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Abstract 

There has been a gradual evolution in the way that palaeoclimate modeling and 

palaeoenvironmental data are used together to understand how the Earth System works, from an 

initial and largely descriptive phase through explicit hypothesis testing to diagnosis of underlying 

mechanisms. Analyses of past climate states are now regarded as integral to the evaluation of 

climate models, and have become part of the toolkit used to assess the likely realism of future 

projections. Palaeoclimate assessment has demonstrated that changes in large-scale features of 

climate that are governed by the energy and water balance show consistent responses to changes in 

forcing in different climate states, and these consistent responses are reproduced by climate models. 

However, state-of-the-art models are still largely unable to reproduce observed changes in climate 

at a regional scale reliably. While palaeoclimate analyses of state-of-the-art climate models suggest 

an urgent need for model improvement, much work is also needed on extending and improving 

palaeoclimate reconstructions and quantifying and reducing both numerical and interpretative 

uncertainties. 
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Introduction  

 

Climate has varied continuously through Earth’s history. There are several styles of climate 

variability, associated with different drivers and operating on characteristic time scales. For 

example, there are periodic climate changes, resulting from astronomical or ‘orbital’ forcing on 

seasonal and multi-millennial timescales (Berger, 1978). Examples of progressive changes include 

the long-term cooling through the Cenozoic in response to changes in land-sea configuration and 

atmospheric composition (Zachos et al., 2001; Fletcher et al., 2007), or the cooling trend of the last 

two millennia caused by orbitally-driven changes in incoming solar radiation (insolation). Finally, 

there are rapid climate shifts such as those that were caused by the re-organisation of the coupled 

atmosphere-ocean circulation during the Dansgaard-Oeschger cycles (Bond et al., 1993; Kageyama 

et al., 2010). The combination of these styles of variability gives rise to a large and diverse set of 

examples of the response of regional and global climates to changes in climate forcing.  

The impacts of past climate change are recorded by a variety of geological, isotopic and biological 

records (Bradley, 2014). These records can be interpreted, either using qualitative inference or 

explicit statistical approaches, to provide reconstructions of past climate variables. Such 

reconstructions document how the climate system behaves in response to different kinds of forcing 

– this illustration of what responses are physically possible is the basis for the idea that “the past is 

the key to the future” (Masson-Delmotte et al., 2013). However, there has been an increasing 

emphasis in recent years on the importance of palaeoclimatic and palaeoenvironmental 

reconstructions for climate-model evaluation (e.g. Izumi et al., 2013; Li et al., 2013; Perez Sanz et 

al., 2014). This arises from recognition that meteorological records from recent decades sample a 

range of climate variability that is too limited to provide a robust test of how well a numerical 

climate model can simulate a large climate change. Past climates provide a unique opportunity for 

“out-of-sample” evaluation of model performance, and thus a measure of the reliability of model 

predictions of the future (Braconnot et al., 2012; Harrison et al., 2014; Schmidt et al., 2014; 

Harrison et al., 2015).  

Palaeoclimate simulations and data-model comparisons have been made for many iconic events in 

the past, including the early Holocene (ca 9 ka: Marzin and Braconnot, 2009; Marzin et al., 2013), 

Younger Dryas (ca 12.9–11.7 ka: Renssen et al., 2015), Last Interglacial (ca 125 ka: Bakker et al., 

2013), the mid-Pliocene warm period (ca 4.2 Ma: Haywood et al., 2010a, 2010b), and the Eocene 

(ca 55-50 Ma: Lunt et al., 2012). In this paper, however, we only focus on the three periods that 
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 4

were included in the current phase of the Coupled Modelling Intercomparison project (CMIP5), the 

Last Millennium (850-1850 CE), the mid-Holocene (6 ka) and the Last Glacial Maximum (21 ka). 

These are the experiments that were used as part of climate-model evaluation reported in the 

Working Group 1 report to the Intergovernmental Panel on Climate Change (Flato et al., 2013). We 

summarise what has been learnt from the evaluation of these three simulations and the future 

challenges that face palaeoclimatology.  

 

A Brief History of Palaeoclimate Simulations 

 

The initial focus for palaeoclimate modeling was the Last Glacial Maximum (LGM, ca 21 ka), a 

time when there was a large change in forcing due to the presence of large ice sheets over North 

America (Laurentide ice sheet) and northern Europe (Eurasian ice sheet) and a radical change in 

atmospheric composition compared to the pre-industrial period. The earliest experiments (Alyea, 

1972; Williams et al., 1974; Gates, 1976; Manabe and Hahn, 1977; Kutzbach and Guetter, 1986) 

were made with atmospheric general circulation models (AGCMs), and required changes in sea-

surface temperature (SST) to be specified from observations (CLIMAP, 1976, 1981). In some cases 

(e.g. Alyea, 1972; Williams et al., 1974), simulations were confined to a single season because of 

the limitations in computing power. Nevertheless, these equilibrium simulations established that the 

presence of large ice sheets had a major impact on northern hemisphere climates, both through the 

direct effect of replacing vegetated land surfaces with highly-reflecting ice on albedo, and through 

the displacement of atmospheric circulation patterns caused by the increase in regional elevation by 

the mountain-like ice masses. 

 

The Cooperative Holocene Mapping Project: COHMAP Members, 1988; Wright et al., 1993) 

subsequently broadened the focus to encompass simulations of the whole of the period from the 

LGM to present, in order to examine the impact of changing orbital configuration on radiative 

forcing and climate. However, these simulations were still equilibrium simulations made with an 

atmosphere-only model, thus requiring SSTs to be prescribed along with changes in the ice sheet 

height and extent, land-sea geography, atmospheric composition, and insolation. The COHMAP 

experiments were particularly important because they demonstrated the role of orbital changes in 

the evolution of the northern hemisphere monsoon systems (Kutzbach and Street-Perrott, 1985). A 

key aspect of the COHMAP project was the creation of large-scale syntheses of 
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 5

palaeoenvironmental and palaeoclimate data in order to document regional climate changes over the 

last glacial-interglacial, thus creating the basis for systematic comparisons of simulated and 

observed regional climates (Wright et al., 1993). 

 

The availability of large-scale data syntheses, as well as the identification of mechanisms 

underpinning large-scale regional climate changes, was a motivation for the choice of the mid-

Holocene (MH, 6ka) and the LGM as the experimental foci for the Palaeoclimate Modelling 

Intercomparison Project (PMIP). The goal of PMIP is to compare the behaviour of different climate 

models when run using the same forcing. The first phase of PMIP (PMIP1: Joussaume and Taylor, 

2000) focused on comparison of AGCMs. By the second phase of the project (PMIP2: Crucifix et 

al., 2005), climate models routinely included an explicit simulation of ocean circulation (coupled 

ocean-atmosphere models: OAGCMs) and some models also included dynamic vegetation (coupled 

ocean-atmosphere-vegetation models: OAVGCMs). The evaluations of MH and LGM simulations 

carried out by PMIP have established unequivocally that climate models can reproduce observed, 

first-order global or hemispheric changes in climate in response to changes in forcing (Joussaume et 

al., 1999; Braconnot et al., 2007a, b; Zheng et al., 2008; Otto-Bliesner et al., 2009). However, they 

have also shown that models differ, often quite substantially, in their predictions, and comparison 

with palaeoclimate reconstructions shows that models often fail to capture regional changes 

accurately (e.g. Joussaume et al., 1999; Coe and Harrison, 2002; Brewer et al., 2007; Perez Sanz et 

al., 2014). Understanding the reasons for inter-model differences, and for model-data discrepancies 

has become the major focus of the third phase of the PMIP project (PMIP3: Braconnot et al., 2011; 

Braconnot et al., 2012) – and the reason that palaeoclimate experiments were included for the first 

time in CMIP5 (Taylor et al., 2011), the core international project that assembled model runs for the 

Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).  

 

Palaeo-simulations in CMIP5 

 

Three palaeoclimate-simulations are included in the CMIP5 set of simulations: LGM, MH, and the 

Last Millennium (LM: 850-1850 CE). The LGM and MH simulations are equilibrium simulations. 

Both the LGM and the MH represent substantially different climate states from the present day and 

from each other, and have large natural forcings that are relatively well known (Braconnot et al., 

2012; Harrison et al., 2015). The LM is a transient simulation to examine natural climate variability 

under conditions more similar to those of the present day (Schmidt et al., 2011). 
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 6

At the LGM, the orbital parameters were nearly the same as they are today (Table 1) so that the 

differences in insolation were small. The major differences in forcing were caused by the presence 

of large ice sheets in the northern hemisphere (and concomitant changes in sea level and 

palaeogeography) and the lower atmospheric concentration of greenhouse gases. The changes in 

greenhouse gas concentrations (CO2: 185 ppm, CH4: 350 ppb, N2O: 200 ppb) are well known from 

ice core records (EPICA Community Members, 2004). The decrease in the greenhouse gases 

relative to pre-industrial alone results in a radiative forcing of the troposphere of −2.8 W m
-2 

(Braconnot et al., 2007a). The expansion of the ice sheets at the LGM resulted in a sea-level 

lowering of ca 130m, and associated changes in albedo had an important effect on climate, 

particularly in the northern hemisphere. The marginal limits of the North American (Laurentide), 

Greenland and European (Eurasian) ice sheets are well known (e.g. Dyke and Prest, 1987; 

Mickelson and Colgan, 2003; Dyke, 2004; Gyllencreutz et al., 2007; Simpson et al., 2009; Ehlers et 

al., 2011; Mangerud et al., 2013) but there is no direct evidence for the distribution of ice mass. The 

form and height of the ice sheets are therefore inferred through a combination of physical modelling 

and indirect observational constraints (e.g. information on relative sea-level changes). A composite 

ice sheet was created for the CMIP5 experiments (Abe-Ouchi et al., 2015) by combining 

information from three reconstructions of the distribution of ice mass (ICE-6G v2.0: Argus and 

Peltier, 2010; GLAC-1a: Tarasov et al., 2012; ANU: Lambeck et al., 2010). In the CMIP5 LGM 

simulations, calculations using a simplified shortwave radiative model of the atmosphere, perturbed 

by changes in individual boundary conditions separately, show that the change in the ice sheets 

results in an implied forcing of between −1.85 and −3.49 Wm
-2

 depending on the climate model 

(Abe-Ouchi et al., 2015) while the overall change in forcing varied between –3.62 and –5.20 W m
-2

. 

Thus, the change in forcing due to changes in atmospheric composition and expansion of the ice 

sheets at the LGM is of a similar magnitude to that projected for the next century. 

The CMIP5 LGM experiments do not include the additional climate forcing that results from 

changes in vegetation distribution (Prentice et al., 2000; Harrison and Bartlein, 2012) because the 

observations of LGM vegetation are too sparse (in many regions) to provide a global gridded data 

set to use as a model input. LGM vegetation is therefore either computed (in models which include 

dynamic vegetation) or prescribed to be the same as the pre-industrial control simulation in the 

CMIP5 simulations (Table 1). The CMIP5 simulations also ignore the potential impact of known 

changes in atmospheric dust loading (Kohfeld and Harrison, 2001). 

 

The MH provides an opportunity to evaluate simulations at a time of changed seasonality, when the 
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 7

influence of changes in ice sheet extent and land-sea geography on global climate was negligible.  

The seasonal and latitudinal distribution of MH insolation was different from present because of the 

difference in orbital configuration (Table 1). Seasonal contrast in the northern hemisphere was 

enhanced (by about 60 Wm
–2

), through an increase in summer insolation and a decrease in winter 

insolation, and correspondingly reduced by decreased summer and increased winter insolation in 

the southern hemisphere. Greenhouse gas concentrations were similar to levels in the pre-industrial 

era (CO2: 280 ppm, CH4: 650 ppb, N2O: 270 ppb. Although there were changes in vegetation 

distribution (Prentice et al., 2000; Harrison and Bartlein, 2012), these were not taken into account in 

the CMIP5 experiments (Table 1). As is the case for the LGM, the main focus of analyses of the 

MH experiments is on the impact of a large change in forcing on the mean climate response. 

The LM is a transient simulation, included in CMIP5 to examine natural climate variability in a 

climate state close to that of the present day (Schmidt et al., 2011) and as a reference for detecting 

and attributing observed twentieth-century changes in climate patterns and trends resulting from 

human activities (Hegerl et al., 2011). The LM also provides opportunities to investigate the link 

between volcanism and climate, including ENSO variability (Emile-Geay et al., 2008; Wilson et al., 

2010), to test the stability of atmospheric modes (e.g. Yiou et al., 2012), to analyse the interaction 

between short-term variability and land-surface feedbacks (e.g. Acosta Navarro et al., 2014), and to 

explore changes in recurrence or intensity of extreme events (e.g. Fallah and Cubasch, 2015). The 

LM simulation is characterized by changes in orbital, solar, volcanic and land-use forcing. With the 

exception of the orbital changes, there are large uncertainties associated with each of these forcings 

(Schmidt et al., 2011).  The CMIP5 protocol therefore defines a number of alternative forcing 

histories to take account of these large uncertainties (Table 1). There are, for example, two 

reconstructions of the volcanic forcing (Crowley et al., 2008; Gao et al., 2008), five reconstructions 

of solar forcing (Wang et al., 2005; Muscheler et al., 2007; Steinhilber et al., 2009; Delaygue and 

Bard, 2011; Vieira et al., 2011) and two land-use scenarios (Hurtt et al., 2006; Pongratz et al., 

2008). Modelling groups have been allowed to choose which forcing “scenarios” they use. While 

this makes comparison between models more difficult, some modelling groups have run ensembles 

of simulations using different forcing scenarios (e.g. Goosse et al., 2005; Bothe et al., 2013; Otto-

Bliesner et al., 2015) thus allowing the effects of uncertainty in forcing to be assessed.  

Many modelling groups have run palaeoclimate simulations as part of CMIP5 (Table 2). The MH 

experiment is relatively simple and has a smaller perturbation than the LGM, thus requiring less 

time to reach equilibrium. Thus many more groups have performed the MH experiment than have 
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 8

performed the LGM experiment. Only a few groups have performed the LM simulation – in part 

because multiple forced and unforced runs are required for a complete diagnosis. Nevertheless, 

there are sufficient simulations for all three periods to allow comparisons of the reaction of different 

climate models to the same change in forcing and evaluation of the realism of the simulations 

through comparison with palaeodata. 

 

A Brief History of Palaeodata Synthesis 

 

With the exception of ice-core records of the well-mixed trace gases, individual 

palaeoenvironmental records document local or regional changes – although the spatial sampling 

scale may vary from metres up to some tens or hundreds of kilometres. The synthesis of records at a 

regional scale provides a way of documenting robust responses to past climate changes. Regional 

data syntheses are the appropriate tool for extracting information that is comparable to simulated 

climates, given the spatial resolution of current climate models. The highest resolution of the 

CMIP5 models used for palaeoclimate experiments, for example, is ca 1° x 1° latitude/longitude.  

The comparison of individual records from a region, and identification of similarities in their 

response, is standard practice. Data synthesis, however, requires that the individual records are 

interpreted using a common approach. One of the earliest examples of this was the synthesis of lake 

records from northern Africa (Street and Grove, 1976) that led to the creation of the Global Lake 

Status Database (GLSDB: Street and Grove, 1979; Street-Perrott et al., 1989; Kohfeld and Harrison, 

2000; Fig. 1), one of the databases used by the COHMAP project. The GLSDB had transparent 

rules for site selection, and used an explicit method to categorise individual records into status 

classes (high, intermediate, low) so that they were easily compared both within and between 

regions. This focus on lake status also facilitated direct comparison with model output, because lake 

status is sensitive to changes in the balance between precipitation and evaporation (Street-Perrott 

and Harrison, 1984; Cheddadi et al., 1987). 

The COHMAP project used pollen data as a source of information about regional vegetation and 

climate, but it was not until the creation of the Palaeovegetation Mapping Project (BIOME 6000: 

Prentice and Webb, 1998) as part of the International Geosphere-Biosphere Programme that these 

data were treated in a systematic and consistent way. BIOME 6000 developed an approach to 

translate pollen assemblages into vegetation reconstructions, quaintly termed biomisation, which 

involved classification of individual pollen taxa into plant functional types (PFTs), the 
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 9

characterization of major vegetation types (biomes) according to their characteristic or defining 

PFTs, and the application of an algorithm to select the most likely biome represented at a site 

(Prentice et al., 1996). BIOME 6000 produced vegetation maps for the MH and LGM (Prentice et 

al., 2000; Bigelow et al., 2003; Pickett et al., 2004; Marchant et al., 2009), explicitly for comparison 

with vegetation simulations made either using OAVGCMs or by running a biogeography model 

driven by outputs from e.g. OAGCMs (e.g. Harrison et al., 1998; Wohlfahrt et al., 2004). The 

biomisation approach has also been used to produce maps for other time intervals for certain 

regions (Marchant et al., 2001; Williams et al., 2004). 

There have been other efforts to create datasets comparable to model outputs. The Dust Indicators 

and Records from Terrestrial and MArine Palaeoenvironments (DIRTMAP: Kohfeld and Harrison, 

2001; Maher et al., 2014) database contains estimates of aeolian accumulation rates at key time 

periods measured in ice cores, marine cores and at terrestrial locations. The modern and LGM dust 

deposition estimates from DIRTMAP have been used for evaluation of dust-cycle simulations (e.g. 

Werner et al., 2003; Bauer and Ganopolski, 2014). The Global Palaeofire Working Group (website) 

has created a global synthesis of charcoal records (Power et al., 2010), which provides a qualitative 

record of changes in biomass burning of the last glacial-interglacial cycle. Much of the focus on this 

group has been on documenting regional changes (Power et al., 2008; Marlon et al, 2008; Daniau et 

al., 2010; Marlon et al., 2013) or investigating the controls on fire (Daniau et al., 2012), but the data 

set has potential to be used for model evaluation (e.g. Brücher et al., 2014). 

 

Palaeoenvironmental data have long been used to reconstruct climate variables quantitatively (e.g. 

Grichuk, 1969; Imbrie and Kipp, 1971; McIntyre et al., 1976; Hutson and Prell, 1980; Bartlein et 

al., 1984; Atkinson et al., 1987; Guiot, 1987; Huntley and Prentice, 1988; Guiot, 1990). The 

development of well-documented, quantitative global palaeodata sets portraying the spatial climatic 

patterns of the LGM and MH time periods is a central objective of the PMIP research programme.  

The palaeoceanographic community has provided a global reconstruction of LGM SSTs (MARGO 

Project Members 2009), which supersedes the CLIMAP data set that was developed in the 1980s. 

MARGO (Multiproxy Approach for the Reconstruction of the Glacial Ocean surface) defined the 

LGM as the interval between 19 and 23 ka. The project compiled 696 SST reconstructions from this 

interval. The data set includes all available microfossil-based (transfer functions based on 

planktonic foraminifera, diatom, dinoflagellate cyst and radiolarian abundances) and geochemical 

(alkenones and planktonic foraminiferal Mg/Ca ratio) reconstructions. Each type of sensor has a 
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 10

different geographical coverage – the reconstructions from the Southern Ocean, for example, are 

largely based on diatom records, whereas most of the tropical records are derived from 

foraminiferal assemblages. Nevertheless, there are some regions of the world where reconstructions 

based on multiple sensors are available and could be compared to provide an estimate of robustness. 

In the global reconstruction, the data were gridded at 5◦ × 5◦ resolution, where each grid cell was 

assigned an SST estimate by averaging individual reconstructions that fall into the same cell, 

weighted by a mean reliability index. The resulting SST anomalies show robust spatial and seasonal 

changes (Fig. 2), and there is first-order agreement on the magnitude of latitudinal anomalies 

between geochemical and microfossil-based reconstructions with the strongest mean annual cooling 

in the mid-latitude North Atlantic – a feature confirmed by reconstructions from four different types 

of sensor.  

For the MH, the only global SST product available is the Global database for alkenone-derived 

HOlocene Sea-surface Temperature (GHOST), which includes reconstructions based on Mg/Ca and 

alkenones (Kim, 2004; Leduc et al., 2010). Model comparisons using the GHOST data set have 

shown significant mismatches between the modelled and reconstructed SST anomalies (Schneider 

et al., 2010; Hargreaves et al., 2013; Lohmann et al., 2013). An attempt has been made to produce a 

more comprehensive data set, including reconstructions from Mg/Ca and alkenone 

palaeothermometry and statistical estimates obtained using planktonic foraminifera and organic-

walled dinoflagellate cyst census counts (Hessler et al., 2014). However, analyses of these data 

show that the MH change in SST is small compared to the magnitude of known methodological 

uncertainties associated with SST reconstructions, and also compared to the differences between the 

observed modern ocean temperature datasets used as the baseline to determine the MH change in 

SST. Hessler et al. (2014) concluded that, unlike the LGM, where robust changes in SST patterns 

emerge despite the methodological uncertainties (MARGO Project Members, 2009), MH SSTs do 

not provide a reliable benchmark for model simulations.  

Terrestrial environments are diverse and many types of geochemical, isotopic and biological data 

have been used to provide quantitative reconstructions for specific areas and ecosystems (see e.g. 

Atkinson et al. 1987; Stute et al. 1992; Heiri et al. 2003; Jones et al. 2004). The most widespread 

source of quantitative reconstructions is palaeovegetation (fossil pollen and plant macrofossil) 

records. Palaeovegetation records provide a unique combination of near-global coverage of 

information on several distinct aspects of climate (seasonal temperature, rainfall, soil moisture), 

combined with robust and well-documented methodologies to derive reconstruction uncertainties. 
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 11

The terrestrial palaeoecology community has produced a unified gridded data set for the MH and 

the LGM based on combining all existing quantitative reconstructions, subject to availability of the 

primary data (i.e. the reconstructions) and a transparent screening procedure (Bartlein et al., 2011). 

Although the reconstructions were produced using different techniques, ranging from simple 

regression through analogue techniques to inverse modelling, analyses for regions with multiple 

reconstructions made using different methods show that the choice of method has little impact on 

the results. Thus, compositing reconstructions made with different methods provides robust and 

coherent reconstructions of the large regional climate changes at the MH and LGM (Fig. 2). 

Although this synthesis represents the state-of-the-art target for model evaluation and 

benchmarking, the coverage is poor for many important regions including Australia and South 

America. There are pollen records from both regions (Fig. 2) that could be used to make statistical 

reconstructions of climate variables; even in regions that are relatively well represented in the 

gridded data set, there is the potential for a much-expanded set of climate reconstructions. 

Pre-industrial climate provides a baseline for the detection and attribution of recent anthropogenic 

impacts on the Earth system (Hegerl et al., 2011), and this provides the major motivation for the 

inclusion of LM simulations in CMIP5. Reconstruction of annual climate before the pre-

instrumental period relies on the use of natural archives, including isotopic records from laminated 

sediments or corals, ice core records and tree rings. However, statistical reconstructions from tree 

rings provide by far the largest number of pre-instrumental records. The major focus of data 

synthesis to date has been on seasonal (e.g. Briffa et al., 2002; Luterbacher et al., 2004; Guiot et al., 

2005; Xoplaki et al., 2005) or annual temperature. Reconstructions of regional or hemispheric 

temperature changes over the last millennium (e.g. Jones et al., 1998; Briffa et al., 2002; Esper et 

al., 2002; Moberg et al., 2005; Rutherford et al., 2005; Mann et al., 2007, 2008; Ljungqvist et al., 

2012; PAGES 2k Consortium, 2013; Shi et al., 2013; Neukom et al., 2014) generally use several of 

these palaeodata sources, combined with historical and instrumental records when available. While 

there are regional reconstructions of precipitation (Pauling et al., 2006; Steinman et al., 2012; 

Wilson et al., 2012; Feng et al., 2013), there is currently no global synthesis of precipitation data. 

Although there is broad agreement on multidecadal to centennial time scales, there is considerable 

variability among individual hemispheric temperature reconstructions on short time scales over the 

last millennium (Fig. 3), depending on methodology and the selection of site-based reconstructions 

included in the reconstructions (Juckes et al., 2007; Fernandez-Donado et al., 2013). The range in 

reconstructed change in northern hemisphere average temperature between the Mediaeval Warm 

Anomaly and the Little Ice Age, for example, encompasses the simulated range of temperature 
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 12

change across different models using different combinations of forcings and including simulations 

made with and without volcanic forcing (Fernandez-Donado et al., 2013). Thus, the large 

uncertainties in the reconstructions coupled with similarly large uncertainties in the forcing 

currently limits the usefulness of the last millennium as a target for model evaluation sensu stricto. 

 

Confronting models with observations 

 

Palaeodata document what has actually happened in the past, but explanation of observed changes 

is dependent on a conceptual model of how the climate system works and is therefore rarely 

unequivocal. Models that incorporate current understanding of physical climate processes provide a 

way of making the conceptual model explicit. Thus, one of the most fruitful approaches to 

understanding the mechanisms of climate change is through confronting observations and model 

experiments in hypothesis-testing mode, where the ability of the model to reproduce observed 

patterns in space or time indicates the plausibility of the underlying conceptual explanation while 

disagreement indicates that alternative explanations are required.  

 

The demonstration by Kutzbach and Street-Perrott (1985) that the evolution of the African monsoon 

over the last glacial-interglacial cycle was a direct response to orbital forcing (Kutzbach and Street-

Perrott, 1985) provides the classic example of this hypothesis-testing approach. In this paper, the 

water balance (precipitation minus evaporation) over northern Africa (8.9 and 26.6 °N) was 

calculated based on a sequence of only January or only July climates (known as perpetual January 

or perpetual July simulations, where the mean annual climate is then calculated as the average of 

the two monthly simulations and the seasonal contrast as the difference between these two months) 

with an atmospheric general circulation model forced by changes in insolation, ice sheet extent, and 

sea-surface temperatures. The simulations predicted the observed temporal evolution of lake status. 

Analyses of the simulations (including additional sensitivity experiments) confirmed that the 

primary driver of the observed changes in lake status was changes in orbital forcing. Changes in 

boundary conditions changes associated with northern-hemisphere ice sheets or atmospheric 

composition had little impact on the regional water balance. The primary importance of orbitally-

induced changes in insolation as a driver of the waxing and waning of the northern hemisphere 

monsoons has subsequently been confirmed with more advanced models and modeling protocols 

(Zhao et al., 2005; Braconnot et al., 2007; Marzin and Braconnot, 2009; Dallmayer et al., 2015). 

However, it is clear that there is considerably more complexity in the seasonal evolution of 

monsoon rainfall than originally thought (Fig. 4) and considerable millennial- and sub-millennial 
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scale variability is superimposed on the orbitally-driven evolution (Otto-Bleisner et al., 2014). It is 

also clear that feedbacks associated with the ice sheets, ocean conditions and climate-induced 

changes in land-surface conditions are necessary to produce the observed temporal evolution of the 

northern hemisphere monsoons (e.g. Clausen and Gayler, 1977; Ganopolski et al., 1998; de Noblet-

Ducoudré et al., 2000; Zhao et al., 2005; Patricola and Cook, 2007; Zhao et al., 2007; Marzin and 

Braconnot, 2009; Ohgaito and Abe-Ouchi, 2009; Dallmeyer et al., 2010; Zhao and Harrison, 2012; 

Dallmeyer et al., 2015). 

 

This hypothesis-testing approach underpins data-model comparison of regional climate changes 

during the MH and LGM conducted as during the first phase of PMIP, which focus on 

demonstrating how far large-scale patterns are a consequence of changes in orbital and/or glacial 

boundary conditions.  For example, comparisons with model simulations driven by the combined 

influence of known changes in orbital, ice sheet and greenhouse gas forcing have been used to 

explain observed differences in the temporal evolution of fire regimes between tropical and 

extratropical regions of the northern and southern hemisphere over the last glacial-interglacial cycle 

(Daniau et al., 2012; Fig. 5). However, the hypothesis-testing approach is much more powerful 

when it is used to test potential mechanisms explicitly through experiments that separate out the 

potential influence of individual forcings. For example, Harrison and Prentice (2003) used a simple 

biogeography-biogeochemistry model driven by climate-model simulations of the LGM to 

demonstrate the necessity of including the direct impacts of low CO2 on productivity and water-use 

efficiency to explain observed changes in tropical vegetation distribution. They showed that the 

area of tropical forests would have increased in response to climate changes at the LGM, whereas 

the observed reduction of tropical forest and increase in grassland could only be achieved when 

CO2 was lowered to glacial levels. A similar conclusion was reached by Bragg et al. (2013), 

comparing simulated and observed glacial-interglacial changes in leaf-wax δ
13

C of terrestrial origin 

from a transect of marine cores recording vegetation shifts in southern Africa. Bragg et al. (2013) 

also discussed the general importance of atmospheric CO2 concentration as a driver of vegetation 

changes, and the relative roles of climate and CO2 changes in glacial-interglacial vegetation shifts – 

a topic that has suffered from some misconceptions, as the two kinds of effect are neither mutually 

exclusive, nor independent. The importance of the direct effects of changing CO2 on vegetation 

productivity, and hence fuel load, has subsequently been demonstrated as an important control on 

LGM fire regimes (Martin Calvo et al., 2014).  

 

Model evaluation and benchmarking 
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The importance of assessing how well state-of-the-art climate models can simulate large climate 

changes has led to the increasing use of palaeodata for the purposes of model evaluation. At its 

simplest, model evaluation can involve qualitative comparisons of spatial patterning. Such map-

map comparisons can be powerful. For example, the inability of climate models to capture the 

spatial expansion of the northern African monsoon during the MH is readily apparent by comparing 

maps of observed and simulated water balance (see e.g. Perez Sanz et al., 2014). However, when 

the discrepancies are in the magnitude of a signal rather than spatial pattern (or sign) then 

quantitative comparisons are necessary. 

 

There are many potential sources of uncertainty in using palaeodata to make climate 

reconstructions. Some of these uncertainties are strictly numerical but others are associated with 

dating, methodologies, baseline choice, or interpretation – and are much more difficult to deal with 

when making quantitative comparisons. Numerical uncertainties (e.g. root mean-squared errors on 

statistically-based climate reconstructions) are easily factored into data-model comparisons (see e.g. 

Hargreaves et al., 2013). The other sources of uncertainty, even when quantifiable, are often 

ignored. 

 

An absolute chronology is fundamental to comparisons of palaeo-records and the construction of 

palaeodata syntheses. The development of reliable techniques to construct age models has been a 

major focus for the community (e.g. Bennett, 1994; Boreux et al., 1997; Bennett and Fuller, 2002; 

Blaauw et al., 2003; Heegaard, 2003; Blaauw and Christen, 2005; Bronk Ramsey, 2009; Blaauw, 

2010; Blaauw and Christen, 2011 Werner and Tingley, 2015). Age models are only meaningful 

when created using calibrated radiocarbon dates (Bartlein et al., 1995) because of the variability in 

the radiocarbon calibration curve. However, the gradual refinement of the radiocarbon calibration 

curve (Reimer et al., 2009: Reimer et al., 2013), and increasing understanding of the need to 

account for reservoir ages in deriving calibrated ages on both marine (Craig, 1957; Stuiver et al., 

1998; Reimer and Reimer, 1991; Franke et al., 2008) and freshwater (Godwin, 1951; Philippsen, 

2013) sediments, means that even calibrated age models may need to be revisited during the 

construction of data syntheses. Although there has been an awareness of chronological 

uncertainties, most approaches to dealing with these in the context of data-model comparison have 

been in terms of either selecting sites with chronologies that are believed to be most reliable or 

through assigning some kind of quality control index (e.g. Street-Perrott et al., 1989; Wright et al., 

1993; MARGO Project Members, 2009; Giesecke et al., 2014) – an approach that is difficult to 
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combine with numerical estimates of uncertainty. 

 

There are uncertainties caused by the different techniques used in different laboratories for 

measuring particular variables. Differences in the protocols used for sample cleaning, types of 

machine used for measurement and machine calibration, for example, have been shown to yield 

differences of up to 3°C in the sea-surface temperature estimates derived from Mg/Ca 

measurements of planktonic foraminifera (Roesenthal et al., 2004; Greaves et al., 2008). Similarly 

large inter-laboratory differences have been found for stable isotope analyses on bone collagen, 

again deriving from differences in sample cleaning and instrumentation (Pestle et al., 2014). While 

inter-laboratory differences in other types of measurement appear to be smaller than the actual 

measurement uncertainty (e.g. Foster et al., 2013), the fact that there are differences between 

measurements made by different groups poses difficulties for data synthesis. Again, it is difficult to 

know how to incorporate these uncertainties within a traditional data-model comparison framework.  

 

The general approach to using palaeo-reconstructions for model evaluation is to use the estimated 

change in reconstructed climate and compare this with the simulated change between a palaeo-

experiment and a control, usually a pre-industrial control.  Little thought has been given to the 

choice of baseline climate, either for the reconstructions or for the simulations. Hessler et al. (2014) 

showed that the choice of baseline climate, in this case SST anomalies based on either the WOA98, 

WOA09 or HadiSST data sets, made an average absolute difference of 0.3-0.4°C to mid-Holocene 

SST reconstructions with differences of >1°C in the Mediterranean and eastern Pacific. Although 

the MARGO Project used a standard baseline climatology (MARGO Project Members, 2009), other 

SST data sets (e.g. Ruddiman and Mix, 1993; Leduc et al., 2010; Marcott et al., 2013) have 

different definitions of the baseline climate, and this needs to be taken into account when 

combining these sources to create data sets for model evaluation. Differences in temperature 

between the pre-industrial (PI) control and the mid-20
th

 century in the historical simulations (1961-

1990 CE, i.e. the interval most nearly corresponding to the modern observational data sets used for 

statistical calibrations) can also be of the order of 0.5–1.0°C locally and this may also contribute to 

mis-matches between simulated and reconstructed climates (e.g. Wagner et al., 2012). 

 

The largest source of unquantifiable uncertainty in palaeoclimate reconstructions is associated with 

the climate interpretation of a given record. Biological assemblages contain a wealth of information, 

and this underpins their use to make reconstructions of multiple climate variables (e.g. Webb et al., 

1993; Jackson et al., 2000; Davis et al., 2003; Cheddadi et al., 2007; Fréchette et al., 2008; Guiot et 
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al., 2008). Derivation of a statistical relationship with a specific climate variable under modern 

climate conditions is based on the fact that this variable either controls or is correlated with 

something that controls the growth of the organism. July temperature, for example, has a limited 

direct impact on plant growth, but it is generally correlated in the northern hemisphere with the 

length and warmth of the growing season, which is the major determinant of whether plants can 

accumulate sufficient carbon to survive and reproduce. Very high July temperatures also tend to be 

associated with heat and/or moisture stress that can impact photosynthesis and strongly determine 

the composition and structure of vegetation (Kohfeld and Harrison, 2000; Harrison et al., 2010). 

Similarly, mean January temperature in the northern hemisphere is usually highly correlated with 

daily extreme low temperatures in winter, which determine whether a plant is killed by frost and 

therefore exert a strong selective pressure that differentiates plants with different overwintering 

mechanisms (Woodward, 1987; Harrison et al., 2010). The definition and adoption of “bioclimatic” 

variables, such as mean temperature of the coldest month, accumulated growing season warmth, 

and indices of plant-available soil moisture, for climate reconstruction was an attempt to move 

closer to the actual controls on plant growth (e.g. Cheddadi et al., 1997; Tarasov et al., 1999; 

Peyron et al., 2000) and which could therefore be expected to be invariant through time. 

Nevertheless, the palaeoclimate record is characterized by changes in seasonality, interannual 

variability and the frequency of extremes – all of which have the potential to invalidate modern-day 

correlations even between bioclimatic variables and species abundance. Furthermore, at least as far 

as terrestrial plants are concerned, statistical relationships with climate are modulated by the fact 

that plants respond directly to changes in atmospheric CO2 concentration through changes in 

productivity and water-use efficiency (Street-Perrott et al., 1997; Cowling and Sykes, 1999; 

Harrison and Prentice, 2003: Prentice and Harrison, 2009). It is not possible to take this into 

account using statistical techniques, and this is likely a contributory cause of the breakdown of 

statistical relationships between climate and tree-ring width in recent years (D’Arrigo et al., 2008; 

Gagen et al., 2011) and could also impact reconstructions of high-CO2 intervals such as the mid-

Pliocene (e.g. Salzmann et al., 2013) and low-CO2 intervals such as the LGM (Jolly and Haxeltine, 

1997; Cowling and Sykes, 1999; Prentice and Harrison, 2009). The effect of changing CO2 will also 

impact on palaeo-reconstructions of other plant properties, including leaf area index and tree cover 

(e.g. Gonzalez et al., 2008; Williams et al., 2011). 

 

An alternative way of exploiting palaeoenvironmental data for climate-model evaluation is to use 

models that explicitly simulate the sensor – for example, vegetation (Kaplan et al., 2003; Prentice et 

al., 2011a), tree rings (Evans et al., 2006; Li et al., 2014), fire (Prentice et al., 2011b; Martin Calvo 
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et al., 2014), the dust cycle (Werner et al., 2003; Mahowald et al., 2006; Takemura et al., 2009), 

peat growth (Charman et al., 2013), glacier mass balance (Michelmayer et al., 2008), marine 

biogeochemistry (Aumont et al., 2003; Bopp et al., 2003) or phytoplankton abundance (Le Quéré et 

al., 2005), and stable isotopes in corals (Thompson et al., 2011). This type of “forward” modelling 

using a simple biogeography model (BIOME4: Kaplan et al., 2003), for example, makes direct 

comparisons with observations possible and discriminates between the performance of different 

climate models (Fig. 6). Many climate models now explicitly simulate isotopic tracers (e.g. Schmidt 

et al., 2007; Sturm et al., 2010; Holloway et al., 2016) to facilitate model evaluation and diagnosis. 

Similarly, there are an increasing number of models that simulate vegetation, fire and the dust cycle 

(e.g. Lawrence et al., 2011; Reick et al., 2013; Kok et al., 2014), primarily in order to account for 

feedbacks to climate. The explicit simulation of these components of the climate system greatly 

facilitates comparisons with natural records (see e.g. Wasson and Claussen, 2002; Ohgaito et al., 

2013).  

 

A natural extension of the forward modelling approach is to use inversion techniques to derive 

quantitative climate reconstructions that are consistent with a process-based model (Guiot et al., 

2000; Wu et al., 2007; Hatté et al., 2009; Garretta et al., 2010; Boucher et al., 2014). The use of 

process-based models in palaeoclimate reconstruction sidesteps many of the potential problems 

with correlation-based statistical methods. One caveat to the use of process-based modelling is the 

assumption that the model used is correct. Projections of future changes in vegetation (Piao et al., 

2013; Friedlingstein et al., 2014) and fire (Harrison et al., 2010; Kloster et al., 2012; Kelley and 

Harrison, 2014) show that different process-based models produce radically different simulations 

for the 21
st
 century, despite being equally good at reproducing modern day vegetation patterns and 

fire regimes. Thus, as with climate models, it is imperative either to use an ensemble of models or 

to demonstrate that the forward-model selected is reliable. It should also be noted that process-

based modelling does not overcome the problem of equifinality (different climates generating 

similar effects), although it is possible to use this modelling approach to determine the range of 

potential climates and the probabilities associated with each (Garreta et al., 2010). 

A particular motivation for the use of process-based models for reconstructing climate from 

palaeovegetation records is the strong effect of changes in atmospheric CO2 concentration on 

vegetation composition (as discussed above). Manifest today in worldwide “woody thickening” 

(increase of tree density especially in tropical savannas), this same effect also accounts for much of 

the extreme reduction in forest area in the tropics and subtropics during glacial periods; and the 
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globally lower than present terrestrial carbon storage at the LGM (Harrison et al., 2010), which was 

only partly counteracted by greater than present storage of inert carbon in permafrost (Ciais et al., 

2013). There is no obvious way to build the CO2 effect into statistical climate reconstruction 

methods because at any one time there is very limited variation in CO2 concentration across the 

globe. Process-based models, including BIOME4, include a CO2 effect on vegetation composition 

(a consequence of the effect of CO2 on photosynthesis, and the differential effects on plants with the 

C3 and C4 pathways) and so inversion of such models can take known changes in CO2 concentration 

into account (Guiot et al., 2000; Wu et al., 2007; Hatté et al., 2009; Garretta et al., 2010; Boucher et 

al., 2014). An alternative approach, which decouples the consideration of CO2 effects from the use 

of a specific process-based model, involves defining a bioclimatic index that reflects “apparent” 

plant-available moisture, as sensed by plants responding to changes in atmospheric CO2. Wang et 

al. (2013) used this approach to modify results of a statistical model to predict vegetational 

responses to future climate change. It could potentially be adapted to “correct” palaeoclimate 

reconstructions made from palaeovegetation data by any method (Prentice, 2015). The correction 

would generally be to increase palaeoprecipitation estimates for periods of low CO2 and to decrease 

them for periods of high CO2. The use of such a physically-based correction factor could provide a 

rapid method of modifying existing statistical reconstructions of palaeoprecipitation to account for 

the direct impact of CO2 on plant growth.  

 

Despite various sources of uncertainty, quantitative reconstructions can be used for model 

evaluation and benchmarking as long as the climate signal being examined is larger than the 

potential uncertainties (Lohmann et al., 2013; Harrison et al., 2014) and especially when 

reconstructions derived using different methods (e.g. statistical techniques, forward modelling, 

model inversion) show similar, spatially coherent patterns that are consistent with a single climatic 

explanation (Bartlein et al., 2011).  

The terms ‘evaluation’ and ‘benchmarking’ are not synonymous. Benchmarking is a measurement 

tool, whereby model outputs are compared to a pre-defined set of observations using appropriate 

metrics to define the degree of agreement quantitatively (Taylor, 2001; Gleckler et al., 2008). 

Benchmarking serves multiple functions. It allows the performance of different models to be 

compared, but it can also be used to identify processes that require improvement in a particular 

model or to evaluate parameter choices, including ensuring that improvements to one component of 

a model do not compromise performance in another. Benchmarking is routinely used to assess 

climate-model performance under modern conditions, including investigation of parameter 
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uncertainties (e.g. Murphy et al., 2004) and multi-model comparison (e.g. Reichler and Kim, 2008). 

It has been used to inform model development (e.g. Jackson et al., 2008) and to assess the reliability 

of projections of future climate (e.g. Hall and Qu, 2006). Globally comprehensive syntheses that 

include multiple climate variables now make routine benchmarking of palaeosimulations possible 

(e.g. Flato et al., 2013; Hargreaves et al., 2013; Harrison et al., 2014).  

 

Evaluation of the CMIP5 simulations: what have we learnt?  

 

There are now many papers presenting analyses and evaluations of the CMIP5 palaeosimulations. 

The PAGES 2k–PMIP3 group (2015) have made initial analyses of the LM simulations. A 

preliminary summary of the analyses related to the MH and LGM simulations was presented by 

Harrison et al. (2015). Here we draw on the Harrison et al. (2015) paper to outline some of the 

major lessons that have been learnt from comparing simulated and reconstructed climates for these 

two periods. 

 

Large-scale features of climate that are governed by the energy- and water-balance show 

remarkably consistent simulated responses to changes in forcing in different climate states. For 

example, the magnitude of the temperature change over land compared to ocean is consistent in 

both warm and cold climate states: depending on the sign of the forcing, the land warms or cools by 

ca 2.36 times more than the ocean (Fig. 7). The ratio of the land-sea temperature contrast is constant 

over a wide range of climates, including climates with higher-than-present CO2 levels (Izumi et al., 

2013; Lunt et al., 2013; Hill et al., 2014; Schmidt et al., 2014). Land-ocean contrast is primarily 

driven by changes in surface downward clear-sky longwave radiation, which includes the effect of 

changes in CO2, water vapour, and atmospheric energy transport (Izumi et al., 2014). The relative 

change in tropical temperature compared to high latitudes (often referred to as polar or high-latitude 

amplification) is also consistent across different climate states. Again, the major driver of this 

contrast is surface downward clear-sky longwave radiation, with surface albedo playing a 

significant but secondary role in promoting high-latitude amplification in both cold and warm 

climates (Izumi et al., 2014). The simulated magnitude of the relative changes in land-sea contrast 

and in high-latitude amplification is supported by historical and LGM observations, confirming that 

the simulated changes are realistic (Izumi et al., 2013). Thus, palaeo-evaluation of the CMIP5 

simulations does confirm that the large-scale patterns of temperature change in future projections 

are believable.  
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Large-scale changes in precipitation scale with temperature, increasing as temperature increases and 

decreasing in cold climates. The change in precipitation per degree change in temperature is 

approximately the same in palaeoclimate, historical, and increased CO2 simulations. The rate of 

change is consistently smaller than the rate of change in saturation vapour pressure (i.e. it is much 

less than predicted by the Clausius-Clapyeron relationship), partly because of energetic constraints 

on evaporation, and partly because of constraints in water availability over land (Trenberth and 

Shea, 2005; Allan, 2009). Geographical differences in the strength of these constraints means there 

are larger changes in precipitation per degree temperature change over the ocean than over land, 

and in extratropical than tropical land areas (Li et al., 2013). All of these large-scale features are 

consistent with palaeoclimate and historical observations (Li et al., 2013). Again, the palaeoclimate 

diagnosis of the CMIP5 simulations confirms that the large-scale patterns of precipitation change in 

future projections are believable.  

 

The CMIP5 simulations of MH and LGM climates show only moderate skill in predicting observed 

patterns of climate change overall (Hargreaves et al., 2013; Hargreaves and Annan, 2014; Harrison 

et al., 2014; Harrison et al., 2015) and this arises because of persistent problems in simulating 

regional climates. In the MH, for example, models predict an increase in the northern hemisphere 

monsoons in response to the orbitally-driven increase in summer insolation. This increase in 

monsoons is amplified by ocean and land-surface feedbacks. Nevertheless, the models do not 

produce as large a change in either the amount of rainfall or the extent of the area influenced by 

monsoon precipitation as indicated by observations. The discrepancy between observed and CMIP5 

simulated changes in MH precipitation over northern Africa between 15°-30° N is at least 50% 

(Perez-Sanz et al., 2014). The mismatch between simulated and observed monsoon climates has not 

been reduced in the CMIP5 simulations compared to simulations made with earlier generations of 

models (Harrison et al., 2015).  

 

Failure to capture the magnitude of an observed change suggests that there are feedback processes 

that are either not included or are poorly treated in the current generation of models. However, 

differences in the sign of regional changes between observations and simulations are likely to 

indicate more fundamental problems. The CMIP5 MH simulations show drier conditions in the 

Eurasian mid-continent, particularly between 45°-60° N, whereas observations systematically show 

the region was wetter than today. The simulated drying leads to a significant warm temperature bias 

in this region, whereas observations indicate that the mid-continent had cooler summers than today. 

Discrepancies in the sign of regional climate change are also found in other extratropical regions, 
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most notably in southern Europe where the models show warmer summers and the observations 

indicate cooler summers during the MH (Mauri et al., 2014). Mauri et al. (2014) suggested this 

mismatch was due to poor simulation of the short-term variability in atmospheric circulation, 

specifically the prevalence of anticyclonic blocking in summer and increased dominance of the 

positive phase of the North Atlantic Oscillation in winter during the MH. 

 

There has been little assessment of how well models reproduce changes in short-term climate 

variability during the MH and LGM, in part because of the lack of large-scale syntheses of high-

resolution palaeodata.  In general, models underestimate interannual variability under modern 

climate conditions (Flato et al., 2013). The direct observational record is too short to know how 

well they capture decadal to centennial-scale variability. Oxygen isotope measurements on marine 

carbonates (corals, molluscs) from the tropical Pacific Ocean show a substantial reduction in the 

strength of the El Niño-Southern Oscillation (ENSO) through most of the Holocene, culminating 

between 5 and 3 ka (Emile-Geay et al., 2015). Most of the CMIP5 simulations show a reduction in 

ENSO in the MH compared to the pre-industrial climate, but it is very much smaller than the 

reduction shown by the palaeo-observations and only marginally significant. This raises the 

possibility that an important component of the observed changes in ENSO may result from internal 

variability. The contribution of internal variability to projected future climate generally decreases 

through the 21
st
 century, but nevertheless remains an important contribution to the uncertainties in 

projections of regional precipitation e.g. in Asia and Europe throughout the century (Kirtman et al., 

2013). It is also clear that a considerable part of the differences in the simulated response to forcing 

during the last millennium can be explained in terms of internal variability (Goosse et al., 2012; 

Masson-Delmotte et al., 2013).  

 

Model responses to forcing at a regional scale are not always consistent. Various CMIP5 models 

show opposite changes in the location of the southern hemisphere westerlies during the LGM, for 

example, with half showing a equatorward shift and half showing a poleward shift in mean position 

compared to the pre-industrial control (Chavaillez et al., 2013; Rojas, 2013).  The models that 

unexpectedly simulate a poleward shift of the jet stream at LGM show a strong cooling in the lower 

troposphere at high latitudes, which suggests that inter-model differences in the position of the 

westerlies may reflect different sensitivity to prescribed changes in the Antarctic ice sheet 

(Chavaillez et al., 2013). In the CMIP5 MH simulations, there is a consistent reduction of summer 

sea-ice cover in response to increases in summer insolation but some models show increased and 

some decreased ice thickness in winter (Berger et al., 2013). These inter-model differences appear 
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to be related to differences in the cloud feedback. Differences in the response between models are 

potentially helpful, providing that the actual response is well-constrained by observations, because 

they offer the possibility of determining the correct sensitivity to different feedbacks. 

 

The systematic biases in the simulation of regional climates means that models are generally better 

at simulating mean values of any climate variable than at simulating the spatial variability or the 

geographical patterning in that variable (Harrison et al., 2014: Fig. 8). Nevertheless, the 

benchmarking of the CMIP5 MH and LGM shows that some models consistently perform better 

than others, even in the prediction of spatial patterning (Harrison et al., 2014). Unfortunately, better 

performance in palaeo-simulations is not related to better performance under modern conditions 

(Harrison et al., 2015). The ability to simulate modern climate regimes and processes does not mean 

that a model will be good at simulating climate changes. This emphasises how important it is to test 

models against the palaeorecord if we are to have any confidence in their projections of future 

climate (Braconnot et al., 2012; Hargreaves and Annan, 2014; Schmidt et al., 2014).  

 

The future 

 

Evaluation of the CMIP5 palaeo-simulations demonstrates the value of using past climates as data 

targets in model intercomparisons. It has been shown that the broad-scale temperature and 

precipitation simulated responses to past changes in forcing are correctly represented, and this 

suggests they are features of the actual response of the climate system to changes in forcing rather 

than model artefacts. Projected changes in land-sea temperature contrast, high-latitude 

amplification, temperature seasonality and the scaling of precipitation with temperature are 

therefore likely to be reliable. But models are much less reliable at predicting regional climate 

changes. The palaeo-record has the ability to discriminate between models where they show 

differences in the response to forcing, and again this provides a way of determining which models 

are more or less reliable. Efforts to improve the skill of climate models based on evaluation using 

modern climate states are having a declining impact (Knutti, 2010; Rausser et al., 2014), pointing to 

a need for innovation (Stevens and Bony, 2013; Palmer, 2014). We are therefore at a key moment 

for the climate modelling enterprise to benefit from insights gained from the study of past climates. 

There are a number of areas that have been identified as potential sources of error in the simulation 

of regional palaeoclimates, including the balance between deep and shallow convection in monsoon 

regimes (Zheng and Braconnot, 2013), incorrect representation of water- and energy-exchanges 

between the land and the atmosphere (Harrison et al., 2015), poor understanding of the relationship 
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between mean climate state and short-term climate variability (Emile-Geay et al., 2015) and failure 

to capture the short-term variability in atmospheric circulation (Mauri et al., 2014). Further 

investigation of these issues in the radically different climate regimes of the past could provide 

clues to improve state-of-the-art models. 

 

The need for renewed effort is not confined to the modeling community. For example, our ability to 

evaluate model performance in the southern hemisphere is currently limited by a lack of coherent 

and consistent syntheses of the available palaeoenvironmental data. There is an urgent need for 

quantitative climate reconstructions covering South America and Australia. The use of existing 

quantitative reconstructions could also be improved, in particular through the development 

of standardized measures of uncertainty and exploitation of probabilistic approaches to 

comparison. Our ability to explore the linkages between forced changes in the mean climate and 

short-term climate variability is limited by the lack of global-scale syntheses of high-resolution 

records that extends beyond the past two millennia. Again, a community focus on producing such 

syntheses would be worthwhile.  But the likely complexity of the seasonal changes in climate in the 

geological past, coupled with the known complexity of the controls on biological systems, means 

there will always be large uncertainties associated with statistical reconstructions. An emphasis on 

developing and using process-based models of a range of palaeoenvironmental sensors is also 

required to improve climate-model evaluation. The application of process-based models will 

facilitate a more systematic exploitation of existing syntheses of qualitative data. Many of the 

synthetic products are out-of-date and do not include sites published in the last decade or so, 

and thus a community effort to update these data sets would be useful. 

 

Equilibrium time-slice simulations have been the focus of climate modeling for many decades, and 

this type of simulation will still be a focus of the next phase of the Climate Model Intercomparison 

Project (CMIP6: Meehl et al., 2014). However, many features of the climate system cannot be 

examined using equilibrium simulations. As the CMIP5 Last Millennium experiment has 

demonstrated, long transient simulations are now possible; and indeed transient simulations of both 

the deglaciation and Holocene using the same models that are used for future climate projections 

are planned within PMIP. Evaluation of transient simulations poses new and as yet unexplored 

issues for data synthesis and data-model comparison. 
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Figure and Table Captions 

 

Figure 1: Changes in lake status (a) in the mid-Holocene (MH, 6 ka) and (b) at the Last Glacial 

Maximum (LGM, 21 ka) compared to present day. Data from the Global Lake Status Database 

(Kohfeld and Harrison, 2000; data available from the PMIP2 website: https://pmip2.lsce.ipsl.fr/).  

Figure 2: Reconstructed changes in mean annual temperature (MAT) (a) in the mid-Holocene (MH, 

6ka) and (b) at the Last Glacial Maximum (LGM, 21ka) compared to present day. The 

reconstructions of ocean temperature are from the MARGO database (MARGO Project Members 

2009) and the reconstructions of land temperature are from Bartlein et al. (2011). The original site-

based reconstructions are gridded to a 2° by 2° grid for the land 

(https://www.ncdc.noaa.gov/paleo/study/9897) and a 5° by 5° grid for the ocean 

(http://www.ncdc.noaa.gov/paleo/study/12034) (Harrison et al., 2013). The significance of the 

temperature changes is indicated by the dot sizes:  large dots show where the confidence intervals 

of the reconstructions do not include 0. The lower panels show (c) MH and (d) LGM sites where 

quantitative reconstructions exist (dark magenta) and where it would be possible to make 

quantitative reconstructions, although these have not been made to date (green).  

Figure 3: Reconstructed northern hemisphere global annual temperatures during the last 2000 years, 

redrawn from Masson-Delmotte et al. (2013). All series are anomalies from the 1881–1980 CE 

mean (horizontal dashed line) and have been smoothed with a filter that reduces variations on time 

scales less than about 50 years.  Curves from instrumental records are plotted in blue, and the purple 

lines show a locally-weighted regression curve with a 25-yr window half-width fit to the original 

unsmoothed series, and the 95-percent bootstrap confidence intervals for that curve that show the 

impact of the individual series to the overall curve. 

 

Figure 4: Simulated and observed evolution of the hydroclimate of northern Africa during the past 

21,000 years. Simulated precipitation minus evaporation (P-E) is an area-average over all land cells 

with centre points between 9.28° and 24.12° N, for (a) winter and spring (November, December, 

January, February, March, April: NDJFMA), (b) for pre-monsoon (May, June: MJ), (c) monsoon 

(July, August: JA) and (d) late monsoon (September, October: SO) intervals from the TraCE-21k 

simulation (http://www.cgd.ucar.edu/ccr/TraCE/; Liu et al., 2009). Lake status (e) in the equivalent 

region (7.42° to 29.69° N) is derived from data in the Global Lake Status Database (Kohfeld and 

Harrison, 2000; data available from the PMIP2 website: https://pmip2.lsce.ipsl.fr/), with the original 
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1 kyr 
14

C reporting intervals converted to calendar ages using the intcal13.14c calibration curve 

(Reimer et al. 2013). 

 

Figure 5: Observed and predicted zonal changes in biomass burning over the past 21 kyr. 

Composite charcoal influx curves for the northern extratropics (30° N– 90° N), northern tropics (0– 

30° N), southern tropics (0– 30° S) and southern extratropics (30° S– 90° S) with confidence 

intervals based on bootstrap resampling by site. The black curves and gray envelopes show locally 

weighted regression fitted values and confidence intervals using a window (half) width of 500 yrs, 

while the blue curves are fitted values for a window (half) width of 2000 yrs. The data are taken 

from the Global Charcoal Database v2.0 (http://www.gpwg.org/gpwgdb.html). The purple lines 

show values of charcoal predicted using a generalized additive model developed using zonally 

averaged charcoal values and zonally averaged temperature and precipitation minus evaporation (P-

E) over land from a transient simulation of the ECBilt-CLIO model (Timm and Timmermann, 

2007).  

 

Figure 6: Simulated and observed vegetation changes across North America during the mid-

Holocene (MH, 6 ka). The simulations were made using the BIOME4 biogeography model (Kaplan 

et al., 2003) driven by long-term averages of monthly mean temperature, sunshine and precipitation 

derived from Palaeoclimate Modelling Intercomparison Project (PMIP2) simulations made with the 

(a) CSIRO-Mk3L-1.0 coupled ocean-atmosphere (OA) and (c) ocean-atmosphere-vegetation 

(OAV) models. The observed vegetation during the MH (b) is derived from the BIOME6000 

dataset (Prentice et al., 2000; Bigelow et al., 2003; data available from the PMIP2 website: 

https://pmip2.lsce.ipsl.fr/).  The OAV model does not shows appreciably greater agreement with the 

observed vegetation then the less complicated OA model. 

 

Figure 7: Scatter plots showing changes in land-ocean contrast in past, present, and projected 

climates. The black dots are the simulated long-term mean differences (experiment minus pre-

industrial Control) in the relative warming/cooling over global land and global ocean. The red 

crosses show simulated changes where the model output has been sampled only at the locations for 

which there are temperature reconstructions for the Last Glacial Maximum (LGM, 21 ka) or mid-

Holocene (MH, 6 ka), or observations for the historical (post 1850 CE) interval. Area-weighted 

averages of the palaeoclimate data are shown by a bold blue cross, with reconstruction uncertainties 

(standard deviation) shown by the finer lines.  The inset shows data points for the MH and historical 

intervals. 
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Figure 8: Comparison of median and interquartile ranges (IQR) of observed and simulated growing 

season temperatures (as measured by growing degree days above a threshold of 5°C: GDD5) in (a) 

the mid-Holocene and (b) the Last Glacial Maximum. The comparisons are made using only the 

model land grid cells where there are observations. The reconstructed GDD5 is from the Bartlein et 

al. (2011) data set. The models are colour-coded to show whether they are CMIP5 simulations or 

from the previous generation of simulations made by the Palaeoclimate Modelling Intercomparison 

Project (PMIP2), and whether they are ocean–atmosphere (OA), ocean–atmosphere-vegetation 

(OAV) or OA carbon-cycle (OAC) models. The simulated median for each model is shown by a 

vertical line, the box represents the IQR.  

 

Table 1: Description of the palaeosimulations included in the fifth phase of the Coupled Model 

Intercomparison Project (CMIP5) and of the boundary conditions specified for these experiments. 

 

Table 2: List of models and institutions contributing palaeoclimate simulations to the fifth phase of 

the Coupled Model Intercomparison Project (CMIP5). The model names are the codes used to 

identify each model in the CMIP5 archive.  
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Table 1: Description of the palaeosimulations included in the fifth phase of the Coupled Model 

Intercomparison Project (CMIP5) and of the boundary conditions specified for these experiments. 

 

Abbreviation 

(in this 

paper)  

Name of 

Experiment  

(in ESGF 

database) 

Description Boundary conditions 

PiControl piControl Equilibrium 

simulation of 1850 

CE, used as control 

for MH and LGM 

simulations  

(also used as a 

baseline for 

historical simulations 

by groups that did 

not run the 

palaeosimulations) 

Orbital parameters: eccentricity = 

0.016724, obliquity = 23.446°, perihelion-

180° = 102.04° 

Trace gases: CO2 = 280 ppm, CH4 = 650 

ppb, N2O = 270 ppb, CFC = 0, O3 = 

modern-10 DU 

Ice sheet: modern 

Land surface: modern or computed with 

dynamical vegetation model 

Carbon cycle: Interactive, with 

atmospheric concentration prescribed and 

ocean and land carbon fluxes diagnosed as 

recommended in CMIP5 

Note: modelling groups that did not run 

palaeosimulations could have used a 

slightly different configuration for the 

PiControl  

LM  Transient simulation 

of the last 

millennium, 850-

1850 CE 

 

MH midHolocene 

 

Equilibrium 

simulation of 6 ka  

Orbital parameters: eccentricity = 

0.018682, obliquity = 24.105°, perihelion-

180° = 0.87° 

Trace gases: CO2 = 280 ppm, CH4 = 650 

ppb, N2O = 270 ppb, CFC = 0, O3 = same 

as in CMIP5 PI 

Ice sheet: as in CMIP5 PiControl 

Land surface: Computed using a 

dynamical vegetation module or 

prescribed as in PiControl, with phenology 

computed for models with active carbon 

cycle or prescribed from data 

Carbon cycle: Interactive, with 

atmospheric concentration prescribed and 

ocean and land carbon fluxes diagnosed as 

recommended in CMIP5 

LGM lgm 

 

Equilibrium 

simulation of the 

Last Glacial 

Maximum, 21 ka  

Orbital parameters: eccentricity = 

0.018994, obliquity = 22.949°, perihelion-

180° = 114.42° 

Trace gases: CO2 = 185 ppm, CH4 = 350 
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ppb, N2O = 200 ppb, CFC =0, O3 = as in 

CMIP5 PI 

Ice sheet: Prescribed consensus ice sheet 

as described on PMIP3 website, with 

consistent changes to land-sea mask and 

sea level 

Land surface: Computed using a 

dynamical vegetation module or 

prescribed as in PiControl, with phenology 

computed for models with active carbon 

cycle or prescribed from data 

Carbon cycle: Interactive, with 

atmospheric concentration prescribed and 

ocean and land carbon fluxes diagnosed as 

recommended in CMIP5 
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Table 2: List of models and institutions contributing palaeoclimate simulations to the fifth phase of 

the Coupled Model Intercomparison Project (CMIP5). The model names are the codes used to 

identify each model in the CMIP5 archive.  

 

Model name Institution PI 

control 

Last 

Millennium 

Mid-

Holocene 

Last Glacial 

Maximum 

BCC-CSM1 Beijing Climate Center, China 

Meteorological Administration, 

China 

✔  ✔  

CNRM-CM5 Centre National de Recherches 

Météorologiques/Centre Européen 

de Recherche et Formation 

Avancée en Calcul Scientifique, 

France 

✔  ✔ ✔ 

CSIRO-Mk3-

6-0 

Commonwealth Scientific and 

Industrial Research Organisation 

in collaboration with the 

Queensland Climate Change 

Centre of Excellence, Australia 

✔  ✔  

EC-EARTH 

 

EC-Earth consortium 

 
✔  ✔  

FGOALS-g2 LASG, Institute of Atmospheric 

Physics, Chinese Academy of 

Sciences; and CESS, Tsinghua 

University, China 

✔  ✔  

FGOALS-g2 LASG, Institute of Atmospheric 

Physics, Chinese Academy of 

Sciences; and CESS, Tsinghua 

University, China 

✔  ✔  

GFDL-

ESM2G 

NOAA Geophysical Fluid 

Dynamics Laboratory, US 

 

✔  ✔  

GFDL-

ESM2M 

 

NOAA Geophysical Fluid 

Dynamics Laboratory, US 
✔  ✔  

GISS-E2-R NASA Goddard Institute for 

Space Studies, US 
✔ ✔ ✔ ✔ 

HadGEM2-

CC 

Hadley Center, UK Met. Office, 

UK 
✔  ✔  

HadGEM2-ES Hadley Center, UK Met. Office, 

UK 
✔  ✔  

INM-CM4 

 

Institute for Numerical 

Mathematics, Russia 
✔  ✔  

IPSL-CM5A-

LR 

Institut Pierre-Simon Laplace, 

France 
✔  ✔ ✔ 

IPSL-CM5A-

MR 

Institut Pierre-Simon Laplace, 

France 
✔  ✔  

MIROC-ESM Japan Agency for Marine-Earth ✔ ✔ ✔ ✔ 
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Science and Technology, 

Atmosphere and Ocean Research 

Institute (The University of 

Tokyo), and National Institute for 

Environmental Studies, Japan 

MIROC5 Japan Agency for Marine-Earth 

Science and Technology, 

Atmosphere and Ocean Research 

Institute (The University of 

Tokyo), and National Institute for 

Environmental Studies, Japan 

✔  ✔  

MPI-ESM-P Max Planck Institute for 

Meteorology, Hamburg, Germany 
✔ ✔ ✔ ✔ 

MRI-CGCM3 Meteorological Research Institute, 

Tsukuba, Japan 
✔  ✔ ✔ 

NCAR-

CCSM4 

National Center for Atmospheric 

Research, US/Dept. of 

Energy/NSF 

✔  ✔ ✔ 

NorESM1-M Norwegian Climate Centre, 

Norway 
✔  ✔  
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Figure 1: Changes in lake status (a) in the mid-Holocene (MH, ca 6000 yr B.P.) and (b) at the Last 

Glacial Maximum (LGM, ca 21000 yr B.P.) compared to present day. Data from the Global Lake 

Status Database (Kohfeld and Harrison, 2000).  
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Figure 2: Reconstructed changes in mean annual temperature (MAT) (a) in the mid-Holocene (MH, ca 6000 yr B.P.) and (b) at the Last Glacial Maximum 

(LGM, ca 21000 yr B.P.) compared to present day. The reconstructions of ocean temperature are from the MARGO database (MARGO Project Members 
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2009) and the reconstructions of land temperature are from Bartlein et al. (2011). The original site-based reconstructions are gridded to a 2° by 2° grid for 

the land and a 5° by 5° grid for the ocean (Harrison et al., 2013). The significance of the temperature changes are indicated by the dot sizes:  large dots show 

where the confidence intervals of the reconstructions do not include 0.0  The lower panels show (c) MH and (d) LGM sites where quantitative 

reconstructions exist (dark magenta) and were it would be possible to make quantitative reconstructions, although these have not been made to date 

(green).  

Page 58 of 65

http://mc.manuscriptcentral.com/jqs

Journal of Quaternary Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 3: Reconstructed Northern Hemisphere global annual temperatures during the last 2000 years, redrawn from Masson-Delmotte et al. (2013). All 

series are anomalies from the 1881–1980 mean (horizontal dashed line) and have been smoothed with a filter that reduces variations on time scales less 

than about 50 years.  Curves from instrumental records are plotted in blue, and the purple lines show a locally-weighted regression curve with a 25-yr 

window half-width fit to the original unsmoothed series, and the 95-percent bootstrap confidence intervals for that curve that show the impact of the 

individual series to the overall curve. 
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Figure 4: Simulated and observed evolution of the hydroclimate of northern Africa during the past 

21,000 years. Simulated precipitation minus evaporation (P-E) is an area-average over all land cells 

with centre points between 9.28° and 24.12° N, for (a) winter and spring (November, December, 

January, February, March, April: NDJFMA), (b) for pre-monsoon (May, June: MJ), (c) monsoon (July, 

August: JA) and (d) late monsoon (September, October: SO) intervals from the TraCE-21k simulation 

(http://www.cgd.ucar.edu/ccr/TraCE/; Liu et al., 2009). Lake status (e) in the equivalent region (7.42° 

to 29.69° N) is derived from data in the Global Lake Status Database (Kohfeld and Harrison, 2000), 

with the original 1 kyr 14C reporting intervals converted to calendar ages using the intcal13.14c 

calibration curve (Reimer et al. 2013). 
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Figure 5: Observed and predicted zonal changes in biomass burning over the past 21 kyr. Composite 

charcoal influx curves for the northern extratropics (30° N– 90° N), northern tropics (0– 30° N), 

southern tropics (0– 30° S) and southern extratropics (30° S– 90° S) with confidence intervals based 

on bootstrap resampling by site. The black curves and gray envelopes show locally weighted 

regression fitted values and confidence intervals using a window (half) width of 500 yrs, while the 

blue curves are fitted values for a window (half) width of 2000 yrs. The purple lines show values of 

charcoal predicted using a generalized additive model developed using zonally averaged charcoal 

values and zonally averaged temperature and precipitation minus evaporation (P-E) over land from a 

transient simulation of the ECBILT-CLIO model (Timm and Timmermann, 2007).  
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Figure 6: Simulated and observed vegetation changes across North America during the mid-Holocene 

(MH, ca 6000 yr B.P.). The simulations were made using the BIOME4 biogeography model (Kaplan 

et al., 2003) driven by long-term averages of monthly mean temperature, sunshine and precipitation 

derived from Palaeoclimate Modelling Intercomparison Project (PMIP2) simulations made with the 

(a) CSIRO-Mk3L-1.0 coupled ocean-atmosphere (OA) and (c) ocean-atmosphere-vegetation (OAV) 

models. The observed vegetation during the MH (b) is derived from the BIOME6000 dataset (Prentice 

et al., 2000; Bigelow et al., 2003).  The OAV model does not shows appreciably greater agreement 

with the observed vegetation then the less complicated OA model. 
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Figure 7: Scatter plots showing changes in land-ocean contrast in past, present, and projected 

climates. The black dots are the simulated long-term mean differences (experiment minus pre-

industrial Control) in the relative warming/ cooling over global land and global ocean. The red 

crosses show simulated changes where the model output has been sampled only at the locations for 

which there are temperature reconstructions for the Last Glacial Maximum (LGM, ca 21000 yr B.P.) 

or mid-Holocene (MH), or observations for the historical (post 1850 CE) interval. Area-weighted 

averages of the palaeoclimate data are shown by a bold blue cross, with reconstruction uncertainties 

(standard deviation) shown by the finer lines.  The inset shows data points for the MH and historical 

intervals. 
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