convex hull was computed with six algorithms.

doi:10.1371/journal.pone.0149860.g005

Fig 6. Speedup factor as a function of p/n for a sparse dataset. The points of seven homerange datasets
were first preconditioned with the method proposed here and then the convex hull was computed by Chan’s
algorithm.

doi:10.1371/journal.pone.0149860.g006

Fast Preconditioning for Convex Hulls

PLOS ONE | DOI:10.1371/journal.pone.0149860 March 3, 2016 8 / 11



is typically satisfied in image datasets. In fact, all brain points of the typical image dataset used
here are bounded in a box of size p × q = 50 × 256 pixels while n is roughly in the order of five
thousand points. We used the convexHull function available within the open source computer
vision library OpenCV to compute the hull for these images (from [11]). First, we applied the
function to the original n points of an image and secondly to the remaining s points left by the
preconditioning method to each image. We found an average speedup factor, due to the reduc-
tion in the number of points, of around a value of 1.9; the time it takes to apply the precondi-
tioning was obviously taking into account. As we have used different box sizes to the dense
dataset, we also quantified the speedup seen when using the convexHull OpenCV function on
each mammals’ data. Speedup factors of over a value of 30 are clearly shown in Fig 7; they are
rougly the same for each box size as the points in each box are very densely populated. For

Fig 7. Speedup factor in OpenCV as a function of box size for a dense dataset. The points of each mammal in the datasete was first preconditioned with
the method proposed here and then the convex hull was computed by OpenCV convexHull function.

doi:10.1371/journal.pone.0149860.g007
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image datasets, we expect that checking the conditionmin(p, q)� n is unnecessary and the
precondition method can be directly applied to points (as points are pixels positions with inte-
ger values) for speeding up the convex hull computation.

Conclusions
The reduced set of s points proposed here is recovered in such a way that a simple polygonal
chain is formed from these s points. This allows the linear convex algorithm, known as Melk-
man, to be applied in a straightforward manner or any other known convex hull algorithm.
When the condition p� n holds for a dataset we have proved that the preconditioning method
is of linear time O(n) and leaves s� 2p points which results in a reduction of points by a factor

of 1� 2p
n
. The greater this reduction is, the greater the speedup factor observed for the compu-

tation of convex hulls in real datasets. In fact when the ratio p/n< 1/4 the reduction in the
number of points is greater than half of the points; real datasets have p/n ratios much smaller
and reductions of well over 95% were observed in the datsets used here. The preconditioning
step in [8], proposed nearly four decades ago and still used and popular, typically reduces the
number of points of datasets by around half the number of points; a much lower amount com-
pared to the reduction achieved by the method proposed here. The proposed method differs
from other methods in the sense that it can be thought of as a process of including points that
may be in the final convex hull rather than a process of discarding points that cannot be part of
the hull.

Appendix

Correctness of Algorithm 1
Proof by induction The claim is that the convex hull of the n original points contained in a
box of size p × q points is the same as the convex hull obtained from the smaller set of s points
contained in the output array L after the n points are processed by Algorithm 1. Asserting the
claim proceeds by induction as follows.

The basis step is for s = 3 (after at least n = 3 points have been processed) since the smallest
convex hull is a triangle. Three valid points are represented in array L. We distinguish, either
case 1, three valid points found at positions i 6¼ k 6¼ l, or case 2, in which there are two valid
points at position i and one valid point at position k, with i 6¼ k, for any 1� i, j, k� p for both
cases. In case 1, clearly n = 3, so no reduction was achieved. In case 2, two valid points are
found at (i, u) and (i, v) with u 6¼ v; given that 1� u, v� q implies that there could have been
collinear points in between these two extreme valid points at position i. Thus, as the number of
original points at position i was at most q, therefore n� q+1, implying that Algorithm 1
reduces points (s< n) for any q> 2. By definition, any collinear point in between an edge of a
convex hull cannot be part of the hull, so the claim holds. Assume, L contains s valid points,
the claim holds in general if those s points capture the same convex hull of n� s points. Given
an array L with s valid points, consider adding an extra point within the limits of the bounding
box. Three cases are now distinguished. Case 1, the new point is added at position i where no
valid point previously existed. Case 2, the new point is added at position i where a single valid
point previously existed. Case 3, the new point is added at position i where two valid points
previously existed. In case 1, algorithm 1 does not make any assumption on removing it from
the final convex hull and so a point (x, y) gets inserted into L[x] as (y, y); the claim holds. In
case 2, L[i] had a valid point as (u, u) [or (v, v) since u = v]. The new point (x, y) gets inserted
into L[x] either as (u, y) when y> u, or as (y, u) when y< u or remains as (u, u) when y = u;
the claim holds in each instance. In case 3 either the new point (x, y) replaces an existing valid
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point in L[x] as minimum or maximum or it is discarded by being collinear to (i, u) and (i, v).
In any instance either n = s or n> s (n = s + 1) and thus the claim holds.
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