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ABSTRACT

Decadal predictions on timescales from one year to one decade are gaining importance since this time frame

falls within the planning horizon of politics, economy and society. The present study examines the decadal

predictability of regional wind speed andwind energypotentials in three generations of theMiKlip (‘Mittelfristige

Klimaprognosen’) decadal prediction system. The system is based on the global Max-Planck-Institute Earth

System Model (MPI-ESM), and the three generations differ primarily in the ocean initialisation. Ensembles of

uninitialised historical and yearly initialised hindcast experiments are used to assess the forecast skill for 10 m

wind speeds and wind energy output (Eout) over Central Europe with lead times from one year to one decade.

With this aim, a statistical-dynamical downscaling (SDD) approach is used for the regionalisation. Its added

value is evaluated by comparison of skill scores for MPI-ESM large-scale wind speeds and SDD-simulated

regional wind speeds. All three MPI-ESM ensemble generations show some forecast skill for annual mean wind

speed and Eout over Central Europe on yearly and multi-yearly time scales. This forecast skill is mostly limited

to the first years after initialisation. Differences between the three ensemble generations are generally small.

The regionalisation preserves and sometimes increases the forecast skills of the global runs but results depend on

lead time and ensemble generation. Moreover, regionalisation often improves the ensemble spread. Seasonal

Eout skills are generally lower than for annualmeans. Skill scores are lowest during summer and persist longest in

autumn. A large-scale westerly weather type with strong pressure gradients over Central Europe is identified

as potential source of the skill for wind energy potentials, showing a similar forecast skill and a high correlation

with Eout anomalies. These results are promising towards the establishment of a decadal prediction system for

wind energy applications over Central Europe.

Keywords: decadal prediction, regionalisation, wind speed, wind energy, Central Europe, statistical-dynamical

downscaling, MiKlip decadal prediction system, MPI-ESM, COSMO-CLM

To access the supplementary material to this article, please see Supplementary files under

‘Article Tools’.

1. Introduction

The demand for renewable, ecologically sustainable energy

sources as alternative to fossil sources has strongly increased

in recent years (Solomon et al., 2007). In Europe, wind

energy production has emerged as a promising renewable

energy source to face the projected climate change due to

increasing greenhouse gas emissions. The currently installed

wind energy capacity in Europe has the potential to produce

enough electricity to cover up to 8 % of the EU’s electricity

demand (Pineda et al., 2014). By 2020, the European

Commission aims to produce 14.9 % of the EU’s electricity

from wind energy resources (Moccia et al., 2014). Wind

energy production itself is influenced by weather and climate

due to its dependence on near-surface wind conditions (e.g.

Pryor and Barthelmie, 2010). In recent years, several studies

investigated the impact of climate change on wind speeds

and wind energy production over Europe on the regional

scale for the middle and end of the 21st century (e.g. Barstad

et al., 2012; Pryor et al., 2012; Hueging et al., 2013; Tobin

et al., 2014; Reyers et al., 2016). These studies used different
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global and regional climatemodels (GCMs andRCMs) with

different emission scenarios and downscaling techniques,

and focused on different parts of Europe. Most of these

studies agree on a general increase in wind energy potentials

over Northern Europe and a general decrease over Southern

Europe in future decades. Differences can be found regard-

ing the magnitude and sometimes the sign of the projected

changes. These differences seem to result not only from

different initial conditions and model parameterisations but

also from downscaling technique (e.g. Pryor et al., 2005,

2012; Tobin et al., 2014; Reyers et al., 2016). However, both

potential long-term trends and future changes for wind

speed and wind energy potentials are quite small compared

to temperature trends (IPCC, 2012). At the same time, the

natural variability of wind, especially on interannual to

decadal timescales, is quite large andmight conceal potential

long-term trends.

Short-term climate predictions, which can assess this

decadal variability, are of particular interest for the devel-

opment of wind energy production, as their time frame of

one year up to one decade falls within the planning hori-

zon of politics and economy (e.g. Meehl et al., 2009). The

German consortiumMiKlip (‘Mittelfristige Klimaprognosen’,

decadal climate predictions; Marotzke et al., submitted)

developed a model system based on the Max-Planck-

Institute Earth SystemModel (MPI-ESM) to provide skilful

decadal predictions on global and regional scales. Therefore,

the decadal predictions should represent natural variability

as well as changes due to increasing greenhouse gas

emissions (e.g. Solomon et al., 2011). The present study

evaluates several generations of the MPI-ESM decadal

prediction system recently conducted within MiKlip with

respect to the decadal predictability of regional wind speed

and wind energy production. The first generation of MPI-

ESM decadal predictions (baseline0) contributes to the

Coupled Model Intercomparison Project Phase 5 (CMIP5;

Taylor et al., 2012). An overview over recent studies,

especially from CMIP5, and the current state-of-the-art

for decadal predictions can be found in Meehl et al. (2014).

Through CMIP5, a set of global decadal hindcast experi-

ments (initialised forecasts of past cases) and predictions (of

future cases) has been made available. The initial conditions

for these decadal runs are taken from assimilation runs,

which use reanalysis data (ocean-only or ocean-atmosphere)

from the past and the present (see Section 2.1). Ensembles

are generated by initialising the simulations at different time

steps of the assimilation run (usually 1-day-lagged initialisa-

tion; e.g. Müller et al., 2012). The hindcast experiments

are used to analyse the decadal predictability for differ-

ent parameters through a comparison to observations and

reanalysis data (e.g. Smith et al., 2007).

Several publications assessed the decadal forecast skill

of existing forecast systems, either for individual model

ensembles (e.g. Müller et al., 2012, 2014; Goddard et al.,

2013; Marotzke et al., submitted) or for multi-model ensem-

bles (e.g. van Oldenborgh et al., 2012; Doblas-Reyes et al.,

2013; Eade et al., 2014). Most of these studies focus on the

global scale and on primary meteorological parameters like

temperature (e.g. Smith et al., 2007; Müller et al., 2012) and

precipitation (e.g. van Oldenborgh et al., 2012). Although

all of these studies found some decadal forecast skill, their

results differ for different parameters, regions and lead

times. In particular, Eade et al. (2014) indicated that

potential skill in decadal prediction systems may often be

underestimated. Nevertheless, most of them agree that the

North Atlantic is a key region for decadal climate pre-

dictions (e.g. Müller et al., 2012). So far, only few studies

investigated decadal predictions on the regional scale, and to

our knowledge, none is dealing with wind energy. Kruschke

et al. (2014), for example, analysed the decadal forecast skill

for cyclone activity over the Northern Hemisphere in the

MPI-ESM and found some regions over the North Atlantic

with positive predictive skill for intense cyclones. Mieruch

et al. (2014) investigated the decadal forecast skill for

seasonal temperature anomalies and precipitation sums in

dynamically downscaled MPI-ESM hindcasts, focusing on

Europe. They found a good predictive skill for summer

temperature, which could be preserved by regionalisation.

Predictive skill for precipitation sums could even be im-

proved by the downscaling in their study. Haas et al. (2015)

evaluated the decadal predictability of peak winds on the

regional scale in theMPI-ESM, using a statistical-dynamical

downscaling (SDD) approach for the regionalisation. Their

results showed highest skill scores for short lead times and

upper gust percentiles.

For the application to regional scales, the resolution

of the global decadal predictions is insufficient. Therefore,

a downscaling of the global datasets to the regional scale

is necessary (e.g. Mieruch et al., 2014; Haas et al., 2015).

In principle, it is possible to use a dynamical downscaling

(DD) approach for the regionalisation of large ensembles,

depending on available computing power, storage capacities

and time. However, since most decadal prediction systems

comprise multiple ensemble members of yearly initialised

hindcasts, resulting in a total of several hundreds of simu-

lations per ensemble generation (see Section 2.1), it is hardly

possible to regionalise the entire hindcast ensemble using a

purely DDmethod. The present study uses a SDD approach

(following Fuentes andHeimann, 2000; Pinto et al., 2010) to

investigate the decadal predictability of wind energy poten-

tials over Central Europe, with special focus on Germany.

SDD approaches combine a purely DD application with

statistical approaches, for example weather type analysis

(e.g. Reyers et al., 2015) or transfer functions (e.g. Najac

et al., 2011; Haas and Pinto, 2012). This combination offers

a good and cost-efficient alternative to DD. In this study, we
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applied the SDD approach developed by Reyers et al. (2015)

to the decadal hindcasts and predictions of the MPI-ESM

and analysed the decadal forecast skill for different lead

times and different seasons. The focus of this study is given

to wind and wind energy potentials over Germany.

The paper is organised as follows. The decadal predic-

tion and hindcast datasets are described in Section 2 (part

2.1). Additionally, Section 2 contains the methodology of

SDD (2.2), bias and drift correction (2.3), and an explana-

tion of the skill metrics (2.4). The results for wind speed are

presented in Section 3: the added value of downscaling is

addressed in Section 3.1, while Section 3.2 contains the

forecast skill for different wind percentiles. The results for

wind energy potentials are described in Section 4, focusing

on the forecast skill over Central Europe (4.1), the seasonal

dependence of forecast skill (4.2) and a potential source of

forecast skill (4.3). A short summary and discussion of the

results concludes this paper in Section 5.

2. Data and methods

2.1. Data

Three decadal prediction generations of the coupled model

MPI-ESM performed in low-resolution mode (MPI-ESM-

LR; Giorgetta et al., 2013) are analysed. The coupled model

consists of the atmospheric model ECHAM6 (Stevens et al.,

2013), the ocean model MPIOM (Jungclaus et al., 2013),

the land-biosphere model JSBACH (Raddatz et al., 2007)

and the ocean-biogeochemistry model HAMOCC (Ilyina

et al., 2013), coupled by OASIS3 (Valcke et al., 2003).

The atmospheric component is run with a T63 horizontal

resolution (1.8758) and 47 vertical levels, and the MPIOM

with a horizontal resolution of 1.58 and 40 vertical levels.

The three MPI-ESM ensemble generations differ in

their initialisation (see Table 1; cf. also Marotzke et al.,

submitted). The first analysed generation of decadal hindcasts

is called baseline1 (second MiKlip ensemble generation). The

initial conditions are taken from an assimilation experiment,

where the model state is nudged towards ocean temperature

and salinity anomalies of an MPIOM experiment forced

with ORA-S4 ocean reanalysis (Balmaseda et al., 2013), and

full atmospheric fields from ERA40 (Uppala et al., 2005)

and ERA-Interim (Dee et al., 2011). The baseline1 ensemble

consists of 10 members of yearly initialised decadal hind-

casts and predictions from the initialisation year 1960

(hereafter dec1960: comprising the 10-yr period 01 January

1961 to 31December 1970) to 2011 (dec2011: comprising the

10-yr period 01 January 2012 to 31 December 2021), and

is described in detail in Pohlmann et al. (2013). The latest

MPI-ESM generation � named prototype � differs from

baseline1 in terms of full-field ocean initialisation and

consists of two separate ensembles (see Table 1). The first

prototype ensemble (hereafter prototype1) uses full-fields

from ORA-S4 reanalysis, while the second prototype en-

semble (hereafter prototype2) uses full-fields of GECCO2

ocean reanalysis (Köhl, 2015). Both prototype1 and

prototype2 ensembles consist of 15 members of yearly

initialised decadal hindcasts and predictions, from which

10 members are utilised here for the initialisation period

1960�2013 (dec1960 to dec2013). For all three generations,

the ensemblemembers are generated through a 1-day-lagged

initialisation (e.g. Müller et al., 2012). Further, uninitialised

historical runs are used here as reference datasets to estimate

the added value of initialisation (see also Section 2.4). They

consist of 10 ensemble members and are started from a pre-

industrial control simulation and consider aerosol and

greenhouse gas concentrations for the period 1850�2005
(e.g. Müller et al., 2012). The first MiKlip ensemble

generation baseline0 is not discussed here due to the limited

number of runs (10 members every 5 yr for the period

1960�1999, 10 members for the period 2000�2010 and only

three members in every other year).

To evaluate the model performance in terms of the decadal

forecast skill, observations or reanalysis datasets are usually

used. In this study, we consider the ERA-Interim reanalysis

dataset (Dee et al., 2011) for evaluation and for the com-

putation of different forecast skill scores (see also Section

2.4). ERA-Interim is the third global reanalysis dataset of

the European Centre forMedium-RangeWeather Forecasts

(ECMWF). It is available from 1979 onwards. In this study,

we use ERA-Interim data for the period 1979�2010.

Table 1. Overview of the three MPI-ESM ensemble generations used in this study, including information on the name within the MiKlip

consortium, the ocean initialisation, the atmosphere initialisation and the number of ensemble members.

Ensemble Ocean initialisation Atmosphere initialisation # Ensemble member

baseline1 Anomalies from ORA-S4 reanalysis Full-fields from ERA-Interim/ERA40 10

prototype1 Full-fields from ORA-S4 reanalysis As above 10 (from 15)

prototype2 Full-fields from GECCO2 reanalysis As above 10 (from 15)

historical � � 10 (from 15)

In order to enable a direct comparison between the different ensembles, 10 simulations are used for all datasets. All simulations correspond

to the ‘low-resolution’ set up.

DECADAL PREDICTABILITY OF WIND ENERGY OVER EUROPE 3



2.2. Statistical-dynamical downscaling methodology

We follow the SDD methodology by Reyers et al. (2015) to

downscale the global MPI-ESM hindcasts and historical

runs to derive regional wind speeds and wind energy

production. Since the SDD approach for the application

to wind energy potentials is described in detail in Reyers

et al. (2015), only a short summary is given here. SDD

consists of four steps:

In the first step, a circulation weather type (CWT)

approach after Jones et al. (1993) is applied to daily

mean sea level pressure (MSLP) fields, using the following

global datasets as input data: ERA-Interim reanalysis for

evaluation, 10 historical runs and three ensembles of MPI-

ESM hindcasts for the analysis of decadal predictability.

All datasets are interpolated on the same regular 2.58 grid
for the computation of the CWTs. The large-scale atmo-

spheric flow as represented by the instantaneous MSLP

fields is characterised for each day for Central Europe

using the central point at 108E, 508N (near Frankfurt,

Germany; Fig. 1a). The patterns are assigned to 10 basic

CWTs (eight directional and two rotational classes; e.g.

west W or cyclonic C) and one mixed CWT (anti-cyclonic/

west AW). The days corresponding to the AW type are not

accounted for in the basic A or W types. In addition, the

11 CWTs are subdivided into classes with different pressure

Fig. 1. (a) Topography of Europe in metre, and grid points for CWT analysis (step 1 of SDD). The red point represents the central point

at 108E, 508N (near Frankfurt, Germany), and the red crosses represent the surrounding 16 grid points used for the computation of the

CWTs. The white box represents the region for figures (b) to (d). (b) Climatological mean of mean 10 m wind speed in metre per second for

ERA-Interim (1979�2010) as obtained by SDD. (c) Climatological mean of annual Eout in 103MWh for ERA-Interim (1979�2010) as
obtained by SDD. (d) Explained variance between annualEout time series for ERA-Interim (1979�2010) as obtained by SDDand as obtained

by DD (DDera) per CCLM grid point. Grid points with significant correlation are dotted (t-test, 95% confidence level). Box 1 represents the

subregion for the computation of theMSE skill scores as shown inFig. 5 andSupplementaryFigs. 2�5 (see also Section 4), and box 2 represents
the subregion for the averages over Germany (78E�148E, 488N�538N) as shown in Figs. 2, 3, 4, 6, 7 and Supplementary Fig. 1.
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gradients in 5 hPa per 1000 km intervals, ranging from

below 5hPa per 1000 km to ca. 45 hPa per 1000 km.

Altogether, 77 weather classes are considered.

In the second step, representative days for each of the

77 classes are simulated with the regional climate model

COSMO of the German Weather Service (Deutscher

Wetterdienst, DWD) in its Climate Mode (version 4.8,

hereafter CCLM; e.g. Rockel et al., 2008). CCLM simula-

tions with a horizontal resolution of 0.228 are performed

for the model domain of the EURO-CORDEX project

(Giorgi et al., 2006), using ERA-Interim data as initial and

boundary conditions. For each of the 77 weather classes,

up to 10 representatives have been extracted. Note that

the ERA-Interim-driven representatives are used for the

regionalisation of all global datasets, assuming that the

wind characteristics of the different CWTs are similar in

both the model and the reanalysis (see Reyers et al., 2015).

In the third step, simulated hourly 10 m wind speeds

of the representative days are recombined to probability

density functions (PDFs) at each CCLM grid point.

Therefore, we weighted the contributions of all 77 classes

by the respective class frequency (e.g. frequency of a weather

class in a certain decade) and the number of representative

days.

The last step is subdivided into two separate substeps,

one for wind speed and one for wind energy potentials. For

wind speed, the PDFs of the hourly 10 m wind speeds are

directly used to calculate different wind percentiles and the

mean wind for each grid point. Figure 1b shows the spatial

distribution of the mean wind for ERA-Interim (climatol-

ogy for 1979�2010) as obtained by SDD. For wind energy

applications, the PDFs of the hourly 10 m wind speeds are

used to calculate gridded wind energy output (Eout) of

a 2.5-MW wind turbine from General Electrics (2010).

First, the hourly 10 m wind speeds are extrapolated to the

average turbine hub height using a vertical wind profile,

which is the standard procedure in wind energy applica-

tions from the ‘large-scale’ perspective (e.g. Hueging et al.,

2013; Tobin et al., 2014). Here, the power law is used to

extrapolate the 10m wind speeds to a height of 80m (v80;

Reyers et al., 2015). The extrapolated wind speeds form the

basis to compute Eout, following these characteristics:

Below v80�3.5m/s (cut-in velocity) and above v80�
25m/s (cut-out velocity), no energy output is produced.

Between the cut-in velocity (3.5m/s) and the rated velocity

(12.5m/s), Eout is calculated as:

Eout ¼ cp

1

2
qpR2n3

80; (1)

with power coefficient cp (constant value of 0.35 for the

idealised turbine), air density r (constant value of 1.225 kg

m�3) and rotor radius R of the idealised wind turbine

(50m). Between wind velocities of 12.5m/s (rated velocity)

and 25m/s (cut-out velocity), a constant maximum Eout

of 2.5MW is assumed. To obtain spatial distributions of

mean annual wind energy output for each CCLM grid

point, Eout is integrated over all wind speed ranges and

weighted with the respective climatological velocity fre-

quencies. Figure 1c shows the spatial distribution of mean

annual Eout for the ERA-Interim data (climatology for

1979�2010) as obtained by SDD. For the application of

SDD to the different MPI-ESM datasets and to different

time periods, only the weather type computation (step 1)

has to be recalculated.

Reyers et al. (2015) evaluated the results for the SDD

approach for wind energy potentials against a purely DD

method applied to ERA-Interim. The results show a good

agreement for Central Europe (see also Fig. 1d; explained

variance between annual Eout as obtained by SDD and

annual Eout as obtained by DD), while agreement is

reduced over other areas, like the North Sea or the

Mediterranean region. They also tested the applicability

of SDD to decadal hindcasts of the baseline1 ensemble and

concluded that SDD performs well for Germany, the

Benelux region, the Czech Republic, and Poland (cf. Reyers

et al., 2015; their figures 10 and 11). The lower performance

of the SDD approach in other European countries is due to

the considered CWT classification, which is centred over

Germany and thus has a better performance over Germany

and nearby countries (see Fig. 1a; Reyers et al., 2015).

2.3. Bias and potential drift correction

Several studies revealed a systematic bias in the MPI-

ESM historical runs and hindcasts due to model drifts

(e.g. Kruschke et al., 2014, 2015). This systematic bias is

both dependent on the model generation and forecast time.

The International CLIVAR Project Office (ICPO; 2011)

suggests a bias correction for anomaly-initialised predictions

and uninitialised simulations by subtracting a climatological

bias, while a subtraction of lead time-dependent bias

should be used for full-field initialised predictions. In a

sensitivity study, we applied a bias correction to the CWT

frequencies of the baseline1 ensemble (first step of the

SDD; see Section 2.2). In terms of our SDD approach,

the systematic bias is reflected by an overestimation of the

frequencies of some weather types, especially the westerly

types over Europe (see Reyers et al., 2016; their table 2 and

figure 1b). This is due to the typical overestimation of the

zonal flow in the North Atlantic/European Sector in GCMs

(e.g. Sillmann and Croci-Maspoli, 2009). Therefore, the

climatological CWT frequencies for both decadal hindcasts

and uninitialised historical runs were corrected towards the

respective climatological frequencies of ERA-Interim. The

resulting empirical factors have been applied to the decadal

CWT frequencies for the different lead times, which were

DECADAL PREDICTABILITY OF WIND ENERGY OVER EUROPE 5



then used for the computation of Eout. However, since the

bias is systematic in CWT frequencies of both hindcasts and

the historical runs as reference dataset, the bias correction

has only negligible effects on our results (not shown).

Kharin et al. (2012) stated that it is problematic to

assume a constant model drift, especially when differences

between observed and modelled long-term climate trends

are large. This is in particular the case for decadal predic-

tions initialised by full-fields (e.g. prototype). We also

analysed the potential model drift in the prototype1

ensemble, focusing on CWT frequencies and 10m wind

speeds. In both cases, the consequences of the model drift

are small for our approach (not shown). Therefore, we have

chosen to use the original datasets for all analyses.

2.4. Forecast skill assessment

Three different metrics are used to identify a potential

added value of downscaling and estimate whether the

initialisation of the hindcasts improves the decadal predict-

ability compared to the uninitialised historical runs: the

mean square error skill score (MSESS) and the ranked

probability skill score (RPSS) to quantify the accuracy

of the hindcasts, and the reliability (REL) to assess the

relation between ensemble spread and bias. The different

skill metrics are calculated for seven different lead times

for the whole year and the single seasons. Lead times

corresponding to the first half of the decade (e.g. yr1-3:

first to third year after initialisation; hereafter short lead

times) represent skill that is supposed to originate from the

initialisation. We also considered lead times corresponding

to the second half of the decade (e.g. yr6-9: sixth to ninth

year after initialisation; hereafter longer lead times) to see

how far ahead the initialisation provides predictive skill.

Moreover, one lead time covering nearly the whole decade

(yr2-9) is analysed. As suggested by Goddard et al. (2013),

lead times are temporally averaged. All three skill metrics

compare the MPI-ESM ensembles to observations. Since

no gridded observations for wind are available for Central

Europe, we used a purely DD simulation of a reanalysis

dataset instead as verification dataset. DD is simulated

with CCLM, using ERA-Interim data for 1979�2010 as

boundary conditions (hereafter DDera; see Reyers et al.,

2015). As DDera is available for the period 1979�2010, we
decided to use the decadal hindcasts dec1978 (1979�1988)
to dec2000 (2001�2010) for the computation of the metrics

in this study. Thereby, we ensure that the same number of

yearly initialised hindcasts is considered for all lead times.

The study focuses on Central Europe (box 1 in Fig. 1d) and

Germany (box 2 in Fig. 1d; 78�148E and 488�538N), since

the results of the CWT approach are primarily represen-

tative for the large-scale atmospheric conditions over

Germany and surrounding countries (cf. Fig. 1d and

Reyers et al., 2015). Temporal anomalies are used for the

computations of the skill metrics rather than absolute

values to remove systematic climatological biases. For

Germany, anomalies are spatially averaged before comput-

ing the skill scores.

The MSESS (Goddard et al., 2013) is a deterministic skill

score and defined as

MSESS ¼ 1�MSEdec

MSEhist

; (2)

where MSEdec is the mean squared error (MSE) between

the ensemble mean of the initialised hindcast experiments

and the verification dataset (DDera). MSEhist is the MSE

of a reference dataset, which is in this case the ensemble

mean of the uninitialised historical runs. Therefore, a

positive MSESS suggests that the initialised hindcasts are

more accurate in representing the observed decadal climate

variability than the uninitialised historical runs (Goddard

et al., 2013), and a negative value indicates the opposite.

The probabilistic RPSS (Wilks, 2011; Kruschke et al.,

2014) is defined as

RPSS ¼ 1� RPSdec

RPShist

; (3)

where RPSdec is the ranked probability score (RPS) of the

initialised hindcast experiments, and RPShist is the RPS of

the uninitialised historical runs. The RPS is an extension

of the Brier score (scalar accuracy measure for binary

events) to multi-category forecasts (Wilks, 2011). Follow-

ing Kruschke et al. (2014), three categories are used here

for the calculation of RPS: below normal, normal and

above normal. The categories are defined using the 33.3

and 66.6 percentiles of Eout and wind speed anomaly time

series. The RPS is based on the cumulative probabilities for

the three categories (Wilks, 2011):

RPSs ¼
1

I

XI

i¼1

XK

k¼1

Fs;i;k �Otði;sÞ;k

� �2

: (4)

Ft,i,k is the cumulative probability of the 10 ensemble

members within category k (here K�3), derived from the

forecast ensemble of initialisation i (with a total number

of I�23, for dec1978�dec2000) for a certain lead time t.

Ot(i,t),k is the cumulative probability within category k

derived from observations (here DDera) for time t, which

corresponds to the time of initialisation i and the lead time

t. Ot(i,t),k is the Heaviside step function with Ot(i,t),k�1 if

the event occurs in category k or lower or else Ot(i,t),k�0 if

a category higher than k is observed. A positive RPSS

therefore indicates that the initialised hindcasts have a

higher probability to predict an observed anomaly category

than the uninitialised historical runs, and vice versa for

a negative RPSS. Following Kruschke et al. (2014), we

corrected the RPS for biases due to finite ensemble sizes
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(see also Ferro, 2007). RPSSs are calculated for different

wind percentiles as well as for Eout.

The reliability (REL; Weigel et al., 2009) is defined as

REL ¼
RMSEdec �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ensemble

� �
t

q

RMSEdec

; (5)

where RMSEdec is the root mean square error between the

ensemble mean of the initialised hindcasts and the verifica-

tion dataset DDera, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ensemble

� �
t

q
is the time-mean

ensemble spread. The reliability quantifies if the ensemble

spread is able to cover the model uncertainties (Mieruch

et al., 2014). The ensemble is well calibrated for REL values

around zero. The ensemble is called underconfident if

RELB0, and overconfident if REL�0.

3. Decadal predictability of wind speed

3.1. The added value of downscaling

We first analyse the added value of downscaling by

comparing large-scale MPI-ESM wind speed to SDD-

simulated regional wind speed. With this aim, we calcu-

late skill metrics for both variables. Figure 2 shows the

RPSS and the reliability for annual wind speeds averaged

over Germany (see box 2 in Fig. 1d) for the three ensemble

generations (baseline1, prototype1 and prototype2). All

generations exhibit forecast skill, both for large-scale and

regional scale wind speeds. The RPSSs are positive for

most lead times, with highest skill scores for short lead

times (e.g. yr1-3). The regionalisation is able to preserve the

decadal forecast skill of the global runs for almost all lead

times and in all three ensembles. For some lead times, the

downscaling increases the predictive skill. This added value

of downscaling is particularly apparent for baseline1 (e.g.

yr1-3, yr4-6). Improvements are smaller for the prototype

ensembles. The reliability indicates that the global hind-

casts are highly underconfident, in particular prototype2.

An analysis of the individual components of the reliability

[ensemble spread and RMSE, see eq. (5)] reveals that for

nearly all lead times the ensemble spread of the global

hindcasts clearly exceeds the RMSE (cf. Supplementary

Fig. 1). The regionalisation improves both the ensemble

spread and the RMSE for most lead times and in all three

generations. Since the relative reduction of the spread is

larger than that of the RMSE, the two values are now

much closer to each other (Supplementary Fig. 1). As a

consequence, the SDD ensembles are nearly well calibrated

for short lead times in baseline1 and prototype1 and all lead

times in prototype2. In summary, an added value of down-

scaling for wind speed can be identified in the ensemble

generations. This added value depends on the lead time and

the initialisation.

3.2. Forecast skill for different wind percentiles

After identifying the added value of our downscaling

approach, we focus on the decadal predictability of

regional wind speeds. RPSSs are derived for three different

percentiles averaged over Germany: mean wind, 75th

percentile and 90th percentile (Fig. 3). Positive skill scores

are found for all lead times in all three ensemble genera-

tions, except for yr1 (first year after initialisation) for mean

wind speed (Fig. 3a). Skill scores are highest for short lead

times (yr1-3 and yr1-4), with the best skill of 0.34 for

prototype1 for yr1-3 for the 90th percentile (Fig. 3c). In this

case, the initialisation improves the performance of the

decadal prediction system against the uninitialised histor-

ical runs by 34 %. Skill scores decrease with increasing time

after the initialisation (longer lead times) and are often en-

hanced for higher percentiles. Differences between the three

ensembles are rather small, revealing that no initialisation

is clearly superior to the other. Overall, the positive skill

scores indicate that the hindcasts are closer to the verifica-

tion dataset DDera than the uninitialised historical runs.

This is valid not only for the mean wind speed but also for

higher percentiles, which are in particular relevant for the

wind energy potentials.

4. Decadal predictability of wind energy

potentials

In this section, we assess the decadal predictability of wind

energy potentials on the regional scale. Therefore, we first

derive forecast skill scores for wind energy output and

compare them to skill scores for regional wind speed (Section

4.1). Further, the seasonal dependency of the forecast

accuracy is investigated (Section 4.2). Finally, we evaluate

potential large-scale sources of forecast skill for wind energy

potentials (Section 4.3).

4.1. Forecast skill for Germany and Central Europe

First, RPSSs and MSESSs are calculated for annual Eout

anomalies averaged over Germany for seven different lead

times. The RPSSs for Eout (Fig. 4a) are analogue to the

RPSSs for mean wind speed (cf. Fig. 3a): skill scores are

positive for almost all lead times in all three ensembles,

highest skill scores are found for short lead times (with the

highest value of 0.28 for prototype1 and yr1-3), and skill

scores decrease slightly with increasing time since initialisa-

tion. However, the forecast skill for Eout and mean wind

speed may differ, which is particularly true for longer lead

times. This indicates that the decadal predictability of the

wind energy output depends on a wider wind speed range,

and particularly on the higher percentiles (see Section 3.2).
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Highest positive MSESS values are found for short lead

times, with the best skill of 0.47 for prototype1 for yr1-3

(Fig. 4b). MSESSs decrease with increasing time since

initialisation and are negative for yr2-9. The positive skill

found for yr1 for baseline1 and prototype1 is maintained for

the second year after initialisation (yr2; not shown) and

increases considerably for prototype2 (from �0.03 to 0.3;

not shown). For most lead times, both the RPSSs and the

MSESSs vary little between the three ensemble generations.

However, prototype1 seems to outperform the other two

generations for yr1-3, a period that is supposed to be

strongly influenced by the initialisation.

Despite a general agreement between RPSSs and

MSESSs, some differences between these two skill scores

are detected not only in terms of the magnitude but also in

terms of the sign (e.g. yr2-5 and yr2-9; see Fig. 4a and b).

Hence, a higher probability of the hindcasts to forecast

an observed anomaly category (RPSS) compared to the

uninitialised historical runs does not necessarily imply a

higher forecast accuracy (MSESS) against the observed

anomaly values.

For the following investigations, we focus on MSESS to

quantify the differences between ensemble mean predictions

and observations, which are directly measured by the mean

Fig. 2. (a) Ranked probability skill scores (RPSSs) for large-scale MPI-ESM mean wind (blue) and SDD-simulated regional mean wind

(red) for seven different lead times for the whole year, averaged over Germany (box 2 in Fig. 1d), for the baseline1 ensemble. (b) Reliability

for large-scale MPI-ESM mean wind (blue) and SDD-simulated regional mean wind (red) for seven different lead times for the whole year,

averaged over Germany (box 2 in Fig. 1d), for the baseline1 ensemble. (c)�(d) as (a)�(b), but for the prototype1 ensemble. (e)�(f) as (a)�(b),
but for the prototype2 ensemble.
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square error (see Section 2.4). The spatial distributions of

MSESS over Central Europe for the annual mean wind

energy output are shown in Fig. 5. The three MPI-ESM

ensembles are compared for the four exemplary lead times

yr1, yr1-3, yr2-5 and yr6-9. Generally, MSESS reveals high-

est positive values over Northern and Western Germany

and the Benelux countries. Differences between the three

ensembles are rather small. For yr1 (first year after

initialisation), all three ensemble generations show positive

skill scores of up to 0.25 for the Benelux countries and large

parts of Germany. In these regions, the initialisation of the

hindcasts improves their performance against the uninitia-

lised historical runs by 25 %. Negative skill scores of up to

�0.5 cover most parts of Poland, the Czech Republic and

Eastern Germany, especially for prototype2. For yr1-3 and

yr2-5, all three generations show similar distributions of

MSESS. For yr1-3, the ensembles show positive skill scores

of up to 0.6 over most parts of Central Europe. Skill scores

are highest for prototype1 over Germany. For yr2-5, skill

scores decline in all three ensembles. They now range from

�0.2 (over parts of Poland and the Czech Republic) to 0.4

(over Germany), with highest positive values for prototype2.

For yr6-9, skill scores are smallest compared to the other

lead times (�0.5 to 0.3).

In summary, the three MPI-ESM ensemble generations

show an added value of the initialisation compared to the

uninitialised simulations and therefore a decadal forecast

skill for wind energy output. However, this skill is mostly

limited to the first years after initialisation and seems

to depend slightly on the initialisation of the different

ensemble generations.

4.2. Seasonal dependency of forecast skill

Previous studies (e.g. Müller et al., 2012; Mieruch et al.,

2014) found a seasonal dependence of forecast skill in the

MPI-ESM in terms of temperature and/or precipitation.

Given the strong seasonal variations in wind speed, we

calculated MSESSs and RPSSs for Eout for different multi-

year seasonal means (Fig. 6 and Supplementary Figs. 2�5
in the appendix).

For winter (DJF) means, MSESSs are much weaker

than for annual means for all three generations and all

lead years. Negative values are found over Germany, the

Benelux region, and most parts of Poland and the Czech

Republic for almost all lead times (Fig. 6a and Supple-

mentary Fig. 2). MSESS values around zero are only found

for short lead times (yr1-3 and yr1-4). As for annual Eout,

the MSESS for spring (MAM) means reaches its maximum

for lead time yr1-3, in particular over Western Germany

and Benelux (Fig. 6c and Supplementary Fig. 3). For all

other lead times, skill scores are small or below zero. The

strongest negative MSESS values are found for summer

(JJA) means of Eout over Germany (Fig. 6e). At the same

time, the MSESS reveals the most pronounced spatial

heterogeneity for this season, with strong negative values

over Northern Germany, while positive skill is identified

over Poland and parts of the Czech Republic for nearly all

lead times (Supplementary Fig. 4). For autumn (SON)

means, positive MSE skill scores persist longest in all three

Fig. 3. RPSSs for SDD-simulated wind speed for seven different

lead times for the whole year, averaged over Germany (box 2 in

Fig. 1d), for the ensemble generations baseline1 (blue), prototype1

(red) and prototype2 (yellow), for different percentiles: (a) mean

wind, (b) 75th percentile and (c) 90th percentile.
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MPI-ESM ensemble generations (Fig. 6g and Supple-

mentary Fig. 5), and even increase for longer lead times.

Highest skill scores can be observed over North-Eastern

Germany and Western Poland for yr6-9 in all three

generations. However, as for the other seasons a negative

MSESS is found for yr2-9 over Germany (Fig. 6g).

The probabilistic RPSSs for Eout over Germany for the

spring, summer and autumn seasons (Fig. 6d, f and h) are

mostly comparable to the MSESSs in terms of the sign of

the values, with lowest skill in the summer months and

highest and most persistent skill scores for autumn. Large

discrepancies between both skill scores are found for winter.

Winter RPSSs clearly exceed the winter MSESSs (cp. Fig.

6a and b). Positive values are even found for the longer lead

times (e.g. yr6-9) as well as for the multi-year mean yr2-9,

especially for baseline1 and prototype2. The differences

between RPSSs and MSESSs may on the one hand be

attributed to the higher variability and absolute values of

wind speed and wind energy output in winter, which has

a stronger impact in MSESSs than RPSSs. The decadal

hindcasts are apparently not able to forecast this high

variability, resulting in large discrepancies between predic-

tion and observation. These differences are directly cap-

tured by the MSE, leading to negative MSESS values (see

Section 2.4). On the other hand, the decadal hindcasts are to

some extent able to capture the observed category (below

normal, normal, above normal) of the anomalies, resulting

in positive RPSS values.

Overall, the decadal forecast skill for wind energy output

over Germany and Central Europe shows a strong seasonal

dependency, with best skill for autumn and worst skill

for summer. Differences between the three MPI-ESM

ensemble generations are generally small for all seasons,

especially in terms of the sign of the skill scores. Further,

the results reveal that the three ensemble generations have

generally a higher potential in predicting annual than

seasonal wind energy potentials (cf. Figs. 4 and 6).

4.3. Potential source of forecast skill

The previous results provided evidence that the decadal

forecast skill for wind energy potentials is given primarily

for short lead times in all three MPI-ESM ensemble

generations. Given the SDD approach for the regionalisa-

tion, we assume that the predictive skill for regional Eout

might originate from the predictive skill for the frequencies

of large-scale weather types over Europe (step 1 of SDD; see

Section 2.2). Sensitivity studies revealed that Eout depends

strongly on the occurrence of CWT West, especially those

with large pressure gradients, which corresponds to a strong

zonal flow over Central Europe (not shown). Figure 7a

exemplary shows anomaly time series of annual frequencies

of the large-scale CWT West with pressure gradients above

10 hPa per 1000 km (hereafter CWT W� ) and of annual

Eout (averaged over Germany) for ERA-Interim. Both time

series show similar year-to-year in-phase variations of the

anomalies. They agree particularly well for years 1987�2010.
The correlation of 0.62 emphasises the high dependence

of Eout on the occurrence of CWT W�, although the

climatological fraction of this weather type to all CWTs is

less than 8 % (see also Reyers et al., 2015; their figure 3).

Similar and in some cases even higher correlations are found

for the historical runs of MPI-ESM (0.63 to 0.84 for the

individual ensemble members), indicating that such a strong

relationship between regional Eout and the large-scale CWT

W� also exists in the MPI-ESM.

We therefore hypothesise that decadal forecast skill for

regional Eout is high, if the MPI-ESM on the global scale

is able to forecast the frequency of CWTW� well. Figure 7b

shows the MSESSs for annual CWT W� frequencies for

Fig. 4. Forecast skill scores for SDD-simulated Eout for seven different lead times for the whole year, averaged over Germany (box 2 in

Fig. 1d), for the ensemble generations baseline1 (blue), prototype1 (red) and prototype2 (yellow). (a) RPSSs and (b) mean square error skill

scores (MSESSs).
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seven different lead times. Skill scores are positive for all

lead times except yr2-9 in all three MPI-ESM ensemble

generations. The skill scores for CWT W� frequencies are

similar to MSESSs for Eout (see Fig. 4b) and RPSSs for

wind speed, with highest skill scores for short lead times

and a decrease with increasing time since initialisation. As

for wind energy, the highest positive skill score is found for

yr1-3 for prototype1 (added value of initialisation of 60 %),

while the highest value for yr2-5 is detected for prototype2.

As a consequence, the decadal forecast skill for wind

energy potentials can to some extend be attributed to an

adequate forecast of the frequencies of strong westerly

flow over Central Europe. Therefore, a potential source of

forecast skill for regional wind energy potentials over

Central Europe could be identified.

5. Summary and discussion

The decadal forecast skill for regional wind speed and wind

energy potentials over Central Europe was investigated for

Fig. 5. MSESSs for SDD-simulated Eout for four exemplary lead times for the whole year for the ensemble generations baseline1 (left

column), prototype1 (middle column) and prototype2 (right column). Reference forecast is the ensemble mean of the uninitialised historical

runs.
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Fig. 6. MSESSs (left column) and RPSSs (right column) for SDD-simulated Eout for seven different lead times for the four seasons,

averaged over Germany (box 2 in Fig. 1d), for the ensemble generations baseline1 (blue), prototype1 (red) and prototype2 (yellow). (a) and

(b) Winter (DJF), (c) and (d) spring (MAM), (e) and (f) summer (JJA), (g) and (h) autumn (SON). MSESS values under �1.0 are displayed

in the corresponding bar. Note that yr1 for winter corresponds to months 12�14 after initialisation.
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three ensemble generations of the MiKlip decadal pre-

diction system. The MPI-ESM ensembles have the same

atmosphere initialisation but differ in their ocean initiali-

sation. The performance of the global MPI-ESM and the

regionalised hindcast ensembles was tested in terms of

decadal predictability using different skill metrics (MSESS,

RPSS and reliability). The main results of this study can be

summarised as follows:

� All three ensemble generations show forecast skill

for annual wind speeds and Eout over Central

Europe. This skill is mostly limited to short lead

times, with highest values for yr1-3, and is best for

North-Western Germany and Benelux.

� In seasonal terms, forecast skill is best for autumn

and worst for summer. The predictive skill for

seasonalEout is typically lower than for annualEout.

� The differences between the three MiKlip en-

semble generations are generally small. However,

prototype1 slightly outperforms the other two gen-

erations for yr1-3.

� A dominant westerly weather type with a strong

zonal flow (CWT W� ) is identified as a potential

source for the forecast skill of Eout over Central

Europe. MSESSs for CWT W� are similar to

MSESSs for Eout for almost all lead times.

� The added value of downscaling for mean winds

is identified in terms of both RPSSs and reliability

but depends on the lead time and the hindcast

generation.

The added value of downscaling was quantified in terms of

mean wind speeds rather than wind energy output. This

choice is motivated by the fact that only 6-hourly wind

speeds are available for MPI-ESM, which does not enable

an adequate computation of Eout (which requires hourly

data).

The results of the presented forecast skill assessment

depend strongly on the choice of the verification dataset.

We have chosen a DD simulation of reanalysis data, since

no gridded observations for wind and wind energy are

available for Central Europe. Thereby, we assume that the

high-resolution wind speeds simulated with DD are a good

proxy for observed gridded wind speeds. Nevertheless, skill

scores may change if gridded observations are used as a

verification dataset.

The present results indicate that the decadal forecast skill

for wind energy originates mainly from the initialisation,

since high positive skill scores are mostly limited to the first

years after initialisation. For longer lead times, this skill

disappears. These findings are in line with Haas et al. (2015),

who evaluated the decadal predictability of regional peak

winds in the MiKlip ensemble baseline1 and also found

highest skill scores for short lead times. The enhanced skill

scores for higher percentiles are also consistent with results

by Haas et al. (2015), who showed, for example, that the

enhanced storminess over Central Europe in the early

nineties (leading to enhanced peak winds at the surface)

could be identified in the baseline1 hindcasts. Such skill

is not found for lower percentiles (Haas et al., 2015; their

figure 7).

We could not find a systematic improvement from the

baseline1 ensemble to the prototype versions, thus giving

evidence that there is generally no superior initialisation

strategy in terms of anomaly- or full-field-initialisation for

wind energy applications. This assessment agrees with

Kruschke et al. (2015), who found no significant differences

between the MiKlip generations for winter storm frequen-

cies over the North Atlantic and Europe.

In this study, we have used the characteristics of one

exemplary wind turbine. The consideration of power curves

from other wind turbines would result in different Eout

Fig. 7. (a) Time series of annual frequency-anomalies for CWT

W� in % (black line) and of annual Eout anomalies in 103MWh

(red line) for the ERA-Interim period 1979�2010. The correlation

between both time series is given in the upper left corner. (b)

MSESSs for CWT W� for seven different lead times for the whole

year for the MPI-ESM ensemble generations baseline1 (blue),

prototype1 (red) and prototype2 (yellow). For details, see main text

(Section 4.3).
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values. However, since these differences would be systema-

tic for both the initialised hindcasts and the uninitialised

historical runs, we assume that the results presented here

are similar for other wind turbines and that the choice of

turbine has only a small impact on our conclusions with

respect to the decadal predictability (see also Reyers et al.,

2016).

The detected decadal forecast skill for regional wind

energy output exhibited a strong dependence on the

representation of westerly CWTs (the dominant weather

types for strong wind situations) in the MPI-ESM. If the

occurrence of westerly CWTs, especially those with high

pressure gradients, is forecasted well by the global hind-

casts, predictive skill is found for both regional wind speeds

and regional Eout.

For future work, the coupling of this large-scale weather

type with low-frequency components like teleconnection

patterns could be investigated. This may help to understand

the mechanisms behind the decadal predictability for wind

energy potentials. Another issue, which could be addressed,

is the large uncertainties in the decadal predictability in the

MPI-ESM, particularly in terms of the non-systematic skill

dependency on lead times and seasons. Further investi-

gations on the influence of the ensemble size and of the

different initialisation strategies on the decadal predictabil-

ity are also necessary. In this study, we considered only 10

of the 15 available members of the two prototype ensembles

in order to compare the skill scores with the baseline1

ensemble (which only has 10 ensemble members). Future

work could consider all 15 realisations by using the ‘fair’

variant of the RPSS (e.g. Ferro, 2014), which takes into

account ensembles with a different number of members.

Further, wind power generation statistics taking the wind

farm distribution and installed power into account (e.g.

Cannon et al., 2015; Drew et al., 2015) should be analysed.

The present results are encouraging regarding the estab-

lishment of a decadal prediction system for Central Europe.

They clearly show that there is a potential for forecasts

of wind energy potentials up to several years ahead. In

addition, the used SDD approach proved to be adequate

for an application to large datasets and could easily be

applied to operational decadal prediction systems. The

regionalisation preserves and sometimes increases the

forecast skill of the global runs and improves the ensemble

spread in some cases. This opens a wide range of options

for end-user application.
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