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Graphical Abstract

Layered oxychalcogenides: structural chemistry and thermoelectric
properties

Son D N Luu and Paz VVaqueiro

Building blocks (perovskite,
rock salt, fluorite....)

Oxychalcogenide

This review provides an overview of the structural chemistry of layered oxychalcogenides, which are
described using a building block approach, and on the potential of these materials for thermoelectric
applications.
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Abstract

Layered oxychalcogenides have recently emergedasiging thermoelectric materials.
The alternation of ionic oxide and covalent chatmade layers found in these materials often
results in interesting electronic properties, afsb dacilitates the tuning of their properties
via chemical substitution at both types of layeFhis review highlights some common
structure types found for layered oxychalcogeniaied their interrelationships. This review
pays special attention to the potential of theséenads for thermoelectric applications, and
provides an overview of the thermoelectric progsrtof materials of current interest,
including BiCuSeO.
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1. Introduction

Layered oxychalcogenides are mixed-anion compouimds/hich oxide and chalcogenide
anions (Group 16) indirectly bound via one or moations, creating a stack of alternating
oxide and chalcogenide layers. The coexistenceomt ioxide anions and more covalent
chalcogenide anions leads to a highly distinctiveucsural chemistry. Owing to the
preference of “hard” non-polarisable cations tordowate to smaller oxide anions, while
“soft” more polarisable cations preferentially coimate to larger chalcogenide anions,
guaternary oxychalcogenides tend to adopt struetareshich oxide and chalcogenide anions
are segregated, with each coordinating preferéntialone type of cation, as early noted by
Guittard et al [1]. This often results in structures with low-dinsional characteristics, and
structural low dimensionality may lead to highlyisaotropic electronic band structures,
together with interesting electronic properties. dddition, the covalent character of the
chalcogenide layers promotes high-mobility semicmtion, whereas low thermal
conductivity is favoured by the more ionic interant of the oxide blocks. The alternation of
distinct layers found in oxychalcogenides also li@ates the tuning of their properties via
chemical substitution at both the oxide and chadowde layers. The coexistence of
low-dimensionality together with covalent and iotionding offers great for potential for
thermoelectric applications, and can also resudt wide range of unexpected and fascinating
properties. For instance, £&®S nanoparticles anchored on graphitised carbonbleas
recently found to be a promising anode materiallfieion batteries, with a stable specific
capacity up to 627 mA h™gafter 180 charge-recharge cycles [2].,318,05 has attracted
considerable attention as a photocatalyst for wstétting [3], and LaOCusS is considered a
promising p-type transparent semiconductor for optoelectrorapplications [ 4 ].
Superconductivity has been recently reported imbtk oxysulfides, although thig is rather
low ~ 4.5 K [5,6,7]. An improvement of the superdanting properties of compounds
containing [Bi$)* layers has been found in electron doped MFsBiS, (T. ~ 5 K) [8] or
LaO.,FBiS, (Te ~ 10.6 K) [9].

Although oxychalcogenides can also adopt structwrdut low-dimensional characteristics,
as exemplified by EY3S0; and LaeSe4O [10], throughout this review we restrict our
scope to layered oxychalcogenides, with a particdlacus on their potential for
thermoelectric applications. The structures of sdamilies of layered oxychalcogenides
have been previously reviewed [1, 11, 12].



2. Structural Chemistry of Layered Oxychalcogenides

2.1. Common Building Blocks

Structures of layered oxychalcogenides can be itbestas a combination of two (or more)
types of building blocks. Certain inorganic slabach as perovskite, fluorite, or rock-salt
blocks, which are encountered in many structuras, lee considered as two-dimensional
building blocks, and layered structures in whiclo tear more types of such building blocks
are stacked along a given direction, can be gestbiBdble 1 presents four common building
blocks found in layered oxychalcogenides. In eadecthe parent structure is shown, as well
as a two-dimensional slab derived from each pasémicture. Representative compounds
containing these building blocks are discusseti@nfollowing sections. Chalcogenide anions
are denoted as Q.

2.2. Materials containing sheets of Q% and (Q,)* anions

Three related families of materials containing shesf & and/or (Q)* anions, which
alternate with oxide slabs, are known. Planar sheetQ anions are found in [£,]Q,
while [A404)(Q.)(Q) contains both ®and (Q)%, and in [A0,]Q; only (Q,)* anions are
present.

The crystal structures of materials with stoichitmA ,0,]Q, where A is rare earth element
(La-Yb, Y, Lu) or Bi, and Q is S, Se or Te, consisalternating [A0,]*" and @ layers. The
oxygen anions are tetrahedrally coordinated BV ¢ations, forming AO tetrahedra, while
the & anions form a planar chalcogenide array. Twomtistructure types are found, which
differ markedly on the nature of the 4@]*" layers. Materials containing the heavier
chalcogen Te, including [#,]Te (A = La-Nd, Sm-Ho Bi)[13,14] as well as the a&jenide
Bi,O,Se [15], crystallise in the tetragonal (space grigismmm) anti-ThCr,Si, structure type
(Figure 1a), while most of the remaining compounds APA]Q with A= La-Yb, Y, Lu; Q=S,

Se) [16,17,18,19] crystallise in the trigonal (spapoup P3mil) structure Figure 1b) of
La,Os. The structure of BO,S, which is closely related to tlamti-ThCr,Si, type, has been
described by Koyamet al. in an orthorhombic space groupnim). This structure appears to
be a slightly distorted form of the tetragonal stame of BpO,Se [20]. Theanti-ThCr,Si,
structure is also adopted by the oxypnictidesJAX (A = rare-earth element, X= Sb, Bi)
[21,22]. A commensurately modulated structure jggisrom the distortion of the square nets
of the pnictide ions, results in a lowering of thanmetry for P1O,Sb [23], but the single



crystal study of BIO,S provides no evidence for a modulated structudg [2

In the tetragonaknti-ThCr,Si, structure, the 4O tetrahedra share four edges, forming
fluorite-like two-dimensional slabs. The *Qion adopts an 8-fold square prismatic
coordination and the A site is in a (40+4Q) digdrsquare anti-prism. By contrast, in the
trigonal structure, the L tetrahedra share three edges, forming 6 membeéngd of
tetrahedraRigure 1c). Each chalcogenide ion is octahedrally coordamaty A** cations,

and each A’ cation is seven coordinate with four short bormd®tand three longer bonds to

Q.

In the [AO4](Q2)(Q) structure (A = La-Yb, Y and Q = Se), fluoriike [A,0,]*" slabs
alternate with chalcogen sheets, formed by chain$e and (Se® anions [24,25].
Depending on the size of the A atom, four closelgted structure types, labelled as dh§,

vy and 3-A404Se; structures, exist [23]. The structure @fA,0,Se; phase is illustrated in
Figure 2a. Whilst ordered chains of alternating®Sand (S¢)* anions are found in theand

B phases, in thg andé types the Se atoms form “wave like” chains, whadnnot be
interpreted as a simple ordered array of 8ad (Se¢)*. More details have been presented
elsewhere [23]. Neither sulfur nor tellurium analeg of A0,Se; have been reported to date.

The structure of [80,](Q2) (Figure 2b) was first described by Wichelhaus, who reported
compounds where A is La, Pr, Nd and Q is S [26]d @ composed of alternating
fluorite-type [AO,]** layers and (8% planar sheets. Although this crystal structure was
initially described in thd>cam space group [24], J. Ostorégbal. have shown that L&,S,
crystallises in theCmca space group [27]. Selenium or tellurium analoguagehnot been

described.

2.3. Materials containing fluorite-like oxide blocks and transtion-metal
chalcogenide blocks

Two distinct structural types, both of which contéluorite-like [A,0,]?* slabs, are known:
[AO][BQ] and [AO][BQ_], depending on the oxidation state of the traositmetal. The

monovalent transition metals Cu and Ag adopt thienés, whilst divalent transition metals
adopt the later structure.

Materials with the general formula [AO][BQ] (whefeis Bi, Y, La-Yb; B is a monovalent
cation such as Cu, Ag and Q is S, Se, Te) [28,29]382], crystallise in the tetragonal
ZrCuSiAs structure [33]. The #Aions had been limited to® and lanthanides until 1993



when Kholodkovskayaet al. [27] reported the substitution of Biinto the A site. The
[AO][BQ] crystal structure consists of fluorite-tgp{A20,]*" and antifluorite-type [B2]*
slabs stacked alternately along thaxis (Figure 3). This structure type has beenntegdor
approximately 150 compounds, containing the anioxige, fluoride, silicide, germanide,
chalcogenide, pnictide, and hydride [34], and inrtipalar, is also adopted by the
superconducting oxypnictides LnOFePn (Ln = La,G&, Sm; Pn = P and As) [35]. In 1980,
Palazziet al. reported ionic conductivity for LaOAgS [28], while CeOCuS copper can be
readily extracted from the [GB,]* layers, to produce highly deficient copper pha$Ss].[
The rare-earth containing oxychalcogenides haven bm#marily investigated for their

optoelectronic properties, as many of them aresprarenp-type semiconductors [37].

The structure of [A0,][BQ-] is composed of [BQ* (B = Fe, Zn, Mn Cd; & Se) slabs
separated by [#0.]*" layers (A = La, Ce). In the chalcogenide layemns, B cations occupy
half of the available B sites of the antifluoriigsé [B;Q;] slab in an ordered fashion. In the
case of LgO,CdSe, a checkerboard arrangement of corner-sharing £d8ahedra is found,
instead of the edge-sharing tetrahedra found in][BQ] (Figure 4) [38]. It has been shown
that different ordering patterns are possible ddpgnon the composition, and in particular
on the nature of the transition metal. The [BSdayers can contain Béetrahedra that are
exclusively edge-sharing (stripe-like), exclusivelgorner-sharing (checkerboard-like
arrangement), or mixtures of both. Details of tifeecent ordering patterns in p®,][BSe)]
phases have been discussed in detail elsewherel{B9The investigation of the electronic
properties of LgO0,CdSe indicate that this material is insulating, witheatical

resistivities >1€° Qcm, and a band gap of 3.3 eV [36].
2.4. Materialsadopting the [AO][BQ_] structure and related structures

The repetition of fluorite-type [#0,]** blocks and rock-salt [f4]% blocks, stacked in an
alternating fashion along tleeaxis, creates the layered structure of [AO]fBQvhere A=La,
Ce, Pr, Nd, Sm, Yb, Bi; B = Bi; Q = S, Se),[41] whiis exemplified by LaOBiS(Figure
5a). These materials are currently attracting consiole attention due to their
superconducting behavior and have been recentliewed,[11] hence they will not be
discussed here in further detail.[2][SnS;] (A= La-Nd) can be considered to be closely
related to the [AO][B@ structure, as it contains fluorite §8,]** blocks alternating with
thinner and distorted rock-salt [SASblocks [1, 42] Eigure 5b).



2.5. Materialsadopting the [A;M O] [B2Q-] structure and anti-type variants

A representative compound of the,MO,][B 2Q;] structure (A = Ba, Sr; M = Mn, Co, Ni, Zn;

B = Cu, Ag; Q = S, Se) [43,44,45] is ,2n0O,Cw,S, [46], which crystallises in the
SrMn3Sh,O, (or SeMnO,Mn,Sky) structure type [47]. This structure contains furdrite
[B-Q,]* chalcogenide layers and oxide [M® planar sheets, which are separated from the
[B-Q,]% blocks by A" ions Figure 6). The [AMO,]** blocks can considered to be derived
from the perovskite structure, through removal leé fapical oxide anions in a perovskite

block (Table 1), leading to the square planar coordination folandhe M* cations.

The [A:M20][B2Q7] structure is a half anti-type of pMO,][B2Qz] in which A and M are
monovalent cations. It comprises the same antifie@halcogenide layers §B,]* and oxide
MO planar sheets, which are separated from th@JB slabs by A ions. A representative
compound is N&CwOSe or [NaOCuw][Cu,Se], which exhibitsp-type metallic behaviour
due to a small sodium deficiency [48].2@¢][B20Q,] is an anti-structure of [M>0][B.Qy].
The representative compound of this structure typexFe,03Se or [LaO,][Fe,0Se] [49].

It consists of oxide fluorite-type slabs §®]**, while the oxide MO planar sheet separated

from the [A0,]** layers by chalcogenide anions.
2.6. Materials containing Thicker Oxide Layers

Examples of materials containing thicker oxide fayaclude the following homologous
series: [A+1Mn03n-1[B2Q2] and [An+1021[B2Q2] (n>1), in which B is Cu or Ag and Q is a

chalcogen.

The structure of [A-1MnO3n.1][B2Q2] (A = divalent cation; M = di- or trivalent; Q =, Se)
consists of antifluorite [B,]* layers alternating with perovskite-like [AMOsn.** slabs
of different thicknessed={gure 7). The structure for n = 1, pMO,][B.Q;] (Figure 6), has
been already described in section 2.5, and is ekiemdpby SrZnO,Cw,S,. For n = 2,
[SrsM.08][Cu,S;] with M = Fe and Sc have been reported [43,50],lavlior n =3
[SrsMNn307 5 [Cu2Q;] is known [51].

In the homologous series {AO,|[B2Q:], antifluorite-type [CuQ-] layers are separated by
fluorite-like [An+102,] Oxide layers, in which A are trivalent cationd,(B, La-Yb). Then =1

member of this series, for which a representatkammle is [BO,][Cu,Se)] (or BiOCuSe),



has already been described in section 2.3. Themeribers [BiLnO4][Cu,Se] (Ln =Y, Gd,
Sm, Nd, La) are known [52], but members with high&lues of n have not been reported to

date.
2.7. Materials containing Thicker Chalcogenide Layers

Homologous series containing thicker chalcogen&ens have been primarily investigated
for transition metals, and are exemplified by tAeMO2][B 2,5Qn+1] series (A = Ba, Sr; M =
Mn, Co, Ni, Zn; B = Cu, Ag; Q = S, Se) [53]. TheInmember of this series was already
described in section 2.5, while n=2 and 3 membeasehfound, for instance, in
SEMNOClpnsSh+1 [52]. As illustrated inFigure 8, members of this homologous series
consist of perovskite-like [AMO5] blocks alternating with antifluorite-like [BsQn+1] layers

of increasing thickness depending on the value .ofintergrowth structures in which
antifluorite-like [Bn5Qn+1] blocks with different values of n coexist haveabeen found, as
illustrated by SMMn,CusO,Ss, which contains [Ci5s] and [CuyS;] layers [54]. It has been
shown that in SMNO,CuwnsSh+1 the copper ions can be replaced by lithium ionmsugh

topotactic ion exchange reactions [55].
3. Thermoelectric Properties of Oxychalcogenides

Despite the numerous families of oxychalcogenithes have been discovered, many of the
published reports are concerned with their opaical magnetic properties [12, 36]. Little effort

has been devoted to the study of their thermoéteptoperties, the exception being the

copper-containing oxyselenide BiOCuSehich has been extensively investigated as a
promising thermoelectric material since 2010 [56&jme representative examples of
thermoelectric oxychalcogenides are givenTiable 2, and their properties are discussed
below. As evidenced by dataTrable 2, a common characteristic of these materials &lzer

low thermal conductivity.

The first report of the thermoelectric performan€exychalcogenides adopting the [AO][BQ]
structure focused on L&SrOCuSe [57], but interest in these materials grensitterably
after the report of ZT = 0.76 at 873 K for the bigmanalogue, BixS,OCuSe [58]. Since
then, the number of publications on this family afychalcogenides has been increasing
steadily. Higher ZT values are found for oxychaknoiges with smaller band gaps. Usually,
the temperature at which ZT reaches a maximum valtedated to the band gap [59]. This is

because for a given band gap energy, there is peteture at which the onset of intrinsic



conduction will occur, and the simultaneous eximtanf intrinsic electrons and holes will
reduce the Seebeck coefficient (S=+5,) and hence ZT. It has been shown that, for a given
operating temperature T, the optimal thermoelecprformance will be found for
semiconductors with a band gap of approximatelysI(B0]. Bismuth-containing [AO][BQ)]
phases have significantly lower band gaps tharethostaining rare earth elements, due to the
contribution of Bi ¢ states to the bottom of the conduction band [Bithough the lowest
band gap is found for the oxytelluride for which Z10.66 at 673 K, there is a very limited
number of doping studies [62,63], and most of tHerein optimising the thermoelectric
performance has centred on the bismuth oxyselerit@e. instance, high values of the
thermoelectric figure of merit, ZT, have been om¢ai by doping with divalent (3t C&”,
PK*, Mg®") [58,64,65,66] or monovalent cations (N&") [67,68]. Alternatively,p-type
doping can be achieved by introducing vacanci¢seatopper site, which leads to a ZT value
of 0.81 at 923 K for BiOCyh7Se [69]. In addition, the thermal conductivity 0&B doped
BiOCuSe could be decreased by approximately 40%mwéeéucing the grain sizes down to
200 - 400 nm, resulting in an even higher ZT valti#.1 at 923 K [70]. Similar reductions in
thermal conductivity have been found for ball ndll&iOCuSe [71], suggesting that
nanostructuring may be an effective approach t@ecd the thermoelectric response of these
materials. The highest figure of merit, ZT ~ 1.4 923 K), seems to have been achieved
through the introduction of texture inBiBap 124CuSeO by hot forging [72]. More recently,
dual vacancies at the bismuth and the copper aite heen exploited to reduce the thermal
conductivity and control the charge carrier conarin, leading to a ZT value of 0.84 at only
750 K [73]. In general, the most common approachathieve a high ZT in these
oxychalcogenides is to tune the electrical condtugtvia doping, given their naturally low
thermal conductivity. Due to the high Grlneisenapagter of BiOCuSe [74], it has been
suggested that the low thermal conductivity in Bi@Cis related to the presence of thé*Bi
lone pair, which can reduce the lattice thermaldemtivity due to bond anharmonicity [75].
Saha calculated the phonon band structure of teetenide, and attributed the low thermal
conductivity of BIOCuSe when compared to LaOCuSa stronger hybridization of acoustic
and optical phonons in the former than in the |1&f&j. The origin of the unusual thermal
transport properties of BIOCuQ has also been inyatstd using a combination of neutron
diffraction and computational calculations [77]. iFhstudy has shown that the main
contributors to the unusually large Grineisen patamof these phases are copper and the
chalcogen, and that despite the presence of tleedaim, the bismuth contribution is relatively

small, with the change in thermal conductivity asated with the Bi/La substitution related to



the variation in atomic mass. Vaquegtal. concluded that weak bonding of the copper atoms
leads to an unexpected rattling vibrational modeopiper at low frequencies, which is likely to
be a major contributor to the low thermal conduttiiound for BiOCuQ [76]. Recent
calculations of phonon transport and lifetimes i©B8uSe indicate that there is a significant
contribution of optical phonons, arising primarfipm O vibrations, to the overall lattice
thermal conductivity [78]. Calculations of the d@lenic band structure of BiOCuQ indicate
that the top of the valence band consist of a maxtd light- and heavy-mass bands [79]. This
is considered a desirable feature for good thereotet performance [80], given that a
light-mass band promotes good electrical conductidmilst a heavy-mass band can result in a
high Seebeck coefficient. However, it should besddhat the hole mobility in BiOCuSe is
small,[20 cnf V' s* [81]. This is detrimental for the thermoelectrirfprmance, because ZT

*)3/2

is proportional to the mobility, according to thepeession Z[1 (m*)”“u (where m* is the

effective mass and the mobility)[59].

Other materials containing antifluorite-like [&d] layers have also been considered as
potential thermoelectric materials. This includesY®,Cu,Se, which was described in
section 2.6. In BiYO,CwSe, copper has a nominal oxidation state of +1.%@ms$tof +1.0, as
confirmed by X-ray absorption spectroscopy [82]] #imis results in metallic behaviour. The
large charge carrier density associated with metadinduction leads to a significantly reduced
Seebeck coefficienf{25 uVK ™ at room temperature), and a ZT value of only @D873 K
[83]. A small number of materials consisting ofifinorite [Cu,Se]? layers alternating with
perovskite-type oxide layers have also been asdesggotential thermoelectric materials. This
includes AFeG,CuQ (A =Sr, Ca, Q = S, Se) [84hd Sr,.Ba,CoO,CwSe [85]. The
A,FeGCuQ phases were found to pdype semiconductors with high resistivity valuds o
1-10 k2 cm at room temperature [76], while for,Ba,.CoO,Cw.Se a power factor of 1.gW
cm’K? at room temperature has been reported [77]. Themié@ conductivity of
Sr.,BaCoO,CwSe has not been measured, but given that their holaility of (33.3 cnf

V™! s1[42] is similar to that of BiOCuSe, doping studissS»CoO,C,Se, together with
measurements of the thermoelectric properties &metion of temperature would be of
interest, as these materials may exhibit good thelectric performance. There are also some
preliminary studies of oxychalcogenides contaimngk-salt blocks, including LaOB}SSs,,

for which a ZT = 0.17 is reached at 743 K [86]. Mlaffort has been devoted to the
thermoelectric properties of £),Q (Q = Se, Te), which crystallise in tlaati-ThCr,Si,
structure type described in section 2.2. The thetentric performance of BD,Se, which is



ann-type semiconductor with a ZT = 0.007 at 300 K, et reported by Ruleovet al [87].
Bismuth deficiency has been shown to improve ZT],[@#ilst doping with Sn at the bismuth
site in Bb«SnO,Se leads to a ZT value of 0.20 at 773 K [89]. Txgtelluride BLO,Te, which

is a narrow gap semiconductor with a band gag @3 eV, reaches a value of 0.13 at 573 K
[90]. As evidenced by the values of ZT presented @ble 2, the performance of-type
oxychalcogenides to date is significantly lowerrthhose ofp-type phases, and the best

performing material is still BiOCuSe.
4. Concluding remarks

While in the past research on layered oxychalcatemnihas centered on their magnetic
properties, these materials are rapidly emergingrasiising thermoelectric materials. A
common feature to all materials investigated toe dsgems to be a relatively low thermal
conductivity, and further studies to clarify thegim of this behavior are needed.

Band structure calculations suggest that the eletrstructures of layered oxychalcogenides,
which have a clear two-dimensional character, neagdnsidered as the superposition of the
electronic structures of each type of layer, stsdd by charge transfer. For théype phases
containing [CuQ-] blocks, the electrical transport properties Wi primarily determined by
the electronic structure of the [&] layer, as the top of the valence band is formgdthtes
arising from the hybridisation of Cud2nd chalcogep orbitals [30], while the oxide block
acts as a charge reservoir to control the Fernalldvwor then-type oxychalcogenides, which
have been far less investigated as thermoelectiennals, the electrical transport properties
will be dependent on the nature of the bottom & tonduction band. For instance, in
LaOBIS;, the bottom of the conduction band is formed byasupied Bi ¢ states hybridized
with S J states, and has a clear two-dimensional charaeitkr conduction electrons located
in the [BiS)] blocks [91].

From a thermoelectric perspective, the best pelfayraxychalcogenide to date is BiOCuSe,
but given the variety of already known oxychalcades, there is a large field of unexplored
materials that offer real prospects to improve Zie building block approach described here
also offers ample opportunities to design and discoentirely new families of

oxychalcogenides.
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List of Figure Captions

Fig. 1. Crystal structures with stoichiometry J@,]Q: (a) anti-ThCr,Si, type along
[010]; (b) LaOs type along [100]; (c) polyhedral view of the #B¢]*" layer in the
La,Os type structure, with the QAtetrahedra shown in blue. Unit cells are shown.
Key: A, blue circles; O, red circles; Q, yellowdal&s.

Fig. 2. View of (a) thea-A;0,Se; crystal structure; (b) the k@,S, structure. Key as
for Figure 1.

Fig. 3. View of the crystal structure of [AO][BQ] along10]. Key: A, blue circles; B,
green circles; O, red circles; Q, yellow circles.

Fig. 4. View of the crystal structure of [AO][Bfalong [010]. Key as for Figure 2.
Fig. 5. View of the crystal structures of (a) [AO][BRand (b) [A0,][SnS;]. Key as
for Figure 2.

Fig. 6. The [A:MO2][B2Q3]) structure-type. Key: A, blue circles; B, green keis; M,
pink circles; O, red circles; Q, yellow circles

Fig. 7. The n=2 and n=3 members of the homologous sefigsNl,Ozn-1][B2Q2].
Key as for Figure 6.

Fig. 8. Then=2 and n=3 members tife homologous series §MO,][B 2nsQn+1]. Key

as for Figure 6.
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Table 1. Common building blocks found in oxychalcogenides.

Structure

Unit cell

Building block
slab

Key

Fluorite (Cak)

ce” (blue)

F (green)

Na’ (blue)
O? (red)

Na' (yellow)

CI" (green)

Perovskite
(SITiG)

Sr* (green)
Ti** (blue)
O” (red)
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Table 2. Total thermal conductivity (at room tengiare), together with maximum ZT

values at a temperature T, for selected oxychaludgs.

Material pintype | k/WmK?!| ZT T/K | Ref.
Bi1-xSKOCuSe p-type 0.9 0.76 873 58
BiOCuTe p-type 0.8 0.66 673 62
Bio.g7Bap.12LuSeO| p-type 0.9 14 923 72
Bi,YO,Cw,Se p-type 1.5 0.03 673 83
LaOBIiS;.xS& n-type 2.0 0.17 743 86
Bi»xSnO,Se n-type 1.0 0.20 773 89
Bi,O,Te n-type 0.9 0.13 573 90
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