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Abstract 

This thesis examines three different, but related problems in the broad area of 

portfolio management for long-term institutional investors, and focuses mainly on 

the case of pension funds. The first idea (Chapter 3) is the application of a novel 

numerical technique – robust optimization – to a real-world pension scheme (the 

Universities Superannuation Scheme, USS) for first time. The corresponding 

empirical results are supported by many robustness checks and several 

benchmarks such as the Bayes-Stein and Black-Litterman models that are also 

applied for first time in a pension ALM framework, the Sharpe and Tint model and 

the actual USS asset allocations. The second idea presented in Chapter 4 is the 

investigation of whether the selection of the portfolio construction strategy 

matters in the SRI industry, an issue of great importance for long term investors. 

This study applies a variety of optimal and naïve portfolio diversification 

techniques to the same SRI-screened universe, and gives some answers to the 

question of which portfolio strategies tend to create superior SRI portfolios. 

Finally, the third idea (Chapter 5) compares the performance of a real-world 

pension scheme (USS) before and after the recent major changes in the pension 

rules under different dynamic asset allocation strategies and the fixed-mix 

portfolio approach and quantifies the redistributive effects between various 

stakeholders. Although this study deals with a specific pension scheme, the 

methodology can be applied by other major pension schemes in countries such as 

the UK and USA that have changed their rules. 
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1 Introduction and Overview 

This thesis examines three different, but related problems in the broad area of 

portfolio management for long-term institutional investors, and focuses mainly on 

the case of pension funds. In what follows, we provide a comprehensive overview of 

the following chapters. 

The main objective of Chapter 2 is to introduce the reader to the basic aspects of 

portfolio theory, asset liability management (ALM) modeling and pension scheme 

design – the key elements of Chapters 3, 4 and 5. In particular, the fundamental 

Markowitz (1952) portfolio theory (mean-variance portfolio optimization), the most 

important criticisms of the mean-variance portfolio optimization framework, the 

latest developments in portfolio techniques that deal with estimation errors in the 

input data as well as alternative metrics used for portfolio evaluation are discussed. 

Second, Chapter 2 describes the benefits of the asset-liability management (ALM) 

models for long-term institutional investors such as insurance companies, pension 

and endowment funds, instead of ignoring the corresponding liabilities and using 

asset-only portfolio strategies. In addition, Chapter 2 describes the close relation 

between Operations Research (OR) and ALM modelling, provides a review of the 

most important techniques used in the computation of optimal ALM strategies (e.g. 

stochastic programming, portfolio theory, stochastic simulation, dynamic 

programming and stochastic control) as well as the most popular methods for 

generating scenarios, and explains the issue of the computational intractability of 

scenario-based ALM methods in solving realistic asset-liability management 
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problems. Third, Chapter 2 provides a detailed description of the two dominant 

types of pension schemes (defined benefit and defined contribution) in the UK and 

US, and gives a comprehensive review of the relevant pension studies that compute 

the intergenerational redistributive effects between the stakeholders of a pension 

scheme, which occur after various pension rule changes. 

In Chapter 3, a novel numerical portfolio optimization technique – robust (worst-

case) optimization – is used to formulate and solve the asset-liability management 

(ALM) problem for a real-world pension scheme (USS). Robust optimization is 

particularly well suited to solving the ALM problem since it assumes that the 

uncertain input data are not known with certainty, but they lie within uncertainty 

sets. Hence, it adopts a maximin approach by solving the ‘worst-case’ optimization 

problem under the assumption that the stochastic input parameters used in the 

optimization problem take the worst-case values within the uncertainty structures 

defined by the modeler. As a result, robust optimization deals with estimation risk by 

ruling out possible optimal solutions that promise superior performance due to 

statistical misspecifications in the input data. Furthermore, the robust formulated 

ALM model presented in Chapter 3 incorporates additional important characteristics 

of the pension asset-liability management model such as upper and lower bounds 

for each asset class, prohibits borrowing and short sales and imposes a non-negative 

constraint on the expected value of the asset-liability portfolio return. Problems 

formulated with robust optimization techniques are easily solved and can handle 

problems with large data requirements in a more computationally tractable manner 

than scenario based approaches (e.g. stochastic programming and stochastic 



3 
 

simulation), and often requires the estimation of fewer stochastic parameters and 

reduces estimation risk. 

This is the first application of a computationally tractable (easily solved) asset-

liability management model based on robust optimization techniques to a real-world 

pension scheme (the Universities Superannuation Scheme, USS), and the first 

pension asset-liability management model that maximizes the Sharpe ratio. Also, the 

pension liabilities in Chapter 3 are split into three categories – active members, 

deferred members and pensioners, and the optimal asset allocation is transformed 

into the overall contribution rate. In addition, the proposed pension asset-liability 

management framework is benchmarked against various important benchmarks 

such as the actual USS performance computed by using the actual USS asset 

allocation decisions as well as the Sharpe and Tint, Bayes-Stein, and Black-Litterman 

models. The empirical results reveal that robust (worst-case) optimization has a 

clearly superior out-of-sample performance than the four benchmarks across 20 

performance metrics that measure many different important portfolio 

characteristics such as risk, risk-adjusted performance, second-order stochastic 

dominance, diversification, stability, contribution rate, funding ratio and cumulative 

wealth amongst others. Finally, the conclusions remain unchanged by various 

robustness checks such as by testing different estimation and investment periods, 

relaxing the constraints on asset weights, and by using an alternative set of asset 

classes and different uncertainty sets with a smaller size. 

Chapter 4 investigates whether the selection of the portfolio optimization strategy 

matters in the SRI industry and provides some answers to the question of which 
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portfolio approaches tend to create SRI portfolios with better out-of-sample 

performance, given certain socially responsible investment criteria. This issue is of 

great importance for institutional investors since it is well known that long-term 

institutional investors such as pension funds, life insurance firms and endowment 

funds are committed to corporate social performance (CSP) and socially responsible 

investment (SRI). Although the size of the SRI literature is very broad, the number of 

studies that have investigated different ways of optimal SRI portfolio construction is 

very limited. Most importantly, these studies are very limited as the portfolio 

methods used are very heavily based on the Markowitz (1952) portfolio theory 

(mean-variance portfolio framework), and hence ignore the negative effects of 

estimation risk and parameter uncertainty in the corresponding input data. Such 

studies simply use the mean-variance portfolio framework by adding additional 

constraints with SRI preferences or incorporate these preferences by altering the 

objective function of the optimization process. Although the large majority of 

modern portfolio optimization techniques are heavily based on Markowitz (1952) 

portfolio theory, their optimal portfolio solutions are highly sensitive to 

perturbations in the input parameters, see for instance Green and Hollofield (1992), 

and often lead to portfolios that are poorly diversified, unstable and with a weak 

out-of-sample performance. 

To construct socially responsible investment (SRI) portfolios with only US companies 

in Chapter 4, this study uses corporate social performance (CSP) metrics based on 

the MSCI ESG STATS (MSCI KLD) database. It is well known that this database is the 

most popular in the relevant research, and according to Sharfman (1996) it is 
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described as a reliable and consistent database that contains about 3,000 US firms 

over a time horizon of over 20 years. This study attempts to contribute to the 

existing literature by employing three different optimal portfolio diversification 

methods (Markowitz, norm-constrained and Black-Litterman portfolios) and three 

more simplistic asset allocation techniques (equally weighted, risk-parity and 

reward-to-risk timing portfolios) to the same SRI-screened universe. Out-of-sample 

performance comparisons are made between these six different portfolio 

construction methods, and 14 different performance measures are used to capture 

several important characteristics such as risk and risk-adjusted performance, 

diversification and stability, amongst others. The empirical results show that more 

‘formal’ portfolio optimization methods (Markowitz, Black-Litterman and norm-

constrained portfolios) tend to construct less risky Socially Responsible investing 

(SRI) portfolios with superior risk-returns trade-offs and a significantly smaller 

number of ‘active’ assets than more simplistic asset allocation techniques (1/N, risk 

parity and reward-to-risk). The Black-Litterman portfolio approach often comes first, 

while naïve diversification (1/N) usually has the worst performance on these criteria. 

Finally, the main conclusions are robust to a variety of additional tests that include 

stricter screening criteria for the construction of socially responsible investment 

portfolios, the use of estimation windows with a different length than the base case 

as well as different ways of evaluating the out-of-sample portfolio performance. 

Chapter 5 deals with the short, medium and long term performance of a real world 

pension scheme (the Universities Superannuation Scheme, USS) before and after the 

rule changes that took place in October 2011, as well as the wealth redistribution 
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between various age cohorts of the future and active members, pensioners, and the 

sponsor that occur as a result of the pension scheme rule changes. Specifically, in 

October 2011 USS closed the final salary (FS) scheme to the new members, where 

the sponsor bears all the risks such as investment, longevity, interest rate, inflation, 

salary growth and regulatory risk, and forced new members to join the newly 

established career average revalued earnings (CARE) scheme, while USS also 

introduced a ‘cap and share’ rule for setting contribution rates. 

The study presented in Chapter 5 also includes many important aspects that have 

not previously been incorporated in pension studies such as lump sum payments, 

deferred members (members that have left the scheme and are not currently paying 

contributions), spouses’ pensions, both final salary (FS) and career average revalued 

earnings (CRB) sections and a dynamic retirement age. Furthermore, the framework 

that simulates the pension scheme in Chapter 5 is modeled for a period longer than 

the working life. It also employs three different asset allocation strategies; the fixed-

mix, risk-shifting and risk management approach, with the last two strategies 

responding to the funding ratio each time the portfolio is rebalanced. A stable over 

time vector auto-regressive (VAR) model with 13 variables is used to generate future 

asset returns, inflation rates and the factors of the Nelson-Siegel yield curve, while 

the population of active and deferred members of the pension scheme each year 

follows a stochastic process. Although this study mainly focuses on a particular 

pension fund (USS), the general methodology presented in Chapter 5 could also be 

applied by other schemes in countries such as the UK and USA that have changed 

their rules. 
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The empirical results presented in Chapter 5 reveal that the post-October 2011 USS 

scheme (the pension scheme after the rule changes in October 2011) is sustainable 

in the long run with some problems in the mid-term, in contrast to the pre-October 

2011 scheme that is non-viable in the long run. Also, the fixed-mix and risk-shifting 

asset allocation strategies are more favorable than the risk-management approach 

for both the pre and post 2011 schemes. The quantification of the redistributive 

effects due to the pension rule changes in October 2011 shows that future members 

lose about the 65% of their pension wealth (or an 11% reduction in their overall 

compensation) with an increase in the risk of their pension wealth by about a third, 

in contrast to the older age-cohorts where the corresponding losses are insignificant 

and the risk of their pension wealth is almost the same after the rule changes. The 

sponsor’s pension costs decrease by about 26%. Finally, the main conclusions remain 

unchanged by trying various robustness checks such as the replacement of the 

stochastic discount factors (SDFs) with the riskless discount rates for the 

computation of the NPVs and the use of different upper bounds on the total 

contribution rate. 

Finally, Chapter 6 summarizes the main ideas, scientific contributions and the 

corresponding outputs of each chapter separately, and provides some possible 

directions that could be investigated and explored for future research. 
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2 Literature Review 

2.1 Introduction 

The main purpose of this chapter is to familiarize the reader with the literature in 

portfolio theory, asset liability management (ALM) modelling and pension schemes 

design. In the following section (2.2), the fundamental Markowitz portfolio theory is 

discussed, while section 2.3 describes the criticisms of modern portfolio theory, 

which have been discussed in the literature the recent years, such as its high 

sensitivity to estimation risk and parameter uncertainty. Section 2.4 provides a 

comprehensive review of portfolio techniques dealing with estimation risk, while 

section 2.5 discusses alternative performance measures used for portfolio 

evaluations, such as measures based on lower partial moments, drawdown and 

value-at-risk. Section 2.6 gives the motivation behind the use of ALM techniques by 

long-term institutional investors (e.g. pension funds) instead of just using asset-only 

approaches. Section 2.7 explains how Operations Research (OR) is involved in the 

process of deriving optimal ALM strategies, describes the main methods used in ALM 

modelling and explains the disadvantages in applying scenario-based techniques to 

solve realistic ALM problems. Section 2.8 provides a review of techniques for 

generating scenarios. In addition, section 2.9 describes the two main types of 

pension schemes (defined benefit and defined contribution) that are dominant in 

the UK and US and provides a review of studies that deal with the intergenerational 

redistributive effects after pension scheme rule changes. Finally, a conclusion is 

provided in section 2.10. 
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2.2 Markowitz Portfolio Theory 

Portfolio selection is the problem of capital allocation over a set of available assets 

by maximizing the portfolio return and minimizing the corresponding risk. Although 

the benefits that occur by diversifying a portfolio have been reported since the 

beginning of financial markets, i.e. reducing portfolio risk, Markowitz (1952, 1959) is 

the first that formulated a mathematical framework for optimal portfolio selection, 

the so called mean-variance portfolio framework. Markowitz (1952) uses the 

expected value and the variance of the random portfolio return to compute the total 

return and the associated risk respectively, showing that the mathematical problem 

can be represented as a convex quadratic program (the well known efficient frontier) 

by assuming either an upper cap on the variance, or a lower bound on the portfolio 

return. The Markowitz portfolio allocation model had an apparent effect on the 

asset pricing and financial economic modeling. For instance, the Capital Asset Pricing 

Model, Sharpe (1964), Lintner (1965) and Mossin (1966), was a direct and logical 

result of the Markowitz portfolio theory. Sharpe and Markowitz won the Nobel Prize 

in Economic Sciences in 1990 for their scientific contribution to asset allocation and 

asset pricing. 

2.3 Modern Portfolio Theory Criticisms 

In practice, the application of Markowitz (1952) portfolio theory requires the 

estimation of the mean and covariance matrix of the asset returns, and it has been 

widely reported that Markowitz theory is very sensitive to estimation errors in the 

input estimates (i.e. mean and covariance matrix), see for instance Green and 
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Hollifield (1992), Goldfarb and Iyengar (2003), Ceria and Stubbs (2006), DeMiguel et 

al. (2009a), Glasserman and Xu (2013) amongst others. Merton (1980) also points 

out that an accurate estimation of the means is a much harder task than estimating 

precisely the covariance matrix, while Kallberg and Ziemba (1984) mention that 

statistical errors in means are approximately 10 times as significant as errors in 

covariances. In other words, it means that if the sample means and covariances are 

not accurate, the optimal asset weights computed via the Markowitz mean-variance 

portfolio optimization model contains significant errors, since the optimal solutions 

are highly sensitive to disturbances in the input data of the problem. As a direct 

consequence, the Markowitz model leads to ‘investment-irrelevant’ portfolios 

according to Michaud (1999), which are unstable, poorly diversified and are 

characterized by a weak out-of-sample performance. 

This situation has been very well described and investigated in the financial portfolio 

literature. For example, Michaud (1999) points out that, although Markowitz 

portfolio theory is a useful theoretical tool for portfolio optimization that can be 

applied easily in practice, many practitioners and academics have kept this 

theoretical framework at a distance. This is because it works like an ‘error-phone 

procedure’ and leads to unreliable portfolios with large errors due to its extreme 

sensitivity to perturbations in the input data of the mathematical optimization 

process. Goldfarb and Iyengar (2003), Ceria and Stubbs (2006), Glasserman and Xu 

(2013), Xing et al. (2014) and others also highlight that this phenomenon is a direct 

consequence of the fact that the solutions computed by the mean-variance portfolio 

method are very susceptible to disturbances in the parameters of the optimization 
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process, since these estimates are subject to large statistical errors. In addition, 

Kallberg and Ziemba (1984) investigate the case of misspecification in means, 

variances, covariances and investor’s utility functions in normally distributed asset 

allocation problems, while Best and Grauer (1991) provide some empirical evidence 

on the susceptibility of optimal mean-variance asset allocations to disturbances in 

the means. Also, Broadie (1993) investigates the effect of the statistical errors in the 

input estimates on the construction of the efficient frontier, Chopra (1993) examines 

the relation between portfolio diversification and estimation risk, Chopra and 

Ziemba (1993) examine the equivalent loss by using the estimated instead of the 

true parameters in the mean-variance portfolio process, while a more inclusive 

assessment on the effect of statistical errors on portfolio selection can be found in 

Ziemba and Mulvey (1998). 

2.4 Portfolio Approaches Dealing with Estimation Risk 

Since portfolio theory is very sensitive to estimation risk that can often result in 

‘error-maximized’ portfolios according to Michaud (1999), there are six main 

approaches that deal with estimation errors in the input parameters in an attempt to 

constructing superior portfolios with better characteristics according to DeMiguel et 

al. (2009b). These approaches are described below. The first approach involves 

alternative estimates of the means and covariance matrix, the second sets 

constraints on portfolio weights, the third uses simulations to generate alternative 

input data (portfolio re-sampling), the forth computes optimal combinations of 

portfolios, the fifth uses moment restriction techniques to eliminate estimation risk, 
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and finally the sixth approach involves worst-case portfolio optimization (robust 

optimization). 

2.4.1 Bayes’ Estimators  

The first approach tries to improve portfolio performance in the presence of 

estimation risk by altering the estimation of the means, variances and covariances 

(e.g. via alternative estimates). For instance, Black and Litterman (1992) as well as 

Drobetz (2001), Bessler et al. (forthcoming) and other studies combine neutral 

returns and subjective returns (views) by allowing investors to provide estimates for 

some asset returns or staying neutral on some others. The reliabilities of return 

estimates can be quantified and incorporated in the mean-variance portfolio 

optimization process. Furthermore, Jobson et al. (1979) try to enhance the 

performance of Markowitz portfolios by using James-Stein type estimators in the 

portfolio optimization problem, while Jorion (1986) and Frost and Savarino (1986) 

propose empirical Bayes estimators for the means, variances and covariances and try 

to eliminate extreme asset allocations (corner solutions) by reducing estimation risk. 

More recent studies such as Ledoit and Wolf (2003, 2004) propose a shrinkage 

approach to the covariance matrix estimator by using factor and Bayesian models, 

and Kourtis et al. (2012) attempt to improve portfolio performance by shrinking 

directly the inverse covariance matrix using two non-parametric methods. 

2.4.2 Constraints on Portfolio Weights 

The second approach attempts to eliminate estimation errors by setting constraints 

on the portfolio weights. Frost and Savarino (1988) provide evidence that estimation 

risk is significantly reduced by constraining asset weights in mean-variance portfolio 
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selection strategies. Board and Sutcliffe (1994) compare the Bayes-Stein estimation 

model with seven alternative estimation methods, finding that there is little to select 

amongst them when short selling is prohibited. Also, some recent studies use more 

sophisticated technicalities by imposing constraints on portfolio norms, such as 

DeMiguel et al. (2009a). For instance, Brodie et al. (2009) apply 1l  norm (the taxicab 

norm – defined as the sum of the absolute values of portfolio weights) constraints 

on asset weights within the portfolio optimization process to encourage the 

construction of sparse portfolios, e.g. portfolios with only a few active assets (assets 

with nonzero weights). In addition, Tola et al. (2008) and Xing et al. (2014) impose 

constraints on a combination of norms on portfolio weights 1l  and l  (maximum 

norm), with the latter to be defined as the maximum absolute value of the portfolio 

weights, in an attempt to construct sparse-style portfolios, e.g. sparse portfolios as 

explained above by eliminating at the same time the possibility of large weights to 

be allocated in just a few assets. Finally, It has been reported in the literature that 

sparse-style portfolios are often very well diversified and usually have a better out-

of-sample performance in terms of risk and risk adjusted return in comparison to 

naïve forms of portfolio optimization, see Xing et al. (2014) and others. 

2.4.3 ‘Resampled Efficiency’ 

The third approach computes optimal portfolios by generating many data sets with 

simulation techniques (e.g. Monte Carlo), with the overall solution given by 

averaging these optimal portfolios. In particular, first Michaud (1999) proposes the 

so-called ‘Resampled Efficiency’ (RE) technique. ‘Resampled Efficiency’ uses Monte 

Carlo simulation methods to satisfactorily replicate parameter uncertainty in an 
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attempt to compute optimal mean-variance portfolios with better out-of-sample 

characteristics. Scherer (2002) provides a comprehensive review of the concept of 

portfolio resampling proposed by Michaud (1999), and indicates some possible weak 

points of the ‘Resampled Efficiency’ portfolio technique. In addition, Becker et al. 

(2015) carry out a complete simulation study with both constrained and 

unconstrained portfolio optimization processes for a variety of estimators. Although 

their empirical findings indicate that Markowitz (1952) overall performs better than 

Michaud (1999), they also provide strong evidence that the Markowitz mean-

variance portfolio framework is more sensitive than Michaud (1999) to changes on 

asset weights’ constraints and to different estimators used for the mean and 

variance of asset returns. 

2.4.4 Optimal Mixture Portfolios 

The forth approach computes portfolios that are actually combinations of other 

portfolios, such as the minimum variance, the mean-variance and the 1/N portfolios. 

Hence, the intuition behind these ‘mixture’ portfolios is to shrink directly the 

portfolio weights. For instance, Kan and Zhou (2007) are motivated by the idea that 

estimation risk may not be efficiently diversified by holding only a combination of 

the tangency portfolio (the portfolio with the highest Sharpe ratio) and the risk-free 

asset, and propose the ‘three-fund’ portfolio rule in the class of mixture portfolios 

that combine the mean-variance and minimum-variance portfolios, in which the 

functionality of the ‘third’ fund is to eliminate estimation risk. Furthermore, 

DeMiguel et al. (2009b) differentiate their position from Kan and Zhou (2007), and 

propose a mixture of equally weighted and minimum-variance portfolios. Their main 
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intuition is to put more emphasis on the estimation of covariances instead of the 

means given that it is well accepted that the estimation of expected returns is a 

much more difficult task than covariances. 

2.4.5 Portfolios with Moments Restrictions 

’The fifth approach attempts to decrease the negative effects of estimation risk by 

constructing portfolios with moment restrictions. DeMiguel et al. (2009b) describe 3 

different portfolio strategies that set restrictions on the estimation of the statistical 

moments of the asset returns, and these are the well-known minimum variance 

portfolio, the value-weighted portfolio implied by the market model and portfolios 

constructed by asset-pricing models with unobservable factors. For the latter 

strategy, MacKinlay and Pastor (2000) show that the covariance matrix of the 

residuals error terms of the factor model contains any resulting mispricing due to 

unobservable factors.’’ 

2.4.6 Robust (Worst-Case) Optimization 

Robust optimization is a relatively new numerical method that has grown thanks to 

the rapid improvement of the computing technology in the last few years. Although 

robust optimization overlaps with stochastic and dynamic programming, it can be 

assigned to its own category and consists the forth approach of dealing with 

estimation risk in the broad area of portfolio optimization. Robust optimization 

adopts a maximin approach and formulates ‘worst-case’ optimization problems, the 

so called ‘robust counterparts’. In particular, it assumes that the uncertain/stochastic 

input parameters of the portfolio optimization process are not known with certainty, 

but lie within uncertainty sets. Hence, it tries to eliminate the possibility of selecting 
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portfolios that promise good performance due to estimation errors by computing 

optimal portfolio solutions under the assumption that the uncertain input data of 

the optimization problem take the worst-case values within these uncertainty 

structures (worst-case scenario). At this point, we also have to point out that the size 

and shape (e.g. interval, ellipsoidal, polygonal) of the uncertainty sets play a major 

role in this numerical method since they alter the level of conservativeness of the 

asset allocation, characterize the risk preferences of investors and most importantly 

result in computationally tractable (e.g. easily solved) mathematical programming 

problems. For further technical details of the mathematics of robust optimization, 

we refer to Fabozzi et al. (2007) amongst others. 

Robust optimization has attracted significant interest in recent years by institutional 

investors and academics since they consider it is a strong and very efficient method 

for computing optimal asset allocations subject to estimation risk in the input data, 

see for instance Ben-Tal and Nemirovski (1998). So far, robust optimization has been 

applied only in equity portfolio management by taking into account uncertainties 

due to estimation errors in the input parameters as far as mean-variance portfolio 

strategies concerned. Gabrel et al. (2014) describe the recent advances in worst-case 

optimization in all areas of science (e.g. Engineering, Medicine, Finance etc.) since 

2007. 

Ben-Tal and Nemirovski (1999) consider linear programs with stochastic data and by 

introducing ellipsoidal uncertainty sets, they show that the equivalent robust 

programming problem (robust counterpart) is easily solved in polynomial time via 

conic quadratic programming, while Ben-Tal and Nemirovski (1998) study the 
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computational efficiency of robust formulated convex optimization problems. Costa 

and Paiva (2002) derive computationally tractable robust optimal asset allocation 

problems for tracking errors by assuming polytopic uncertainty for the means and 

covariances, while Goldfarb and Iyengar (2003) derive easily solved robust mean-

variance portfolio problems under a variety of interval and ellipsoidal uncertainty 

structures for the uncertain market parameters using factors models. Ceria and 

Stubbs (2006) propose a zero-net alpha-adjustment robust portfolio optimization 

technique under ellipsoidal uncertainty structures to construct robust mean-variance 

portfolios that are less conservative by assuming that the estimation errors on the 

input parameters do not necessarily have negative effects on the portfolio 

performance. In addition, Ben-Tal, Margalit and Nemirovski (2000) as well as 

Bertsimas and Pachamanova (2008) construct easily solved robust multi-period asset 

allocation problems using ellipsoidal uncertainty sets. El Ghaoui et al. (2002) develop 

tractable worst-case value-at-risk robust programming portfolio models via conic 

programming, while Quaranta and Zaffaroni (2008) use robust portfolio techniques 

to construct tractable robust models that minimize the conditional value at risk of a 

stock portfolio. Also, Huang et al. (2010) differentiate from the existing studies, most 

of which consider uncertainty just for the means and the covariance matrix, and 

provide a worst-case conditional value-at-risk portfolio framework by considering 

the worst-case scenario of the underlying distribution of portfolio returns. 

Furthermore, Glasserman and Xu (2013) construct a multistage robust portfolio 

control framework with transaction costs that takes into account both statistical 
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estimation and model errors by using both interval and ellipsoidal uncertainty 

structures. 

2.5 Performance Measures and Portfolio Evaluation 

It has been widely reported that institutional and individual investors depend on 

risk-adjusted performance measures to select amongst available assets and evaluate 

their portfolios. Without any doubt, the most famous risk-adjusted performance 

measure is the Sharpe ratio because it is easy to compute and has been widely 

investigated in the literature, see for instance Lo (2002) and Ledoit and Wolf (2008) 

and others. In particular, the Sharpe ratio is defined as mean excess portfolio return 

over a risk-free rate, divided by the standard deviation of the portfolio returns 

according to Sharpe (1966). Given the fact that the Sharpe ratio takes into account 

just the first two statistical moments: means, variances and covariances, it is only 

sufficient if portfolio returns are normally distributed, but  portfolio and fund returns 

often exhibit fat tails and follow asymmetric distributions. Another important 

disadvantage of the Sharpe ratio is that it considers both positive and negative 

deviations from the expected return to compute risk.  

For instance, Cumming et al. (2014) investigate expanded portfolios (portfolios with 

conventional and alternative asset classes), and highlight that such portfolios often 

generate fat tails. They use 6 performance measures to evaluate different portfolio 

optimization strategies on such portfolios: mean return, Sharpe ratio, Sortino ratio, 

Sterling ratio, value-at-risk and conditional value-at-risk. As a logical and direct 

consequence, the use of the Sharpe ratio or other measures that contain the 
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classical risk (standard deviation) may lead to irrelevant conclusions since it 

overestimates the portfolio performance by underestimating the corresponding risk. 

We follow Eling and Schuhmacher (2007) and split the performance measures into 

three categories: measures based on the lower partial moments, drawdown and 

value-at-risk. Auer (2015) also provides a comprehensive review on alternative 

reward to risk ratios. 

Lower partial moments are particularly popular in the asset management industry 

because they only take into account negative deviations of returns, e.g. returns that 

are below a lower acceptable bound (which could be the average portfolio return, a 

risk-free rate or zero). According to Sortino and Van der Meer (1991), lower partial 

moments are often considered as a more reliable risk measure than the standard 

deviation, since the latter considers both positive and negative deviations from 

expected return, and may result in incorrect conclusions when distributions that are 

not symmetric around the mean (skewed distributions). The order n=0,1,2,.. in lower 

partial moments defines the weight of deviations from the lower acceptable return 

(bound). The shortfall probability, expected shortfall and semi-variance describe the 

lower partial moment of order 0, 1 and 2 respectively, see also Eling and 

Schuhmacher (2007).  

2.5.1 Performance Measures based on Lower Partial Moments 

Omega, the Sortino ratio and Kappa are performance measures that are based on 

lower partial moments of order 1, 2 and 3 respectively, see for instance Eling and 

Schuhmacher (2007). Omega is computed as the mean excess portfolio return (over 

the minimal acceptable bound), divided by the lower partial moment of order 1, 
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while the Sortino ratio and Kappa are defined as the mean excess portfolio return 

(over the lower acceptable portfolio return), divided by the lower partial moment of 

order 2 and 3 respectively. Furthermore, the higher partial moments constitute an 

alternative way of measuring excess returns since they measure positive deviations, 

the opposite of the lower partial moments. For instance, the upside potential ratio, 

see Eling and Schuhmacher (2007), is defined as the higher partial moment of order 

1, divided by the lower partial moment of order 2.  

2.5.2 Performance Measures based on Drawdown 

Drawdown measures are popular in the asset management industry and are often 

used by commodity and hedge fund traders, see Eling and Schuhmacher (2007). 

Drawdown measures are also popular with institutional investors such as pension 

funds, see for instance Berkelaar and Kouwenberg (2010), who develop a drawdown 

approach within stochastic programming for pension asset liability management. 

The drawdown rate measures drops from the highest point in cumulative portfolio 

returns over a certain time horizon and is a measure that does not depend on 

assumptions of distributions. The Calmar ratio, the Sterling ratio and the Burke ratio 

are alternative risk-adjusted performance measures based on drawdown. In 

particular, the Calmar ratio is defined as the mean excess portfolio return (over a 

risk-free rate, for instance), divided by the maximum drawdown over a certain 

period. In a similar way, the Sterling ratio and the Burke ratio are computed by the 

mean excess portfolio return, divided by the expected value and the Euclidean norm 

of drawdowns over a specific time period respectively.   



22 
 

2.5.3 Performance Measures based on Value-at-Risk 

Excess return divided by the value-at-risk, the conditional Sharpe ratio and the 

modified Sharpe ratio proposed by Dowd (2000), Agarwal (2004) and Gregoriou 

(2003) respectively, are performance measures based on the typical value-at-risk 

calculation, the conditional and the modified value-at-risk. They have the important 

advantage of being distribution free measures. The standard value-at-risk gives the 

possible portfolio loss with a given confidence level over a certain time period, while 

the conditional value-at-risk is defined as the expected value of portfolios returns 

that do not exceed the possible losses indicated by the standard value-at-risk over a 

certain period and confidence level. The modified value-at-risk is given by a more 

complex mathematical formula that takes into account higher moments (skewness 

and kurtosis) except for the means and variances, see for instance Eling and 

Schuhmacher (2007). Hence, the ‘excess return on value-at-risk’ is given by the mean 

excess portfolio return divided by the value-at-risk, the conditional Sharpe ratio is 

computed as the mean excess portfolio return divided the conditional value-at-risk 

and the modified Sharpe ratio is defined as the mean excess portfolio return divided 

by the modified value-at-risk. 

2.6 Asset Liability Management (ALM) 

In contrast to the asset-only portfolio approach where investment managers and 

decision makers do not take into account liabilities in the optimization process and 

determine their asset allocation by considering just the assets, asset liability 

management (ALM) attempts to provide optimal asset allocation strategies taking 

into account future commitments and goals that consist the so-called liabilities. 
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Hence any investment decision is taken in terms of both the assets and liabilities. 

More authoritatively, the Society of Actuaries (SOA (2013)) defines the ALM process 

as ‘the ongoing process of formulating, implementing, monitoring and revising 

strategies related to assets and liabilities to achieve an organization’s financial 

objectives’. Hence asset liability management can be seen as an asset allocation tool 

that could provide efficient and prudent management to institutional investors (e.g. 

pension funds, life insurance funds, banks, sovereign funds, endowments, etc.) and 

allows them to make investment decisions which meet their future obligations and 

the corresponding risks associated with them (e.g. interest rate, inflation, market, 

longevity, mortality, market, liquidity, credit risk and others) and remain trustworthy 

and solvent. 

The application of the asset liability management models attracted significant 

attention after the de-regulation of interest rates in 1979 according to Rachev and 

Tokat (2000) (see also the case of the US Savings and Loans and the corresponding 

problems that loan holders faced during the period 1980 to 1982 due to the increase 

in interest rates). Hence, the risk of liabilities increased significantly and made their 

forecasting a much more difficult task, which was a direct and logical consequence of 

the de-regulation in interest rates. Hence, the use of more sophisticated and 

efficient portfolio management tools that could effectively help market agents 

optimally allocate their assets, while matching their future obligations (liabilities), 

became a necessity. Although the initial scope of asset liability management 

modeling was to hedge the interest rate risk of the liabilities, they now include more 

types of risk such as inflation, longevity, mortality, market, credit, liquidity, 
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operational, currency and demographic risk, amongst others. Although the main 

objective of the ALM framework is to provide a strategic risk management tool for 

institutional investors to help them meet their future obligations via an appropriate 

asset allocation, the process of deriving optimal ALM strategies is often too 

challenging to be applied in practice and for this reason different operational 

research techniques have been used to efficiently construct and solve ALM 

problems. 

The literature on asset liability management is fruitful and covers a broad spectrum 

of institutional investors as mentioned above. For instance, Merton (1969) develops 

a dynamic programming approach to asset liability management in order to provide 

an efficient tool for personal wealth management. Kusy and Ziemba (1986) apply a 

stochastic linear programming methodology to asset liability management for banks 

in the presence of cash flow and investment uncertainty in order to provide more 

effective management given the complex operations involved in a banking system. 

ALM frameworks have also been widely used in recent years to help pension fund 

trustees make better decisions, given that the associated pension liabilities include 

different types of risk (e.g. interest rate, inflation, longevity and demographic risk 

amongst others), see for instance, Sharpe and Tint (1990), Ezra (1991) and Board and 

Sutcliffe (2007), Ang et al. (2013) and others. Furthermore, the ALM framework has 

been applied to other market agents such as university endowments, see Merton 

(1993), sovereign wealth funds with known government liabilities, see Scherer 

(2011), and other types of funds that manage different type of assets classes such as 

real estate funds, as in Chun et al. (2000). 
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2.7 Operational Research and ALM Techniques 

Operational research (OR) (or management science/decision science) is a sub-field of 

applied mathematics that applies a variety of advanced numerical and statistical 

methods to make better and more efficient decisions in a number of real world 

problems, e.g. asset management, logistics, supply chain management, air-traffic 

management, waste management, health care management, energy management, 

water supply management and others. ALM policies fall into this category due to 

their complex numerical structure. Problems modeled with operational research 

techniques typically use mathematical programming, such as linear, quadratic, non-

linear, stochastic, dynamic, goal, robust (worst-case) and cone programming, by 

considering an objective function that has to be optimized (e.g. maximized or 

minimized) in terms of some decision variables that are defined by the decision 

makers, and subject to a certain set of constraints due to the corresponding 

regulations and rules associated with each problem. Except for ALM modeling, the 

applications of OR in finance include the valuation of financial instruments such as 

options and asset-backed securities, market imperfection modeling and optimal 

asset-only portfolio selection, amongst others. For a more comprehensive and 

detailed review with practical examples from the finance literature, we refer to 

Board et al. (2003). 

There are various OR techniques that have been employed to compute optimal asset 

liability management strategies, which are applied primarily to pension funds and 

secondly to life insurance funds, banks, individual wealth management, 

endowments, sovereign funds and others. In particular, they are divided into four 



26 
 

categories: stochastic programming, e.g. Kusy and Ziemba (1986), Carino et al. 

(1994) and Geyer and Ziemba (2008); portfolio theory, e.g. Sharpe and Tint (1990), 

Ezra (1991), Board and Sutcliffe (2007), Ang et al. (2013) and Chun et al. (2000); 

stochastic simulation, e.g. Boender (1997), Van Rooij et al. (2004), Mulvey et al. 

(2000) and Mulvey et al. (2005) and dynamic programming and stochastic control, 

e.g. Rudolf and Ziemba (2004), Dondi et al. (2008) and Giamouridis et al. (2014). 

Stochastic programming provides more flexibility in the assumptions required than 

do other models, but it requires a huge computational effort to solve. Dynamic 

programming and stochastic control involve the solutions of hard non-linear 

optimization programs. ALM models based on stochastic simulation usually do not 

contain a separate section that will generate optimal portfolios strategies. Finally, 

the asset liability management techniques that are based on mean-variance portfolio 

theory (e.g. Sharpe and Tint (1990) model) do not have significant data 

requirements, are more easily understood by practitioners, and are easily 

formulated, applied and solved, but they face different types of problems such as 

their high exposure to estimation risk and parameter uncertainty. 

The procedure for deriving optimal ALM strategies is often computationally 

challenging, and the majority of the methods described above require too much 

computational effort to be widely used and applied in practical real world problems. 

For instance, although stochastic programming as well as scenario based approaches 

(dynamic and stochastic control) are popular techniques for ALM problems, Fabozzi 

et al. (2007) highlight that “unfortunately the dimension of realistic stochastic 

programming models is usually very large, and optimization is challenging, even with 
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today’s advanced technology”. For example, if we consider a real problem with 10 

assets and liabilities, 10 evaluation periods and assume 10 possible independent 

asset and liability returns (outcomes) in each period, then the number of possible 

scenarios would be 10(1010)=100 billion. If we further suppose that the computer 

can run 100 scenarios per second, it would take 3.17 years to solve the problem. It is 

obvious that such large problems cannot be handled by institutional investors that 

want to have a frequent review of their asset allocation. As a result, they may 

consider unrealistic problems with a small number of assets and evaluation periods 

to assess their strategies, and this can lead to seriously wrong conclusions. In 

addition, if the stochastic programming problem has 100 billion decision variables, 

the formulated problem would be extremely large, making it well beyond the RAM 

storage space of most computers. Gulpinar and Pachamanova (2013) use only 2 

assets, 4 time periods and write that ‘The only reason for selecting a small number of 

assets for investment and a small number of time periods is the stochastic 

programming formulation. It takes a very long time (hours) to obtain an optimal 

solution to stochastic programming formulations with even a small number of 

scenarios.’ In what follows, we review a variety of ALM studies that fall into each of 

the four main categories (stochastic programming, dynamic programming and 

stochastic control, portfolio theory and simulation) as listed above. 

2.7.1 Stochastic Programming ALM Models 

Kusy and Ziemba (1986) propose a multi-stage stochastic linear programming 

framework for banks in order to provide effective asset liability management in the 

presence of uncertain cash flows and asset returns. The proposed model 
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incorporates some important legal, financial and bank related characteristics 

together with their uncertainties, and the empirical results reveal it to be superior to 

naïve benchmarks (deterministic linear programming). In addition, Carino et al. 

(1994) develop a multi-period stochastic linear programming asset liability 

management framework for the Yasuda Fire and Marine Insurance Co., Ltd. In 

particular, the model contains complicated Japanese insurance rules and practices 

and determines the optimal asset allocation in a multi-stage environment, while its 

objective is to generate an adequate portfolio return to repay interest on savings 

accounts related to insurance contracts, as well as maximizing the terminal wealth 

over the policy horizon. We refer to Carino and Ziemba (1998) for further technical 

details of the formulation of the Russell-Yasuda Kasai Model. Furthermore, Geyer 

and Ziemba (2008) develop the financial planning model of an Austrian pension fund 

(Siemens Austria) using a multi-stage linear stochastic programming model, which 

provides flexibility for the number of time periods and their length. They consider 

state dependent correlations across the different assets classes in alterative market 

conditions that give the opportunity to the asset liability model to foresee and 

respond to harsh as well as normal conditions. Their objective is to maximize the 

expected wealth at the horizon date minus penalty costs for benchmarks goals 

determined in each decision period. 

2.7.2 Single Period ALM Models (Portfolio Theory) 

It is well known that Sharpe and Tint (1990) formulated a portfolio optimization 

framework that takes into account liabilities as well as assets, the so-called surplus 

optimization framework, and is mainly based on the Markowitz (1952) mean-
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variance portfolio framework. Their objective is to maximize utility, defined as the 

expected value of excess asset returns over the liabilities, minus the corresponding 

variance. The model also provides some flexibility by incorporating the ‘importance’ 

of liabilities in the surplus optimization framework (0 and 1 for assets only and full 

surplus optimization respectively). In addition, Ezra (1991) uses the surplus 

framework of Sharpe and Tint (1990) and highlights the need for pension managers 

to focus on surplus optimizations instead of assets only approaches due to the high 

uncertainty of the liability side. Board and Sutcliffe (2007) propose an ALM model 

that disaggregates the pension liabilities into three categories (pensioners, active 

and deferred members) and apply a generalization of the mean-variance portfolio 

framework which incorporates these liabilities in the computation of the optimal 

asset allocation. They use the mathematical formula of Haberman (1992) to estimate 

the mean and variance of the contribution rate for each point of the efficient frontier 

of the asset-liability portfolio. This provides a complete asset-liability management 

tool that can be applied very easily in practice by pension fund trustees. In addition, 

Ang et al. (2013) extend the Sharp and Tint (1990) model to incorporate a penalty for 

failing to meet the pension liabilities (downside risk) and they use options to value 

the deficit between asset and liabilities. Finally, Chun et al. (2000) apply the surplus 

optimization model to effectively manage real estate investment portfolios in an 

asset-liability framework. 

2.7.3 Stochastic Simulation ALM Models 

Boender (1997) proposes a hybrid simulation – optimization stochastic asset-liability 

model as a decision tool for more sustainable pension fund management. This 
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framework uses scenarios, instead of hypothetical probability distributions to model 

the uncertain future risk drivers, and non-linear optimization to compute the optimal 

asset allocation and contribution rate for each point of the efficient frontier. In 

addition, Van Rooij et al. (2004) develop a pension asset-liability management 

framework that is based on both defined benefit and career average revalued 

earnings pension systems. This model provides flexibility for various parameters such 

as the indexation, portfolio selection and retirement age amongst others, and 

replicates the uncertainty in a number of stochastic parameters via historical and 

stochastic simulations. Mulvey et al. (2000) propose an integrated stochastic asset-

liability system that contains a scenario generator (stochastic simulator) together 

with a non-linear optimization programming model to help pension funds to better 

understand their risks and eliminate the possibility of becoming insolvent. Finally, 

Mulvey et al. (2005) propose a stochastic simulation approach to assess and prevent 

pension schemes from becoming insolvent. 

2.7.4 Dynamic Programming and Stochastic Control ALM Models 

Rudolf and Ziemba (2004) use dynamic programming and control and propose an 

inter-temporal portfolio selection framework that could be applied by both life 

insurers and pension funds. The model assumes that both asset and liability returns 

follow an Ito process that depends on specific state variables and its objective is to 

maximize the inter-temporal utility, which is defined as value of assets minus 

liabilities. Dondi et al. (2008) develop a dynamic asset-liability management model 

for Swiss pension funds. They use a dynamic factor structure that takes into account 

extreme events (fat tails) to model asset returns, while the pension liabilities are 
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based on the current and future cash flows. Their objective is to minimize any 

possible deficit subject to a certain goal for the future surplus. 

2.8 Techniques for Generating Scenarios 

There are different techniques one can use to generate future scenarios for risky 

variables. For example, Kouwenberg and Zenios (2006) split them into three 

categories; bootstrapping, time series analysis and statistical techniques. In a more 

comprehensive analysis, Mitra (2006) lists four different techniques that can been 

employed to generate future scenarios for representing parameter uncertainty in 

both asset and liability returns, and they are the sampling, simulation (very similar to 

sampling), statistical approach as well as alternative techniques (e.g. machine 

learning techniques).  

2.8.1 Sampling Approach 

The sampling (bootstrapping) technique is the most easily applicable method for 

generating scenarios. In the sampling technique, which is sometimes also called 

‘simulation technique’, the modeller simply assumes a probability density function 

based on a particular distribution (e.g. normal, F-distribution) and generates future 

scenarios for asset returns or other uncertain parameters taking into account their 

historical correlations. For instance, Geyer and Ziemba (2008) employ different 

distributions for each of the asset classes used in their model. Specifically, they take 

into account fat tails for stocks, and assume t-distributions with five degrees of 

freedom for stock returns, and normal distributions for bond returns as returns on 

fixed income products do not often exhibit fat tails. The main advantage of 
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bootstrapping (or simulation) in the scenario generation process is its easy 

applicability to situations and problems where other numerical methods are 

computationally intractable and lead to infeasible solutions. Although this is often 

considered as the most popular and easy sampling approach, we refer to Mitra 

(2006) for extensions, such as the conditional sampling technique. Finally, it is 

obvious that the approximation of the uncertain/stochastic parameters with certain 

probability distributions could be very dangerous, leading to irrelevant and error-

maximized conclusions. 

2.8.2 Statistical Approach 

Statistical techniques apply core econometric models, e.g. time series analysis, using 

a set of historical data as well as stochastic analysis in the scenario generation 

process. For example, vector autoregressive (VAR) models are amongst the most 

popular econometric time series tools currently used by the academic community 

and practitioners in institutional funds to generate future scenarios for the 

corresponding uncertain variables. For instance, Boender (1997), Ferstl and 

Weissensteiner (2011), Gulpinar and Pachamanova (2013), Hoevenaars and Ponds 

(2008) and Chen et al. (2014) use a vector autoregressive model of order 1, VAR(1), 

to generate future scenarios. In addition, stochastic diffusion processes, such as 

Wiener processes, as well as the well known principal component analysis (PCA) 

have also been used to generate scenarios. 

2.8.3 Alternative Techniques 

Although the sampling, simulation and statistical approaches are more popular 

techniques and have been more widely used in the literature, there are some less 
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common methods that have also been used in relevant studies to generate scenarios 

such as the Artificial Neural Network method, and the clustering and scenario 

reduction approach. The Artificial Neural Network (ANN) framework is a processing 

technique that significantly differs from the other methods due to its structure. In 

particular, ANNs consist of a large number of elements, which are connected with 

each other, (neurons). They receive input signals and generate output signals. This 

complex network structure can help decision makers to solve complicated problems 

which cannot be solved with classical numerical methods. The clustering approach is 

often based on an econometric (time-series) process that is used to create a large 

number of scenarios (e.g. paths). Then, a specific number of scenarios are ‘clustered’ 

by another technique, see for instance Rustem et al. (2004). Finally, the scenario 

reduction technique is another alternative approach applied to the scenario 

generation process. The extremely large size of some scenario trees makes the 

process computationally intractable, and some decision makers may desire to 

decrease the problem complexity by applying a variety of methods (e.g. sampling 

techniques) directly to the scenario trees, see Mitra (2006) for further details. 

2.9 Pension Schemes Design and Intergenerational Transfers 

There are two main types of pension schemes – defined benefit (DB) schemes and 

defined contribution (DC) schemes, as well as other more complex schemes that are 

the minority at the moment (e.g. hybrid schemes). According to ONS (2013), there 

were 8.1 million DB and DC active members (the members that currently contribute 

to a pension scheme) in the UK in 2011, with the 65% of the members in the public 

sector and the rest of them (35%) in the private sector. Defined benefit schemes 
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were the prevalent type with 7.2 million active members in 2011 in contrast to just 

900 million active members in DC schemes. In recent years, the majority of DB 

schemes in the UK have gradually stopped accepting new members, and they 

automatically join the newly established DC schemes. As a direct and logical 

consequence of this, the number of active members in DC schemes exceeded that of 

DB schemes in 2014 for the first time. 

2.9.1 Defined Benefit (DB) Pension Schemes 

Defined Benefit pension schemes are managed by a body of trustees and pensions at 

retirement in the UK and US are often based on the employee’s final salary and the 

accrued years (years of employment). For instance, if the final annual salary is 

£50,000, the accrual rate is 1/70 (1.43% - usually expressed as percentages) and the 

employer and member have paid contributions for 35 years (35 years of service), 

then the annual pension at retirement is equal to (35/70)x50,000 = £25,000, an 

amount that is promised by the sponsor that bears all the corresponding risks 

associated with DB schemes. It is a common policy for both the employers and 

employees to pay contributions into the fund. For example, the sponsors of the 

Universities Superannuation Scheme (USS), one of the largest funds in the UK and 

worldwide with over 300,000 members and 374 individual sponsors, pay 16% of 

salary, while the employers pay 7.5% making a total contribution of 16%+7.5% = 

23.5% of the employees’ current salary. 

DB pension funds are very large institutional investors and their assets under 

management in the OECD countries in 2012 were roughly $32 trillion, and the 

corresponding pension obligations (pension liabilities) were much higher (OECD, 
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2013). Pension schemes are long term institutional investors with long time horizons 

since the new active members will start receiving a pension many decades later, and 

the trustees should make long-term investment decisions in order to be able to meet 

their promises (e.g. paying future pensions). For this reason, the pension funds’ 

trustees who run large pension funds often use asset liability management models 

(e.g. stochastic programming ALM models) to compute the optimal asset allocation, 

with the selection of the individual assets determined by the fund managers. For 

instance, USS carries out triennial valuations to estimate the surplus or deficit. 

Inevitably, these computations involve many forecasts of uncertain future events 

(e.g. number of future members, cash flows, portfolio returns and others), which are 

subject to significant estimation risk, and hence different methods may generate 

different valuations of the same fund. Once actuaries complete the valuations, then 

the trustees decide whether they should increase the employer’s contribution rate 

to offset any deficit given the ‘balance of cost’ design of DB schemes where the 

sponsor bears all the risks. 

The majority of UK defined benefit schemes are ‘balance of cost’, which means that 

only the sponsor is responsible for meeting the future pension obligations of the 

scheme, and as a direct consequence the sponsor alone bears all the risks associated 

with the pension promises. In other words, the members are obliged to pay a fixed 

contribution rate over time, which is independent of the financial state of the 

scheme, and the remainder of the cost associated with the future pension payments 

is covered by the employer. This can be unbearable if the scheme has a large deficit 

and may lead the sponsor to become insolvent. In particular, the sponsor of a DB 
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scheme is exposed to a variety of risks such as investment risk, interest rate risk, 

inflation risk, salary growth risk, longevity risk and regulatory risk. The investment 

risk is related to the uncertain asset returns, the interest rate risk is related to the 

fluctuations in government bond yields that are a key element to the valuation of 

pension liabilities, the inflation risk is associated with the valuation of index linked 

liabilities, and the salary growth risk is related to the uncertain final salary which is 

connected to inflation fluctuations. Finally, the longevity risk is related to the risky 

life expectancy of active members and pensioners and the regulatory risk to the 

changing pension rules over the time. 

2.9.2 Defined Contribution (DC) Schemes 

The main idea behind the defined contribution schemes (or 401(k) investments in 

the United States) is that contribution rates for both the sponsors and members are 

constant proportions of salaries. The members of a DC scheme have their own 

pension pot that is paid out when they retire. Since April 2015 the pensioners in the 

UK, who have accumulated a pot of money through a DC scheme, are no longer 

obliged to buy an annuity with this money, but any money not used to purchase an 

annuity is normally taxed according to each person’s income tax rate. Such pension 

schemes can be considered as alternative ‘savings accounts for retirement’, since 

they do not necessarily give pensions but provide flexibility to the members to 

receive the money accumulated in the pot as a taxable lump sum. 

We assume that a member of a DC scheme pays contributions of 7%, and its sponsor 

pays contributions of 10% per year (overall contribution rate of 17% per annum). The 

member’s annual earnings as well as the corresponding annual returns on the 
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pension pot can be seen in table 2.1 below. We also assume that the member pays 

contributions for five years and that any contributions are paid at the end of the 

year. As we can observe in the following table, the pension pot after five years is 

worth £40,912. Then, each member of a DC scheme needs to make some important 

decisions such as whether to purchase an annuity or to receive a taxable lump sum 

that consists of all the money in the pot, and which annuity to buy and when.  

 Earnings Contribution Open Fund Return Pension Pot 

1 £40,000 £6,800 0 - £6,800 

2 £42,000 £7,140 £6,800 3% £14,144 

3 £44,000 £7,480 £14,144 6% £22,473 

4 £46,000 £7,820 £22,473 4% £31,192 

5 £48,000 £8,160 £31,192 5% £40,912 

Table 2.1: Example of member’s annual earnings and pension pot’s annual returns 

In contrast to DB schemes where the sponsor bears all the risks associated with the 

pension liabilities and is responsible for meeting the future pension obligations, (e.g. 

the risks related to investments, interest rates, inflation, salary growth and 

longevity), these risks are borne by the members in defined contribution schemes 

until they retire. If a member of a DC scheme decides to buy an annuity, then these 

risks except for the salary growth risk are transferred to the insurance company that 

pays the pensions to the member (annuity provider). Although the contribution rates 

are constant over time (unchanged), the only risk the sponsor has to bear is the 

salary risk since any fluctuations on the salary level leads to changes in the 

contributions the sponsor pays into the pension pot. 
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Defined contribution schemes in the UK are managed in two different ways. The first 

involves a trustee board that manages the pension scheme in a similar way as in 

defined benefit schemes. The second way involves an insurance company (annuity 

provider), who is responsible for providing a defined contribution pension to the 

employees (contract-based DC pension schemes). The latter type of DC pension 

scheme is basically a group of separate individual pensions (group personal 

pensions) and it is easier, more flexible and less costly to install and manage for the 

employer than a trust-based pension scheme. Also, the control of the sponsor of the 

scheme is largely eliminated since the pensions are provided by the annuity 

providers. 

2.9.3 Intergenerational Effects 

The sponsors of UK defined benefit (DB) pension schemes are required to meet the 

pension promises (e.g. pension payments) according to certain rules and 

independently of the financial state of the scheme. As a direct and logical 

consequence, the sponsor (e.g. employer) bears all the risks such as the interest 

rate, inflation, longevity, regulation, investment and salary growth risk. But these 

risks can be shared between the sponsor and the members of the scheme such as by 

increasing the members’ contribution rates and the retirement age or decreasing the 

accrual rate in case of an extensive deficit that cannot be handled by the sponsor 

alone. Because reduction of the members’ accrued benefits is not permitted by the 

law in the UK and US, possible rule modifications will only affect future accruals. In 

practice, it means that the members of a scheme with less years of service will be 

more affected by such changes because these members will accrue benefits under 
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the new rules for more years, while the older members (e.g. close to retirement) are 

significantly less affected since their accrued benefits until the date of changes are 

fully protected by the law. 

The members of a pension scheme pay contributions in anticipation of receiving a 

pension in the future and hence they have certain expectations of the net present 

value (NPV) of the cash flows with the pension scheme before a rule is modified. As a 

result, the redistributive effect of a rule change is defined as the difference between 

the net present values (NPVs) of the cash flows before and after the rule change for 

each cohort. For instance, pension wealth redistribution between the members 

(active, deferred and future members) and sponsor happens with an increase in the 

retirement age or with a drop in the accrual rate. Furthermore, the cash flow 

changes between the various members (active, deferred and future members), 

pensioners and sponsor is a zero sum game. 

Significant consideration is only given to the absolute numbers of the new members’ 

contribution rates and the retirement ages and others when rule changes are 

announced, but an explicit consideration of the redistributive effects on the wealth 

associated with these changes is often omitted. In addition, all the existing studies 

that investigate the redistribution of pension wealth have been conducted for 

hypothetical Dutch pension schemes, where the sponsor is not involved in the 

redistribution. In particular, the existing studies consider that the only obligation for 

the sponsor of the scheme is to pay a constant contribution rate, and hence the 

redistribution takes place between different age cohorts (intergenerational 

redistribution). But the ‘balance of cost’ scheme is the dominant scheme in the UK 
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and US and the sponsor bears the default risk in this case. In addition, the existing 

literature does not incorporate many important aspects associated with pension 

scheme design such as lump sum payments, a time-varying retirement age, upper 

bounds on the salary growth, deferred members (members that have left the 

scheme and do not pay contributions), spouses’ pensions and asset classes such as 

alternative investments (hedge funds, commodities, real estates and others). 

Chapman et al. (2011) carried out the first study that investigates the effects of 

pension scheme rule changes. In particular, they assume that potential changes in 

pension scheme rules will affect six stakeholders: the members, the government, 

external advisors, externals and the sponsor’s share and debt holders and use 

numerical methods (Monte Carlo simulations) to simulate the cash flows between 

the different stakeholders for a policy horizon of just ten years. Then, they calculate 

the net present values (NPVs) of the cash flows via risk neutral valuation (SDFs) of a 

hypothetical scheme for the base case and different pension rules. The changes in 

the NPVs after the rule changes give the redistributive effects. 

Ponds (2003) considers a hypothetical Dutch scheme where the sponsor pays a fixed 

contribution rate (the sponsor bears no risk) and hence the members of the scheme 

bear all the risks. The author uses the same methodology as in Chapman et al. (2001) 

with simulations, risk neutral valuations and stochastic discount factors (SDFs) to 

compute the redistributive effects between different age cohorts of active, future 

members and pensioners by applying different scheme rules. Hoevenaars and Ponds 

(2008) and Draper et al. (2014) have also investigated the intergenerational 

redistributive effects that result from rule changes in hypothetical Dutch pension 
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funds. Beetsma et al. (2014) investigate intergenerational redistributions between 

various active members’ cohorts and the sponsor for a hypothetical state pension 

fund in the US, while Hoevenaars et al. (2009) quantify redistribution between the 

members and the sponsor, by ignoring the different age cohorts of the members of 

the scheme, for a hypothetical Dutch pension scheme. 

2.10 Conclusions 

To sum up, the main aim of this chapter was to provide a comprehensive literature 

review to the reader in three areas – portfolio theory, asset-liability modelling and 

pension schemes, and hence to prepare her/him for the main chapters of this thesis. 

In particular, all these three areas are involved in Chapter 3, where a novel numerical 

technique – robust (worst-case) optimization - is used to formulate an ALM model 

and is applied to a real world pension scheme (Universities Superannuation Scheme - 

USS) for first time, while it is also benchmarked against the Sharpe and Tint, Bayes-

Stein and Black-Litterman models. Chapter 4 is mainly related to portfolio theory, 

since three different optimal portfolio diversification techniques (Markowitz, norm-

constrained and Black-Litterman portfolio) and three different naïve diversification 

approaches (equally-weighted, risk-parity and reward-to-risk timing portfolios) are 

applied to the same Socially Responsible Investment screened investment universe 

and their actual (out-of-sample) performance evaluated using various performance 

measures. Furthermore, Chapter 5 combines elements from both the ALM modelling 

and pension schemes design literature, and evaluates the short, medium and long 

term performance of the pre and post – 2011 USS pension scheme under three 

different asset allocation strategies (fixed-mix, risk-management and risk-shifting). 
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The redistributive effects of the rule changes in 2011 are also quantified in Chapter 

5. 
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3 Asset Liability Modelling and Pension Schemes: The Application 

of Robust Optimization to USS1 

3.1 Introduction 

Pension schemes are among the largest institutional investors, and in 2012 the OECD 

countries had pension assets of $32.1 trillion (with liabilities several times larger), 

accounting for 41% of the assets held by institutional investors (OECD, 2013). 

Pension schemes have very long time horizons, with new members likely to be 

drawing a pension many years later, and therefore need to make long term 

investment decisions to meet their liabilities. To help them do this many of the larger 

defined benefit (DB) pension schemes model their assets and liabilities using asset-

liability management (ALM). These models determine the scheme’s asset allocation, 

with stock selection left to the fund managers. While a widespread switch to defined 

contribution schemes is underway, DB schemes will remain very large investors for 

decades to come as they continue to serve their existing members and pensioners. 

There are a variety of techniques for deriving optimal ALM strategies for pension 

funds, and they fall into four main categories: stochastic programming, e.g. Kusy and 

Ziemba (1986), Kouwenberg (2001), Kouwenberg and Zenios (2006) and Geyer and 

Ziemba (2008); dynamic programming, e.g. Rudolf and Ziemba (2004) and Gao 

(2008); portfolio theory, e.g. Sharpe and Tint (1990), and stochastic simulation, e.g. 

                                                           
1
 The content of this Chapter was presented at the 4

th
 International Conference of the Financial 

Engineering and Banking Society (Surrey, UK), 8th Portuguese Finance Network International 
Conference (Vilamoura, Portugal), 12

th
 Annual International Conference on Finance (Athens, Greece) 

and the Annual Workshop of the Dauphine-Amundi Chair in Asset Management (Paris, France). The 
corresponding academic paper based on this Chapter has been publised by the European Journal of 
Finance - DOI: http://dx.doi.org/10.1080/1351847X.2015.1071714  
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Boender (1997). The process of computing optimal ALM strategies can be 

challenging, and most of the existing techniques are too demanding to be widely 

applied in practice. 

While stochastic programming is a popular technique for solving ALM problems, the 

present study uses the new technique of robust optimization. Robust optimization 

has attracted considerable attention in recent years and is considered by many 

practitioners and academics to be a powerful and efficient technique for solving 

problems subject to uncertainty (Ben-Tal and Nemirovski, 1998). It has been applied 

to portfolio optimization and asset management, allowing for the uncertainty that 

occurs due to estimation errors in the input parameters, e.g. Ben-Tal and Nemirovski 

(1999), Rustem et al. (2000), Ceria and Stubbs (2006) and Bertsimas and 

Pachamanova (2008). Robust optimization recognises that the market parameters of 

an ALM model are stochastic, but lie within uncertainty sets (e.g. upper and lower 

limits). 

Portfolio theory is highly susceptible to estimation errors that overstate returns and 

understate risk, and three main approaches to dealing with such errors in portfolio 

and ALM models have been used. The first approach involves changing the way the 

mean and covariance matrix of returns are estimated; for example, James-Stein 

shrinkage estimation (e.g. Jobson, Korkie and Ratti, 1979), Bayes estimation (e.g. 

Black and Litterman, 1992), and the overall mean of the estimated covariances (Elton 

and Gruber, 1973). A second approach is to constrain the asset proportions to rule 

out the extreme solutions generated by the presence of estimation errors (e.g. 

Board and Sutcliffe, 1994). A third approach is to use simulation to generate many 
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data sets, each of which is used to compute an optimal portfolio, with the average of 

these optimal portfolios giving the overall solution (Michaud, 1999). Robust 

optimization offers a fourth approach to estimation errors in which the objective 

function is altered to try to avoid selecting portfolios that promise good results, 

possibly due to estimation errors. It adopts a maximin objective function, where the 

realized outcome has a chosen probability of being at least as good as the optimal 

robust optimization solution, which should rule out solutions based on optimistic 

estimation errors. 

The only previous application of robust optimization to pension schemes is Gulpinar 

and Pachamanova (2013). Their hypothetical example uses two asset classes – an 

equity market index and the risk-free rate, 80 observations, non-stochastic liabilities 

and an investment horizon that consists of four investment periods of three months 

each. They imposed a lower bound on the funding ratio (i.e. assets/liabilities) which 

was constrained to never be less than 90%. The objective was to maximise the 

expected difference between the terminal value of scheme assets and contributions 

to the scheme. There was an experimental simulation, rather than out-of-sample 

testing. The chosen confidence level, i.e. protection against estimation errors, was 

set to be the same for each uncertainty set, and varied between zero and three. 

They found a clear negative relationship between the chosen confidence level and 

the value of the objective function.  

We extend the Goldfarb and Iyengar (2003) model of robust optimization from 

portfolio problems to ALM by incorporating risky liabilities with their own fixed 

‘negative’ weights, disaggregate the liabilities into three categories, and include 
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upper and lower bounds on the proportions of assets invested in the main asset 

classes. The objective function we use is the Sharpe ratio, which gives the solution 

that maximises the excess return per unit of risk, and is the first study to use the 

Sharpe ratio as the objective for an ALM study of a pension scheme. We compare 

these results with those of four benchmarks. The first is the actual portfolios chosen 

by the Universities Superannuation Scheme (USS), and the second is a modified 

version of the Sharpe and Tint (1990) model which has been widely used in ALM 

models (Ang, Chen & Sundaresan, 2013; Board & Sutcliffe, 2007; Chun, Ciochetti & 

Shilling, 2000; Craft, 2001, 2005; De Groot & Swinkels, 2008; Ezra, 1991; Keel & 

Muller, 1995; Nijman & Swinkels, 2008). The third is Bayes-Stein estimation of the 

inputs to the modified Sharpe and Tint ALM model, and the last is Black-Litterman 

estimation of the portfolio inputs to the modified Sharpe and Tint ALM model. 

Neither Bayes-Stein, nor Black-Litterman have previously been used in an ALM study 

of a pension scheme. 

Scenario-based programming (dynamic programming, stochastic programming, etc.) 

is not used as a benchmark because of the enormous computational burden this 

would entail. In our application to USS with 14 assets and liabilities, and assuming 

five independent outcomes each three year period, the total number of scenarios to 

be evaluated for the four out-of-sample periods would be 4(514), or 24.4 billion. 

While we do not use stochastic programming, in an experiment involving a 

hypothetical pension scheme and 100 scenarios, Gulpinar and Pachamanova (2013) 

found that robust optimization outperformed stochastic programming. 

We use a single period portfolio model, and there are two alternative theoretical 
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justifications for the use of such models when investors can rebalance their 

portfolios (Campbell and Viceira, 2002, pp. 33-35). Assuming all dividends are 

reinvested, the first justification is that the investor has a logarithmic utility function. 

The second justification is that asset returns are independently and identically 

distributed over time, and investor risk aversion is unaffected by changes in wealth. 

The immediate reinvestment of dividends is common practice, while there is 

evidence that the share of household liquid assets allocated to risky assets is 

unaffected by wealth changes, implying constant risk aversion (Brunnermeier and 

Nagel, 2008). At the 1% level of significance the only assets that exhibit first order 

autocorrelation for the 1993-2008 period, which are used below in estimating the 

parameters of our empirical application, are UK 10-year bonds and UK property. 

Property index returns are well known to exhibit autocorrelation due to the use of 

stale prices in their construction. Since the assumptions for a theoretical justification 

are more or less satisfied and the multi-period alternative is computationally 

impractical, a single period model appears to be a reasonable simplification and has 

been used by many researchers for solving pension ALM problems; including Ang, 

Chen & Sundaresan (2013); Board and Sutcliffe (2007); Chun, Ciochetti & Shilling 

(2000); Craft (2001, 2005); De Groot & Swinkels (2008); Ezra (1991); Keel & Muller 

(1995); Nijman & Swinkels (2008); Sharpe & Tint (1990). For a more comprehensive 

discussion on the appropriateness of using single period models in a portfolio 

optimization context, we also refer to Ang (2014). 

Our resulting ALM model is applied to USS using monthly data for 18 years (1993 to 

2011), i.e. 216 months. The choice of USS has the advantages that, as the sponsors 
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are tax exempt, there is no case for 100% investment in bonds to reap a tax arbitrage 

profit. In addition, because the sponsors’ default risk is uncorrelated with that of 

USS, there is no need to include the sponsor’s assets in the ALM model. The data is 

adjusted to allow for USS’s foreign exchange hedging from April 2006 onwards as 

this is when USS changed its benchmark onto a sterling basis. Finally, we use an 

actuarial model to transform the robust optimization solutions (i.e. asset 

proportions) into the scheme’s projected contribution rate. 

Ultimately pension scheme trustees are concerned about the scheme’s funding ratio 

and contribution rate. Since the asset allocation has an important influence on the 

contribution rate and funding ratio, trustees need to make the asset allocation 

decision in the light of its effect on these two variables. Trustees wish to reduce the 

cost of the scheme to the sponsor and members by minimising the contribution rate. 

Trustees are also concerned with the regulatory limits on the funding ratio. UK 

legislation places upper and lower limits on the funding ratio of pension schemes, 

and the likelihood of breaching these requirements must be considered when 

making the asset allocation decision. MacBeth, Emanuel and Heatter (1994) report 

that pension scheme trustees prefer to make judgements in terms of the scheme’s 

funding ratio and contribution rate, rather than the scheme’s asset-liability portfolio. 

We use the model developed by Board and Sutcliffe (2007), which is a generalization 

of Haberman (1992), to transform the asset allocations to projected contribution 

rates. This generalization allows the discount rate to differ from the investment 

return, which improves the economic realism of the actuarial model. 

The remainder of this paper is organized as follows. In section 3.2 we provide a brief 
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overview of robust optimization and explain our robust optimization ALM model and 

the four benchmarks. Section 3.3 describes USS, and in section 3.4 we describe the 

data set, explain how returns on the three liabilities were estimated, and use a factor 

model to estimate the three uncertainty sets. In section 3.5 we compute optimal 

out-of-sample investment policies for USS using robust optimization and the four 

benchmarks, together with the implications of the asset allocations for the funding 

ratio and projected contribution rate. Section 3.6 presents robustness checks on our 

results, and section 3.7 summarizes our findings. 

3.2 Robust Optimization ALM Model 

Robust optimization is a powerful and efficient technique for solving optimization 

problems subject to parameter uncertainty that has a number of advantages over 

other analytical techniques. First, it solves the worst-case problem by finding the 

best outcome in the most unfavourable circumstances (the maximin), i.e. each 

stochastic parameter is assumed to take the most unfavourable value in its 

uncertainty set. Since DB schemes must meet their pensions promise, investment 

strategies based on ALMs using robust optimization are well suited to the pension 

context where prudence and safety are important. Second, previous techniques such 

as stochastic programming and dynamic stochastic control are computationally 

demanding, while robust optimization is much easier to solve. The computational 

complexity of robust optimization is the same as that of quadratic programming in 

terms of the number of assets and time periods; while the complexity of scenario 

based approaches, such as stochastic programming and dynamic stochastic control, 

is exponential in the number of assets and time periods. Therefore realistic robust 
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optimization problems can be solved in a few seconds of computer processing time. 

Finally, in comparison with other techniques, robust optimization is less sensitive to 

errors in the input parameters, i.e. estimation errors. This tends to eliminate 

extreme (e.g. corner) solutions, leading to investment in more stable and diversified 

portfolios, with the benefit of lower portfolio transactions costs. 

Robust optimization requires the specification of the maximum deviation from each 

of the expected values of the stochastic input parameters that the decision maker is 

prepared to accept. This maximum deviation is set to reflect the level of confidence 

(denoted by ω, where 0 < ω < 1) the decision maker requires that the optimal value 

of the objective function will be achieved when the optimal solution is implemented. 

In the model used below there are three uncertainty sets corresponding to the three 

stochastic parameters in the factor model (see equation (3.1) below):- mean returns, 

factor coefficients and disturbances. These uncertainty sets are for (a) mean returns, 

(b) the coefficients of the factor model used to estimate the factor loadings matrix, 

and (c) the variance-covariance matrix of the disturbances. The decision-maker 

specifies the level of confidence (denoted by ω), that the Sharpe ratio given by the 

optimal robust optimization solution will be achieved or surpassed in the out-of-

sample period. Two important characteristics of each uncertainty set are its size and 

shape. The size of an uncertainty set is governed by the parameter ω (confidence 

level), allowing the provision of a probabilistic guarantee that the constraints with 

uncertain/stochastic parameters are not violated. The shape of the uncertainty sets 

(e.g. ellipsoidal, box, etc.) is chosen to reflect the decision-maker’s understanding of 

the probability distributions of the stochastic parameters; and an appropriate 
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selection of the shape of the uncertainty sets is essential for the robust optimization 

problem to be tractable (Natarajan, 2009). We chose to use elliptical (ellipsoidal) 

uncertainty sets which are very widely used when the constraints involve standard 

deviations; and in most cases result in a tractable and easily solved problem 

(Bertsimas, Pachamanova and Sim, 2004). 

The initial formulation of the robust optimization problem with its uncertain 

parameters is transformed into the robust counterpart (or robust analog problem). 

This transformed problem has certain parameters (the worst-case value within its 

uncertainty set for each stochastic parameter) with only linear and second-order 

cone constraints. This second order cone problem (SOCP) can be easily solved, see 

Ben-Tal and Nemirovski (1998, 1999, 2000). 

We divide the liabilities into three components: (i) members who are currently 

contributing to the pension fund (active members), (ii) deferred pensioners who 

have left the scheme but not yet retired and so currently do not generate any cash 

flows for the fund, and (iii) pensioners who are currently receiving a pension and so 

generate cash outflows from the fund. The liability for active members varies 

principally with salary growth until they retire, and then with interest rates, longevity 

and inflation. For deferred pensioners, their liability varies with the chosen 

revaluation rate until they retire (USS uses inflation as the revaluation rate), and 

then with interest rates, longevity and inflation. The liability for pensions in payment 

varies with interest rates, longevity and inflation as from the current date. We 

extend the Goldfarb and Iyengar model to include stochastic liabilities as well as 

stochastic assets in the factor model. More details are described later in this section, 
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as well as in Appendices 3.B and 3.C. 

In the long run pension schemes do not take short positions, and so we rule out 

short selling by imposing non-negativity constraints on the asset proportions. We 

also do not permit borrowing money because UK pension schemes are prohibited 

from long-term borrowing. They are also prohibited from using derivatives, except 

for hedging or facilitating portfolio management. In addition, pension funds usually 

set upper and lower limits on the proportion of assets invested in asset classes such 

as equities, fixed income, alternative assets, property and cash. Therefore our ALM 

model includes upper and lower bounds on broad asset classes to rule out solutions 

that would be unacceptable to the trustees.  This also tends to reduce the effects of 

estimation errors in the ALM inputs. 

ALM studies of pension schemes using programming models have employed a wide 

variety of objective functions. For example, maximise the terminal wealth or surplus 

with penalties for risk and breaching constraints; or minimise the present value of 

contributions to the scheme with penalties for risk and breaching constraints. While 

some of the penalties can be quantified in monetary terms, a penalty for risk 

requires the specification of a risk aversion co-efficient. Many previous ALMs have 

assumed the pension scheme has a particular utility function of wealth or pension 

surplus, e.g. constant relative risk aversion (CRRA), constant absolute risk aversion 

(CARA) or quadratic utility, together with a specified risk aversion parameter. 

However, pension schemes are non-corporeal entities with an infinite life, and 

specifying their preferences in terms of a calibrated utility function is problematic.  
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An alternative approach is to use the market price of risk, which can be calculated 

from market data. The Capital Asset Pricing Model implies that the market’s trade-

off between risk (standard deviation) and return is given by the slope of the Capital 

Market Line. This leads to the use of the Sharpe ratio to select a risky portfolio, and 

has been widely used in academic studies. Following Sharpe (1994), we define the 

Sharpe ratio as the return on a fund in excess of that on a benchmark portfolio, 

divided by the standard deviation of the excess returns. The risk free rate is usually 

chosen as the benchmark portfolio, but we use the liability portfolio. So in our case 

the fund is the pension scheme’s asset portfolio, and the benchmark is its liability 

portfolio. Therefore we divide the mean return on the asset-liability portfolio by the 

standard deviation of the asset-liability portfolio. Individual risk-return preferences 

will differ from this ratio but, since large pension schemes have well diversified 

portfolios, it gives the average value of individual preferences revealed in the capital 

market, and so offers a reasonable objective for a very large multi-employer scheme 

like USS. 

Our approach is significantly different from the surplus optimization framework 

proposed by Sharpe and Tint (1994). Especially, the goal of surplus optimization is to 

maximize the utility function defined as the expected return on assets in excess of 

liabilities minus the variance of the excess returns. As a result, surplus optimization’s 

objective function is actually a quadratic utility that uses excess returns instead of 

asset only returns, a risk aversion parameter equal to 1, and can be considered as a 

special case of mean-variance optimization. But the use of calibrated utility functions 

for defining the risk preferences for pension schemes is problematic for all the 
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reasons mentioned previously. 

By using robust optimization to solve the problem, depending on the size of the 

chosen confidence level (ω), the scheme’s optimal portfolio is effectively more risk 

averse than simply maximizing the Sharpe ratio. Use of the Sharpe ratio ignores the 

scheme’s current funding ratio, but if the risk attitudes of pension schemes are 

wealth independent, the funding ratio is irrelevant. The empirical evidence on the 

effect of the funding ratio on the asset allocation, allowing for real world influences 

such as default insurance, taxation and financial slack, is mixed (An, Huang and 

Zhang, 2013; Anantharaman and Lee, 2014; Atanasova and Gatev, 2013; Bodie, Light, 

Morck and Taggart, 1985, 1987; Comprix and Muller, 2006; Guan and Lui, 2014; 

Mohan and Zhang, 2014; Li, 2010; McCarthy and Miles, 2013; Munro and Barrie, 

2003; Petersen, 1996; Rauh, 2009). This is consistent with the view that pension 

schemes do not alter their asset allocation in a predictable way with their funding 

ratio, except when very close to default. 

Following Goldfarb and Iyengar (2003) and others, we assume the stochastic asset 

and liability returns are described by the following factor model2:- 

   A,L A,L A,L

T  r V f                                                  (3.1) 

                                                           
2
  We have used factors not asset classes because it is common practice in robust optimization, see 

for instance Goldfarb and Iyengar (2003), Ling and Xu (2012) and other studies. It reduces the number 
of parameters to be estimated by about 20% in comparison with the classical approaches (e.g. the 
Sharpe and Tint model) and by much more for Bayes-Stein and Black-Litterman; and there is some 
evidence that it helps in creating more stable portfolios. Finally, the use of factors plays a significant 
role in making the robust optimization problem computationally tractable (e.g. a second order cone 
problem - SOCP), see for instance Goldfarb and Iyengar (2003), Glasserman and Xu (2013), and Kim et 
al. (2014). 
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where A,Lr  is a joint column vector with A Ln n  elements that contains the 

uncertain asset and liability returns; A,L ,  with A Ln n  elements, is the joint column 

vector of the random asset and liability mean returns; the column vector f  with m  

(number of factors) elements contains the factor returns that drive the risky assets 

and liabilities; the matrix V  with m  rows and A Ln n  columns contains the 

corresponding uncertain factor coefficients; and A,L  with A Ln n  elements is the 

column vector of uncertain disturbances. The covariance matrix of the factor returns 

is denoted by F  ( m  rows and m  columns), and the diagonal covariance matrix of 

the disturbances by D  ( A Ln n  elements on its diagonal).  

The matrix of uncertain factor coefficients  V  belongs to an elliptical uncertainty 

set denoted by .S  The elements of the column vector of random mean returns 

 A,L  and the diagonal elements of the covariance matrix of the disturbances  D  

lie within certain intervals which are represented by the uncertainty structures meanS  

and dS  respectively. The uncertainty set meanS  is completely parameterized by the 

market data, while meanS  and S  also depend on the parameter ω. The parameter ω 

specifies the level of confidence, and hence allows the provision of probabilistic 

warranties on the performance of the robust portfolios. More details about the 

exact form of the uncertainty structures and their parameterization can be found in 

Appendix 3.B. The use of a factor model means there is no need to estimate the 

covariance matrix of the asset-liability returns, just the covariance matrix of the 

factor returns. This reduces the dimensionality of the problem from [n(n−1)/2+n], 
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where n is the total number of assets and liabilities, to [m(m−1)/2+m], where m is 

the number of factors. 

The robust optimization problem we solve is given by the following maximin 

problem. See also Goldfarb and Iyengar (2003), section 3.3. 
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    

A,L

A

T

A,L A,L

T T T

A,L A,L A,L A,L

T

A

A

 

maximize    
  

. :              1

                   0,                                        1

mean

d

S

SS

,i

min

max max

s t

i = ,







 
   

 
       

  



  

μ

DV

μ

V FV D

1





   



A

T

A, A

T

A, A

                  0,       

                  0,           

classX

i max

i classX

classX

i min

i classX

...,n

classX

classX









    

   





1

1





                  (3.2) 

where 
A,L  denotes the joint column vector of asset proportions A  (decision 

variables) and liability proportions L.  Liability proportions are fixed, negative, and 

sum to -1. classX

min  and classX

max  represent the minimum and maximum values for each 

broad asset class, classX (e.g. classX = equities, bonds, property, etc.). The objective 

in equation (3.2) is to maximise the Sharpe ratio under the worst circumstances (i.e. 

maximin)3. The worst case mean return in the numerator is divided by the square 

root of the worst case variance (two terms) in the denominator. The worst case 

mean return, as well as the worst-case variance, depend on the parameter ω (more 

details about their parameterization from market data and the confidence level can 

be found in Appendices 3.B and 3.C). As ω is increased the size of the uncertainty 

                                                           
3
 For mathematical reasons the expected Sharpe ratio must be constrained to be strictly positive, and 

so the lower bound on expected returns of the asset-liability portfolio is set to 0.1%, rather than zero. 
This rules out asset allocations that are expected to worsen the scheme’s funding position. 



58 
 

sets increases, which worsens the worst-case circumstances. The maximin 

optimization problem described in (3.2) can be converted to a second order cone 

program (SOCP) and hence is a tractable and easily solved mathematical 

optimization problem. Further details of this transformation appear in Appendix 3.C.  

The first benchmark we use is the actual portfolios chosen by USS. The second 

benchmark is a modified version of the Sharpe and Tint (1990) model, where the 

objective function has been changed to maximise the expected return on the asset 

portfolio in excess of the liability portfolio, divided by the standard deviation of 

these excess returns (the Sharpe ratio). This model has the same additional 

constraints on the asset weights as the robust optimisation model, while the 

covariance matrix is estimated directly from the asset and liability returns. Hence, 

the modified Sharpe and Tint benchmark is :- 

A

T

A,L A,L

T

A,L A,L A,L
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A A
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where 
A,L  denotes the sample covariance matrix of the asset and liability returns. 

The third benchmark is Bayes-Stein (Jorion, 1986) where estimates of the inputs to a 

portfolio problem are based on the idea that estimated returns a long way from the 

norm have a higher chance of containing estimation errors than estimated returns 

close to the norm. To deal with estimation errors, the Bayes-Stein estimates of the 
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input parameters are the weighted sum of the historic return for each asset and a 

global estimate of returns (the norm). The global estimate of returns (the norm) is 

the return on the minimum variance portfolio when short sales are permitted, 

denoted 
A,L,μ .min

 The factor governing the extent to which the historic returns are 

shrunk towards the global norm is denoted by 0 1.g   The Bayes-Stein estimator 

of the column vector of the sample mean asset and liability returns  BSμ  is given by 

:- 

            BS A,L A,L,1 g +gμ min μ μ 1                                  (3.4) 

where the shrinkage coefficient is:- 

 

      
A L

T 1

A L A,L A,L, A,L A,L,

2
g =

2 μ μmin min

n n

n n p 

 

   + μ 1  μ 1   
      

        (3.5) 

The number of assets and liabilities and the sample size are denoted by A Ln n  and 

p  respectively, and 1  is a column vector of ones. As in Jorion (1986) and Bessler, 

Opfer and Wolff (forthcoming) we define Σ  as 
 

A,L

A L

1
.

2

p

p n n

 
      

Σ Σ  The 

Bayes-Stein estimator of the covariance matrix of the asset and liability returns 

 ΒS
  is given by:- 

  

   

 

   

T

BS A,L T 1

A,LA L A L

1 1 1

2 1 2

p p p

p p n n p p p n n

 

  

   
 

              

11
Σ Σ

1 Σ 1
  (3.6) 

where the scalar   represents the precision of the prior distribution of returns, and 

is expressed as:- 
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 

   
A L

T 1

A,L A,L, A,L A,L,

2

μ μmin min

n n




 


 μ 1  μ 1
       (3.7) 

We use the Bayes-Stein estimates of the returns vector and the covariance matrix in 

the modified Sharpe and Tint model. 

Black-Litterman is the final benchmark and is another way of dealing with estimation 

errors which combines the subjective views of the investor concerning expected 

returns and risks with those of a reference portfolio, which is usually the market 

equilibrium asset proportions and covariance matrix, (Black and Litterman, 1992; 

Idzorek, 2005; and Bessler, Opfer and Wolff; forthcoming). The resulting (posterior) 

estimates of expected returns and the covariance matrix are then used in a portfolio 

model. We use the modified Sharpe and Tint model in equation (3.3), which 

maximises the Sharpe ratio, subject to various constraints. 

The implied excess-returns used in the original Black and Litterman (1992) model are 

based on reverse-optimization, assuming that the reference portfolio is the result of 

a mean-variance optimization. In a similar way, Ardia and Boudt (2015) define 

implied returns as ‘the returns for which a supposedly mean-variance efficient 

portfolio is effectively efficient given a covariance matrix’. Given that we consider 

both risky assets and stochastic liabilities that behave as risky assets with their own 

negative weights, we define the column vector of implied excess returns for the 

reference portfolio as:- 

A,L A,LR R
Π                                      (3.8) 



61 
 

where R  is the investor’s risk aversion parameter, which disappears in the Sharpe 

and Tint formulation, A,L

R  is a column vector of the asset and (negative) liability 

weights of the reference portfolio estimated using the proportions for USS at the 

start of each out-of-sample period4. The posterior column vector of asset and 

liability returns  BLμ  is:- 

   
1

1 1T 1 T 1

BL A,L A,Lc c


       
   

μ QV    P P P                 (3.9) 

where c  is the overall level of confidence in the vector of implied excess returns and 

is set to 0.16255, P  is a matrix of zeros and ones defining the assets and liabilities 

involved in each view, QV  is a column vector of the views of returns specified by 

the investor, and   is a diagonal matrix of the reliability of each view, estimated 

following Meucci (2010), as:- 

A,L

1


 T

Ω P P                                 (3.10) 

where   is the overall level of confidence in the investor’s views, which we set to 

unity6. In selecting investor views we follow Bessler, Opfer and Wolff (forthcoming) 

and use the mean return for each asset and liability during the estimation period. 

This is to avoid supplying Black-Litterman with more information than any other 

                                                           
4
 Bessler, Opfer and Wolff (forthcoming) show that Black-Litterman results are robust to the choice of 

reference portfolio. 

5
  This is the mean of the range of values used by previous studies. Bessler, Opfer and Wolff 

(forthcoming) show that Black-Litterman results are robust to the choice of c over the 0.025 to 1.00 
range. 

6
 We experimented with different values of δ and found it had little effect on the Black-Litterman 

performance, and so we followed Meucci (2010) and set δ equal to one. 
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technique. Following Satchell and Scowcroft (2000) and Bessler, Opfer and Wolff 

(forthcoming) the posterior covariance matrix  BLΣ  is estimated by:- 

 
1

1 T 1

BL A,L A,Lc


    
 

Σ   P P              (3.11) 

3.3 Application to USS 

The robust optimization model will be used to derive optimal investment policies for 

USS. USS was created in 1974 as the main pension scheme for academic and senior 

administrative staff in UK universities and other higher education and research 

institutions (Logan, 1985). In 2014 USS was the second largest pension scheme in the 

UK, and the 36th largest in the world with 316,440 active members, deferred 

pensioners and pensioners. It is a multi-employer scheme with 379 separate 

sponsors (or institutions), and assets valued at £42 billion in 2014. There are two 

important advantages in using USS as the real world application. First, there is no 

need to include the assets and liabilities of the sponsors in the model; and second, 

because the USS sponsors are tax exempt, the optimal asset allocation is not the 

corner solution of 100% bonds which maximises the tax relief. 

It is generally accepted that a pension scheme and its sponsor should be treated as a 

single economic entity, and this has a number of important implications for ALMs. 

The discount rate used in valuing pension liabilities must be increased above the 

riskless rate to reflect the risk of default by the sponsor. This sponsor default risk can 

be reduced by incorporating the assets and liabilities of the sponsor in the ALM 

model, allowing for correlations between the assets and liabilities of the sponsor and 
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the pension scheme. For example, if the sponsor makes cars, investment by the 

pension scheme in the shares of car producers increases the risk of default because, 

when the scheme has a deficit due to poor investment returns, the sponsor is also 

likely to be experiencing adverse business conditions. The value of the pension 

liabilities is an input to the ALM model, and this valuation depends on the discount 

rate used to value the liabilities, which in turn depends on the risk of default by the 

sponsor. The risk of default depends on the asset allocation of the pension scheme, 

which is the output from the ALM model. This leads to a circularity that Inkmann and 

Blake (2012) solve using simulation.  

However, USS is a multi-employer scheme where the 379 institutions (sponsors) are 

funded largely by the UK government and student fees. Therefore the default risk of 

the sponsor is effectively uncorrelated with the assets and liabilities of the scheme. 

In addition, USS is a last-man-standing multi-employer scheme, and default would 

require the bankruptcy of every institution, i.e. the collapse of the UK university and 

research community. Therefore, for USS the default risk of the sponsor is both very 

low and independent of that of the scheme, and so need not be considered when 

setting the discount rate. In consequence the assets and liabilities of the 379 

sponsors will not be incorporated in the ALM model of USS. 

Taxation of the sponsor creates an arbitrage argument for a pension fund to invest 

100% in bonds (as did Boots in 2000). There are two different arguments for 100% 

bond investment by a pension fund:- (a) Black (1980) (see also Surz, 1981; Black and 

Dewhurst, 1981, Frank, 2002), and (b) Tepper (1981) (see also Bader, 2003, Frank, 

2002). However, UK universities (the sponsors of USS) are not liable to pay tax, and 
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so the tax arguments of Black and Tepper leading to 100% investment in bonds do 

not apply. The tax exemption of UK pension schemes also means there is no need to 

adjust their returns for taxation. 

3.4 Data and Analysis 

a. Assets. The main asset classes used by the trustees of UK pension funds, including 

USS, over the past two decades are UK, European and US equities, US and UK bonds, 

UK property and cash. In recent years interest in alternative assets has increased, 

and so we have also included this asset class (represented by hedge funds and 

commodities). We used 11 assets, and these are set out in the upper section of Table 

3.1. As a robustness check we replaced three assets with S&P GSCI Light Energy, UK 

private equity and UK infrastructure (see section 3.6).  Monthly data on these assets 

was collected from DataStream and the Bank of England for the period April 1993 to 

March 2011 (216 observations) corresponding to seven triennial actuarial valuations 

of USS, and we used monthly returns. Although all its liabilities are denominated in 

sterling, USS has substantial investments in non-sterling assets (about £15 billion in 

2013). Until 2006 USS did not hedge any of this foreign exchange risk, but thereafter 

USS hedged all its foreign exchange risk. Therefore asset returns are adjusted onto a 

sterling basis for April 2006 onwards. Finally, we ignore the administrative expenses 

and transaction costs of the scheme.  

Its maximin objective means that robust optimization will tend to perform better 

than the other techniques when the market falls; while the USS benchmark with its 

high equity investment will tend to perform better in a rising market. Figure 3.1 
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shows that the data period (1993-2011) covers a wide range of economic conditions, 

with three strong upward trends in the UK equity market, and two substantial falls. 

Property and hedge funds show a rise until mid-2007 followed by a sharp fall, and 

then a rise, while 20 year bond prices rise in the late 1990s and are then fairly 

steady. This suggests that the results below are not due to testing the ALM models 

on a falling market, which would favour robust optimization and penalize USS. 

Indeed, over the entire data period, an investment in the FTSE index basket rose by 

more than 200%, and hedge funds and property rose by an even larger percentage. 

Type Source 

Asset Classes  

UK Equities FTSE All Share Total Return 

EU Equities MSCI Europe excl. UK Total Return 

US Equities S&P500 Total Return 

10 year UK Bonds 10-year UK Gov. Yields  

20 year UK Bonds 20-year UK Gov. Yields 

10 year US Bonds 10-year US Gov. Yields 

20 year US Bonds 20-year US Gov. Yields 

Hedge Funds HFRI Hedge Fund Index 

Commodities S&P GSCI Total Return 

UK Property  IPD Index Total Return 

Cash UK 3 Month Treasury Bills  

Factors  

Global Equities  MSCI World Total Return 

20 year UK Bonds 20-year Gov. Yields 

UK Expected Inflation UK 10-year Implied Inflation 

UK Short Term Interest Rate 6-month UK Interbank Rate 

   Table 3.1: Dataset for Asset Classes and Factors. Monthly data on the 11 assets and four factors,    
   together with their sources, for April 1993 to March 2011 
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Figure 3.1: Cumulative Wealth from an Investment in Each of the Four Main Asset Classes 1993-2011 

 

b. Liabilities. The liabilities were split into three groups - active members, deferred 

pensioners and pensioners. Changes in their value are driven by changes in four 

main factors - long-term interest rates, expected salary growth, expected inflation 

and longevity expectations. The actuarial equations in Board and Sutcliffe (2007) 

were used to compute the monthly returns for each of the three types of liability 

(see Appendix 3.D). This was done using monthly 20-year UK government bond 

yields7, and the monthly index of UK 10-year implied inflation. The 20-year 

government bond yield was used as the discount rate because, while no cash flow 

forecasts are available, USS is an immature scheme and data on the age distribution 

of active members, deferreds and pensioners suggests the duration of USS liabilities 

                                                           
7
 This abstracts from the effects on returns of the low liquidity of pension liabilities and the inflation 

risk inherent in government bond yields, as these effects tend to cancel out. 
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is over 20 years (USS, 2013). The USS actuary estimates expected salary growth as 

expected inflation plus one percent, and so monthly changes in expected salary 

growth were computed in this way. Monthly data on changes in longevity 

expectations is not available, and so these expectations were held constant 

throughout each three year period at the value used in the preceding actuarial 

valuation (see the last two rows of Table 3.2).  

The computation of the liabilities also requires a number of parameters - expected 

age at retirement, life expectancy at retirement, and the average age of actives and 

deferreds. Although the USS normal retirement age is 65 years, expected retirement 

ages are earlier. Row 1 of Table 3.2 shows the expected retirement ages for actives 

and deferreds used for each triennial USS actuarial valuation, and row 2 has the 

expected longevity of USS members at the age of 65 (USS Actuarial Valuations). Since 

the average age of USS members throughout the period was 46 years (HEFCE, 2010), 

and the average age of USS pensioners was 70 years (USS, 2013), the number of 

years for which each group was expected to receive a pension are also shown in 

rows 3 and 4 of Table 3.2. The USS accrual rate in the final salary section is 1/80th per 

year. In addition there is a lump sum payment, and using the USS commutation 

factor of 16:1, this increases the accrual rate to 1/67.37. 
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Expected Values  

in Years 
1993/6 1996/9 1999/02 2002/5 2005/8 2008/11 

Retirement Age 60 60 60 60 60 62 

Longevity at 65 20 20 21 21 21 24 

Pension Period - 
Actives & Deferreds  25 25 26 26 26 27 

Pension Period – 
Pensioners 

15 15 16 16 16 19 

Table 3.2: Demographic data for actives, deferreds and pensioners: expected retirement age for 
active and deferred members, expected longevity at age 65, expected number of years for which 
current active and deferred members and pensioners will receive a pension 

c. Constraints. The upper and lower bounds on the asset proportions of the five main 

asset classes were set so as to rule out extreme and unacceptable asset proportions. 

This was done with reference to the benchmarks and the associated permitted 

active positions specified by USS over the data period. The bounds used were: (35% 

≤ Equities ≤ 85%); (5% ≤ Fixed Income ≤ 30%); (0% ≤ Alternative Assets ≤ 30%); (2% ≤ 

Property ≤ 15%) and (0% ≤ Cash ≤ 5%). In addition, the expected return on the asset-

liability portfolio was required to be non-negative, and short sales and borrowing 

were excluded. 

Actuarial valuations of USS are carried out every three years, with the oldest 

available actuarial valuation on 31st March 1993, and the most recent valuation on 

31st March 2011. The data is divided into six non-overlapping periods to coincide 

with these seven triennial actuarial valuations, as shown in Table 3.3.  
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Periods (t) Start End Length (p) 

Period 1 1993 M4 1996 M3 36 

Period 2 1996 M4 1999 M3 36 

Period 3 1999 M4 2002 M3 36 

Period 4 2002 M4 2005 M3 36 

Period 5 2005 M4 2008 M3 36 

Period 6 2008 M4 2011 M3 36 

                 Table 3.3: Non-overlapping three year data periods: the data is divided into six 3-year  
                  periods corresponding to USS actuarial valuations 

 

To estimate and test the asset allocations we used four out-of-sample non-

overlapping windows. USS is a very long term investor and sets its asset allocation 

every three years after conducting an actuarial valuation and commissioning an 

asset-liability study. Therefore we have used a three year out-of-sample period, 

together with a six year estimation period. In the literature, the length of the rolling 

estimation windows varies, but five to ten years is generally considered to be 

appropriate. For instance, Bessler, Opfer and Wolff (forthcoming) and Bessler and 

Wolff (2015) use rolling estimation windows of 1 year, 2 years, 3 years, 4 years and 5 

years. Xing et al. (2014) use rolling estimation periods of 5 years, 10 years and 15 

years, while DeMiguel et al. (2009a) use 10 years. Hence, the choice of a six year 

rolling estimation window lies within the range used by previous studies and seems 

to be a sensible choice. The robustness checks in section 3.6 include a one year out-

of-sample period with a three year estimation period and show that our conclusions 

remain unchanged. Also, the findings that shorter or longer estimation windows do 

not change the main conclusions are in accordance to Bessler, Opfer and Wolff 
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(forthcoming) and Bessler and Wolff (2015). The data for the initial six years (periods 

one and two) was used to compute the optimal robust optimization asset allocation 

for the subsequent three years (period three). The estimation period was then rolled 

forward by 36 months, so that data for periods two and three was now used to 

compute the optimal asset allocation, which was tested on data for period four, and 

so on, giving four out-of-sample test periods of 36 months each, providing 144 out-

of-sample months. 

Each of the three liabilities was treated as a separate risky ‘asset class’ with 

‘negative’ and fixed weights for each of the six three year periods. We calculated the 

proportions for each type of pension liability from the triennial actuarial valuations 

(see Table 3.4). For the six year estimation periods we used the average of the 

liability weights for the two 3-year periods concerned. In computing returns on the 

asset and liability portfolios, the assets were weighted by the funding ratio at the 

start of the relevant three year period. 

Type Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Active 59.50% 57.42% 55.23% 57.36% 52.51% 52.20% 

Pensioners 36.05% 36.25% 37.89% 35.01% 39.56% 39.90% 

Deferred   4.45%   6.33%   6.88%   7.63%   7.93%   7.90% 

     Table 3.4: Proportions of total pension liabilities 

d. Uncertainty Sets. For each estimation period, we calculated the parameters 

involved in the three uncertainty sets, and hence in the final mathematical 

optimization problem, using a factor model (equation 3.1). The returns uncertainty 

set requires the estimation of 14 mean returns, and for each estimation period the 
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means of the 14 asset and liability returns were used. For each of the six year 

estimation periods natural log returns on the 11 assets and three liabilities were 

separately regressed on the natural log returns of the four factors listed in the lower 

section of Table 3.1, together with a constant term. These 14 regressions per 

estimation period generated 56 estimated coefficients (the factor loadings matrix) 

and 14 constant terms. In total, the factor loadings uncertainty set requires the 

estimation of 56 coefficients and 10 covariances. The disturbances uncertainty set 

has 14 parameters, and these were estimated using the residuals from the 

regressions. The modified Sharpe and Tint model requires 105 elements of the 

covariance matrix to be estimated. So overall this benchmark requires the estimation 

of (105+14) = 119 stochastic parameters per estimation period; while robust 

optimisation needs (56+10+14+14) = 94 stochastic parameters; a reduction of over 

20%.  

Bayes-Stein requires the estimation of 105 elements of the asset-liability covariance 

matrix, 14 elements of the mean asset-liability portfolio returns, as well as the 

estimation of the parameters g  and A,L,minμ  (see section 3.2 for more details). 

Hence, the Bayes-Stein approach requires in total the estimation of (105+14+2) = 

121 parameters per estimation period; 29% more than robust optimization. Black-

Litterman requires the estimation of 105 elements of the asset-liability covariance 

matrix, the weights of the reference asset-liability portfolio (14), the vector of the 

investor’s views (14), the overall level of confidence in the views (1), the factor that 

measures the reliability of the implied return estimates (1) and the reliability of each 



72 
 

view (14); giving a total of 149 parameters to be estimated, or 59% more than robust 

optimization. 

Given the very large number of parameters to be estimated for each optimization 

model in each estimation period (over 2,000 parameters in total), It is not possible to 

include a table with the input parameters used in the optimization processes. 

Instead, Figure 3.1 gives a very clear picture of the variability of 4 main asset classes 

used in our analysis. 

The factor model requires us to choose the number and identity of the factors, and 

we experimented with both the identity and number of factors before settling on 

those listed in Table 3.1. It is helpful if the ratio of the number of factors to the 

number of assets and liabilities is small. In previous robust optimization studies this 

ratio is 0.080 and 0.233 (Goldfarb & Iyengar, 2003); 0.125 and 0.238 (Ling & Xu, 

2012) and 0.200 (Glasserman & Xu, 2013). With four factors and 14 assets and 

liabilities we have a ratio of 0.286, which is higher than previous studies. Five factors 

would increase the total number of parameters to be estimated by 19 and increase 

this ratio to 0.357, which would be appreciably higher than any previous study. 

Therefore we settled on a parsimonious model of four factors.  

The universe of assets used by Goldfarb and Iyengar (2003) consists of 43 stocks 

ranked at the top of each of 10 industry categories by Dow Jones. Their robust 

optimization model uses 10 factors that consist of 5 major indices (US equity indices 

and US bonds) as well as 5 eigenvectors that have the 5 largest eigenvalues of the 

covariance matrix of the asset returns and hence describe very well their asset 
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universe. In a similar way, Ling and Xu (2012) use 21 stocks from Shanghai Stock 50 

index and 5 major Shanghai equity indices as market factors in their robust 

formulated portfolio optimization model. Furthermore, Glasserman and Xu (2013) 

use 3 factors in their model, which are moving averages of prices changes over 

periods different length, for their investment universe that consist of 15 commodity 

futures. 

Our investment universe differs significantly from that of previous studies on robust 

portfolio optimization since we include both conventional and alternative asset 

classes as well as pension liabilities. Hence, the selection of the factors should be 

done carefully in order to the factor model used in our robust optimization model to 

be as much accurate as possible for a reasonable number of factors that should be 

significantly smaller than the number of assets. 

We chose 20 year UK government bond prices as one of the factors because the 

discount rate is a key determinant of the value of the three liabilities. It also helps to 

explain the prices of the four long term government bonds. We included the UK 10 

year implied inflation rate as a factor because it is another important determinant of 

the three liabilities, and also helps to explain asset returns. The MSCI World Total 

Return index was added to explain returns on the three equity indices and, to a 

lesser extent, returns on the three alternative assets. Finally we used the 6 month 

UK interbank rate as the fourth factor to explain cash and other asset returns. 

Although alternative or additional factors could also have been used to improve the 

explanatory power, such as by adding liquidity to increase the explanatory power of 

the factor model on UK properties, it is also important the number of market factors 
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used to be significantly smaller from the number of assets and liabilities for reasons 

regarding the dimensionality of the mathematical programming model and its 

computationally tractability as discussed previously. Hence, the factors should be 

selected carefully to both describe well all the dependent variables and keep the 

dimensionality of the robust formulation in reasonable levels. Indeed, the R2 values 

in Table 3.5 show that these four factors do a good job in explaining returns for all of 

the 14 assets and liabilities. In section 3.6 we present robustness checks where we 

use three different factors. 

The adjusted R2 values and significance of these 14 regressions for the entire data 

set appear in Table 3.5 (the results for each of the four 72 month estimation periods 

were broadly similar). This shows that for all the assets and liabilities, an F-test on 

the significance of the equation was significant at the 0.1% level, and the adjusted R2 

s were generally high. The 100% adjusted R2 for 20 year UK bonds is because 20 year 

UK bonds was one of the four factors included in the factor model. 

The equations in Appendix 3.B were then used to compute the three uncertainty 

sets. Robust optimization requires a value of ω to be chosen. Goldfarb and Iyengar 

(2003) point out that the correct selection of the parameter ω remains a problem 

since the level of uncertainty (noise) in the input parameters is not known a priori, 

Gulpinar and Pachamanova (2013) mention that the choice of ω should be done 

carefully in order to enhance the performance of the robust portfolio optimization 

model, while Scherer (2007) also points out that the calibration of ω is a difficult 

task. However, previous authors have used a value of ω = 0.99 (e.g. Goldfarb and 

Iyengar, 2003; Delage and Mannor, 2010; Kim, Kim, Ahn and Fabozzi, 2013; and Ling 
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and Xu, 2012) and we also set ω = 0.99. Goldfarb and Iyengar (2003) also state that 

setting ω≈1 is a sensible choice. Furthermore, we experimented with other values of 

ω, such as 0.90 and 0.95, and obtained broadly similar results (see section 3.6). The 

value of ω was not set equal to unity because the required confidence level would 

become infinite. 

 1993-2011 

Adj.R
2
 % p-value 

UK Equities 33.34 0.000 

EU Equities 91.04 0.000 

US Equities 94.88 0.000 

10 year UK Bonds 82.64 0.000 

20 year UK Bonds 100.00 0.000 

10 year US Bonds 43.90 0.000 

20 year US Bonds 41.06 0.000 

Hedge Funds 79.76 0.000 

Commodities 40.90 0.000 

UK Property 24.63 0.000 

Cash 42.97 0.000 

Actives 93.33 0.000 

Deferreds  93.45 0.000 

Pensioners 93.34 0.000 

  Table 3.5: Adjusted R
2
 and Significance Levels of the 14 Regression Equations. Monthly returns on     

   each of the assets and liabilities for 1993 to 2011 were regressed on monthly returns of four factors.   
   These are the MSCI World total return index, the 20 year UK bonds, the implied UK 10 year inflation   
   rate and the UK 6 month interbank rate. 

 

3.5 Results  

The asset allocations for robust optimization and the four benchmarks for the four 
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out-of-sample periods appear in Table 3.68. This shows that, while the robust 

optimization solutions are subject to upper and lower bounds on the asset 

proportions, these constraints are never binding. However varying these bounds 

changes the optimal solutions because the robust counterpart is a nonlinear convex 

optimisation problem, and its optimal solution need not be at a corner point. 

Therefore the solutions were affected by the upper and lower bounds. Sharpe and 

Tint, Bayes-Stein and Black-Litterman are constrained in every period by the upper 

bound of 15% on property. In periods 4 and 5 Sharpe and Tint and Bayes-Stein are 

constrained by the lower bound on equities of 35%, while in period 5 Sharpe and 

Tint, Bayes-Stein and Black-Litterman are constrained by the upper bound of 30% on 

alternatives. In contrast to the vast majority of literature where portfolios are 

rebalanced every month, see for instance DeMiguel et al. (2009b), Bessler and Wolff 

(2015), and hence the portfolio rebalancing is smoother over the policy horizon, the 

6 years (72 months) estimation periods used in our study are rolled forward by 3 

years (36 months) for each new rebalancing, and hence two consecutive estimation 

windows are just overlapped for the half of their length. As a result, it is not very 

surprising that the asset allocation for the non-RO techniques is volatile over the 

investment horizon. In section 3.6 we also examine the effects of relaxing these 

bounds.

                                                           
8 The robust optimization ALM model was solved using SeDuMi 1.03 within MATLAB (Sturm, 1999), 

and this took 0.67 seconds for each out-of-sample period on a laptop computer with a 2.0 GHz 
processor, 4 GB of RAM and running Windows 7. The modified Sharpe and Tint model was solved 
using the fmincon function in MATLAB for constrained nonlinear optimization problems (interior point 
algorithm) and took less than  a second, as did the Bayes-Stein and Black-Litterman models. 
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Period 3 - 1999-2002 Period 4 - 2002-2005 Period 5 - 2005-2008 Period 6 - 2008-2011 

RO S&T USS BS BL RO S&T USS BS BL RO S&T USS BS BL RO S&T USS BS BL 

UK Equities 17.33 0.00 57.38 0.00 24.91 18.13 31.44 38.81 30.43 26.51 15.46 0.00 38.36 0.00 0.00 18.68 0.00 23.06 0.00 0.00 

EU Equities 15.44 10.22 11.46 10.62 12.12 13.27 0.00 21.50 0.00 0.00 13.65 35.00 22.52 35.00 38.55 11.62 50.00 18.32 50.00 50.00 

US Equities 15.63 57.91 11.46 60.69 38.37 15.52 3.56 21.50 4.57 8.49 18.00 0.00 22.52 0.00 2.89 16.52 0.00 18.32 0.00 0.00 

Total Equities 48.39 68.13 80.30 71.32 75.41 46.92 35.00 81.81 35.00 35.00 47.10 35.00 83.40 35.00 41.44 46.82 50.00 59.70 50.00 50.00 

10-year UK Bonds 6.14 0.00 2.15 0.00 0.00 5.90 0.00 2.72 0.00 0.00 6.12 0.00 0.22 0.00 0.00 6.46 0.00 1.90 0.00 0.00 

20-year UK Bonds 5.73 13.87 2.15 13.68 9.59 5.33 24.45 2.71 24.29 20.00 6.83 0.00 0.22 0.00 0.00 6.48 0.00 1.90 0.00 0.00 

10-Year US Bonds 5.29 0.00 2.35 0.00 0.00 5.99 0.00 1.33 0.00 0.00 5.23 11.18 4.78 10.05 13.56 5.32 0.00 4.25 0.00 0.00 

20-year US Bonds 4.52 0.00 2.35 0.00 0.00 5.49 0.00 1.33 0.00 0.00 4.42 8.82 4.78 9.95 0.00 4.61 5.00 4.25 5.00 5.00 

Total Bonds 21.68 13.87 9.00 13.68 9.59 22.71 24.45 8.09 24.29 20.00 22.59 20.00 10.00 20.00 13.56 22.87 5.00 12.30 5.00 5.00 

Commodities 7.64 0.00 0.00 0.00 0.00 7.26 0.00 0.00 0.00 0.00 6.12 30.00 0.00 30.00 17.96 7.90 30.00 8.00 30.00 22.00 

Hedge Funds 8.87 3.00 0.00 0.00 0.00 9.03 25.55 0.00 25.71 30.00 10.15 0.00 0.00 0.00 12.04 8.80 0.00 8.00 0.00 8.00 

Total Alternatives 16.52 3.00 0.00 0.00 0.00 16.29 25.55 0.00 25.71 30.00 16.26 30.00 0.00 30.00 30.00 16.70 30.00 16.00 30.00 30.00 

UK Property 9.51 15.00 8.40 15.00 15.00 10.01 15.00 8.30 15.00 15.00 9.74 15.00 3.10 15.00 15.00 9.54 15.00 7.00 15.00 15.00 

Cash 3.90 0.00 2.30 0.00 0.00 4.08 0.00 1.80 0.00 0.00 4.30 0.00 3.50 0.00 0.00 4.08 0.00 5.00 0.00 0.00 

       Table 3.6: Asset Proportions for Robust Optimization (RO), Sharpe and Tint (S&T), USS, Bayes-Stein (BS) and Black-Litterman (BL). Six year estimation period and 144   
       months out-of-sample. Optimal asset allocations for each of the four out-of-sample 36 month periods using a 72 month estimation period. The original bounds, assets,   
       factors and constraints were used, and ω = 0.99. 
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Table 3.6 shows that robust optimization leads to remarkably stable asset 

proportions across the 12 out-of-sample years, with between 47% and 48% in 

equities, 22% to 23% in bonds, 4% in cash, 10% in property, and between 16% and 

17% in alternatives. The asset allocations for the four benchmarks are much more 

variable. The modified Sharpe and Tint asset allocations vary for equities between 

35% and 68%, bonds between 5% and 24%, and alternatives between 3% and 30%. 

Property is always constrained at the upper bound of 15%, and cash is always 

constrained at the lower bound of zero. The Bayes-Stein and Black-Litterman 

allocations also show considerable variability. For example the Bayes-Stein and 

Black-Litterman allocation to alternatives varies from zero to 30%, while bond 

allocations vary from 5% to over 20%. The USS allocations are also variable. For the 

first three periods USS had over 80% of the assets invested in equities, with no 

investment in alternative assets until the last period, when it jumped to 16% and the 

equity proportion fell to 60%. 

Table 3.7 compares the results for the five methods over the 144 out-of-sample 

months. The 144 months comprised the four out-of-sample 36 month periods, with 

different solutions applying for each 36 month period. Where relevant, the monthly 

figures were adjusted to give annualized figures. In Table 3.7 the score for the 

technique with the best performance on each measure is in bold. Robust 

optimization is the best technique on all the performance measures. 

The Sharpe ratio is the mean excess return on the asset-liability portfolio divided by 

the standard deviation of returns of the asset-liability portfolio. Since the Sharpe 

ratio uses the standard deviation to measure risk, to provide an alternative 
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perspective we also used a wide range of additional performance measures which do 

not rely on the standard deviation. The annualized conditional Sharpe ratio (Eling 

and Schuhmacher, 2007) is computed at the 99% level, and the annualized mean 

excess return is the mean of the asset minus liability returns. The Sortino ratio is the 

mean return on the asset-liability portfolio, divided by the standard deviation of 

returns on the asset-liability portfolio computed using only negative returns, with 

the minimum acceptable return set to zero (Prigent, 2007). The Dowd ratio is the 

mean return on the asset-liability portfolio, divided by the value at risk for a chosen 

confidence level (deflated by the initial value of the asset-liability portfolio), (Prigent, 

2007). We used the 99% confidence level for the value at risk when computing the 

Dowd ratio, and have also included the value at risk and the conditional value at risk, 

both at the 99% level, in Table 3.7 as measures of tail risk. Another distribution-free 

performance measure - second order stochastic dominance - is also included in Table 

3.7.  

 

 

 

 

 

 

 



80 
 

Performance Measures 
Robust 

Optimization 

Sharpe 

& Tint 
USS 

Bayes 

-Stein 

Black- 

Litterman 

  1 
Annualized Mean Sharpe 
Ratio 

0.0793 −0.0221 0.0282 −0.0275 −0.0028 

  2 
Annualized Conditional 
Sharpe Ratio (99%) 

0.0052 −0.0013 0.0020 −0.0017 −0.0002 

  3 
Annualized Mean Excess 
Return 

1.353% −0.4476% 0.5368% −0.5580% −0.0556% 

  4 
Annualized Mean SD 
(Negative Returns) 

11.92% 14.70% 13.49% 14.74% 14.35% 

  5 Annualized Sortino Ratio 0.1135 −0.0304 0.0398 −0.0379 −0.0039 

  6 Dowd Ratio 0.0057 −0.0014 0.0020 −0.0018 −0.0002 

  7 
2

nd
 Order Stochastic 

Dominance 
First Fourth Second Fifth Third 

  8 Value at Risk (99%) 0.1986 0.2638 0.2189 0.2638 0.2586 

  9 Conditional VaR (99%) 0.2158 0.2798 0.2293 0.2798 0.2697 

 10 Omega Ratio 1.0682 0.9813 1.0237 0.9768 0.9976 

 11 Maximum Drawdown 0.4551 0.6611 0.5325 0.6612 0.6452 

 12 Sterling Ratio 0.0095 −0.0021 0.0027 −0.0025 −0.0003 

 13 Mean Diversification 0.1135 0.3141 0.2544 0.3208 0.2631 

 14 Entropy-based Diversification 9.786 2.823 5.624 3.7236 4.4075 

 15 Mean Stability 0.0016 0.3203 0.0347 0.3276 0.1961 

 16 Mean Funding Ratio  93.01% 87.89% 89.98% 87.69% 89.10% 

 17 SD (Funding Ratio) 9.700% 11.95% 11.61% 12.04% 12.33% 

 18 
Mean Projected Contribution 
Rate  

17.68% 18.11% 17.93% 18.28% 18.11% 

 19 
SD (Projected Contribution 
Rate) 

0.8345% 1.026% 1.592% 1.350% 1.387% 

 20 Cumulative Asset Return 32.21% −11.97% 16.56% −13.32% −3.466% 

Table 3.7: Out-of-Sample Performance Measures – Six Year Estimation Period. The results for each of 
the four out-of-sample 36 month periods were adjusted, where relevant, on to an annualised basis. 
The original bounds, assets, factors and constraints were used, and ω = 0.99. 

The Omega ratio is the ratio of the average gain to the average loss, and is an 

additional distribution-free measure of performance (Bessler, Opfer and Wolff, 

forthcoming). Gains are the positive excess returns of assets over liabilities, and 
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losses are the negative excess returns of assets over liabilities. The drawdown rate, 

which is also distribution-free, measures declines from peaks in cumulative wealth 

over a specific time horizon (t). The drawdown rate is defined as:- 
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where Wt is the cumulative wealth (assets only) at time t. Maximum drawdown is 

the largest drawdown rate. If a strategy has a lower mean drawdown rate over a 

specific time horizon in comparison with others, it tends to have lower volatility and 

value-at-risk. We also included some further performance measures based on the 

drawdown rate. The Sterling ratio is the mean asset return divided by the average 

drawdown rate (Eling and Schuhmacher, 2007).  

Diversification of the asset-only portfolios was measured as the average across the 

four periods of the sum of the squared portfolio proportions for each period (Blume 

and Friend, 1974). For zero diversification the score is one, while for full 

diversification it is 1/nA (or 0.091 when nA = 11). Following Bera and Park (2008) we 

also used entropy to measure asset diversification. We modified Shannon’s entropy 

by taking its exponent giving the measure Z in equation (3.13), so that for zero 

diversification Z = 1, and for full diversification Z = nA, (which is 11). 
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The stability of portfolio proportions from one triennial period to the next was 

measured as the average value across the three changes in asset allocation of the 
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sum of squares of the differences between the portfolio proportion for each asset in 

adjacent time periods (Goldfarb and Iyengar, 2003). This measure can be viewed as a 

proxy for transactions costs under the assumption that the cost functions are linear 

and similar across assets. Robust optimization adopts a maximin objective, and with 

an ω value of 0.99, it selects portfolios that are very likely to deliver at least their 

expected Sharpe ratio. Therefore it is pessimistic/conservative (ω≈1) enough, 

tending to select very cautious portfolios. During bull markets it still selects 

portfolios that will deliver at least the expected Sharpe ratio, even if there is a 

market downturn. Thus robust optimization asset allocations tend to be more stable 

than those of other asset selection techniques. Our stability results are in accordance 

with the literature. For instance, Gulpinar and Pachamanova (2013) and Goldfarb 

and Iyengar (2003) report that the size of changes in asset proportions is significantly 

smaller for the robust portfolio formulation than for the classical approaches. The 

use of a four factor model, rather than 14 assets and liabilities, may also play a role 

in ensuring the stability of the robust optimization portfolios. For instance, 

MacKinlay and Pastor (2000) use factor models in an attempt to construct estimators 

of means and covariances of asset returns that are more stable and reliable than 

estimators obtained using traditional methods (e.g. sample-based moments), and 

hence to produce portfolios that eliminate the negative effects of estimation risk. 

Hence, we conclude that both the maximin objective with an ω≈1 as well as the use 

of a factor model drive the stable asset allocation of the robust optimization 

strategy. 
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The monthly out-of-sample asset and liability returns, in conjunction with the values 

of USS assets and liabilities at the previous actuarial valuation, were used to 

compute the funding ratio each month. These monthly ratios were averaged to give 

the mean funding ratio. The mean projected contribution rate was computed using 

the actuarial formulae in Board and Sutcliffe (2007) with a spread period (M) of 15 

years (see Appendix 3.A). The number of years accrued by the average member (P) 

was 18 years, while administrative expenses were set to zero. The term NAS cancels 

out with terms in ALA. The values of the discount rate (d’) and salary increase (e) 

were the average values over the preceding two triennial periods. Finally the 

cumulative returns over the 144 out-of-sample months in Table 3.7 are for just the 

asset portfolio. 

Although many studies in the literature, see for instance DeMiguel et al. (2009b), 

Bessler and Wolff (2015), go one step further by exploring whether the differences in 

the performance metrics produced by different portfolio models are statistically 

significant, this is not the case for our study. Given the triennial valuation of USS and 

the very long-term horizon of pension funds in general, our analysis consists of only 

4 out-of-sample (investment) periods, and hence a further analysis for statistical 

comparisons of the performance metrics between the different optimization models 

used is not possible to be conducted. 

3.6 Robustness Checks 

In the literature, it has been widely reported that portfolio optimization models are 

often sensitivity to a number of dimensions such as the length of estimation and 

investment periods, the rebalancing frequency, the constraints on portfolio weights, 
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and the universe of assets used, see for instance Becker et al. (2015), Bessler, Opfer 

and Wolff (forthcoming) and Bessler et al. (2015), amongst others, as well as the 

quality of factors used in robust formulated portfolios and the size of the uncertainty 

sets (uncertainty structures), see for instance Goldfarb and Iyengar (2003), Gulpinar 

and Pachamanova (2013) and Kim et al. (2014). 

We varied the base case above along six dimensions. For each robustness check 

except the last we changed one aspect of the base case, while keeping the others at 

their values in the base case. We:- (i) reduced the estimation period from six to three 

years; (ii) used two alternative sets of factors in the robust optimization - in the first 

set UK expected inflation was replaced by RPI, and in the second set UK 6 month 

rates were replaced by UK 3 month rates, UK 20 year bonds by UK 10 year bonds, 

and UK expected inflation by RPI; (iii) the S&P GSCI total return index was replaced 

by the S&P GSCI Light Energy total return index, and UK private equity and UK 

infrastructure were included as alternative assets, replacing 20 year UK and US 

bonds; (iv) ω was reduced from 0.99 to 0.90; (v) the upper and lower bounds on the 

asset allocations were relaxed by 5%, becoming (30% ≤ equities ≤ 90%); (0% ≤ fixed 

income ≤ 35%); (0% ≤ alternative assets ≤ 35%); (0% ≤ property ≤ 20%): and (0% ≤ 

cash ≤ 10%), and (vi) the estimation period was reduced to three years and the out-

of-sample period was reduced to one year. 

Bessler, Opfer and Wolff (forthcoming) suggest that the reliability of the views 

incorporated in the Black-Litterman model is time-varying. For each of our out-of-

sample periods in Table 3.7 we estimated the reliability of the views for the 

subsequent out-of-sample period using the entire estimation period of 72 months. 
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As a further robustness check, we compared the base case with five versions of the 

Black-Litterman model where we used the 12, 18, 24, 30 and 36 months immediately 

prior to the start of each out-of-sample period to estimate the reliability of the 

views, measured as the variance of the historic forecast errors. For all five of these 

shorter estimation periods, robust optimization remains superior on every 

performance measure.   

The results for these six alternative formulations of the problem are summarised in 

Table 3.8. For the base case and the six alternative cases, the best technique for each 

performance measure is indicated. Where robust optimization is not the best 

technique, Table 3.8 also shows the ranking of robust optimization. 

In the literature, there is some empirical evidence that alternative reward-to-risk 

ratios yield similar rankings across 2 specific asset classes (hedge funds and 

commodities) according to Eling and Schuhmacher (2007) and Auer (2015). However, 

in an environment where pension funds invest in a variety of asset classes (both 

conventional and alternative investments) with different statistical properties and 

take into account stochastic pension liabilities into their asset allocation process by 

using ALM models, we consider that a variety of discrete performance measures 

should be used and evaluated as in our case and hence all the performance metrics 

presented in sections 3.5 and 3.6 are important for the pension fund trustees given 

the existing complex investment situation. 
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          Performance Measures       Base-   
      Case     
            

        1      2         3      4         5      6      

1 Annualized Mean Sharpe Ratio RO RO RO RO RO RO RO 

2 Annualized Conditional Sharpe Ratio RO USS-2 RO RO RO RO RO 

3 Annualized Mean Excess Return RO BS-5 RO BL-2 RO RO RO 

4 Annualized Mean SD (Negative Returns) RO RO RO RO RO RO RO 

5 Annualized Sortino Ratio RO RO RO RO RO RO RO 

6 Dowd Ratio RO RO RO RO RO RO RO 

7 2
nd

 Order Stochastic Dominance RO RO RO RO RO RO RO 

8 VaR(99%) RO RO RO RO RO RO RO 

9 Conditional VaR RO RO RO RO RO RO RO 

10 Omega Ratio RO RO RO RO RO RO RO 

11 Maximum Drawdown RO RO RO RO RO RO RO 

12 Sterling Ratio RO RO RO RO RO RO RO 

13 Mean Diversification RO RO RO RO RO RO RO 

14 Entropy-based Diversification RO RO RO RO RO RO RO 

15 Mean Stability RO USS-2 RO RO RO RO RO 

16 Mean Funding Ratio RO RO RO S&T-4 RO RO RO 

17 SD (Funding Ratio) RO RO RO RO RO RO RO 

18 Mean Projected Contribution Rate RO BS-5 RO S&T-4 RO RO ST-4 

19 SD (Projected Contribution Rate) RO RO RO RO RO RO RO 

20 Cumulative Asset Return RO RO RO RO RO RO RO 

 

Table 3.8: Robustness Checks for the Base Case. Base case - 6 year estimation period, 3 year out-of-
sample test period, ω = 0.99, standard constraints, standard factors, standard assets. Column 1 - 3 
year estimation period, 3 year out-of-sample test period, ω = 0.99, standard constraints, standard 
factors, standard assets. Column 2 -  6 year estimation period, 3 year out-of-sample test period, ω = 
0.99, standard constraints, two sets of alternative factors versus the standard factors. The 
performance of robust optimization was compared using the three different sets of factors. Column 3 
-  6 year estimation period, 3 year out-of-sample test period, ω = 0.99, standard constraints, standard 
factors, alternative assets. USS was not used in the comparison as they did not invest in alternative 
assets until the last of the four periods. Column 4 - 6 year estimation period, 3 year out-of-sample test 
period, ω = 0.90, standard constraints, standard factors, standard assets. Column 5 - 6 year estimation 
period, 3 year out-of-sample test period, ω = 0.99, relax each of the constraints by 5%, standard 
factors, standard assets. Column 6 - 3 year estimation period, 1 year out-of-sample test period, ω = 
0.99, standard constraints, standard factors, standard assets. The asset proportions and performance 
measures for each robustness check are available on request. 

Table 3.8 demonstrates that across a wide range of performance measures and 

robustness checks robust optimization is clearly the best technique for portfolio 

formation9. This is true for every performance measure and every robustness check. 

Indeed, none of the four benchmarks is the best on more than three occasions, while 

                                                           
9
 In every case robust optimization is also the superior technique when the Calmar ratio, Burke ratio 

and average drawdown performance measures are used (Eling and Schuhmacher, 2007). 
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robust optimization is superior on over 130 occasions.  

3.7 Conclusions 

In this paper we extended the robust mean-variance portfolio framework proposed 

by Goldfarb and Iyengar (2003) by incorporating risky pension liabilities as separate 

stochastic assets with their own fixed ‘negative’ weights. This framework uses a 

factor loadings matrix, rather than a covariance matrix, which reduces the number of 

parameters to be estimated by over 20%. Robust optimization ensures that the 

probability of the actual outcome being worse than the optimal robust solution is 

equal to 1−ω, where 0 < ω < 1. With its maximin objective function and confidence 

level (ω), robust optimization tends to rule out solutions based on favourable errors 

in estimating the stochastic input parameters, so tackling estimation risk. We 

modelled extra features of the pension ALM problem by adding additional linear 

constraints which set upper and lower bounds for each asset sub-class, ruled out 

short selling and borrowing, and required the expected return on the asset-liability 

portfolio to be non-negative. Our final formulation is computationally tractable and 

easily solved, which is not the case for ALM models using stochastic programming or 

dynamic stochastic control. 

Our study is unusual because we disaggregate the pension liabilities into three 

components (active members, deferred members and pensioners). We also use the 

Sharpe ratio as the objective of a pension ALM model. Furthermore, we use an 

actuarial model to transform the optimal asset allocation to the scheme’s projected 

contribution rate. Finally, we derive optimal investment policies using the robust 

optimization ALM framework for a real-world pension scheme - USS. The choice of 
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this scheme has the advantages that, as the sponsors are tax exempt, the tax 

arbitrage investment of 100% in bonds is irrelevant; and that, since default risk of 

the sponsors is both very low and independent that of the scheme, there is no need 

to include the assets and liabilities of the sponsors in the ALM. The performance of 

the robust optimization framework was benchmarked against the modified Sharpe 

and Tint, Bayes-Stein, Black-Litterman models, and USS’s actual investments. This 

analysis allowed for USS switching to fully hedging its foreign exchange risk from 

April 2006. 

The 20 performance measures and six robustness checks, indicate that robust 

optimization is clearly superior. Hence, our conclusions are not consistent with the 

various criticisms against robust optimization such as that this numerical technique is 

equivalent to a Bayesian shrinkage estimator and, therefore, offers no additional 

marginal value, see Scherer (2007) for instance. Despite the big changes in market 

conditions during the data period (see Figure 3.1), the robust optimization asset 

allocation is remarkably stable (47% equities, 22% bonds, 10% property, 17% 

alternatives and 4% cash), and is close to being a fixed-mix strategy. These asset 

proportions and performance measure rankings are robust to variations in the 

estimation period, the out-of-sample period, the factors used in forecasting asset 

returns, the assets included in the ALM, the asset bounds, and the value of ω. We 

conclude that robust optimization is a promising technique for solving pension 

scheme ALMs. 
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Appendix 3.A – Projected Contribution Rate 

The projected contribution rate (CR) is given by:-  

 ACR  SCR  kAL 1 FR / ( )AN S                                      (A.3.1) 

Where 

                                                          
 

 






M 1 z

z 0

1
k

1 d
                                                     (A.3.2)                                                                                             

                                                             


 


1 d
1 d

1 e
                                                           (A.3.3)                                                                         

                                                       
  

A

A 1

AL
SCR AE

PY N S a
                                       (A.3.4)                                                                                                            

d’  is the discount rate for liabilities 

 a1┐ is an annuity to give the present value of earnings by the member over the next  

year 

AE is the administrative expenses of the scheme, expressed as a proportion of the 

current salaries of the active members. 

M is the life in years of a compound interest rate annuity - the spread period 

FR denotes the funding ratio 

ALA is the actuarial liability for the active members of the scheme (see equation 

D.3,1), 

PY is the average member’s past years of service as at the valuation date,  

S is the average member’s annual salary at the valuation date,  

e is the forecast nominal rate of salary growth per annum between the valuation 

date and retirement, 

NA is the current number of active members of the scheme. 

Appendix 3.B - Uncertainty Sets 

Given the following factor model for asset and liability returns over a single period:- 

T

A,L A,L A,L  r V f                                                  (B.3.1)                                                                                                                                                                                                                   
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the uncertainty sets for the column vector of the random asset and liability mean 

returns  A,L ,  the matrix of uncertain factor coefficients  V  and the diagonal 

covariance matrix of the uncertain disturbances  D  are described as follows:- 

                        A,L A,L A,L,0 A L: ,  , 1,...,mean i iS i n n                       (B.3.2)                           

              0 A L: ,  ,  1,...,i i
g

S i n n       V V V W W                 (B.3.3)                                  

             upper, A L: diag ,  0 d d ,  1,...,d i iS i n n    D D = d           (B.3.4)                                       

where 
iW  is the thi  column of W  and 

T

g
w w Gw  defines the elliptic norm of 

a column vector w  with respect to a symmetric and positive definite matrix .G  Each 

component of 
A,L  and d  is assumed to lie within a certain interval, while V  

belongs to an elliptical uncertainty set. The least square estimates  A,L,0 0,V  of 

 A,L ,V  are computed with multivariate linear regression.  

The parameterization of the parameters of the uncertainty sets is:- 

      2

1 A L1 ,                                                  1,...,i m im c s i n n                 (B.3.5) 

      
1

T 2

1 A L11
1                                     1,...,i m im c s i n n  



   A A            (B.3.6) 

  
TT 1

p
 G BB B1 B1                                                                                                 (B.3.7) 

 
2

A,L, A,L_0, 0_1, 1 0_ ,
2 1

upper, A L

μ V f ... V f

d ,    1,...,
1

p
k k k

i i i m i m

k
i i

r

s i n n
p m



   

   
 


         (B.3.8) 

where m  is the number of factors,  1mc 
 is the ω-critical value of the F-

distribution with 1m  degrees of freedom in the numerator and 1p m   degrees 

of freedom in the denominator. p  is the number of sub-periods within the 

estimation period. In addition, 1 2= , ..., p  B f f f  ( m  rows and p  columns), 

T   A = 1 B  ( p  rows and 1m  columns) and 1  denotes the column vector of ones. 
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Finally, 2

is  is an unbiased estimate of the variance of the residual return of the thi  

asset/liability (see also section 5, equation 51 (page 16) in Goldfarb and Iyengar 

(2003)). It is obvious that 
A,L,

k

ir  refers to the thi  asset/liability in the thk  sub-period, 

A,L_0,μ i
 to the least-squares estimate for the thi  asset/liability, 

0_ ,V m i
 to the least-

squares estimate for the thm  factor and the thi  asset/liability. More technical details 

for the statistical justification of the parameters involved in the uncertainty sets can 

be found in Goldfarb and Iyengar (2003) (section 5, page 15 to 17).  

Appendix 3.C – Conversion to a Second Order Cone Problem 

In this Appendix, we derive the expressions for the worst-case mean return and 

worst-case variance and follow the same form as in Goldfarb and Iyengar (2003) (see 

also model (3.2) in section 3.2):- 

 
 A,L

T

A,L A,L
meanS

min


  μ
μ      (worst case mean return) 

                                
  

T T

A,L A,L 
S

max


 
 

V

V FV      (worst case variance 1) 

                                     
 

T

A,L A,L 
dS

max


 
 D

D      (worst case variance 2) 

and show how the maximin problem described in section 3.2 (model 3.2) can be 

formulated as a computationally tractable and easily solved second order cone 

program (SOCP). 

Worst-Case Mean Return: The mean return is expressed in terms of the column 

vector of asset proportions  A  as follows ( T

A 1,1   L  is fixed):- 

                                     T T T T T T

A,L A,L A A L L A L L A+     μ μ μ μ +μ 1                       (C.3.1)                                                                           

since A,Lμ  is a joint column vector of Aμ  and Lμ  as well as A,L_0μ  is a joint column 

vector of A_0μ  and L_0μ  (see least square estimates in Appendix 3.B). Since the 

uncertainty in A,Lμ  is specified by (B.3.2) and A  0  and L , 0  it can be easily 
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shown using some algebra that the worst-case mean return is given by the following 

expression:- 

                     
 

    
A,L

T T T T T T

A,L A,L A_0 A L_0 L L A
meanS

min  


        μ
μ μ γ + μ γ 1   ,       (C.3.2)                                                   

where    A,γ ,i i    for A1,...,i n  and    
AL,γ ,i n i     for 

A A L1,...,i n n n    (see also Appendix 3.B for  γ ). 

Worst-Case Variance 1: Using some matrix algebra and the fact that T

A 1,1   the 

term T T

A,L A,LV FV   can be rewritten in terms of the vector of assets  A as 

follows:- 

                  
2T

T T ' ' '

A,L A,L A A A

T sub sub sub

f
    V FV V V F V V V V         (C.3.3)                                

where  

sub

( , ) ( , )V V ,i j i j  for 1,...,i m,  A1,..., ,j n  

L

A( , ) L, ( , )

1

V V ,
n

i j k i n k

k





    for 1,...,i m,  A1,..., .j n  

Also,  

0,( , ) 0,( , )V V ,sub

i j i j  for 1,...,i m,  A1,..., ,j n  

L

A0,( , ) L, 0,( , )

1

V V ,
n

i j k i n k

k





    for 1,...,i m,  A1,..., ,j n  

( , ) ( , )W W ,sub

i j i j  for 1,...,i m,  A1,..., ,j n  

L

A( , ) L, ( , )

1

W W ,
n

i j k i n k

k





    for 1,...,i m,  A1,..., ,j n   

(see also the uncertainty structure for V  in (B.3.3)). 

Since the uncertainty in V  is specified by (B.3,3), it can be shown following the same 

process as in Goldfarb and Iyengar (2003) (see page 7 to 8 and equations 16 to 20 in 

Goldfarb and Iyengar (2003)) that the worst-case variance 1 is less than  , if and 

only if:- 
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 

2

0
:

 
g

f
r

max 


 
y y

y y                                          (C.3.4)                                                                                                                                          

with  '

0 0 0 A ,sub y V V     A ,sub  y W W      
A L

A, L,

1 1

.
A

n n

i i j n j

i j

r  

 

 
      

 
   

Constraint (C.3.4) can be reformulated as a set of linear equalities, linear inequalities 

and second order cone constraints (SOCC) in exactly the same manner as in LEMMA 

1 in Goldfarb and Iyengar (2003) (page 8, part i). One can also see the corresponding 

DEFINITION 1 that is motivated by LEMMA 1 on page 10 at the bottom in Goldfarb 

and Iyengar (2003). We represent this collection of linear equalities, linear 

inequalities and second order cone constraints as follows:- 

                        
L

'

A, L, 0 0

1 1

; ; , , ,
A

A

n n
sub

i i j n j A

i j

Def  

 

  
         

  
  V V F G     (C.3.5)                                                     

defining  '

0 0 , ,subDef V V F G  to be the set    
L

A, L,

1 1

; ;
A

A

n n

i i j n j A

i j

v 

 

  
       

  
    

that satisfy the following:- 

There exist , 0    and a column vector t  with m  positive elements that satisfy:- 

T v  1 t  

 max

1





H
 

 2r
 

 

 
  

 
           

     2w
1 t ,       =1,...,

1 t

i

i i

i i

i m,


 
   

  
 

where    
L

A, L,

1 1

,
A

A

n n

i i j n j

i j

r  

 

 
      

 
   T

Q Q  is the spectral decomposition of 

1 1

2 2 ,
 

H G FG   idiag   and  
1 1

T sub2 2
0 0 A= .w Q H G V V   
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Worst-Case Variance 2: The term T

A,L A,LD   is expressed in terms of the vector of 

asset weights  A ,  using some matrix algebra and the fact that T

A 1,1   as 

follows:- 

                                                   T T sub

A,L A,L A A+ D D D                                   (C.3.6) 

where  sub subdiag ,D = d  subd d ,i i  for A1,..., ,i n   

L

A

2

( , ) L,

1

D d ,
n

i j n k k

k





    for A1,..., ,i n  A1,..., .j n  

Since the uncertainty in D  is specified by (B.3.4), it can be easily shown using some 

matrix algebra that:- 

                                      

   
 

 

 

T T sub

A,L A,L A A

T sub

A A

2
1

sub 2
A

+

                            +

                             = +

d dS S

upper upper

upper upper

max max
 

      





D D

D D D

D D

D D

   

 



                     (C.3.7)                                                                          

since 
T sub T sub

A A A AupperD D     and 
T T

A A A Aupper
 D D      upper,d d ,i i   

where  sub subdiag ,upper upperD = d  sub

upper, upper,d d ,i i  for A1,..., ,i n  

L

A

2

upper,( , ) upper, L,

1

D d ,
n

i j n k k

k





    for A1,..., ,i n  A1,..., .j n  

The constraint 
 

 T T sub

A,L A,L A A+
d

upper upper
S

max 


    D

D D D     can be rewritten as a 

second order cone constraint (SOCC) as follows:- 

                                                 
1

sub 2
A2 +

1

            1

upper upper 



 
   

 
 

D D                                    (C.3.8) 
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since    
2 2T T   2

 4  0xy x y x+ y x+ y, x, y
x y
       
  

z
z z z z +  which is 

straightforward from the definition of the Euclidian norm and from the fact that the 

matrix sub +upper upper
D D  is symmetric. 

Final Formulation: The linear constraints with certain parameters for non-negativity 

and asset lower/upper bounds as in model (3.2) in section 3.2 are as follows:- 

                                                       
A A0,      1,i i = ,...,n                                          (C.3.9)                                                                                              

                                    T

A, A 0,   classX

i max

i classX

classX


     1                             (C.3.10) 

                                       T

A, A 0,    classX

i min

i classX

classX


    1                               (C.3.11) 

Bringing together (C.3.2), (C.3.5), (C.3.8), (C.3.9), (C.3.10), (C.3.11), model (3.2) in 

section 3.2 is given by the following easily solved and computationally tractable 

SOCP:- 

 

     

 

L

A

1
sub 2

A

'

A, L, A 0 0

1 1

T T

0,A A

2 +
. :              1

            1

                    ; ; , ,

                    

A

upper upper

n n
sub

i i j n j

i j

minimize      +

s t

Def

 





  





 

 
   

 
 

  
         

  



 

D D

V V F G

μ γ +





  

 

T T T

0,L L L

A

T T

A

0.001

                    ,                                                                 

                    0,                                

A

classX

classX max classX





  
 



   

μ γ 1

0

A 1

 





 T T

A                    0,                                   classX

classX min classX  A 1 

 (C.3.12) 

Note that the last 2 sets of linear constraints in (C.3.12) are the same as (C.3.10) and 

(C.3.11). 

classXA  is a column vector of ones and zeros indicating which assets participate in the 

broad asset classes T

A, A .i classX

i classX

 
  

 
 A   Given the expressions (C.3.1), (C.3.3) 

and (C.3.6), the nominator as well as the denominator in model (3.2) (in section 3.2) 
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are homogeneous in terms of the column vector of asset weights  A  and thus 

 A  is no longer normalized in (C.3.12). This is a key issue for the SOCP in (C.3.12) 

since the fact that  A  is no longer normalized (the normalization condition 

T

A 11   is dropped) increases the computational tractability of the problem. 

Homogenization is maintained even if we add extra linear affine constraints in terms 

of A .  

Appendix 3.D - Actuarial Liability Models 

The actuarial liability for active members is:- 

                     
 

 

             
             

              

RA G W

A A

1 ePY S 1 h 1 h
AL N 1 1

1 pl 1 plA 1 h
        (D.3.1)                                                

where  

A is the accrual rate, 

h is the nominal discount rate between now and retirement, 

RA is the average member’s forecast retirement age, 

G is the average age of the member at the valuation date, 

W is the life expectancy of members at retirement, 

pl is the rate of growth of the price level,  

ALA , P, e, NA and S are defined in Appendix A  

The final term in equation (D.3.1) is the capital sum required at time RA to purchase 

an index-linked annuity of £1 per year.  

A simple model for the computation of the actuarial liability for pensioners is:- 

                                          
       

         
        

q

P P

1 h 1 h
AL N PEN 1 1

1 pl 1 pl
                         (D.3.2)                                                                                
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where  

ALP is the actuarial liability for pensioners, 

NP is the current number of pensioners, 

PEN is the average current pension; 

The final term is the capital sum required now to purchase an index-linked annuity of 

£1 per year for the life expectancy, q, of pensioners. Adjustments to this simple 

model are required for dependents’ pensions, death lump sum, etc.  

A similar expression for the liability of deferred pensioners is:- 

                   

 

 

              
             

              

RA G W

D D
D D

1 plP S 1 h 1 h
AL N 1 1

1 pl 1 plA 1 h
           (D.3.3)                                             

where  

ALD is the actuarial liability for the deferred pensioners of the scheme, 

ND is the current number of deferred pensioners of the scheme, 

SD is the average deferred pensioners’ leaving salary, compounded forwards to the 

valuation date at the inflation rate (p), and 

PD is the average deferred pensioner’s past years of service as at the valuation date. 

The total actuarial liability (ALT) is:- 

                                                             ALT=ALA+ALP+ALD                                           (D.3.4)                                                

which is the sum of the actuarial liabilities for every active member, pensioner and 

deferred pensioner. 

When computing monthly changes in the actuarial liability, the terms A, NA, ND, NP, S, 

SD and PEN are constant within each triennial period, while the initial values of ALA, 

ALD and ALP come from the actuarial valuations. Therefore the values of A, NA, ND, 

NP, S, SD and PEN are not required. 
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4 Socially Responsible Investment Portfolios: Does the 

Optimization Process Matter?10 

4.1 Introduction 

Corporate Social Responsibility (CSR) and Corporate Social Performance (CSP)11 have 

become crucially important concepts in the modern business world. Broadly defined 

as “a management concept whereby companies integrate social and environmental 

concerns in their business operations and interactions with their stakeholders”12, it 

has gained traction over the past 20 years. A growing number of stakeholders have 

increased societal demands that corporations perform well financially, while 

operating in a responsible and ethical manner. 

This trend is noticeable in the latest surveys. Grant Thornton’s International Business 

Report13 in 2014 surveyed 2,500 firms in 34 countries and showed that more and 

more businesses are adopting socially and environmentally sustainable practices and 

initiatives. These range from charitable donations and active participation in local 

community causes to improving energy efficiency and applying more effective waste 

management. The majority of these firms cite client/consumer demand as one of the 

dominant driving forces behind their decision to move to more sustainable business 

formats. Similarly, the Nielsen Global Survey on Corporate Social Responsibility 

                                                           
10

 The content of this Chapter was presented at the 5
th

 International Conference of the Financial 
Engineering and Banking Society (Nantes, France), 4

th
 European Business Research Conference 

(London, UK) and the ICMA Centre Internal Research Seminar (Reading, UK). 
11

The two terms have been used interchangeably in relevant empirical research. In this paper, we use 
CSP. 
12

United Nations Industrial Development Organization, retrieved October 2014 from 
http://www.unido.org/en/what-we-do/trade/csr/what-is-csr.html 
13

 For additional information, the interested reader is directed at http://www.grant-
thornton.co.uk/en/Media-Centre/News/2014/Global-survey-finds-good-CSR-makes-good-business-
sense-British-businesses-reacting-to-stakeholders-demands/, retrieved October 2014. 

http://www.unido.org/en/what-we-do/trade/csr/what-is-csr.html
http://www.grant-thornton.co.uk/en/Media-Centre/News/2014/Global-survey-finds-good-CSR-makes-good-business-sense-British-businesses-reacting-to-stakeholders-demands/
http://www.grant-thornton.co.uk/en/Media-Centre/News/2014/Global-survey-finds-good-CSR-makes-good-business-sense-British-businesses-reacting-to-stakeholders-demands/
http://www.grant-thornton.co.uk/en/Media-Centre/News/2014/Global-survey-finds-good-CSR-makes-good-business-sense-British-businesses-reacting-to-stakeholders-demands/
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(2013) used a sample of 29,000 participants from 58 countries and found that at 

least half of global consumers are willing to “walk the talk” and pay a premium for 

goods and services produced by socially responsible firms. 

In line with these developments, demand for CSP in financial markets, also known as 

Socially Responsible Investing (SRI)14, has also been growing rapidly. According to the 

Global Sustainable Investment Review 2012, which is a product of the collaboration 

of a variety of organizations and sustainable investment forums across the world, 

approximately US$13.6 trillion of assets under professional management incorporate 

environmental, social or governance considerations into the investment selection 

process. This represents more than 20% of the total assets under professional 

management in the areas covered in the report, and includes positive and negative 

screening, shareholder activism strategies, norm-based screening, best-in-class 

approaches and other forms of SRI. While the criteria for an investment to be 

deemed socially responsible are not strict, it is undeniable that SRI is nowadays a 

large and expanding segment of the financial markets. 

As a result, a significant amount of scholarly research has been dedicated to the 

investigation of the nature of the relationship between CSP and firm financial 

performance. Meta-studies focusing on this area (Margolis et al., 2009; Orlitzky et 

al., 2003) demonstrate both its depth and breadth. Using data from hundreds of 

relevant papers going as far back as 1972, these studies provide evidence of an 

overall positive link between the two concepts. At the portfolio level of analysis, 

comparing SRI funds and indices with “conventional” funds and indices with 
                                                           
14

Also referred to as Environmental, Social, and Governance Investing, Sustainable Investing and 
Impact Investing, though there are some conceptual differences between these terms. 
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otherwise similar characteristics commonly points to statistically indistinguishable 

performance (Renneboog et al., 2008; Schroder, 2007; Statman, 2000; Statman, 

2006), although there are indications of SRI outperformance in certain contexts 

(Derwall and Koedijk, 2009; Kempf and Osthoff, 2007).  

Despite the size of this literature, a very small number of studies have investigated 

optimal ways to construct SRI portfolios, either in the sense of the screening criteria 

used to narrow the investment universe, or the optimization process employed to 

determine the asset proportions. Barnett and Salomon (2006) is one of the few 

papers that focuses on the effects of screening intensity in SRI funds, and provides 

evidence of a U-shaped relationship between the number of social/environmental 

screens used and fund performance. Similarly, there are only a handful of papers 

(Ballestero et al.2012; Drut, 2012; Utz et al. 2014) which explore the portfolio 

optimization frameworks used in SRI. Although such studies contribute significantly 

to this underdeveloped part of the literature, they are limited in that they do not go 

far beyond the Markowitz (1952) mean-variance optimisation framework. They 

simply extend it by adding SRI preferences as an additional constraint, or incorporate 

them in the objective function. Although Markowitz optimization is the basis for the 

vast majority of modern portfolio optimization methods, it suffers from significant 

estimation risk (Green and Hollofield, 1992; DeMiguel et al., 2009a), and this leads to 

solutions that are very sensitive to the inputs, and the generation of unstable and 

poorly diversified portfolios. 

This omission of estimation risk is unfortunate as, compared to conventional 

portfolios, SRI portfolios are characterised by a greater level of uncertainty in their 
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inputs. This is due to the inherent complexity in measuring CSP, and the largely 

discretionary nature of CSP reporting. So, within the SRI framework it is important to 

consider alternative optimization techniques, and to investigate the extent to which 

they lead to the construction of substantially different portfolios in terms of risk, 

risk-return trade-off, diversification and the stability of the constituent assets. Our 

study contributes to the literature by applying six different optimization methods15 

to the same SRI-screened investment universe, and comparing their out-of-sample 

performance as captured by 14 different metrics indicative of various important 

portfolio characteristics. In this way our study is the first to answer the question of 

whether the portfolio optimization process matters in SRI, and to further 

contextualise this answer by indicating which methods tend to lead to better results. 

The potential practical usefulness of this study is also significant. If different 

optimization techniques lead to different SRI portfolio performance, this would 

indicate that, apart from the social and environmental screening criteria, investors 

and fund managers also need to carefully consider the choice of asset allocation 

method. Financially savvy investment techniques and moral objectives need not be 

mutually exclusive. In fact, recognition of which optimization methods yield better 

results within SRI may enhance the growth of the SRI sector, leading to a larger share 

within the financial markets, and a lower cost of capital for the CSP champions. This, 

in turn, will strengthen the pressure from the financial markets for the adoption of 

sustainable practices by companies. 

                                                           
15

 Although all of these techniques are frequently referenced as optimization methods, the broader 
term “portfolio construction” is more accurate in some cases. We follow the norm and hereafter refer 
to the entire set of alternative methods as optimization methods. 
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The remainder of the paper is structured as follows: Section 4.2 reviews previous 

studies of the application of optimization techniques16 to forming SRI portfolios, and 

discusses the alternative portfolio construction methods which we compare and 

contrast. Section 4.3 contains details of the CSP database we use and the portfolio 

evaluation methods we employ. Section 4.4 presents our empirical results, and 

Section 4.5 concludes. 

4.2 Related literature and motivation of the study 

The vast majority of scholarly research dedicated to SRI portfolios focuses on 

identifying the ways in which they are different from (or similar to) conventional 

investments in terms of their constituents, the performance they achieve and the 

risks they bear. A surprisingly small number of academic papers have investigated 

ways in which the portfolio construction process, be it through the use of alternative 

security selection criteria or different optimization techniques, can lead to the 

generation of better performing, more efficient and stable SRI portfolios.  

Barnett and Salomon (2006) shed some light on the optimal number and type of 

screening criteria used by SRI funds. Their findings depict a non-linear link between 

screening intensity and fund/portfolio performance. SRI portfolios where just a few 

or many social screens are employed outperform portfolios with an intermediate 

number of such screens. In addition, the authors also investigate the financial 

contribution of particular types of screening, and they find that community relations 

screening increases financial performance, whereas environmental and labour 

                                                           
16

We make use of the terms “technique”, “approach”, “model”, “process” and “method” 
interchangeably in this regard. 
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relations screens tend to decrease financial performance. Capelle-Blancard and 

Monjon (2014) on the other hand, investigate French SRI funds and find that sectoral 

screens (i.e. avoiding investing in the so-called ‘sin’ stocks) decrease financial 

performance, while other types of CSP screen do not have a noticeable financial 

impact on fund performance. 

In an effort to investigate the common claim that SRI funds are in reality nothing 

more than conventional funds in disguise, Kempf and Osthoff (2008) compare the 

sustainability characteristics of the portfolio holdings of SRI funds with those of 

conventional funds. Their investigation focuses on US equity funds and 

demonstrates that the social and environmental ratings of their constituent stocks 

are indeed higher than those of otherwise similar conventional funds. Thus any 

outperformance of these funds can be attributed to the higher CSP levels of the 

securities they include.  

Complimentary to this line of academic research is the small, and fairly new, 

literature dedicated to the use of alternative optimisation approaches to construct 

well-diversified and efficient SRI portfolios. Hallerbach et al. (2004) were the first to 

point out that the SRI literature lacked suggestions for combining the social 

characteristics of risky assets and the standard financial information in the portfolio 

optimization process. They presented an interactive multiple goal programming 

approach for managing an investment portfolio where the decision criteria include 

social effects.  

An alternative approach was suggested by Drut (2012), who investigated whether 

adding restrictions regarding CSP when deriving optimal investment strategies leads 
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to portfolios that underperform otherwise similar conventional investments. He uses 

the classical mean-variance model of Markowitz (1952), and imposed an extra 

constraint for the CSP rating. Drut concludes that the effects of adding a CSP 

constraint depend “on the link between the returns and the responsible ratings and 

on the strength of the constraint” (p.28). Hence, including additional CSP 

considerations may not necessarily lead to suboptimal portfolio performance.  

Ballestero et al. (2012) used goal programming within the framework of classical 

Markowitz mean-variance optimization to allow investors to take account of ethical 

issues, in addition to the standard financial information. They considered both 

“green” and “conventional” assets, and used a two-dimensional objective function 

(financial and environmental). Their numerical analysis revealed that substantial 

green investment is generally outperformed by modest green investment, a rare 

result within the core empirical literature, and hence discourage investors from 

investing a large part their portfolio in green assets. 

The most recent relevant work in the area comes from Utz et al. (2014) who 

extended the Markowitz model by adding a social responsibility objective, in 

addition to the portfolio return and variance, causing the traditional efficient frontier 

to become a three dimensional surface. When applying their framework to both 

conventional and SRI mutual funds they did not find any evidence that social 

responsibility, used as a third criterion and measured by CSP scores, plays an 

important role in the financial outcome of asset allocation. The authors did, 

however, find a modestly lower volatility associated with socially responsible 

compared to conventional funds. 
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In short, the studies of the optimisation techniques for SRI portfolios tend to focus, 

not on the effectiveness of the techniques themselves in creating well-performing, 

stable and diversified portfolios, but rather on providing generic frameworks that 

integrate financial with social and environmental considerations. They investigate 

whether there is a financial cost to including these additional CSP considerations, 

and whether SRI portfolios tend to outperform or underperform otherwise similar 

conventional portfolios. Contrary to the above, our study explores whether different 

methodologies which are applied in the generic professional investing arena lead to 

the construction of SRI portfolios with superior characteristics. 

The current study attempts to answer questions of the following type. Are some 

approaches to portfolio selection superior in creating the less volatile SRI portfolios 

sought by particularly risk averse investors such as pension schemes and insurance 

funds? Which asset allocation approaches lead to SRI portfolios which remain 

reasonably stable in terms of their constituent assets, thereby minimizing 

transaction costs? Does optimizing a different measure of risk and returns change 

the results? Or is performance of the various optimization methods broadly similar 

when forming SRI portfolios?  

A common denominator of previous studies is the use of the Markowitz framework 

(or extensions of it) in the formation of SRI portfolios, and this has several important 

drawbacks. The application of Markowitz mean-variance optimisation requires the 

estimation of the means, variances and covariances of the asset returns for the 

investment universe under consideration. In practice this means that, if the sample 

means and covariances are subject to estimation error, optimal portfolios 
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constructed via Markowitz optimization can be unstable, and characterised by poor 

diversification and out-of-sample performance. This phenomenon has been well-

substantiated in the portfolio selection literature. For instance, Michaud (1999) 

states that, although Markowitz theory provides a convenient framework for 

portfolio optimization, in practice it is an “error-prone process” that often leads to 

the construction of portfolios with problematic properties. Broadie (1993) has also 

studied the effects of estimation risk on the construction of the Markowitz efficient 

frontier, while a more comprehensive review of the influence of estimation errors on 

portfolio selection can be found in Ziemba and Mulvey (1998). This is why it is 

important to study portfolios constructed using approaches that allow for estimation 

risk, and to compare their characteristics and performance. 

The above argument applies to both conventional and socially responsible investing, 

but a strong case can be made that estimation errors in the input parameters are a 

more important issue when constructing SRI portfolios.  

There is a plethora of studies showing that CSP influences both asset returns 

(Brammer et al, 2006; Galema et al., 2008; Edmans, 2011; Hillman and Keim, 2001; 

Von Arx and Ziegler, 2014), and financial risk (Bouslah et al., 2013; Lee and Faff, 

2009; Oikonomou et al., 2012). Both qualitative literature reviews (Margolis and 

Walsh 2003) and statistical meta-analyses (Margolis et al., 2009; Orlitzky et al., 2003) 

broadly substantiate this conclusion. Hence, CSP contributes to the estimation risk of 

the input parameters used in constructing portfolios. However CSP scores are 

subject to considerable estimation error, and this is for four reasons. 
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First, CSP is a concept which has proved very hard to define. Many definitions have 

been vague or too inclusive. In the words of Votaw (1973) ‘the term is a brilliant one; 

it means something, but not always the same thing, to everybody’. The work of 

Carroll (1991) has been influential in defining CSP, and makes reference to a variety 

of tiers or levels of firm responsibilities (economic, legal, ethical and philanthropic) 

that taken together constitute CSP. The European Commission on the other hand 

simply refers to CSP as a concept whereby “companies are taking responsibility for 

their impact on society”17.  

Second, CSP is characterised by a large amount of variability and heterogeneity in its 

various dimensions making its accurate measurement a problematic task (Abbott 

and Monsen, 1979; Griffin and Mahon, 1997). CSP may be related to, inter alia, 

issues involving a firm’s treatment of the natural environment, employee welfare, 

philanthropic activity, engagement with local societies and interaction with 

controversial industries.  

Third, subjective judgements are involved, not only in assessing a company’s 

performance in all of the above, but in measuring the relative importance of each 

CSP dimension for a firm belonging to a particular industry and operating within a 

specific socio-cultural environment. For example, it could be judged that oil and 

energy companies should put more emphasis on the environmental aspects of their 

CSP due to their significant footprint, whereas firms in the financial services sector 

should be more concerned about product quality and ethical business practices. 

Hence, the quantification of CSP is a complex task which requires the collection and 
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 http://europa.eu/rapid/press-release_MEMO-11-730_en.htm 
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assessment of information both internal and external to the firm by sophisticated, 

independent assessors such as MSCI, Sustainalytics, Oekom and other agencies 

producing social ratings for companies.  

Finally, CSP disclosures remain a discretionary part of corporate reporting in most 

countries (Orlitzky, 2013). Due to this, voluntary CSP reports are not subject to the 

same government oversight and regulatory scrutiny which applies to compulsory 

company reporting. Hence, erroneous or misleading CSP reporting may not lead to 

legal and financial sanctions, making such disclosures more susceptible to 

unintentional errors and deliberate manipulation by opportunistic firm managers 

(Edwards, 2008). This further complicates the issue of the accurate measurement of 

CSP.  

Overall, whether it is due to the inherent definitional complexity and heterogeneity 

of CSP, or the subjectivity and misinformation surrounding CSP issues and a lack of 

regulatory scrutiny, there is an additional degree of ambiguity when considering CSP 

as criterion in portfolio creation. Orlitzky (2013) even goes as far as suggesting that 

CSP may increase the overall level of “noise trading”18, with the noise associated 

with CSP scores leading to additional noise in the pricing of assets in SRI portfolios. 

High (or low) reported CSP scores are likely to be subject to greater estimation error 

than more average scores. If CSP scores are priced positively by financial markets, 

such over (under) estimation of the CSP scores biases the company’s expected 

returns upwards (downwards), and may also bias its estimated variance downwards 

(upwards). Therefore companies with high (or low) CSP scores have higher 

                                                           
18

Noise trades are based on false signals, not on the underlying economic fundamentals.  
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estimation risk in their returns and risk. Because SRI portfolios are characterised by a 

greater degree of estimation errors in the input parameters, i.e. return and risk, an 

optimisation method which is less sensitive to these values should be employed. 

However, the SRI literature is lacking in providing meaningful suggestions, and this is 

the gap our study attempts to fill. 

There are various alternative portfolio optimisation frameworks which could be used 

for the construction of SRI portfolios with desirable properties. We apply six of these 

frameworks, all of which are widely known and commonly considered by the 

professional portfolio management community. Each framework has a different 

underlying rationale, and may lead to the construction of portfolios with different 

characteristics. Though dozens of different optimization techniques are available, we 

believe the six we use are an appropriate representation of the broad alternative 

rationales behind asset allocation mechanisms. In addition, previous research has 

been conducted on each of them which allow us to compare and contrast the 

findings of this study (within the SRI framework) with those of general portfolio 

optimization studies. The first three of the approaches below (Markowitz, robust 

estimation, and Black-Litterman) are “classical”, quantitatively sophisticated models, 

whereas the other three (naïve diversification, risk parity, and reward-to-risk) are 

more recent approaches with a less solid mathematical basis, and draw largely on 

basic investing intuition. Below, we provide an explanation of the rationale behind 

these approaches and a broad outline of their implementation. The technical details 

of each framework are in Appendix 4.A. 
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i) Markowitz portfolio optimization 

In spite of the various problems we have outlined, the Markowitz (1952) portfolio 

optimization technique is the forefather of the vast majority of modern portfolio 

construction methods, and usually serves as the basis for the comparison of the 

performance of different models. Markowitz was the first to formally recognize the 

importance of diversification, and to create a method whose principal premise is 

that only the first two moments (mean and variance) of the return distribution are 

important to investors. Hence the ultimate goal is to create a portfolio by optimizing 

the risk-return trade-off. As self-evident as this may seem for today’s investment 

professionals, Markowitz’s work provided the foundation on which the 

mathematical modelling of portfolio construction was established. Furthermore, 

there have recently been calls for a return to Markowitz’s model of portfolio 

construction (Kaplan, 2014), with explicit risk and expected return assumptions, 

instead of the implicit assumptions made by many of the alternative methods. 

ii) Robust estimation  

A sophisticated set of portfolio construction practices, which has been used when 

considering “conventional” (i.e. non-SRI) assets, involves imposing norm constraints 

on the portfolio weights to obtain the desired characteristics (see, for instance, 

Ledoit and Wolf, 2003 and 2004; Fan et al., 2008). We elect to use a technique that 

falls within this category, and adopt a robust portfolio technique, inspired by Xing et 

al. (2014) among others, to construct superior portfolios in the presence of 

estimation risk which, as we noted above, is higher when creating SRI portfolios. This 

approach encourages the creation of sparse portfolios with relatively few active 
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positions and significantly reduced associated transaction costs. It is also particularly 

well suited to the preferences of the SRI investing community as it tends to generate 

cautious, low risk portfolios. It has been documented that long-term institutional 

investment is greater in companies with high CSP scores (Johnson and Greening, 

1999; Cox et al., 2004). This demand arises principally from pension funds and life 

assurance companies, who are characterized by high levels of risk aversion, and who 

consider worst-case scenarios to ensure their investment decisions are guided by 

prudence and safety. Insurance companies in many countries must comply with 

prudential regulations, such as Solvency II for countries in the European Union, while 

defined benefit pension schemes must satisfy their regulators that they will meet 

their pensions promise. So both these large groups of institutional investor have a 

low tolerance for risk. 

iii) Black-Litterman  

The Black-Litterman (1992) asset allocation model is another approach commonly 

employed by a variety of financial institutions. It is particularly popular among active 

money managers “who believe they hold information superior to that of other 

market participants, but wish to update their beliefs using market prices” (Gofman 

and Manela, 2012). The main advantage of this model is that it allows the investor to 

combine the market equilibrium with the views of the investor. In the words of He 

and Litterman (1999), the intuition underlying this approach can be summed up as: 

“the user inputs any number of views, which are statements about the expected 

returns of arbitrary portfolios, and the model combines the views with equilibrium, 

producing both the set of expected returns of assets as well as the optimal portfolio 



113 
 

weights”. In this way, optimal portfolios start from a set of “neutral” weights which 

are then tilted in the direction of investor views.  

iv) Naïve diversification  

The naive diversification approach is based on the very simple rule whereby 1/N of 

the investor’s wealth is allocated to each of the N assets available in the investment 

universe being considered. In other words, it leads to the construction of an equally 

weighted portfolio of the available set, or screened subset, of assets. Unlike the 

mean–variance framework of portfolio optimization, it does not attempt to assign 

asset weights to optimize the risk-return trade-off. Instead, the most appealing 

feature of the naive approach lies in its simplicity, as it does not require the 

estimation of expected returns, covariances, or higher moments of asset returns. In 

addition, the previous literature provides evidence that the naive diversification 

(1/N) approach is not inferior to sample-based mean-variance models (Bloomfield, 

Leftwich, and Long, 1977), or even to most of the extensions of the Markowitz 

optimization framework (DeMiguel et al., 2009b). Therefore, it is considered a 

reasonable approach to portfolio formation. 

v) Risk-parity portfolios 

In recent years the risk-parity portfolio approach has attracted significant interest 

from academics and practitioners, and is widely applied by long term institutional 

investors such as pension funds, and insurance companies, as well as mutual funds 

(Anderson, Bianchi and Goldberg, 2012). In its simplest form, it leads to a portfolio of 

risky assets where the weights are anti-proportional to each asset’s variance of 

returns (i.e. total risk). The emphasis the approach places on risk increased its 
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popularity in the post-crisis period, as models related to the Markowitz framework 

were accused of not providing effective risk controls when they were most needed. 

In addition, the risk-parity approach benefits from the fact that assets with high 

volatility usually earn a lower premium per volatility unit that those with lower 

volatility (Baker et al., 2011; and Frazzini and Pederson, 2014). 

vi) Reward-to-risk timing portfolios 

The reward-to-risk timing portfolio strategy has been proposed by Kirby and Ostdiek 

(2012). Its development was motivated by the finding that naive diversification 

portfolios tend to outperform mean-variance optimization approaches. Kirby and 

Ostdiek (2012) argue that the main reason behind this is the greater instability of the 

portfolios created by Markowitz-style methods. Hence, they created an alternative 

method which keeps the essential rationale of the importance of the risk-return 

trade-off intact, but leads to more stable portfolios with lower transaction costs. The 

reward-to-risk timing strategy allocates asset weights in proportion to the 

contribution of each asset’s mean-variance ratio to the mean-variance ratio of the 

entire universe of assets. 

Further techniques for deriving optimal portfolio strategies which might have been 

considered include: stochastic programming, e.g. Geyer and Ziemba (2008); dynamic 

programming, e.g. Rudolf and Ziemba (2004); and stochastic simulation, e.g. 

Boender (1997). However, they are computationally challenging, making them 

inappropriate for use in practice for the sizeable portfolios we consider. For instance, 

Platanakis and Sutcliffe (forthcoming) mention that the number of scenarios 

required by stochastic programming exceeds 24 billion for a portfolio with just 14 
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assets, four non-overlapping investment periods and five independent outcomes for 

each uncertain parameter per estimation period. With 100 assets this figure rises to 

3.1554×1070. As a result these techniques are not used in our study due to the 

computational load they would entail. Goal programming (Hallerbach et al., 2004; 

Ballestero et al. 2012) includes SRI preferences in the objective function so that the 

investor optimizes some combination of both financial and social performance. Our 

study investigates the impact of financial optimization on an investment universe 

screened according to CSP criteria, and so goal programming lies beyond the scope 

of this study. 

To summarise, we consider a variety of widely applied modern portfolio construction 

approaches with different points of emphases and supporting rationales, and 

conduct a horse race between them using a socially responsibly screened universe of 

stocks. The next section discusses the portfolio evaluation measures we use, and 

then describes the CSP data which allows us to identify sustainable/responsible 

equity investments. 

4.3 Model and dataset 

4.3.1 Portfolio evaluation metrics 

We compare the impact of the different portfolio construction techniques on socially 

responsible investments along the following dimensions: risk, risk-adjusted returns, 

level of diversification and stability of asset weights. We use different metrics to 

capture alternative aspects of the first two of these dimensions and to ensure the 

convergent validity of these comparisons. The performance evaluation metrics we 

use will now be explained. 
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i) Risk 

We use the annualized mean standard deviation of portfolio returns as it is the most 

common measure of total risk. However, although the standard deviation is an 

appropriate measure of risk for normal (or at least symmetric around the mean) 

distributions of returns, it may lead to erroneous conclusions in skewed 

distributions. This is because it treats deviations above and below the mean in the 

same way, although only the latter should be a source of concern for investors. 

Hence, we use the annualized mean standard deviation only for negative returns, 

which is the semi-standard deviation that Markowitz (1991) identified as a “more 

plausible measure of risk”. 

We also use the Value at Risk (VaR) measure which is commonly used for financial 

risk management purposes. VaR captures the maximum monetary (or percentage) 

loss for a given investment horizon and a specified probability level, indicting the loss 

for outcomes in the extreme left tail of the distribution, i.e. the worst outcomes. We 

use a 99% probability level (i.e. focusing on the worst 1% scenarios) and an 

investment horizon equal to our out-of-sample period (2001 until 2011). Along 

similar lines we use the 99th percentile conditional value-at-risk, which is defined as 

the expected value of the portfolio’s returns that do not exceed the possible losses, 

as indicated by the standard VaR. 

Finally, drawdown measures are popular in the asset management industry, and are 

often used by commodity and hedge fund traders (Eling and Schuhmacher, 2007), as 

well as by institutional investors such as pension funds (Berkelaar and Kouwenberg, 

2010) to assess the magnitude of large potential drops in portfolio returns. The 
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maximum drawdown rate measures the drop from the highest point in cumulative 

portfolio returns over a certain time horizon (we use the entire out-of-sample period 

of twelve years), and is a measure that does not depend on distributional 

assumptions. 

ii) Risk-adjusted performance 

Optimization methods maximise the portfolio’s risk-adjusted performance. However, 

since there is no consensus on the most appropriate way to measure returns or risk 

or how to combine the two in order to measure their trade-off, many different 

metrics have been proposed and used. The simplest ratio to calculate is the ratio of 

mean portfolio returns divided by their standard deviation - effectively a Sharpe 

ratio with a zero risk-free rate (Sharpe, 1994). A more advanced metric, which is an 

extension of the Sharpe ratio, has been proposed by Dowd (2000). This measure is 

calculated by dividing the mean return by the VaR of the portfolio, and Dowd (2000) 

provides several numeric examples which demonstrate its superiority over the 

Sharpe ratio. Another version of the Sharpe ratio is the Sortino ratio which uses only 

downside risk (as captured by the semi-standard deviation) instead of total risk 

(Rollinger and Hoffman, 2014). This modification avoids the paradoxical investment 

choices brought about by non-normality of the distribution of asset returns. We also 

calculate the Omega ratio (Shadwick and Keating (2002) which is defined as the 

probability weighted ratio of gains versus losses for some threshold return target 

(we use zero, as is common practice). One of the main benefits of this metric over 

the alternatives is that, by construction, it considers all the moments of the empirical 

distribution of returns. 
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In a final set of portfolio performance metrics we divide portfolio returns by the 

average drawdown to capture significant price falls from previous peaks. A few 

similar, but distinct, measures have been used for this purpose. The standard metric 

is the Sterling ratio, which measures the average return divided by the average 

drawdown for an investment period, Bacon (2008). We also make use of the Calmar 

ratio, which is the average annual return divided by the maximum drawdown for the 

entire out of sample period. Young (1991) concludes that the Calmar ratio is superior 

because it changes gradually, leading to a smoothing of the portfolio’s risk-adjusted 

performance, especially when compared to the Sterling and Sharpe ratios. As a final 

variation, we use the Burke ratio by taking the difference between the portfolio 

return and the risk free rate, and dividing it by the square root of the sum of the 

square of the drawdowns (Burke, 1994). Although these three measures are 

positively correlated, they are distinct, and can lead to moderately different 

empirical evaluations of portfolios produced via different approaches.  

iii) Diversification and stability 

SRI requires additional screening of the universe of investable assets using non-

financial criteria (positive, negative, and best-in-class screening are indicative 

approaches), and the ambiguity in companies’ CSP scores makes it more likely that 

this process will lead to greater estimation risk in their inputs to portfolio models. 

Therefore it may be harder to create SRI portfolios which effectively reduce 

idiosyncratic risks through diversification than it is for non-SRI portfolios. So 

examining the way in which the portfolio optimization process influences this 

characteristic is important for our analysis. We measure the diversification of the 

https://en.wikipedia.org/wiki/Drawdown_%28economics%29
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portfolios by summing up the squared portfolio weights for each constituent and 

each estimation period, following Blume and Friend (1975). 

In addition, a portfolio construction approach which results in substantial 

rebalancing each period leads to significant transaction costs that reduce returns. So 

the stability of the resulting portfolio also needs to be examined. Following Goldfarb 

and Iyengar (2003), the portfolio stability between two successive investment 

periods is measured by summing the squares of the differences between each 

asset’s portfolio weights in adjacent investment periods. 

4.3.2 Dataset 

To create SRI portfolios we use CSP metrics constructed using the MSCI ESG STATS 

database19. In the relevant research this dataset is the most frequently used, and has 

been characterised as “the best-researched and most comprehensive” (Wood and 

Jones, 1995) in this field, as well as “the de facto research standard at the moment” 

for measuring CSP (Waddock, 2003, p. 369). It is a multi-dimensional CSP database 

rich in both the cross section of firms analysed (currently about 3,000 US firms) and 

the timespan covered (23 years), and has been shown to be characterised by 

reliability, consistency and construct validity (Sharfman, 1996).  

The MSCI ESG STATS data contains annual assessments of the societal and 

environmental policies and practices of US corporations since 1991. Firms from 

every sector and industry are assessed on a plethora of indicators relevant to distinct 

aspects of CSP, which are referred to as “qualitative issue areas”. These are: 

community relations, diversity in the workplace, treatment of employees, 

                                                           
19

Known as KLD STATS before the acquisition of KLD (as part of RiskMetrics) by MSCI in 2010. 
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environmental issues, product (or services) level of safety and quality, corporate 

governance framework, and respect for human rights. The relevant assessment is 

done separately on positive aspects (“strengths”) and controversial aspects 

(“concerns”) for each qualitative issue area. Sources both internal to the companies 

(e.g. proxy statements, quarterly reports and other firm documentation) and 

external to them (e.g. articles in the business and financial press, periodicals, and 

general media) are used to conduct the assessments of their social performance. In 

1991 the dataset covered 650 firms, including all the firms listed in the S&P 500 

Composite Index and the Domini 400 Social Index (now the MSCI KLD 400 Social 

Index). In 2001 this number grew as the relevant universe incorporated the largest 

1,000 US companies in terms of market value. Expansion continued in 2003 with the 

inclusion of the 3,000 largest US firms. Since 2003 the number of firms in the dataset 

has remained stable at approximately 3,000, and this dataset is available to us until 

2011. 

We follow the relevant empirical work which uses the MSCI ESG STATS database 

(Hillman and Keim, 2001; Oikonomou et al., 2012) and focus solely on those 

qualitative business issues that can be directly connected with primary stakeholder 

groups. This is based on the stakeholder theory framework developed by Clarkson 

(1995) which broadly posits that strong collaborative links with those stakeholder 

groups that are essential to the firm’s viability and operational well-being (i.e. the 

primary stakeholders) are the only ones that will produce tangible financial benefits 

to the firm. Hence, the CSP measures used to create SRI portfolios are based on 

those qualitative issue areas considered important for effective stakeholder 
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management with local communities, employees (including diversity issues), 

customers and environmental groups/activists (Hillman and Keim, 2001). An outline 

of the five indicators used in the assessment of each CSP issue area we are 

interested in can be found in Appendix 4.B. 

For the core part of our analysis we construct aggregate measures of CSP for each 

firm-year observation in the MSCI ESG STATS universe between 1991 and 2011. For 

each of the five issue areas of interest we sum all the indications for social strengths 

and deduct the sum of the respective indications for social concerns for a given firm 

in a given year. Then we calculate the arithmetic average of all five of these scores in 

order to create a single, multidimensional CSP rating indicative of the firm’s overall 

social and environmental profile20. Our approach follows previous scholarly work in 

the area of CSP and finance (Jo and Harjoto, 2012 and Deng, Kang and Low, 2013 

being two notable examples). Finally, based on these aggregated CSP scores, we 

estimate the ranking of each firm across the entire universe covered by MSCI 

(formerly, KLD) in a given year, and average this relative ranking across the years 

when the firm is included in the database. We exclude firms for which we cannot 

construct aggregate scores for at least 10 years out of the 22 in our sample, which 

helps to ensure the robustness and consistency of the CSP standing of each 

company. This process results in the estimation of average, aggregate, CSP rankings 

for 1,362 US firms. We identified the 100 firms with the highest CSP scores as the 

                                                           
20

Creating such a multidimensional CSP measure raises questions about the appropriate way to 
weight each dimension (i.e. the relative importance of each dimension). The common practice in the 
literature is to use equal weighting (Deng et al., 2013; Oikonomou et al, 2012) which is what we do. In 
addition, as a robustness check in subsection 4.4.3 we look at robust SRI portfolios based on 
individual CSP dimensions to investigate whether our results can be replicated using each of the five 
individual CSP measures. 
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sub-set of CSP screened firms. This ensures that we have a large enough number of 

stocks to benefit from the risk reducing effects of diversification when we form 

portfolios which consist entirely of the top CSP performers. We match this dataset 

with total returns (i.e. returns that include dividends) for these firms from Thomson 

Reuters DataStream. 

4.4 Results 

4.4.1 Main results 

Due to the smaller coverage of firms by KLD during its earlier stages, as well as 

missing observations for quite a few firms over that period, it is not feasible to 

include years prior to 1993 in the data. Furthermore, KLD data is available to us up to 

2011 (inclusive). Tables 4.1 and 4.2 depict the details of the estimation and 

investment periods (in months) we use to evaluate the SRI portfolios. Each three 

year out-of-sample period is preceded by its six year estimation period. 

Periods(t) Start End Length  

Estimation Period 1 1994M1 1999M12 72 

Estimation Period 2 1997M1 2002M12 72 

Estimation Period 3 2000M1 2005M12 72 

Estimation Period 4 2003M1 2008M12 72 

 Table 4.1: Six-Year Estimation Periods 

Periods(t) Start End Length 

Investment Period 1 2000M1 2002M12 36 

Investment Period 2 2003M1 2005M12 36 

Investment Period 3 2006M1 2008M12 36 

Investment Period 4 2009M1 2011M12 36 

 Table 4.2: Non-Overlapping Three-Year Investment Periods 
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In the literature, the length of the estimation period varies, but five to ten years is 

generally considered to be appropriate. For instance, Xing et al. (2014) use rolling 

windows of five years (60 months), ten years (120 months) and 15 years (180 

months) to evaluate out-of-sample performance; DeMiguel et al. (2009a) use ten 

years (120 months); DeMiguel et al. (2009b) use ten years (120 months), 30 years 

(360 months) and 500 years (6,000 months) to evaluate the out-of-sample 

performance of simulated data, while Platanakis and Sutcliffe (forthcoming) use a six 

year (72 months) rolling window. The choice of a six year estimation window which 

starts in 1994M1 and ends in 1999M12 for the first estimation period lies within the 

range used by previous studies. We use out-of-sample investment periods of three 

years. We believe this to be a reasonable investment span within the area of SRI for 

two reasons. First, we know that a significant part of the demand for SRI comes from 

long term institutional investors (pension funds and insurance funds, as noted by Cox 

et al., 2004). These investors have long investment horizons, and generally apply 

buy-and-hold strategies for long periods (Ryan and Schneider, 2002). Second, the 

extant literature argues that CSP leads to the creation of comparative advantages 

that become economically valuable in the long run (Cox et al, 2004; Hillman and 

Keim, 2001; Waddock and Graves, 1997); while in the short run it may not yield any 

tangible financial benefits to the firm and investor. 

We use data for the first estimation period to compute the optimal portfolio for each 

method for the following three years (first investment period). Then we roll the data 

forward by 36 months, so that the second estimation period is now used to compute 

the optimal portfolio for the second investment period, and so on; providing a total 
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of four out-of-sample test periods of three years each, or 144 out-of-sample months 

(12 years) in total. Notice that we have restricted our analysis to include only 

positive CSP weights, as our investment universe is solely comprised of stocks with a 

strong CSP track record. We have also ruled out negative asset weights (or short 

sales), as institutional investors (who are responsible for the majority of demand for 

SRI) do not engage in short selling. 

Performance 
Measures Markowitz Robust 

Black-
Litterman 1/N 

Risk 
Parity 

Reward-to-
Risk 

Risk Measures       

Mean standard 
deviation 0.1352 0.1317 0.1748 0.2119 0.1657 0.1547 

Mean downside 
standard deviation 0.0910 0.0894 0.1016 0.1483 0.1193 0.1159 

VaR(99%) 0.1216 0.1216 0.1323 0.2305 0.1844 0.1800 

Conditional 
VaR(99%) 0.1434 0.1420 0.1341 0.2432 0.2071 0.2107 

Maximum 
Drawdown Rate 0.3078 0.3056 0.2112 0.6382 0.5237 0.5439 

Risk-Return Trade-
Off       

Mean Risk-
Adjusted Returns 0.4002 0.4183 0.5009 0.0667 0.1438 0.0736 

Dowd Ratio 0.0371 0.0378 0.0551 0.0051 0.0108 0.0053 

Sortino Ratio 0.5943 0.6162 0.8614 0.0953 0.1998 0.0983 

Omega Ratio 1.3717 1.3926 1.5144 1.0557 1.1253 1.0614 

Sterling Ratio 0.0937 0.0974 0.2030 0.0102 0.0211 0.0083 

Calmar Ratio 0.0146 0.0150 0.0345 0.0018 0.0038 0.0017 

Burke Ratio 0.0017 0.0018 0.0032 0.0003 0.0005 0.0002 

Diversification and 
Stability       

Mean 
Diversification 0.0940 0.0813 0.1282 0.0100 0.0152 0.0248 

Mean Stability 0.0910 0.0690 0.2083 0.0000 0.0019 0.0155 

Table 4.3: Comparison of the performance of six different portfolio construction approaches across 
fourteen different metrics. Initial investment universe of 100 consistently high performing CSP firms. 
Estimation period of six years and out-of-sample period of twelve years. VaR stands for Value at Risk, 
and 1/N is the naive diversification approach 

Table 4.3 contains the core of our empirical results, and compares the performance 

of the six portfolio construction methods we employ (Markowitz, robust estimation, 

Black-Litterman, naïve diversification (1/N), risk parity, and reward-to-risk) on the 
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universe of the best 100 CSP performers. We restrict the universe to 100 firms as a 

reasonable compromise between having firms which do not really constitute the 

“cream of the crop” in terms of CSP, and having insufficient firms to effectively study 

the difference in the impact of the optimization methods on the performance of the 

SRI portfolios. The performance of these portfolios, formed in six different ways, is 

compared using 14 criteria which examine risk (five measures), risk-adjusted returns 

(seven measures), diversification, and portfolio stability. The comparisons are made 

over the 144 out-of-sample months (12 years) which include four investment periods 

(4×36 months), with different optimal portfolios applying for each three year period 

(36 months). The results are adjusted to present annualized figures (where 

applicable), as is the norm in the asset management industry. 

Focusing on risk, the robust estimation approach produces the least risky SRI 

portfolios in terms of total risk (mean standard deviation), total downside risk (mean 

downside standard deviation) and VaR, while it comes second to the Black-Litterman 

approach in terms of conditional VaR and maximum drawdown. The Markowitz 

model also performs well, finishing second or third in almost all of the risk metrics, 

and ties first on VaR. On the other hand, the naïve diversification (1/N) approach 

consistently produces the riskiest portfolios across all the measures, with the risk 

parity and reward-to-risk approaches also producing high risk portfolios. The 

differences between the scores of the most and least risky portfolios are substantial. 

In terms of total risk, the robust estimation approach leads to an SRI portfolio with 

an average annualised standard deviation of returns of 13.17%, whereas the 

equivalent number for the naive diversification approach is 21.19%, i.e. over 60% 
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higher; while the VaR score for the 1/N portfolios is 90% higher than for robust 

estimation. The maximum drawdown for the “risky” naive diversification SRI 

portfolios over 100% larger than for the “safe” Black-Litterman SRI portfolio. These 

observations are particularly important for the risk-averse, long-term institutional 

investors who form a significant portion of the demand for SRI.  

Focusing on the risk-return trade-off, analysis of the extensive array of metrics we 

have used produces a very clear picture. In terms of portfolio risk-adjusted returns 

(Dowd ratio, Sortino ratio, Omega ratio, Sterling ratio, Calmar ratio and Burke ratio), 

the Black-Litterman model leads to the best out-of-sample performance, with robust 

estimation ranking second. At the other end of the spectrum, the naive 

diversification and reward-to-risk methods produce the worst risk-return ratios. 

Once more, the differences in the extremes are quantitatively large. For example, 

the value of the Dowd ratio for the portfolio produced using the Black-Litterman 

method is 0.0551, while for the “naive” portfolio it is just 0.0051 (i.e. less than one 

tenth of the value of the former). Similarly, looking at the Sterling ratio, the Black-

Litterman approach again produces the best result with a value of 0.2030, which is 

more than 20 times larger than the corresponding result of 0.0083 for the reward-to-

risk method. Comparisons across the other risk-return metrics corroborate this 

conclusion. 

The picture changes when looking at the diversification and stability of portfolio 

constituents. By construction, the naive approach leads to an equal weighting of all 

the assets in the investment universe (a 1% investment in all 100 stocks in our case), 

and this remains stable in every period. Hence it leads to the optimal diversification 
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and stability scores for the metrics we utilize. What is interesting is that the second 

best approach with regard to these aspects is risk parity, whereas Black-Litterman 

(which led all the other models in terms of riskiness and risk-return tradeoff) 

performs the worst, and the Markowitz model is the second worst. So, although the 

more quantitative portfolio optimization techniques (Black-Litterman, robust 

estimation and Markowitz) lead to less risky portfolios which provide higher returns 

per unit of risk taken, they are also associated with less diversification and require 

more significant rebalancing of their constituent assets. The exact opposite is true 

for the more simplistic portfolio construction techniques which are based on 

fundamental investment intuition (naive diversification, risk parity and reward-to-

risk). 

We now examine some key characteristics the 144 month time series of returns for 

the different approaches. We focus first on risk, and look at drawdown rates. As can 

be seen in Figure 4.1, for the majority of the 12 year evaluation period, all the 

approaches lead to portfolios with reasonably similar drawdown rates. However, 

from the start of the global financial crisis (late 2007), the drawdown rates of the 

different models diverge significantly. The Black-Litterman approach is consistently 

associated with the lowest drawdown, followed by the Markowitz and robust 

estimation approaches (with almost identical drawdown), whereas naive 

diversification, risk parity and reward-to-risk have much higher drawdown rates 

during this period. 
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                      Figure 4.1: Comparison of the drawdown rate of SRI portfolios constructed using the six different portfolio construction approaches over the 12  
                      years of the out-of-sample period. 
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Figure 4.2 shows the cumulative wealth associated with the different strategies. The Black-

Litterman approach dominates all the other strategies in terms of cumulative wealth 

throughout the entire 12 years (2000-2011). After the first two years the Black-Litterman 

portfolio clearly moves ahead of its rivals, and over time gains a significant advantage which 

it maintains irrespectively of the overall direction of the market. Once more, the naive 

diversification, risk parity and reward-to-risk approaches perform worst, while the robust 

estimation and Markowitz models are somewhere in between the best and worst 

performing strategies (and trend so closely together that are nearly indistinguishable as in 

Figure 4.1). Given that all these portfolios are “long only” (i.e. no short-selling of assets, or 

negative weights), it is to be expected that the cumulative wealth for all strategies falls in 

2008 and 2009 when the financial markets were collapsing, before it starts climbing again. 
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             Figure 4.2: Comparison of the cumulative wealth of SRI portfolios constructed using the six different portfolio construction approaches over the 12 years of  
             the out-of-sample period. 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

1,1 

1,2 

1,3 

1,4 

1,5 

1,6 

1,7 

1,8 

1,9 

2 

2,1 

1
2

/1
9

9
9

 

4
/2

0
0

0
 

8
/2

0
0

0
 

1
2

/2
0

0
0

 

4
/2

0
0

1
 

8
/2

0
0

1
 

1
2

/2
0

0
1

 

4
/2

0
0

2
 

8
/2

0
0

2
 

1
2

/2
0

0
2

 

4
/2

0
0

3
 

8
/2

0
0

3
 

1
2

/2
0

0
3

 

4
/2

0
0

4
 

8
/2

0
0

4
 

1
2

/2
0

0
4

 

4
/2

0
0

5
 

8
/2

0
0

5
 

1
2

/2
0

0
5

 

4
/2

0
0

6
 

8
/2

0
0

6
 

1
2

/2
0

0
6

 

4
/2

0
0

7
 

8
/2

0
0

7
 

1
2

/2
0

0
7

 

4
/2

0
0

8
 

8
/2

0
0

8
 

1
2

/2
0

0
8

 

4
/2

0
0

9
 

8
/2

0
0

9
 

1
2

/2
0

0
9

 

4
/2

0
1

0
 

8
/2

0
1

0
 

1
2

/2
0

1
0

 

4
/2

0
1

1
 

8
/2

0
1

1
 

1
2

/2
0

1
1

 

Out-of-Sample Evaluation Period 

Cumulative Wealth 

Robust Markowitz Black-Litterman 1/N Risk-Parity Reward-to-Risk Timing 



131 
 

Finally, in Figure 4.3 we provide a comparison of the distribution of asset weights for 

the SRI portfolios constructed using five different portfolio approaches (we do not 

include the assets of the 1/N approach as they are all assigned a 1% weight). Only 

weights of 1% or more are presented in Figure 4.3, as this is a rule-of-thumb cutoff 

point for professional asset managers. The weights are average values across the 

four investment periods. The Markowitz, robust estimation and Black-Litterman 

models all lead to portfolios with exactly 26 assets. However, the identity of these 

assets is not the same across these three approaches, and the size distribution of 

asset weights is also different. The distribution of asset weights is very similar for the 

Markowitz and robust estimation approaches, with comparable maxima (10.88% and 

11.13% respectively), and six assets with weights of 4% or more in each portfolio. On 

the other hand, the Black-Litterman portfolio has a lower maximum weight (8.79%), 

and eight assets with weights of approximately 4% or more. The risk parity and 

reward-to-risk techniques lead to portfolios with more assets and lower average 

weights. The risk parity portfolio comprises 42 assets with a weight of 1% or more, 

and a maximum weight of just 3.56%; while the reward-to-risk portfolio contains 39 

assets with a maximum weight of 3.95%. So, although the three less formal 

optimization models create portfolios which are more stable and require less 

rebalancing across investment periods, they also contain a greater number of assets 

compared to the more formal optimization methods. Hence, no clear conclusion can 

be drawn about the overall impact that transaction costs would have from this 

analysis. 
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To investigate this further, we computed the value of shares traded at the start of 

each of the four out-of-sample periods for each of the six methods. Assuming 

transactions costs to be 1% of the value of shares traded, we computed the total 

transactions costs for each method across the 12 years, expressed as a proportion of 

the initial investment. These percentages appear in table 4.4, along with the 

corresponding cumulative percentage increase in wealth for each method from 

Figure 4.3.  This shows that the three simple methods have lower transactions costs 

than the three optimisation methods. But it also shows that the cumulative increases 

in wealth for the three optimisation methods are very much larger than for the 

simple methods, so that the net increases in wealth are much larger for the three 

optimisation methods. This suggests that overall, the three quantitative optimisation 

methods are preferable to the three simple methods after allowing for transactions 

costs. 

 
Total Transactions Costs as a 

% of Initial Wealth 
Cumulative % Increase in 

Initial Wealth 

Differences 

Markowitz 5.51% 64.92% 59.41% 

Robust 5.22% 66.13% 60.91% 

Black-Litterman 8.82% 105.03% 96.21% 

1/N 2.40% 16.95% 14.55% 

Risk Parity 2.35% 28.61% 26.26% 

Reward-to-Risk 3.10% 13.66% 10.56% 

Table 4.4: Comparison of the cumulative transactions costs and cumulative increases in wealth. Initial 
investment universe of 100 consistently high performing CSP firms. Estimation period of six years and 
out-of-sample period of twelve years. 1/N is the naive diversification approach. 
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Figure 4.3: Comparison of the asset weight distributions of SRI portfolios constructed using five 
different portfolio construction approaches. Only weights of assets which are allocated 1% or more 
are presented. 

Before continuing with the robustness tests and additional analyses, we will 

compare our key findings with the main conclusions from the general literature on 

asset allocation. In a nutshell, while contradictory results exist regarding the relative 

effectiveness of different optimization techniques, there is considerable evidence 

which supports simple portfolio selection methods such as 1/N. When comparing the 
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performance of a range of different methods, including 1/N, Markowitz, risk parity 

and minimum variance; Board and Sutcliffe (1994), Zhu (2015) and Jacobs et. al. 

(2014) found mixed results with no clear winner. However, there is more positive 

evidence.  

Bloomfield, Leftwich and Long (1977) found that naive portfolio allocation methods 

are superior to more sophisticated methods, and that 1/N performs well; while 

Jorion (1991) demonstrated that, for NYSE stocks, 1/N is superior to the 

sophisticated techniques of Markowitz, Bayes-Stein and minimum variance. More 

recently, Jagannathan and Ma (2003) show that 1/N is superior to Markowitz for US 

stocks. DeMiguel et al. (2009b) compare 14 different methods using US equity data 

sets, and show that none of them consistently outperforms the 1/N approach in 

terms of risk-adjusted returns. Tu and Zhou (2011) reach similar conclusions. Brown 

et al. (2013) show that this outperformance is compensation for the increased tail 

risk (i.e. extreme loss risk) that the naïve diversification portfolio bears. Kirby and 

Ostdiek (2012) also point out that the stability of naïve diversification is one of the 

main causes behind its strong performance, and that the reward-to-risk approach 

can yield stronger results, even in the presence of high transaction costs. Finally, 

Chaveset. al. (2011) find that the simple methods of 1/N and risk parity are superior 

to Markowitz and minimum variance, while Ang (2014) shows that 1/N is preferable 

to minimum variance and Markowitz.  Therefore, the literature for general portfolios 

tends to support the use of simple, rather than sophisticated portfolio selection 

techniques. 
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Our results show that, within the SRI framework, the Black-Litterman approach 

produces portfolios with the strongest out-of-sample risk-adjusted returns. The 

robust estimation approach generally produces good results, and the reward-to-risk 

approach beats the naïve diversification method, as Kirby and Ostdiek (2012) have 

shown. Our results conflict with those of the general asset allocation literature 

surveyed above. For an investment universe screened for CSP, the simple methods 

(1/N, risk parity and reward-to-risk) consistently yield the poorest results in terms of 

risk, maximum possible losses and risk-adjusted returns; while the sophisticated 

methods (Black-Litterman, robust estimation and Markowitz) yield the best results. 

This is an important and interesting finding for the SRI community.  

One way that could possibly explain the fact that our empirical results contradict a 

significant part of the existing literature, which supports that naïve diversification 

methods such as 1/N is doing very well, is by employing state-of-the-art multi-factor 

risk models to assess risk profiles of the portfolio’s constituent assets such as the 

Fama-French three-factor model (Fama and French (1993)) or the Carhart four-factor 

model (Carhart (1997)). Factor-based risk assessment for portfolios is outside the 

scope of this research, however we recognise this is a developing area, and future 

research could investigate the question why the portfolio optimization/construction 

methods used in our study generate SRI portfolios with significantly different 

characteristics in comparison to a significant part of the existing literature that 

supports that more simplified portfolio construction techniques are doing very well 

in constructing portfolios with unscreened stocks in terms of CSP performance. 
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4.4.2 Robustness tests 

To test the robustness of our results, we narrow our investment universe to the top 

80 firms (a significant shrinkage of 20% in the number of assets) in terms of 

aggregate CSP score. According to traditional finance theory, further restricting the 

investment universe should lead to inferior portfolio performance. On the other 

hand, given the strong empirical link between higher CSP and lower financial risk 

(Orlitzky and Benjamin, 2001; Godfrey et al., 2009; Oikonomou et al., 2012), applying 

more intense CSP screening criteria may improve the performance of SRI portfolios. 

Hence, we decrease the number of equities to 80 and use the same estimation and 

investment periods as in our previous analysis to compare the performance of SRI 

portfolios according to their construction method. The results are summarized in 

Table 4.5. 
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Performance Measures Markowitz Robust 
Black-

Litterman 1/N 
Risk 

Parity 
Reward-
to-Risk 

Risk Measures       

Mean standard 
deviation 0.1281 0.1242 0.1514 0.2135 0.1670 0.1622 

Mean downside 
standard deviation 0.0853 0.0839 0.0933 0.1488 0.1208 0.1229 

VaR(99%) 0.1180 0.1168 0.1320 0.2438 0.2021 0.2094 

Conditional VaR(99%) 0.1389 0.1404 0.1447 0.2487 0.2170 0.2319 

Maximum Drawdown 
Rate 0.2879 0.2954 0.2530 0.6493 0.5430 0.6168 

Risk-Return Trade-Off       

Mean Risk-Adjusted 
Returns 0.4631 0.4580 0.4584 0.0890 0.1582 0.0598 

Dowd Ratio 0.0419 0.0406 0.0438 0.0065 0.0109 0.0039 

Sortino Ratio 0.6952 0.6775 0.7439 0.1277 0.2186 0.0789 

Omega Ratio 1.4365 1.4229 1.3999 1.0764 1.1395 1.0505 

Sterling Ratio 0.1064 0.1041 0.1162 0.0143 0.0231 0.0063 

Calmar Ratio 0.0172 0.0160 0.0229 0.0024 0.0041 0.0013 

Burke Ratio 0.0019 0.0019 0.0022 0.0004 0.0006 0.0002 

Diversification and 
Stability       

Mean Diversification 0.1012 0.0649 0.2312 0.0125 0.0187 0.0301 

Mean Stability 0.0706 0.0413 0.4892 0.0000 0.0023 0.0190 

Table 4.5: Comparison of the performance of six different portfolio construction approaches across 
fourteen different metrics. Initial investment universe of 80 consistently high performing CSP firms. 
Estimation period of six years and out-of-sample period of twelve years. VaR stands for Value at Risk 
and 1/N is the naive diversification approach. 

The reduction in the number of assets included in the SRI portfolios does not change 

the core of our previous conclusions. The robust estimation approach still produces 

the least risky portfolios (having the lowest average standard deviation, downside 

standard deviation and VaR, and the second lowest conditional VaR), with Markowitz 

usually creating the second best portfolios in this regard, with the Black-Litterman 

approach following next. At the other end of the spectrum the naïve diversification 

approach leads to the riskiest portfolios, while the risk parity and reward-to-risk 

approaches also have high risk. Compared to the core results, the situation is a bit 

different for the risk-return metrics, although the traditional, more quantitative 

optimization methods still outperform the mathematically less formal alternatives. 
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The Black-Litterman technique still ranks first in this dimension according to every 

metric (except for the Omega ratio). The Markowitz model usually finishes second 

best, and tends to outperform the robust portfolio. The naïve diversification and 

reward-to-risk portfolios still have the lowest risk-adjusted returns on every relevant 

metric. As previously, the rank order is reversed when looking at the diversification 

and stability measures, with the 1/N approach producing the best results, followed 

by risk parity. The Black-Litterman model finishes last, with Markowitz as second 

worst. Overall, even when significantly reducing the investment universe, the rank 

order of the different approaches remains largely unchanged. The sophisticated 

approaches have lower risk and a superior risk-return trade-off than the 

unsophisticated approaches, but the simpler techniques are more diversified and 

stable.  

As a second robustness test we keep the number of assets at 100, but change the 

length of the estimation periods to nine years (108 months) instead of six years (72 

months). Tables 4.6 and 4.7 provide the relevant details of the new estimation and 

investment periods. We now have only three estimation periods and three 

investment periods. 
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Periods(t) Start End Length 

Estimation Period 1 1994M1 2002M12 108 

Estimation Period 2 1997M1 2005M12 108 

Estimation Period 3 2000M1 2008M12 108 

Table 4.6: Nine-Year Estimation Periods 

 

Periods(t) Start End Length  

Investment Period 1 2003M1 2005M12 36 

Investment Period 2 2006M1 2008M12 36 

Investment Period 3 2009M1 2011M12 36 

Table 4.7: Non-Overlapping Three-Year Investment Periods 

 

Table 4.8: Comparison of the performance of six different portfolio construction approaches across 
fourteen different metrics. Initial investment universe of 100 consistently high performing CSP firms. 
Estimation period of nine years. 

Performance Measures Markowitz Robust 
Black-

Litterman 1/N 
Risk 

Parity 
Reward-
to-Risk 

Risk Measures       

Mean standard deviation 0.1249 0.1250 0.1247 0.2237 0.1846 0.1619 

Mean downside standard 
deviation 0.0822 0.0826 0.0820 0.1597 0.1345 0.1244 

VaR(99%) 0.1354 0.1363 0.1346 0.2559 0.2255 0.2318 

Conditional VaR(99%) 0.1354 0.1363 0.1346 0.2559 0.2255 0.2318 

Maximum Drawdown 
Rate 0.2543 0.2578 0.2519 0.6531 0.5689 0.5483 

Risk-Return Trade-Off       

Mean Risk-Adjusted 
Returns 0.4799 0.4795 0.4840 0.0659 0.1101 0.1272 

Dowd Ratio 0.0369 0.0366 0.0374 0.0048 0.0075 0.0074 

Sortino Ratio 0.7288 0.7253 0.7365 0.0923 0.1511 0.1655 

Omega Ratio 1.4492 1.4484 1.4536 1.0565 1.0971 1.1121 

Sterling Ratio 0.1223 0.1204 0.1258 0.0093 0.0144 0.0140 

Calmar Ratio 0.0196 0.0194 0.0200 0.0019 0.0030 0.0031 

Burke Ratio 0.0024 0.0024 0.0024 0.0003 0.0005 0.0005 

Diversification and 
Stability       

Mean Diversification 0.0869 0.0798 0.0871 0.0100 0.0150 0.0233 

Mean Stability 0.0605 0.0542 0.0600 0.0000 0.0009 0.0107 
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The results are summarized in Table 4.8. All our previous conclusions remain valid, 

and in some cases are even stronger than those drawn from the original results. The 

Black-Litterman model dominates all the alternative SRI portfolios according to every 

metric of risk and risk-adjusted performance. The Markowitz and robust approaches 

are second and third best respectively according to the same criteria. The naïve 

diversification technique produces the riskiest portfolios with the worst risk-return 

ratios, while the risk-parity and reward-to-risk portfolios do not fare much better. 

Once more, the 1/N approach leads to the most stable and well-diversified 

portfolios, followed by the risk-parity portfolios; whereas the Markowitz and Black-

Litterman portfolios perform worst on both these dimensions. 

4.4.3 Additional analyses  

It has been documented that different measures of CSP based on different aspects 

or dimensions of corporate sustainability relate to distinct stakeholder groups 

(Griffin and Mahon, 1997; Mattingly and Berman, 2006) and may have different 

impacts on financial performance. This is especially relevant when looking at samples 

of firms from different industries, where the social and environmental issues and key 

performance indicators can be significantly different. So far in our analysis we 

avoided this issue by using an aggregate, multidimensional measure of CSP to 

construct SRI portfolios. In this subsection, we create five different SRI investment 

data sets, each based on one of the CSP qualitative issue areas from which the 

aggregate CSP measure was constructed; i.e. relationships with local communities, 

diversity in the workplace, employee relations, environmental considerations, and 

product safety and quality. 
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To construct these SRI portfolios we follow the principles outlined in subsection 

4.4.1. Thus, we use the top 100 firms for each of the qualitative issue areas, and the 

estimation and investment periods described in Tables 4.1 and 4.2. The performance 

metrics and the optimization approaches employed also remain the same. The 

results appear in Table 4.9 which contains five different panels, each of which 

focuses on one of the five CSP dimensions. 

Community relations Markowitz Robust 
Black-

Litterman 1/N 
Risk 

Parity 
Reward-
to-Risk 

Mean standard deviation 0.1433 0.1458 0.1649 0.2134 0.1784 0.1605 

Mean downside standard 
deviation 0.1042 0.1063 0.1166 0.1508 0.1332 0.1234 

VaR(99%) 0.1939 0.1962 0.2031 0.2387 0.2032 0.1869 

Conditional VaR(99%) 0.1994 0.2008 0.2132 0.2513 0.2298 0.2168 

Maximum Drawdown Rate 0.3806 0.4000 0.3742 0.6010 0.5781 0.5811 

Mean Risk-Adjusted 
Returns 0.3793 0.3365 0.3945 0.1542 0.1417 0.0995 

Dowd Ratio 0.0234 0.0208 0.0267 0.0115 0.0104 0.0071 

Sortino Ratio 0.5219 0.4615 0.5579 0.2182 0.1899 0.1294 

Omega Ratio 1.3680 1.3203 1.3840 1.1368 1.1259 1.0860 

Sterling Ratio 0.0766 0.0617 0.0815 0.0277 0.0200 0.0116 

Calmar Ratio 0.0119 0.0102 0.0145 0.0046 0.0036 0.0023 

Burke Ratio 0.0016 0.0013 0.0018 0.0007 0.0005 0.0003 

Mean Diversification 0.0805 0.0724 0.1421 0.0100 0.0147 0.0226 

Mean Stability 0.0741 0.0731 0.2710 0.0000 0.0026 0.0154 

Diversity Markowitz Robust 
Black-

Litterman 1/N 
Risk 

Parity 
Reward-
to-Risk 

Mean standard deviation 0.1429 0.1437 0.1628 0.2097 0.1648 0.1650 

Mean downside standard 
deviation 0.1023 0.1027 0.1073 0.1482 0.1220 0.1309 

VaR(99%) 0.1326 0.1428 0.1487 0.2314 0.2116 0.2293 

Conditional VaR(99%) 0.1491 0.1542 0.1593 0.2453 0.2122 0.2299 

Maximum Drawdown Rate 0.4899 0.4966 0.3954 0.7746 0.6642 0.8273 

Mean Risk-Adjusted 
Returns 0.1519 0.1501 0.2319 -0.0074 0.0257 -0.1238 

Dowd Ratio 0.0136 0.0126 0.0211 -0.0006 0.0017 -0.0074 

Sortino Ratio 0.2123 0.2100 0.3517 -0.0104 0.0347 -0.1560 

Omega Ratio 1.1272 1.1257 1.2043 0.9939 1.0217 0.9003 

Sterling Ratio 0.0169 0.0166 0.0363 -0.0009 0.0027 -0.0086 

Calmar Ratio 0.0037 0.0036 0.0080 -0.0002 0.0005 -0.0021 

Burke Ratio 0.0005 0.0005 0.0009 0.0000 0.0001 -0.0003 

Mean Diversification 0.0900 0.0610 0.1071 0.0100 0.0145 0.0244 
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Mean Stability 0.0562 0.0478 0.0999 0.0000 0.0016 0.0149 

Employee relations Markowitz Robust 
Black-

Litterman 1/N 
Risk 

Parity 
Reward-
to-Risk 

Mean standard deviation 0.1537 0.1479 0.1475 0.2031 0.1726 0.1722 

Mean downside standard 
deviation 0.1125 0.1088 0.1059 0.1454 0.1276 0.1329 

VaR(99%) 0.1371 0.1376 0.1414 0.2141 0.1763 0.2005 

Conditional VaR(99%) 0.1952 0.1933 0.1877 0.2434 0.2215 0.2475 

Maximum Drawdown Rate 0.3675 0.3719 0.3453 0.5345 0.4713 0.5287 

Mean Risk-Adjusted 
Returns 0.3445 0.3499 0.3819 0.1297 0.2078 0.1396 

Dowd Ratio 0.0322 0.0313 0.0332 0.0103 0.0170 0.0100 

Sortino Ratio 0.4710 0.4756 0.5319 0.1812 0.2813 0.1809 

Omega Ratio 1.3214 1.3296 1.3568 1.1113 1.1851 1.1223 

Sterling Ratio 0.0576 0.0577 0.0683 0.0205 0.0311 0.0166 

Calmar Ratio 0.0120 0.0116 0.0136 0.0041 0.0063 0.0038 

Burke Ratio 0.0013 0.0013 0.0015 0.0006 0.0008 0.0005 

Mean Diversification 0.0825 0.0665 0.0803 0.0100 0.0168 0.0267 

Mean Stability 0.0897 0.0543 0.0816 0.0000 0.0030 0.0166 

Environment Markowitz Robust 
Black-

Litterman 1/N 
Risk 

Parity 
Reward-
to-Risk 

Mean standard deviation 0.1381 0.1376 0.1392 0.2190 0.1699 0.1585 

Mean downside standard 
deviation 0.0997 0.1012 0.0973 0.1511 0.1199 0.1149 

VaR(99%) 0.1395 0.1388 0.1444 0.2298 0.1939 0.1792 

Conditional VaR(99%) 0.1504 0.1496 0.1470 0.2306 0.1973 0.1890 

Maximum Drawdown Rate 0.4469 0.4621 0.3792 0.6466 0.5077 0.5016 

Mean Risk-Adjusted 
Returns 0.1752 0.1426 0.2242 0.0592 0.1772 0.1419 

Dowd Ratio 0.0145 0.0118 0.0180 0.0047 0.0129 0.0105 

Sortino Ratio 0.2429 0.1939 0.3205 0.0858 0.2513 0.1958 

Omega Ratio 1.1454 1.1169 1.1875 1.0482 1.1531 1.1203 

Sterling Ratio 0.0208 0.0163 0.0307 0.0085 0.0281 0.0168 

Calmar Ratio 0.0045 0.0035 0.0069 0.0017 0.0049 0.0037 

Burke Ratio 0.0005 0.0004 0.0007 0.0003 0.0007 0.0005 

Mean Diversification 0.0856 0.0790 0.0937 0.0100 0.0149 0.0247 

Mean Stability 0.0729 0.0752 0.1153 0.0000 0.0017 0.0150 

Product safety and quality Markowitz Robust 
Black-

Litterman 1/N 
Risk 

Parity 
Reward-
to-Risk 

Mean standard deviation 0.1610 0.1609 0.1938 0.2449 0.2014 0.1931 

Mean downside standard 
deviation 0.1218 0.1242 0.1440 0.1739 0.1490 0.1452 

VaR(99%) 0.1642 0.1675 0.2170 0.2630 0.2418 0.2346 

Conditional VaR(99%) 0.2103 0.2217 0.2406 0.2836 0.2741 0.2719 

Maximum Drawdown Rate 0.5993 0.6195 0.8073 0.8290 0.6744 0.6969 

Mean Risk-Adjusted 
Returns 0.0686 0.0662 -0.1149 -0.0224 0.1141 0.0782 

Dowd Ratio 0.0056 0.0053 -0.0086 -0.0017 0.0079 0.0054 
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Sortino Ratio 0.0907 0.0857 -0.1547 -0.0316 0.1542 0.1039 

Omega Ratio 1.0574 1.0559 0.9109 0.9819 1.1002 1.0662 

Sterling Ratio 0.0067 0.0062 -0.0097 -0.0028 0.0152 0.0087 

Calmar Ratio 0.0015 0.0014 -0.0023 -0.0006 0.0028 0.0018 

Burke Ratio 0.0002 0.0002 -0.0004 -0.0001 0.0005 0.0003 

Mean Diversification 0.0955 0.0845 0.0983 0.0100 0.0155 0.0254 

Mean Stability 0.0761 0.0629 0.1346 0.0000 0.0030 0.0154 

Table 4.9: Comparison of the performance of six different portfolio construction approaches across 
fourteen different metrics for five different dimensions of corporate social and environmental 
performance. Initial investment universe of 100 consistently high performing CSP firms. Estimation 
period of six years and out-of-sample period of twelve years. VaR stands for Value at Risk and 1/N is 
the naive diversification approach. 

Table 4.9 reveals that, although there is variability, the conclusions drawn from the 

aggregate measure of CSP are verified for the majority of the individual CSP 

dimensions. More specifically, the Black-Litterman approach consistently produces 

the highest risk-return trade-offs (and the minimum drawdown rate) for the 

community relations, diversity and employee relations aspects of CSP. Markowitz 

also does very well in these CSP dimensions, creating portfolios with the lowest 

volatility, downside risk and VaR, while also usually finishing second in terms of risk-

adjusted returns. The robust approach ranks second or third in terms of both 

riskiness and risk-return trade-offs, whereas the naïve diversification and reward-to-

risk approaches invariably lead to portfolios with the worst values on these 

measures. So once again the formal optimization models outperform the less strict 

portfolio construction approaches. However, in line with the core findings of this 

study, the 1/N approach still produces the most well-diversified and stable 

portfolios, while the Black-Litterman and Markowitz models finish last on these 

criteria.  

The picture is qualitatively similar, although not identical, when focusing on 

corporate environmental performance. The key differences are that the robust 
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portfolio performs less well, finishing next to last on most of the risk-adjusted return 

ratios, while the risk-parity portfolio does better, being ranked second best on most 

risk-return metrics. Black-Litterman is still the model of choice according to most 

criteria, while 1/N is last.  

Things are quite different when using product safety and quality as the CSP feature 

guiding portfolio construction. This is the only CSP dimension where the Black-

Litterman approach leads to poorly performing portfolios with the worst risk-

adjusted returns, diversification and stability characteristics. On the other hand, the 

risk parity and reward-to-risk techniques are the methods with the best and second 

best risk-return trade-offs respectively, something that has not been the case in any 

of our previous analysis. 

The distinctiveness of CSP dimensions and the variability of the financial impacts of 

each has been well documented in the empirical CSP literature (Hillman and Keim, 

2001; Mattingly and Berman, 2006; Oikonomou et al., 2012). Hence, our results are 

compatible with previous findings. Overall, Table 4.9 shows that the results from the 

solo use of the CSP measures produces only slightly different conclusions. This 

suggests that our results are not highly sensitive to the weighting scheme involved in 

computing the aggregate CSP. Finally, for the same reason as in Chapter 3, it was not 

possible to investigate whether the differences in performance metrics between the 

portfolio construction models are statistically significant. 

4.5 Conclusions 

We expand the SRI literature by moving beyond the question of whether portfolios 

comprising “sustainable equities” outperform conventional investments, and focus 
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on finding optimal ways to construct SRI portfolios. We have found that the 

optimization process for forming SRI portfolios matters. There are large, 

economically significant differences in the risk, risk-adjusted returns, diversification 

and intertemporal stability of the SRI portfolios, depending on which optimization 

technique is used. Formal optimization techniques (Markowitz, Black-Litterman and 

robust estimation) tend to produce less risky SRI portfolios with higher risk-adjusted 

returns and a smaller total number of constituent assets compared to less formal 

techniques (naïve diversification, risk parity and reward-to-risk). The Black-Litterman 

model is usually the best technique, while naïve diversification is usually the worst 

on these criteria. These conclusions are robust to different lengths of the estimation 

and investment periods, and to the use of more stringent CSP screening criteria. Our 

conclusions using CSP-screened assets are in contrast to studies of unscreened 

assets, which have found that naive diversification is one of the best techniques. 

When implementing the various portfolio construction approaches for single CSP 

dimensions, we have found that our key findings for aggregate CSP scores also hold 

for the community, diversity and employee relations dimensions of CSP. But they are 

less applicable for environmental performance and product safety and quality. This is 

in line with previous work in the wider literature on the financial effects of CSP, and 

demonstrates the contextualization required for an analysis to be complete. 

Overall, our study shows that just applying stringent SRI criteria to restrict the 

investment universe to the best socially and environmentally performing companies 

is insufficient. The optimization process is also very important. It further 

demonstrates to fund managers, institutional and retail investors (especially those 
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who are more risk-averse and have longer-term investment horizons) that the more 

quantitative approaches to portfolio construction typically lead to better results. The 

appropriate selection of an optimization technique is an issue which needs to be 

taken into serious consideration for anyone placing their funds in SRI. Choosing the 

correct optimization method for the creation of SRI portfolios will lead to stronger 

financial performance, which in turn will generate greater demand for this kind of 

investment. Through this mechanism, the cost of equity for any corporation that 

applies sustainable/ responsible/ethical practices will be reduced, incentivizing them 

to engage in such behavior, while penalizing companies involved in various social or 

environmental controversies by increasing their cost of capital. In short, the 

selection of the most suitable optimization method for SRI portfolios will have an 

effect on the bottom line of companies and, through this, on the promotion of 

societal well-being and environmental conservation. Hence, the results of this study 

are of interest and importance to a variety of constituents including investors, fund 

managers, corporate executives, social and environmental activists and overall 

concerned citizens. 

Although our study is innovative within the SRI field, it is limited by considering only 

one asset class (equities) and the geographic coverage of the markets considered 

(US). Future studies can extend our analysis in either of these directions. 

Furthermore, the selection of the CSP criteria and dataset used is always an 

important issue within the literature (Griffin and Mahon, 1997). Using different 

social and environmental sources of data and alternative CSP metrics would provide 

a useful test for the reliability of different optimization methods for SRI. 
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Appendix 4.A: Mathematical definition of implemented optimization approaches 

4.A.1 Markowitz portfolio optimization 

The optimization framework proposed by Markowitz (1952) assumes that the 

expected value  μ  and the covariance    of asset returns are known with 

certainty. Specifically, if   denotes the column vector of portfolio weights (decision 

variables) defined as  
T

1 2 N,      with N  assets in the portfolio, a sample 

variance-covariance matrix of asset returns ( ) and a column vector of mean asset 

returns (  
T

1 2 N= μ ,μ ,...,μμ ), then the minimum variance portfolio selection 

problem is expressed as follows: 

                                                       

T

T

T

i

   

s.t.     α   

1

          0,    i=1,...,N

min





  

μ  

          1


 





                                       (A.4.1) 

where the objective is the selection of a portfolio   that minimizes the risk 

(variance) among all feasible portfolios. The constraint T 11   requires that the 

portfolio weights sum to one. The constraint T α μ  sets a lower bound on 

portfolio mean return21. We also rule out short selling by imposing non-negativity 

constraints ( i 0  ) on the asset weights. 

4.A.2 Robust estimation approach 

To deal with the effects of parameter uncertainty we also apply a robust estimation 

strategy which is inspired by previous studies of robust asset allocation with norm 

constraints on the portfolio weights, such as DeMiguel et al. (2009a). Specifically, we 

follow Xing et al. (2014) and impose a constraint of an 
1l  norm, 

1


 
(taxicab or 

                                                           
21

In our analysis, we set the lower bound of the mean portfolio return (parameter α) to 1% on an 
annual basis. We assume this is the minimum expected return an investor would be willing to accept 
in order to invest in a risky portfolio. The selection of the exact value of α is not crucial in this 
framework and does not influence the conclusions drawn from our results. 



148 
 

Manhattan norm) and an l  norm, 



 
(maximum norm) on the portfolio weights. 

The taxicab norm (l1) is the sum of the absolute values of a vector, and setting an 

upper bound on l1 encourages sparse solutions, i.e. portfolios with active positions in 

only a few assets (sparse portfolios), see for instance Brodie et al. (2008). 

Having active positions in only a few assets leads to the significant practical benefit 

of lower transaction costs. However, after applying the 
1l  norm constraint, some of 

the positions may be very large. The additional use of the l norm addresses this 

issue, see for instance Brondell and Reich (2008). The maximum norm (l∞) of a vector 

is the largest absolute value of the elements in the vector, and an upper bound on l∞ 

prevents large positions in any asset. Therefore a combination of the 
1l  and l

upper bounds tends to produce sparse portfolios without very large individual 

weights. 

By additionally employing the three optimization constraints of problem (A.4.1), the 

optimization problem can be written as follows: 

                                                    

T

1

T

T

i

   

s.t.     c

          α

          1

          0,    i=1,...,N

min


 





  

μ
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
 

 





                                         (A.4.2) 

where 
N

i1
i 1

Φ


  denotes the 
1l  norm,  i

1 i N
Φmax

  
  represents the l

norm ( i  denotes the absolute value of 
i ), while 1  is a column vector of ones. 

Furthermore, 
1

c 1
N

   denotes the upper bound22 of the constraint that involves 

the 
1l  and l  norms. We run the robust estimation strategy using time varying 

                                                           
22

 The lowest feasible value of c occurs when it is equal to 1+ 1/N and all the asset weights are equal 
to 1/N. Simulations of robust portfolio models usually start with a value of c just above 1. Setting c 
some way above 1 permits the optimization process to make a trade-off between preventing short 
sales and allowing large asset weights.  
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values for c. For the first period we set c = 1.1, but for subsequent periods we set c 

equal to the value in the range 1.1 to 9.0 that gave the best out-of-sample 

performance during the previous period, Fan et al. (2008), Fan et al. (2012) and Xing 

et al. (2014). The conclusions are unaltered when different values of c are used in 

the first period. 

4.A.3 Black-Litterman approach 

The Black-Litterman portfolio framework combines the subjective views of the 

investor, in terms of returns and risk, with those of a benchmark portfolio (e.g. the 

equilibrium market portfolio), and is an alternative way of dealing with estimation 

risk in the input parameters (Black and Litterman, 1992). The posterior estimates of 

expected returns and covariances are then used in the portfolio optimization 

process. We use the portfolio optimization model described in problem (A.4.1), 

which minimizes the portfolio risk (variance), subject to three linear constraints on 

asset weights. 

The column vector of implied excess returns  Π  for the benchmark portfolio is 

expressed as follows: 

                                    
benchmarkΠ                                       (A.4.3) 

where   denotes the risk aversion coefficient23 and benchmark  is a column vector of 

the asset weights of the benchmark portfolio24. The column vector of the posterior 

asset returns  BLμ  is given by: 

                       
   

1
1 1T 1 T 1

BL  


       
   

μ P P P Q                       (A.4.4) 

where   represents the overall level of confidence in the column vector .Π  We set 

this parameter to 0.1625, which is the mean of the values used in the literature (see 

                                                           
23

 The investor’s risk aversion parameter disappears in the optimization process, since we use just the 
portfolio variance in the objective function.  

24
 We have used the equally-weighted portfolio (1/N) as the benchmark portfolio. Bessler, Opfer and 

Wolff (forthcoming) show that the effect of the choice of benchmark portfolio on the Black-Litterman 
results is minimal. 
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for instance Bessler, Opfer and Wolff, forthcoming; and Platanakis and Sutcliffe, 

forthcoming). 

Bessler, Opfer and Wolff (forthcoming) experimented with different values of the 

parameter  , and showed that the Black-Litterman results are robust to the choice 

of   in the range between 0.025 to 1.00. In addition, P  denotes a binary matrix 

defining the assets involved in each view, Q  is a column vector that contains the 

views (subjective returns), and   is a diagonal matrix that quantifies the reliability 

of each view. The latter is estimated following Meucci (2010), as follows: 

                          
1


 T

Ω P P                                                    (A.4.5) 

where   represents the overall level of confidence in the investor’s views. We 

follow Meucci (2010), setting   to one. We tried different values of the parameter δ 

and found that the impact on the Black-Litterman results is negligible. We follow 

Bessler, Opfer and Wolff (forthcoming) and use the sample means as subjective 

return estimates. Following Satchell and Scowcroft (2000), Bessler, Opfer and Wolff 

(forthcoming) and other studies, we estimate the posterior covariance matrix  BLΣ  

as follows: 

                       
 

1
1 T 1

BL 


    
 

Σ P P                          (A.4.6) 

Finally, Bessler, Opfer and Wolff (forthcoming) suggest that the reliability of the 

views incorporated in the Black-Litterman model is time-varying. For each of our out-

of-sample periods, we estimate the reliability of the views for the subsequent out-of-

sample period using the entire estimation period of 72 months.  

4.A.4 Risk-parity portfolio construction 

The risk-parity portfolio approach is based on the idea that portfolio components 

(i.e. assets) contribute to the same extent to portfolio risk. In its simplified version, 

the risk-parity approach ignores correlations between asset returns, and the asset 

weights are anti-proportional to their sample variance. Hence, the portfolio weights 

are computed as follows:- 
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                                        (A.4.7) 

 

4.A.5 Reward-to-risk timing portfolios 

The reward-to-risk timing portfolio strategy has been proposed by Kirby and Ostdiek 

(2012) and is based on the reward-to-risk ratio, which is defined as the mean return 

divided by the variance of each asset. Specifically, the reward-to-risk timing strategy 

takes into account both risk and return, and allocates more weight to assets with 

higher risk-adjusted returns. The portfolio weights are given by: 

                                          
 
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μ /
,     i=1,...,N,
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                                          (A.4.8) 

where  i iμ μ ,0max   to prevent short selling. In the very rare case when all asset 

returns are negative, an equally-weighted portfolio (1/N) is considered. 
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Appendix B: Indicators for each CSP dimension 

MSCI KLD 
Qualitative 
Issue Areas 
of Interest 

   Strengths    Concerns 

Community - Charitable Giving - Investment Controversies 

 - Innovative Giving - Negative Economic Impact 

 - Non-US Charitable Giving - Indigenous Peoples 
Relations  - Support for Housing - Tax Disputes 

 - Support for Education - Other Concern 

 - Indigenous Peoples Relations  

 - Volunteer Programs  

 - Other Strength  

Diversity - CEO’s identity - Controversies 

 - Promotion - Non-Representation 

 - Board of Directors - Other Concern 

 - Work/Life Benefits  

 - Women & Minority Contracting  

 - Employment of the Disabled  

 - Gay & Lesbian Policies  

 - Other Strength  

Employee 
Relations 

- Union Relations - Union Relations 

 - No-Layoff Policy - Health and Safety Concern 

 - Cash Profit Sharing - Workforce Reductions 

 - Employee Involvement - Retirement Benefits 
Concern  - Retirement Benefits Strength - Other Concern 

 - Health and Safety Strength  

 - Other Strength  

Environment - Beneficial Products and Services - Hazardous waste 

 - Pollution Prevention - Regulatory Problems 

 - Recycling - Ozone Depleting 
Chemicals  - Clean Energy - Substantial Emissions 

 - Communications - Agricultural Chemicals 

 - Property, Plant, and Equipment - Climate Change 

 - Management Systems - Other Concern 

 - Other Strength  

Product 
Safety & 
Quality 

- Quality - Product Safety 

- R&D/Innovation 
- Marketing/Contracting     
   Concern 

 - Benefits to Economically 
Disadvantaged 

- Antitrust 

 - Other Strength - Other Concern 
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5 Pension Scheme Redesign and Wealth Redistribution Between 

the Members and Sponsor: The USS Rule Change in October 

201125 

On retirement the sponsor of a UK defined benefit (DB) pension scheme promises to 

pay a pension according to the rules of the scheme, regardless of the scheme’s 

financial state. This appears to place all the risks (investment, interest rates, 

inflation, salaries, longevity, regulation, etc.) on the sponsor, who is usually the 

employer. But the sponsor can share these risks with active and future members of 

the scheme by altering the rules applying to future accruals. For example, a large 

deficit may lead to rule changes such as an increase in the members’ contribution 

rate, the introduction of limited price indexation, a later retirement age, or a 

reduction in the accrual rate. Because UK law does not allow accrued benefits to be 

reduced, rule changes only apply to future accruals. This means that the youngest 

scheme members are the hardest hit by such action as they will be accruing benefits 

under the new rules for many years, while those near retirement are largely 

unaffected since their substantial accrued benefits are legally protected. 

Before a rule change the various scheme participants have both accrued benefits 

and expectations of the net present value (NPV) of their future interactions with the 

scheme, i.e. contributions to be made and pensions to be received26. After a rule 

change these expectations are altered, and the difference between NPVs of the cash 

flows before and after the rule change for each age cohort quantifies the 

                                                           
25

 The content of this Chapter was presented at the ICMA Centre Internal Research Seminar (Reading, 
UK) and has been accepted for revise and resubmit by the Insurance: Mathematics and Economics 
journal. 
26 The resulting changes in cash flows between the members and sponsor are zero sum. 
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redistributive effect of the rule change. For example, an increase in the member 

contribution rate redistributes pension wealth from active and future members to 

the sponsor. Therefore a rule change leads to the redistribution of pension wealth 

and risk between the main groups of participant - the sponsor, active members, 

deferred members27, pensioners and future members. 

When rule changes are proposed, attention usually focuses on the details of these 

changes such as contribution rates, accrual rates and retirement ages, but with no 

detailed valuation of the size of the wealth transfer. Almost no explicit consideration 

is given to the effects of a rule change on the wealth of the different age cohorts, or 

to the riskiness of this wealth, and these can be substantial. Therefore an important 

objective of this paper is to stimulate a greater awareness of the redistributive 

effects on wealth and risk of pension scheme redesign, particularly the generational 

effects. While this paper deals with a particular pension scheme and rule change, the 

methodology can be applied to investigate the redistributive effects of rule changes 

by other DB schemes where the sponsor remains responsible for meeting the 

pension promise, as in countries such as the UK and USA. It can also be used to 

investigate the long run viability of such DB pension schemes. 

Previous investigations of the redistribution of pension wealth by rule changes have 

been of hypothetical schemes. This is the first paper to quantify the redistributive 

effects of a major package of rule changes by a large real-world DB pension scheme - 

the UK Universities Superannuation Scheme (USS). Almost all previous studies have 

been of hypothetical Dutch schemes where the sponsor has no obligation beyond 

                                                           
27

Members who are no longer active contributors, but who have not yet retired. 
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paying a fixed contribution rate. Therefore the sponsor is not involved, and all the 

redistribution is between different generations of member, i.e. inter-generational 

redistribution. In 2011 USS was a ‘balance of cost’ scheme where, unlike Dutch 

schemes, the sponsor bears the default risk, and so any redistribution of wealth and 

risk is primarily between the sponsor and members. 

To quantify redistribution stemming from the October 2011 rule change, a 

benchmark must be specified. One possible benchmark is to compute the ‘true’ 

funding position of USS in October 2011, and then to distribute any deficit among 

the sponsor and the cohorts of members and pensioners. However, there would be a 

considerable degree of uncertainty and subjectivity attached to such a benchmark. 

In October 2011 USS had a well-defined set of rules, the main features of which had 

remained unchanged since 1975, when USS began. Therefore a reasonable 

expectation for members in October 2011 was that the pension promises enshrined 

in the USS rules would be honoured, and so the benchmark we use is the pre-

October 2011 scheme. 

This paper incorporates many aspects of the problem not included in previous 

studies - lump sum payments on retirement, deferred pensioners, limited price 

indexation, spouses’ pensions, increases in the retirement date, both final salary and 

career revalued benefits (CRB) sections, and consumer price indexation (CPI) of the 

accrued benefits of the CRB section active members and the accrued benefits of 

deferred pensioners, as well as pensions in payment. In addition, we compute final 

salaries using the retail price index (RPI), see Appendix 5.A. This is also the first study 

of redistribution by a scheme moving to ‘cap and share’ contribution rates. We 
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model the pension scheme for longer than a working lifetime to avoid the problem 

of back-loading, where contributions made when young represent worse value than 

those made when old28. If the effects of a rule change are quantified for a period 

shorter than a working lifetime, the presence of back-loading is likely to show that 

the young receive a less favourable outcome than the old. We also employ a 

dynamic asset allocation strategy by allowing the asset allocation to respond to the 

current funding ratio (assets/liabilities), rather than use a fix-mix investment strategy 

as have most previous studies. With 13 factors the vector auto-regression (VAR) 

model we use to forecast asset returns and inflation includes many more assets than 

previous studies, and is only the second study to include the three factors of the 

yield curve (level, slope and curvature) in the VAR model, rather than selected 

interest rates. Finally, we model the numbers of new active and deferred scheme 

members each year as stochastic processes. 

Section 5.1 describes USS, and section 5.2 outlines our methodology. Section 5.3 has 

a literature review, followed in section 5.4 by details of the data and methodology 

used to forecast the yield curve, asset returns, inflation and academic salaries each 

period until the horizon date. Section 5.5 contains the procedure for forecasting the 

size of each age cohort, and section 5.6 explains how the liabilities (i.e. the accrued 

benefits) of each age cohort are estimated at the end of each period. Section 5.7 

then brings together all these forecasts to calculate the triennial values of the USS 

funding ratio, revisions to the member and sponsor contribution rates, and 

adjustments to the asset allocation. In section 5.8 these are used to generate the 

                                                           
28 Back-loading occurs when the scheme uses age-independent contribution and accrual rates (as 
does USS) and the rate of return on the scheme’s assets exceeds the rate of salary growth. 
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cash flows to and from the various participants each time period until the horizon 

date. The NPVs of these cash flows are valued using stochastic discount factors (SDF) 

to give the redistribution of wealth generated by the October 2011 rule changes. The 

results appear in section 5.9, with robustness checks in section 5.10, where the use 

of riskless discount rates also permits estimates of the changes in risk29. Finally, 

section 5.11 has the conclusions. 

5.1 USS 

In 2014 USS was the second largest pension scheme in the UK, and the 36th largest in 

the world with 316,440 active members, deferred pensioners and pensioners. It is a 

multi-employer scheme with 374 separate sponsors (or institutions), and assets 

valued at £42 billion in 2014. Until the rule change implemented in October 2011, 

USS was an open final salary scheme. In October 2011 USS was split into two 

sections - a final salary section that was closed to new members in October 2011, 

and a CRB section, which operates on a career average revalued earnings (CARE) 

basis, and started operation in October 2011. The rule changes in October 2011 were 

a matter of heated public controversy between the institutional sponsors of USS, 

represented by the Employers Pension Forum; and the members and pensioners of 

USS, represented by the University and College Union (UCU), leading to lengthy 

industrial action by members of the UCU30. 

USS is a very large and complicated scheme with a 295 page rule book, and so any 

model of USS is bound to be a gross simplification. This study captures the financially 

                                                           
29

It is not possible to use SDFs to measure changes in risk. 
30

No explicit concerns were expressed for the distributional implications of the rule change. 
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important features of USS, including all the rules that changed. The other important 

changes implemented in October 2011, besides new members joining the CRB 

section, were (a) an increase in the contribution rate for the final salary section, (b) 

the introduction of a ‘cap and share’ rule for deficits and surpluses, (c) linking the 

normal retirement age to the state pension age, and (d) limiting the indexation of 

pensions and deferred pensions. The rules pre and post-October 2011 are set out in 

Appendix 5.A. This appendix also details some of the other USS rules incorporated in 

our model, including lump sum payments, spouses’ pensions, deferred pensioners, 

and the computation of final salary. Unchanged rules tend to be less important 

because they have a similar effect on pension wealth before and after the rule 

change, and so tend not to create redistribution. 

5.2 Methodology 

We modelled the effects of the six rule changes as a single package, rather than 

examining the effects of each rule change separately. This is because we are 

primarily interested in the effects of the package, the rule changes interact and so 

the effects of the October 2011 rule changes are only available by treating them as a 

package, and because repeating the analysis another six times would be a 

considerable undertaking. The analysis of the redistributive effects of the USS rules 

change in October 2011 is divided into two main steps. The first step is to model the 

evolution of USS over the horizon period, permitting forecasts of the cash flows 

between each age cohort, the sponsors and USS under two alternative sets of rules - 

those pre and post-October 2011. This will be done using three year time periods, as 

this is the frequency of USS actuarial valuations and contribution rate reviews. In the 
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second step, the NPV of the forecast cash flows for each age cohort and the sponsors 

is computed for both the pre and post-October 2011 rules. This allows the 

calculation of the NPV of the change in expected pension wealth for each cohort 

caused by the October 2011 rule changes, which is the standard way of measuring 

pension redistribution, Bonenkamp (2009). 

We concentrate on expected pension wealth, although the October 2011 rule 

change may well have other effects on members and the sponsor. Pension 

contributions are an important component of university expenditure. Since the 

government no longer raises university funding to compensate for increases in the 

cost of USS, any additional sponsor contributions must be funded by the universities 

themselves. Apart from raising additional revenue, universities might make cost 

savings by cutting expenditure on capital projects, reducing salaries or increasing 

workloads, with an adverse effect on active members. It is also possible that after 

October 2011 employers used their reduction in pension contributions, relative to 

the benchmark, to raise salaries to compensate for the drop in expected pension 

wealth of members. Many empirical studies have tried to quantify the compensating 

wage differential, i.e. the size of the trade-off between pension benefits and wages, 

and recent examples of this literature include Disney, Emmerson and Tetlow (2009), 

Gerakos (2010) and Haynes and Sessions (2013). Attempts to quantify the wage-

pension trade-off have encountered substantial econometric and data problems 

(Allen and Clark, 1987), but subject to these reservations, the empirical evidence 

suggests the trade-off is well below one-for-one. Consistent with this evidence UK 

academic salaries have showed no obvious response to the USS rule change of 
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October 201131. Such consequential effects on the membership such as higher or 

lower salaries, worse conditions of service etc. are outside the scope of this research. 

The members, future members, pensioners and deferred pensioners of the two 

sections of USS (final salary and CRB) are disaggregated into age-based cohorts, 

where the age range covered by each cohort is five years. We use five years because 

this is the period used by USS when they supplied us with some cohort data, and 

provides computational tractability. For the post-October 2011 final salary section 

there are eight cohorts each of active members and deferred pensioners aged 

between 25 and 65 years, and six cohorts of pensioners aged between 65 and 95. In 

addition, the post-October 2011 CRB section has three cohorts of actives and 

deferreds aged between 25 and 35 years. This is because new active members 

(future cohorts) enter directly into the four youngest cohorts each year. The post-

October 2011 CRB section also has 11 cohorts of both future actives and deferreds 

aged from minus 30 to 25 years of age in 2011. This makes a total of 50 cohorts for 

the post-October 2011 scheme. The continuation of an unchanged pre-October 2011 

final salary scheme has a total of 44 cohorts, all of which appear as part of the 50 

post-October 2011 scheme cohorts. The other participants in the scheme are the 

sponsors of USS, i.e. the 374 UK universities and related institutions, who are treated 

as a single group. 

Forecasting asset returns, yield curves, inflation, longevity and salaries for the 

horizon period (54 years) is a daunting task; as is projecting the membership in each 

USS age cohort during this period. Therefore the resulting cash flow forecasts are 
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Between October 2011 and October 2015 academic salary scales rose by only about 1% per year. 
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inevitably subject to a considerable degree of estimation risk. Because of the heroic 

forecasts required, a range of financial and demographic forecasts are employed to 

generate a distribution of outcomes, and the sensitivity of the conclusions to some 

of the important assumptions is investigated as a robustness check. In contrast to 

Chapter 3 where out-of-sample tests are conducted to compare different portfolio 

construction methods in an environment where there is no knowledge of the future 

as it often happens in practice, the scope of the study presented in this chapter is 

different and the model requires heroic and even ‘dangerous’ forecasts of a number 

of parameters in order the analysis to be conducted. 

5.3 Literature Review 

In 2001 Chapman, Gordon and Speed suggested taking a much wider view of the 

effects of changes in pension scheme rules than had previously been the case. They 

identified six stakeholders who are affected by a change in pension scheme rules - 

the sponsor’s shareholders, the sponsor’s debt holders, the employees, externals 

(the sponsor’s suppliers and customers), consultants and advisors, and the 

government. For a hypothetical UK scheme, they simulated the cash flows between 

these six stakeholders over a ten year period, and then used SDFs to compute the 

NPV of the cash flows for each stakeholder. This was done for both a base case and 

various alternative pension rules, and the average NPV for each set of rules for each 

group of stakeholders computed. The changes in these averages gave the 

redistributive effects of the rule change on the wealth of each stakeholder group. 

Ponds (2003) proposed using the approach of Chapman, Gordon and Speed (2001) to 

quantify the intergenerational redistributive effects of different pension scheme 



163 
 

rules. He considered a hypothetical Dutch scheme where the sponsor bears no risk, 

and analysed redistribution between active members, pensioners and future 

members; and between age cohorts of these three groups. Using the same 

methodology, Hoevenaars and Ponds (2007, 2008), Lekniute (2011) and Draper, Van 

Ewijk, Lever and Mehlkopf (2014) have also illustrated intergenerational 

redistribution among age cohorts arising from changes in scheme rules for 

hypothetical Dutch pension schemes; while Hoevenaars, Kocken and Ponds (2009) 

and Hoevenaars (2011) have investigated redistribution between the sponsor and 

members (but not between age cohorts of members) for hypothetical Dutch DB 

schemes. Finally, for a hypothetical US state pension scheme, Lekniute, Beetsma and 

Ponds (2014) and Beetsma, Lekniute and Ponds (2014) simulated intergenerational 

redistribution between cohorts of active members and the sponsor (the state’s tax 

payers) due to rule changes. 

5.4 Forecasting Asset Returns, Inflation and Salaries 

In this section we use the Nelson and Siegel (1987) model to estimate the 

parameters of the yield curve for the data period (1993-2010)32. We then estimate a 

VAR(1) model to enable us to forecast asset returns, inflation, and the yield curve for 

the horizon period. Finally we generate forecasts of the salaries of the various age 

cohorts of USS active members until the horizon date. In making these forecasts we 

only use data that would have been available to USS at the time of the rule change. 

                                                           
32

The data we use to estimate the VAR(1) model starts in 1993. This is because earlier data is not 
available for some of the maturities involved in the estimation of the three Nelson-Siegel yield curve 
factors: β1, β2 and β3. The length of the estimation period we use for the VAR(1) model is in line with 
that used by Ferstl and Weissensteiner (2011) and Gulpinar and Pachamanova (2013). 
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A. Yield Curves. Diebold and Li (2006) have developed a variation of the Nelson-

Siegel model for forecasting yield curves which allows the entire yield curve to be 

represented by only three parameters:- 

  1, 2, 3,

1 1
                     (5.1)
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where yn(t) denotes the spot rate (zero coupon) at time t for a maturity of n periods, 

and β1, β2 and β3 are the level, slope and curvature respectively of the yield curve. 

Following Diebold and Li, we set the annual decay rate λ in equation (5.1) to 0.1827. 

We use end-of-quarter yields from 1993 to 2010 for zero coupon UK government 

bonds with maturities of 3 months, 1 year, 2 years, 3 years, 5 years, 10 years and 20 

years. Following Diebold and Li (2006), who estimate the Nelson-Siegel yield curve 

using data for a 15 year period, we apply linear interpolation to compute the nearby 

maturities and estimate a time series for each of the three parameters in equation 

(5.1). These three time series of the parameters of the yield curve are then included 

in a VAR(1) model to generate forecasts of the yield curve in future years, (Ferstl and 

Weissensteiner, 2011). 

B. VAR(1) Model. We use a VAR(1) model to generate the future scenarios, as have 

Hoevenaars and Ponds (2008), Hoevenaars, Kocken and Ponds (2009), Hoevenaars, 

Molenaar and Ponds (2010), Hoevenaars (2011), Lekniute (2011), Lekniute, Beetsma, 

and Ponds (2014). The financial data included in our VAR(1) model consists of 

quarterly excess returns from 1993 to 2010 for UK equities (FTSE All Share Total 

Return index), European equities (MSCI Europe excluding the UK Total Return index), 

US equities (S&P500 Composite Total Return index), hedge funds (HFRI Hedge Fund 
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index), commodities (S&P GSCI Total Return index), UK property (UK IPD Index Total 

Return index), together with quarterly values for UK dividends (FTSE All Share 

Dividend Yield), US dividends (S&P500 Composite DS Dividend Yield), and UK 

inflation rates (UK RPI and UK CPI). In addition, we include the three estimated 

parameters of the Nelson-Siegel yield curve factors, β1, β2 and β3, in the VAR(1) 

model in equation (5.2):- 

            xt+1 = c + Bxt + ζt+1   where   ζt+1~ N(0, Σ)                                   (5.2)  

where xt is a column vector of economic factors at time t, c is a column vector of 

constants, B is a square matrix of coefficients, ζt+1 is a column vector of disturbances 

at time t+1, and Σ is the variance-covariance matrix of the column vector of 

disturbances. The estimated VAR(1) model with 13 variables appears in Table 5.1, 

with the estimated covariance matrix of the disturbances in Appendix 5.D33. The 

VAR(1) model shows strong evidence of predictability of stock returns and hedge 

funds. These findings are in accordance to Berkelaar and Kouwenberg (2010) and 

Hoevenaars et al. (2008), among others. The largest eigenvalue of the estimated 

coefficient matrix (B) is 0.9428, and since this is less than one the system is stable 

and shocks to the system dampen over time. We also tried including jumps in the 

VAR(1) model, but the results were inferior. 

Following Hoevenaars and Ponds (2008), Hoevenaars, Kocken and Ponds (2009), 
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VAR(1) is preferable to VAR(2) according to the Schwarz criterion for model selection. F-tests for the 
regressions of the 13 variables show that one lag is preferable to two lags for ten of the variables. 
Finally, the VAR(1) model has a lower maximum eigenvalue than the VAR(2) model. For these reasons 
we prefer the VAR(1) model to the VAR(2) model. All of the 13 variables are stationary. None of the 
sets of regression residuals for the 13 explanatory variables displayed serial correlation. Ten of the 
sets of residuals are normally distributed, with plots of the remaining three sets looking 
approximately normal. 
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Hoevenaars, Molenaar and Ponds (2010) and Hoevenaars (2011), we forward iterate 

this model for the out-of-sample period to produce 5,000 sets of forecasts (i.e. 

scenarios) of asset returns, inflation rates, and the yield curve until the horizon 

date34. To produce a scenario we generate an x vector at time t+1 (x*
t+1) for each 

out-of-sample period, where the superscript * indicates a value estimated using 

equation (5.3):- 

                          x*
t+1 = c + Bx*

t + ζ*
t+1                                               (5.3) 

The value of the ζ*
t+1 vector each period is generated by Monte Carlo simulation 

using the estimated multivariate normal distribution of the disturbances in equation 

(5.2). We computed the maximum and minimum yields for each maturity (3 months 

to 20 years) for the Nelson-Siegel yield curves estimated in section 5.4A. The 

maximum yield for all maturities is almost flat at 8.5%, while the minimum yield rises 

in a more or less linear manner from 0.4% for 3 months to 3.8% for 20 years. When 

generating future scenarios we impose these upper and lower bounds on the 

forecast yield curves. 

C. Salaries. Salaries rise for two reasons - general increases in the salary scale (Ss), 

and incremental pay rises (Si) as active members age or are promoted. The rise in 

salaries for an age cohort of active members is the product of these two sources of 

wage rises, i.e. (1+Si)(1+Ss). The USS scheme actuary estimates general salary 

increases as the forecast rate of RPI inflation plus one percent (USS, 2014). Table E in 

Higher Education Statistics Agency (2014) provides academic salary levels for each 

age cohort in 2012-13. We use this data to compute the relationship between age 
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In a similar context Chen, Pelsser and Ponds (2014) also used 5,000 scenarios. 
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and salary for UK academics, with the slope of this curve giving the rate of 

incremental pay rises for different age cohorts. Together with the RPI inflation 

forecasts from the VAR(1) model, this allows Ss and Si to be forecast until the 

horizon. USS (2014) gives the total pensionable salaries of active members in 2011 as 

£5.845 billion, and the number of active members in 2011 as 139,931. This implies 

an average salary of £41,771 for USS active members in 2011, and we use this to 

calibrate the cohort salary data from HESA (2014) to match the USS active 

membership average. 

5.5 Forecasting the Size of the Age Cohorts 

The forecasts of the numbers of actives, deferreds and pensioners in each age cohort 

for the pre and post-October 2011 schemes use membership data from the USS 

annual reports, as well as data for 2014 on the size of each age cohort in the final 

salary and CRB sections supplied directly to us by USS. Changes in the total number 

of active members of USS for the years 1997 to 2014 are regressed on a time 

dummy. By modelling the total number of active members we allow for early leavers 

and late joiners. When computing the pension wealth effects of the rule changes on 

each age cohort of active members, we assume they expect to stay in USS until 

retirement. The estimated slope of this regression is zero, with a highly significant 

constant term of 5,050, indicating that USS total active membership is increasing by 

5,050 per year. We use the residuals from this regression to estimate the standard 

deviation of annual changes in the total active membership of the pre-October 2011 

scheme at 2,366. When forecasting the annual increase in the total active 

membership we choose a value at random from a normal distribution and add it to 
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the forecast increase to allow for year to year fluctuations. We assume that each 

year equal proportions of the new active members enter the four youngest age 

cohorts. This assumption is chosen to ensure that the average distribution of active 

members by age cohort across all the years until the horizon date approximates the 

age distribution of active members in 2014 supplied to us by USS.  

We follow a similar procedure to forecast the annual changes in the number of 

deferred pensioners for the pre and post-October 2011 schemes, except that new 

deferreds enter with a five year lag35. In a regression of changes in the total number 

of deferred pensioners for 1997 to 2014 on a time dummy the estimated slope 

coefficient is zero, and the highly significant constant term is 4,292, with a standard 

deviation of 1,359. The resulting average age distribution of deferred members 

across all the years until the horizon date approximates the age distribution of 

deferred members in 2014 supplied to us by USS. 

5.6 Forecasting the Liabilities 

We use an actuarial model based on Board and Sutcliffe (2007) to forecast the values 

of the scheme’s liabilities for each age cohort until the horizon date, and this 

requires the specification of a number of parameters, see Appendix 5.B. We are 

modelling the performance and decisions of USS over the horizon period, where the 

value of the liabilities is a key input to computing the funding ratio and revising the 

contribution rates and asset allocation. Therefore, to model the decisions of USS, we 

need to use the same inputs as USS when valuing the liabilities. 
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So we implicitly assume that, on average, deferreds have previously been actives for five years. 
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We base the life expectancy for each cohort of pensioners on the National Life 

Tables for the UK, 2011-13 (ONS, 2014), with the number of members of each 

pensioner cohort reducing each year in accordance with this life table. We generated 

a blended mortality table using the weights of 55.5% male and 44.5% female, taken 

from the HESA (2014) data on the gender of academic staff. In 2011 USS members 

had a blended life expectancy of 25 years at age 65, which incorporates the actuary’s 

estimate of future improvements in USS longevity, USS (2012). As USS members 

have a greater life expectancy than the general population, the national life tables 

are uprated by six years, so that at age 65 USS pensioners are expected to live until 

they are 90 years of age. Following Carnes and Olshansky (2007), we do not allow for 

any further increases in longevity over the horizon period. For simplicity, those 

pensioners who reach the age of 90 years are assumed to die at the age of 95, which 

matches their expected longevity of five years at the age of 90. 

Based on USS (2014) we assume that two thirds of pensioners have an eligible 

beneficiary (usually a spouse) at the time of their death, and that surviving 

beneficiaries live for another three years. During this time eligible beneficiaries 

receive a pension equal to half that of the deceased pensioner. So the extra cost of a 

spouse’s pension is approximately equal to 0.667×0.5×3 = 1 year of the deceased 

member’s pension. To account for this additional liability, we increase longevity by 

one year. 

The computation of the liabilities also requires estimates of the number of accrued 

years for each age cohort. The age of each cohort is taken as the mid-point of the 

cohort’s age range, and their accrued years are computed from their current age, 
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assuming they joined USS at an average age of 32.5 years. We then adjust these 

numbers in 2011 for each cohort to match the average accrued years across all the 

cohorts of active members of 10.4 years given in USS (2014). On a technical 

provisions basis, the USS liability for deferred pensions in the 2011 actuarial 

valuation was £2.792 billion (USS, 2012). We used equation B.5.1 in Appendix 5.B to 

compute the implied number of accrued years for deferred pensioners at four years, 

and adjusted the accrued years for deferred members to match the estimated 

average number of accrued years. 

Economic theory indicates that the cash flows in each future year should be 

discounted using the rate of return on a portfolio that replicates the risk and return 

of this cash flow, leading to the use of a different discount rate for each year. 

However, to model USS decisions on contribution rates and asset allocation we need 

to use the same discount rate as USS, which is the average of the current yield curve 

for the next 20 years plus 1.7%, and so we do likewise, (USS, 2014). However, when 

discounting the cash flows to compute the wealth changes for each cohort and the 

sponsor in section 5.8, we will use SDFs. SDFs have been widely used to compute the 

Net Present Values (NPVs) of pension scheme cash flows, see for instance section 

5.8. Especially, using SDFs to discount the cash flows to compute the wealth changes 

between the different stakeholders of USS, see section 5.8 for more details, is a 

separate process from the computation of the pension liabilities. Actuarial liabilities 

are used to model USS decisions (asset allocation and contribution rates), and the 

average of the current yield curve with maturity up to 20 years plus 1.7% is used as 

the nominal discount rate (the same as USS) in the actuarial formulas provided in 
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Appendix 5.B. Finally the total liabilities computed using our model for 2011 were 

calibrated to equal their value on a USS technical provisions basis of £35.3437 billion 

in 2011, with the liabilities for each of the constituent age cohorts correspondingly 

adjusted, (USS, 2012). 

The number of people in each cohort was estimated in section 5.5, and the current 

salary for the members of each cohort is their initial salary increased by the forecasts 

of salary growth from section 5.4. Our estimates of salary increases follow the USS 

methodology. Section 5.4 supplies the forecasts of CPI and RPI, and the estimates of 

the number of members and their salaries in each cohort are then calibrated to 

match the 2011 aggregate numbers published by USS (2014).  

In contrast to the Dutch research, because the sponsor remains liable for the 

pension promise, the liabilities for the various cohorts of USS take no account of the 

overall scheme surplus or deficit. However, in section 5.8 when computing the future 

cash flows for pensioners and sponsor, a share of the scheme surplus or deficit at the 

horizon date is allocated to the sponsor. 

5.7 Generating the Cohort Cash Flows 

The cash flows for each cohort per time period are the pensions and lump sums 

pensioners receive, less the contributions active members make to the scheme, 

while the sponsor just pays contributions per time period to the scheme. 

Contributions to the scheme for each cohort are the number of people in the cohort, 

times the average cohort salary, times the sum of the current contribution rates for 

active members and the sponsor. The size and average salary of each cohort were 
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computed in section 5.4. The contribution rate for members of the final salary 

section increased from 6.35% to 7.5% in October 2011, while the sponsor’s 

contribution rate remained at 16%. The members’ contribution rate for the CRB 

section is 6.5%, and that for the CRB sponsor is 16%. The total pension payment to 

each cohort is the number of people in the cohort times their initial pension, 

adjusted for subsequent limited price indexation, computed using the rules in 

Appendix 5.A. The lump sum calculation for each cohort also follows Appendix 5.A.  

The cash flow calculations use the contribution rates and asset allocation for that 

period, both of which can change over time in response to the scheme’s funding 

ratio. The liabilities were estimated in section 5.6. The total value of the scheme’s 

assets at the end of each time period is the value of the investments at the start of 

the period, plus asset returns, the contributions received from the active members 

and sponsor during the period, less the lump sums and pensions paid out. Asset 

returns are computed using the forecasts of asset returns in section 5.4. The USS 

contribution rates and asset allocation are adjusted each period in response to the 

current value of the funding ratio, whose initial value in 2011 was 92% on a technical 

provisions basis (USS, 2012). 

7A. Adjusting the Contribution Rates. Given the volatility of the funding ratio and the 

costs of change, we only adjust the contribution rates for the final salary and CRB 

sections when the funding ratio is below 90% or above 120%. They are adjusted so 

as to extinguish any surplus or deficit over a 15 year spread period, leading to a 

funding ratio of unity. For the post-October 2011 scheme, the difference between 

the final salary and CRB contribution rates for active members remains fixed at 1%. 
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At the request of USS, Ernst and Young assessed the sponsor’s covenant and 

concluded that the maximum contribution rate the majority of universities can pay is 

25% (USS, 2014). Given the ‘cap and share’ rule, this implies a member contribution 

rate of 10.27% for members of the final salary section, making a total contribution 

rate of 35.27%. To prevent the contribution rate reaching unrealistically high levels, 

we impose an upper bound of 35% on the total final salary contribution rate (34% for 

the CRB section) for both the pre and post-October 2011 schemes. We also 

investigate a maximum contribution rate of 29%, or 20.275% for the sponsor and 

8.725% for members of the final salary section, (28% for the CRB section) as a 

robustness check in section 5.10.  

7B. Adjusting the Asset Allocation. As well as changing the contribution rates in 

response to the funding ratio, the asset allocation may also be altered. There are two 

rival theories of how a scheme’s funding ratio and the probability of default affect its 

asset allocation. The risk management view is that as the probability of default rises, 

e.g. the funding ratio falls, schemes shift out of high risk assets into low risk assets; 

while the risk shifting view is the opposite36. The risk management approach is 

motivated by the view that riskier cash flows can lead financially distressed firms 

faster or closer to bankruptcy (Rauh (2009)). Hence, the risk management view 

suggests that pension fund managers can decrease the probability of default by 

investing into low risk assets instead of riskier assets and hence ensuring sufficient 

funds to avoid financial distress. In contrast to the risk management view, the risk 
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 Addoum, van Binsbergen and Brandt (2010), Amir and Benartzi (1999), An, Huang and Zhang 
(2013), Anantharaman and Lee (2014), Atanasova and Gatev (2013), Bodie, Light, Morck and Taggart 
(1985, 1987), Comprix and Muller (2006), Coronado, Liang and Orszag (2006), Friedman (1983), Guan 
and Lui (2014), LCP (2014), Li (2010), McCarthy and Miles (2013), Mohan and Zhang (2014), Munro 
and Barrie (2003), Petersen (1996) and Rauh (2009). 
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shifting view is based on the theory of asset substitution (Jensen and Meckling 

(1976)), and suggests that pension fund managers can increase the value of pension 

funds’ portfolio and improve the funding ratio by increasing the volatility (risk) of the 

fund’s assets when there is a high probability of default (e.g. low funding ratio), since 

the newer and riskier investment potentially improves the portfolio return. The 

empirical evidence on these rival views is mixed, and so alternative sets of results are 

generated for each of these views. Based on their past volatility, we divide the assets 

into three groups: high risk (UK, European and US equities and commodities), 

medium risk (real estate and hedge funds) and low risk (10 year bonds and cash). 

Adopting a very simple rule, the difference between the current funding ratio and 

the initial funding ratio in 2011 is used to adjust the money allocated to high and low 

risk assets, subject to the constraints of not allocating more than the available funds, 

or negative funds, to the high and low risk assets. 

For example, suppose the initial asset allocation in 2011 is 65% to high risk assets, 

15% to medium risk assets and 20% to low risk assets; the initial funding ratio in 

2011 is 0.80 and that by 2014 this has risen to 0.95. Using the risk management 

approach the asset allocation to high risk assets rises by (0.95−0.80) = 0.15 to 80%, 

the allocation to low risk assets drops by a corresponding amount to 5%, and the 

allocation to medium risk assets is unchanged at 15%. The allocations to the 

individual asset classes within each risk category are rebalanced in proportion to the 

change in the total funds available for that risk category. A similar rule applies for 

risk shifting, except the directions of change are reversed. Therefore we investigate 

the effects of three alternative asset allocation strategies - the actual USS allocation 
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in 2011 in conjunction with a fix-mix strategy of rebalancing the asset weights back 

to the initial allocation every three years, risk management and risk shifting. The 

initial asset allocation in 2011 is UK equities 23.06%, EU equities 18.32%, US equities 

18.32%, cash 5%, 10-year UK government bonds 12.3%, UK property 7%, hedge 

funds 8%, and commodities 8%. 

5.8 Redistribution  

The objective is to estimate the magnitude of the pension wealth transfer from each 

cohort of scheme members to the sponsor. The NPV of each series of cash flows is 

computed using risk-neutral valuation. Risk neutrality is based on the assumption 

that each share price is exactly equal to the discounted expectation of the share 

price under this measure, while it has the important advantage that it does not 

require any knowledge of the risk preferences of the stakeholders of a pension 

scheme (e.g. members, pensioners and sponsor). For instance, if offered either 100 

or a 50% chance each of 200 and 0, a risk neutral person would have no preference, 

in contrast to a risk averse or a risk seeking person. As a result, SDFs reflect the fact 

that the present values of cash flows are computed by discounting the future cash 

flows by the corresponding stochastic factor and then taking the expectation. For 

this reason SDFs have previously been used to compute the NPVs of pension scheme 

cash flows by Chapman, Gordon and Speed (2001), Hoevenaars and Ponds (2008), 

Hoevenaars, Kocken and Ponds (2009), Hoevenaars, Molenaar and Ponds (2010), 

Hoevenaars (2011), and Draper, Van Ewijk, Lever and Mehlkopf (2014). Lekniute 

(2011) and Lekniute, Beetsma and Ponds (2014) used risk neutral probabilities to 

value pension cash flows, which is logically equivalent to using SDFs. We follow these 
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previous authors in using risk neutral valuation, and use SDFs (or pricing kernels) to 

compute the NPVs of the cash flows for the member and pensioner cohorts and the 

sponsor. 

In using SDFs to value the pension liabilities we are treating all the liabilities as 

potentially risky. Although the Pension Protection Fund (PPF) insures roughly 90% of 

UK DB pension liabilities in the event of default, this does not make USS liabilities 

riskless. Default by USS requires all UK universities to be in default, and in such 

circumstances it is likely that the PPF, which has no explicit government guarantee, 

will also be in default (Blake, Cotter and Dowd, 2007). While pensions in payment 

have priority in the event of default, we have used the same risky discount rate for 

all liabilities. Splitting the liabilities into two tranches does not alter the total default 

risk, although it would lead to slightly higher discount rates for actives and 

deferreds, and slightly lower discount rates for pensioners. However the effects of 

such an adjustment on the conclusions would be minimal. 

The use of a unique set of positive SDFs to discount stochastic cash flows relies on 

the assumptions of complete and arbitrage-free markets in which the law of one 

price applies. Where markets exist, competition tends to ensure an absence of 

arbitrage opportunities and the validity of the law of one price. But if markets are 

incomplete, many alternative sets of positive SDFs exist. The valuation of DB pension 

liabilities faces the problem of a missing market for trading or hedging future 

salaries, and an imperfect market for hedging longevity. This leads to the 

contradiction that the use of risk neutral valuation to value pension scheme liabilities 

relies on complete markets, but if markets were complete pension schemes would 
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lose their reasons for existence, e.g. risk sharing, economies of scale, low 

transactions costs, etc. (McCarthy, 2005). 

Our model of USS assumes no cohort longevity risk, leaving only diversifiable 

longevity risk. Since USS has a very large number of members, diversifiable longevity 

risk is roughly zero, Aro (2014), Donnelly (2014). Future salary increases for USS 

members are split into two components: a general uplift in the salary scale which is 

assumed by USS to be RPI inflation plus 1%, and a promotional salary increase which 

is specific to each age cohort. The general RPI-linked uplift in salaries can be hedged 

using RPI-linked bonds or RPI-linked swaps, leaving just the promotional increases. 

Our model assumes that, apart from the annual RPI+1% uplift to all scale points, the 

salary scale remains constant over time, making the average promotional increase 

for each age cohort highly predictable. So, while no instrument exists for trading or 

hedging promotional increases, they are probably low risk, and can more or less be 

replicated using the riskless asset, making the market approximately complete.  

Hoevenaars and Ponds (2008), Hoevenaars, Molenaar and Ponds (2010), Hoevenaars 

(2011) and Draper, Van Ewijk, Lever and Mehlkopf (2014) simply assumed zero real 

wage growth to circumvent the incomplete markets problem. This is the same as our 

model, if promotional salary increases are excluded. De Jong (2008) discusses four 

methods to value salary-indexed stochastic future cash flows in the presence of 

incomplete markets, and advocates utility-based valuation assuming that individuals 

have a specified utility function. We prefer not to assume utility functions for actives, 

deferreds, pensioners and the sponsor, but to rely on the observed market prices 

used in the SDF computation, recognising that the assumptions required for the use 
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of SDFs are not fully met. Pukthuanthong and Roll (2015) have recently found that 

“the SDF theory’s main prediction, that the same SDF prices all assets during the 

same time period, cannot be rejected with our tests, data, or time periods. ... These 

results are consistent with complete markets and an absence of arbitrage.” This 

empirical finding supports our view that, while the assumptions may not be fully 

met, SDFs are still a useful way of valuing a sequence of risky cash flows. As a 

robustness check, in section 5.10 we also compute the NPVs using the forecast 

riskless rates, relying on the assumption that USS is backed by the UK university 

system, and so has minimal default risk. Using the riskless interest rate as the 

discount rate for valuing the liabilities of DB schemes is advocated by Broeders, Chen 

and Rijsbergen (2013), and has the advantage of allowing us to estimate the risks 

attached to expected changes in pension wealth. 

If markets are complete, the law of one price applies, and current asset prices are 

arbitrage free; then a unique set of positive state prices exists such that each asset’s 

current price is the sum of the cash flows from the asset in each future state 

multiplied by the corresponding state price. This is the fundamental theorem of 

asset pricing (see, for instance, Cochrane, 2001), and no knowledge of individual 

preferences is required to compute the state prices. Following Ang, Bekaert and Wei 

(2008) and Cochrane and Piazzesi (2005); as well as Nijman and Koijen (2006), 

Hoevenaars and Ponds (2008), Hoevenaars, Kocken and Ponds (2009), Hoevenaars, 

Molenaar and Ponds (2010) and Hoevenaars (2011) from the pensions literature, we 

define SDFs (mt+1) as:- 

  3 T T

t 1 t t t t 1

1
log

2

month

tm y 

     ζ                    (5.4) 
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where ζt+1~ N(0, Σ) denotes a column vector of disturbances from the VAR(1) model, 

yt
3-month  is the 3 month UK interest rate at time t estimated using the Nelson-Siegel 

yield curve (see section 5.4), and ϕt is a column vector of the time-varying prices of 

risk which is defined as in Cochrane and Piazzesi (2005), see appendix 5.C. The 

column vector 
tφ  (prices of risks) has 13 rows as the number of the economic 

variables used in the VAR(1) model. They are scenario-dependent and hence time-

varying. SDFs are also scenario dependent, and for a given scenario the SDF for a 

cash flow in year k (denoted mt+k
*) is the product of the SDFs for each of the first k 

years, i.e. mt+k
* = mt+1×mt+2×...×mt+k.  

For every scenario, i.e. each sequence of future returns, salaries, inflation rates, 

cohort size, and contribution rates until the horizon date, we generate annual cash 

flows. We then discount these back to the present using the set of SDFs specific to 

that cash flow sequence to get an NPV for each cohort. Finally, for each cohort we 

compute the average NPV across all cash flow sequences to place a value on this 

risky asset. 

At the horizon date some age cohorts will still have future cash payments to make or 

receive, i.e. they are pensioners, actives or deferreds. These terminal obligations, 

which have not yet become cash flows, must be valued. Rather than forecast the 

cash flows until all the new joiners in the horizon year have died, i.e. until (2065+70) 

= 2135, we forecast the cash flows for another 25 years until 2090. This allows us to 

compute the subsequent cash flows for all those who are pensioners in the horizon 

year, but not for those who are actives or deferreds. To avoid the problem of back-

loading we only compute NPVs for cohorts whose members are pensioners or 
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deceased at the horizon date, and not for cohorts with active or deferred members. 

Given the ‘cap and share’ rule, the terminal surplus or deficit at the horizon date for 

the post-October 2011 scheme is shared between the active members and the 

sponsor. The scheme liabilities in 2065 are estimated as the present value in 2065 of 

the cash flows between 2065 and 2090 for actives, deferreds and pensioners in 

2065, plus the USS valuation using Appendix 5.B of the scheme’s liabilities to these 

actives and deferreds in 209037. Using these liabilities, together with the total value 

of USS assets in 2065, the sponsor is allocated 65% of this horizon year surplus or 

deficit. There is no need to allocate the remaining 35% between the active members 

at the horizon date as the NPVs of their cash flows are not being computed. 

For a given set of rules, assumptions and forecasts, the average NPV represents the 

expected increase or decrease in pension wealth in October 2011 for each age 

cohort from the continued operation of USS according to a specified set of rules. We 

compute the wealth effects of the October 2011 rule change by examining 

differences in the NPVs for the pre and post-October 2011 schemes. This assumes 

that each of the alternative scheme designs remains unchanged for the horizon 

period. In the present case, if the pre-October 2011 scheme is not reformed there is 

an increased risk of financial distress for the sponsor, which may then impact on 

active and future members in the form of lower salaries, fewer jobs and subsequent 

scheme redesign. In common with previous studies of the redistributive effects of 
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The use of the USS valuation tends to understate the liabilities as it uses a high discount rate. It also 
ignores subsequent investment, salary, inflation, and contribution rate risk. However, since these cash 
flows occur at least 79 years in the future, their discounted value will be relatively small. 
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pension rule changes, we have not valued this risk, and assumed that members 

expect the chosen scheme to be unchanged. 

 

5.9 Results38 

The time series of the forecast mean funding ratios, contribution rates and asset 

allocations are plotted in figures 5.1 to 5.6. They are interdependent, as the asset 

allocation and contribution rates are adjusted in response to the current funding 

ratio. The contribution rates then affect the funding ratio in subsequent periods. 

Cohorts with a mean age of 42 years and older in 2011 contain only members of the 

final salary section, while cohorts aged 22 years and younger in 2011 are all 

members of the CRB scheme. The cohorts initially aged 27, 32 and 37 years contain 

members of both the final salary and the CRB sections.  

For the post-October 2011 scheme figure 5.1 shows that, while the mean funding 

ratio at first declines to below 80%, it steadily recovers. The improvement in the 

funding ratio from the mid-2020s onwards is due to the steady shift in the active 

membership from the final salary section to the cheaper CRB section. By 2053 all the 

active members are in the CRB section and the funding ratio has stabilized. At this 

time the long run funding ratio for fix-mix and risk shifting is over 115%, and for risk 

management it is over 100%. Figure 5.2 indicates that in the long run the pre-

October 2011 scheme has an inadequate funding ratio for risk shifting and fix-mix of 
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We modelled the problem using Visual Basic for Applications (VBA). On average it takes 50 seconds 
to run each scenario on a desktop computer with a 3.2 GHz processor, 12 GB of RAM and running in 
Windows 7 Professional. Therefore it took 17 days of CPU time to run 5,000 scenarios with three 
different asset-allocation strategies and two robustness checks. 
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about 80%, and for risk management it is a disastrous 65%.  

The results in figures 5.3 and 5.4 for the mean final salary contribution rates lead to 

broadly similar conclusions to those from figures 5.1 and 5.2. For the post-October 

2011 scheme, after a rise to 29%, the total contribution rates for fix-mix and risk 

shifting steadily decline to a long run rate of below 23%, which is less than the 23.5% 

rate in 2011. The risk management contribution rate does not drop below 29% until 

roughly 2030, and then declines to just below 25%. For the pre-October 2011 

scheme, risk shifting and fix-mix generate a long run contribution rate of around 

27%, and for risk management it is about 30%. These results suggest that the pre-

October 2011 scheme was not viable in the long run, irrespective of the asset 

allocation strategy adopted. Table 5.2 has the means and standard deviations of the 

funding ratios and contribution rates from 2011 to 2065. Given the considerable 

allocation to risky assets for the risk shifting and fix-mix strategies, it is not surprising 

that these two strategies lead both the schemes to higher funding ratios and lower 

contribution rates. On the other hand, we recognize that the improved performance 

may be accompanied with more volatile contribution rates and funding ratios across 

the 5,000 scenarios. 
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 Fix-Mix Risk Mgt. Risk Shifting 

 Post Pre Post Pre Post Pre 

Mean Funding Ratio 98.52% 80.94% 89.17% 70.96% 100.97% 84.23% 

SD of the Funding Ratio 14.66% 5.10% 11.82% 6.80% 15.95% 5.86% 

Mean final salary 
contribution rate 

25.21% 27.09% 26.65% 28.76% 24.80% 26.49% 

SD of the FS contribution rate 2.28% 1.38% 1.94% 1.67% 2.48% 1.44% 

Mean allocation to risky 
assets 

67.70% 67.70% 47.88% 38.38% 62.19% 68.36% 

SD of allocation to risky 
assets 

0.00% 0.00% 8.04% 10.28% 6.37% 1.93% 

Mean allocation to low risk 
assets 

17.30% 17.30% 37.12% 46.62% 22.81% 16.64% 

SD of allocation to low risk 
assets 

0.00% 0.00% 8.04% 10.28% 6.37% 1.93% 

Mean asset return 3.87% 3.87% 2.43% 2.09% 4.23% 4.39% 

SD of asset return 1.76% 1.76% 1.67% 1.68% 1.82% 1.80% 

Table 5.2: Summary Statistics for the Three Asset Allocation Strategies  

Figures 5.5 and 5.6 show the very different mean asset allocations for the risk 

shifting and risk management asset allocation strategies. For risk shifting in figure 

5.5, both of the pre and post-October 2011 schemes retain their high allocation to 

risky assets and low allocation to low risk assets, with the difference being more 

extreme for the pre-October 2011 scheme39. For risk management in figure 5.6 the 

                                                           
39

 Table 5.2 shows that for risk shifting the mean post-October 2011 allocation to risky assets (62.19%) 
is lower than for the fix-mix strategy. This is because, when the funding ratio is below its initial value 
of 92%, the risk shifting model seeks to increase the allocation to risky assets. However the risky asset 
proportion cannot rise above 85%, i.e. not more than 17.3% above its opening level of 92%. So if the 
funding ratio drops below 74.7% there can be no further increase in the allocation to risky assets, and 
this lowers the average risky asset proportion so that it is lower than for the fix-mix strategy. 
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pre-October 2011 scheme moves to a long run allocation of over 50% in low risk 

assets, and about 35% in risky assets; while the post-October 2011 scheme allocation 

moves to over 50% in risky assets, and about 35% in low risk assets.  

Figures 5.1 to 5.6 present information on the generation of the cash flows until the 

horizon date, and we can now compute the NPVs of these cash flows for the age 

cohorts and sponsor. Figure 5.7 shows the mean percentage drop in the NPV for 

each of the age cohorts due to the rule change. There are separate lines for the CRB 

and final salary sections, which overlap for the 27 to 37 years cohorts. This shows 

that young cohorts lose a much higher percentage of their pension wealth than do 

older cohorts, and that CRB members lose much more than do final salary members 

when they are the same age. Future members (cohorts 17 and 22) lose about 65% of 

their pension wealth in 2011, which is the present value of their future cash flows 

with USS (i.e. member contributions, pension and lump sum), while the youngest 

final salary members lose about a quarter of their NPV, and pensioners lose virtually 

nothing. This difference is because in 2011 older members had accrued substantial 

benefits based on contributions made in previous years. These benefits are legally 

protected from the rule change, and so their NPVs do not drop, while future 

members are subject to a much larger NPV drop. In addition, because the NPV 

computation excludes contributions made before 2011 while the accrued benefits 

these contributions created are carried forwards, the NPVs for older members are 

larger than those for younger members. So a given absolute NPV reduction 

represents a smaller proportionate drop for older members. 

We converted the proportionate losses per age cohort in figure 5.7 into approximate 
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losses per head in monetary terms for both actives (AL = LY×AY) and deferreds (DL = 

LY×DY), using equation (5.5) to estimate the mean loss of NPV per accrued year (LY):- 

                             LY = TL/{TN[AP(AY)+DP(DY)]}                           (5.5) 

where TL is the mean total loss of NPV for the age cohort, TN is the total number of 

members of the age cohort, AP in the proportion of the age cohort who are actives, 

DP is the proportion of the age cohort who are deferreds, AY is the mean number of 

accrued years at retirement for each active member, and DY is the mean number of 

accrued years at retirement for each deferred pensioner. Figure 5.8 shows the 

results for the actives and these have a broadly similar shape to figure 5.7, although 

figure 5.7 has percentages, and figure 5.8 has losses in £ per head. Figure 5.8 shows 

that future active members of the CRB scheme lose about £100,000 per head, while 

the youngest members of the final salary scheme lose £40,000 per head. The 

corresponding diagram for the deferreds has an identical shape to figure 5.8, but 

with losses that are (27.5/32.5) = 84.6% lower. 

Figure 5.9 shows the present values of the total loss in £bn. to each cohort of the 

two sections. The total loss in October 2011 to all the cohorts of the final salary 

section is £3.87 billion, or 12% of the total loss to all cohorts of both sections; and so 

88% of the total loss fell on the CRB section. The total loss for the age cohorts we 

have analysed (17 to 92) is £18.0 billion, and the total loss for age cohorts -28 to 12 

until 2065 is approximately £14.5 billion. 

Figure 5.10 plots the mean percentage drop in the pension received at age 65 for 

each age cohort. Future scheme members experience a drop of about 38% in the 
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pension they will receive at age 65. Those in the age 42 cohort and older are all in 

the final salary scheme and will make higher contributions post-October 2011, make 

contributions for an extra one or two years, and draw their pension for one or two 

years less due to an increase in their retirement age. They will also benefit from an 

extra one or two years of additional accrual and salary increases, which will increase 

their pension at retirement. These factors lead to the total loss of £3.87 bn. for 

active members of the final salary scheme shown Figure 5.9, but none of these 

factors alter their pension at age 65. As figure 5.10 shows, the pension at age 65 for 

members of the final salary scheme is unaffected by the rule changes. 

In addition to estimating the monetary loss to the members of each age cohort, we 

compute the corresponding total monetary gain to the sponsor resulting from the 

rule change. Since our horizon date is 2065, we quantify the gain for the 2011 to 

2065 period. This is the present value of the reduction in the sponsor’s contributions 

to USS until 2065 plus the present value of the sponsor’s 65% share of the surplus or 

deficit in that year. The resulting change in NPV for the sponsor is a gain of £32.5 

billion, equivalent to 26% of their pension cost for the pre-October 2011 scheme. 

5.10 Robustness Checks 

We have previously studied three alternative asset allocation strategies, and we now 

investigate two additional changes to the base model. So far the sponsor 

contribution rate for the final salary section has been capped at 25%, but some 

universities would be unhappy with contributing this much, and so we investigated 

capping the sponsor’s contribution rate at just over 20%, to give a cap on the total 

final salary contribution rate of 29% (or 28% for the CRB section). For the post-
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October 2011 scheme and the fix-mix strategy, the funding ratio drops to about 75% 

in the medium term, and the final salary contribution rate rises to roughly 26%. In 

the long run the funding ratio rises to almost 110%, and the final salary contribution 

rate falls to just above 22%. These results suggest that, even if the total contribution 

rate is capped at 29%, the post-October 2011 scheme is viable, albeit with an 

uncomfortable period of low funding before the long run equilibrium is reached. 

Another robustness check involves replacing the SDFs with the riskless discount rates 

from the VAR(1) model when computing the NPVs. We use riskless rates because 

USS is backed by the UK university system on a last-man-standing basis, making 

default very unlikely. Figure 5.11 shows the expected percentage drop in the NPVs; 

with broad agreement between the SDF and riskless rate estimates of the 

percentage drop in the NPVs of pension wealth. For example, as for SDFs, the drop is 

65% for future members. Figure 5.11 also shows the 10% and 90% percentiles of the 

estimated percentage drop in the NPVs, and these range from about 55% to almost 

90% for future cohorts, with progressively less variation for older cohorts. Figure 

5.12 shows the mean loss in £ per head using the riskless rate. For future members 

this is about £90,000, compared with £100,000 for SDFs, and ranges from £40,000 to 

£155,000. As before, the loss per head declines rapidly with age, and is markedly 

lower for members of the final salary section. 

Using the riskless rates, the sponsor’s total gain for the 2011-2065 period is £30.0 

billion, compared to £32.5 billion using SDFs, with a 10% percentile of £10.5 billion, 

and a 90% percentile of £55.7 billion. As for SDFs, the sponsor’s total gain using 

riskless rates is 26% of their costs for the pre-October 2011 scheme. The total loss 
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for the cohorts aged 17 to 92 is £16.1 billion for riskless rates (compared with £18.0 

billion when using SDFs), with 10% and 90% percentiles of £6.6 billion and £27.5 

billion respectively; while the total loss for the -28 to 12 cohorts is £13.8 billion 

(compared with £14.5 billion when using SDFs). Therefore the use of riskless rates to 

discount the cash flows rather than SDFs, supports the general conclusions reached 

using SDFs. 

Finally Figure 5.13 compares the riskiness (coefficient of variation) of the NPVs 

computed using riskless rates before and after the rule change. For the younger 

members of the final salary scheme in October 2011 there is a modest increase in 

the coefficient of variation of their NPVs with the move to the new scheme, but no 

change for the older members and pensioners. For future members in 2011 the 

riskiness of their pension wealth increases by about one third, relative to the risks 

they would have faced if they had joined the old final salary scheme. The October 

2011 rule changes reduce the coefficient of variation for the sponsor by about 10%. 

5.11 Conclusions  

For members close to retirement the value of their pension wealth may be their 

largest single asset. So changes in a scheme’s rules can have an important effect on a 

member’s total wealth. When redesigning DB pension schemes, modelling the long 

run effects on the sponsor and members is generally neglected. What is needed is a 

dynamic long-term model that incorporates the interactions between the funding 

ratio, contribution rate, asset allocation and asset returns, as well as the differential 

effects on the various age cohorts. This research has built and estimated such a 

model for the USS rule change in October 2011. Although we modelled all the rules 



189 
 

that changed, as well as other important rules, the complexity of the problem 

necessitates ignoring inconsequential rules. It also requires making heroic forecasts 

of asset returns, salaries, numbers of members and inflation far into the future. The 

actual situation of USS in 2065 will inevitably be substantially different from the 

mean forecast of our model, but since pension schemes have very distant horizons, 

such long term forecasts are necessary when analyzing the effects of a rule change. 

Therefore the model can only give broad indications, rather than precise estimates. 

However, when comparing two alternative sets of rules using exactly the same 

model and forecasts, we have a level playing field. 

This is the first such study for a real scheme (USS), and also the first where the 

sponsor bears all or part of the risk, e.g. ‘balance of cost’ or ‘cap and share’. It is also 

the first to incorporate a range of real world pension scheme features - lump sums, 

deferred pensioners, limited price indexation, spouses’ pensions, an increase in the 

retirement age, two sections (final salary and CARE), ‘cap and share’ contribution 

rates, and an uncertain number of new members each year. It also examines three 

different asset allocation strategies - fix-mix, risk shifting and risk management - over 

a 54 year out-of-sample period, which is long enough to avoid the back-loading 

problem. This has the advantage that none of the actives in 2011 are still active in 

2065, allowing the scheme to reach a new equilibrium by the horizon date.   

For both schemes the performance of the risk shifting and fix-mix asset allocation 

strategies is similar, mainly because fix-mix involves a substantial allocation to risky 

assets, and both strategies are clearly superior to risk management. The results 

indicate that in the long run the pre-October 2011 scheme was not viable. Using the 
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two best asset allocation strategies (risk shifting and fix-mix) the long run funding 

ratio would be about 80%, and the contribution rate for the final salary scheme 

around 27%. For the risk management strategy the long run outcomes are markedly 

worse - a long run funding ratio of 65% and a contribution rate of 30%. The post-

October 2011 scheme appears reasonably viable in the long run for the two best 

asset allocation strategies, with a funding ratio above 115% and a final salary 

contribution rate of about 23%, which is slightly below the 2011 rate of 23.5%. 

However, before this long run state is reached, the post-October 2011 scheme 

experiences funding ratios of 80% and contribution rates of about 29%, which would 

be problematic. 

So the decision to redesign USS in October 2011 was justified, creating a post-

October 2011 scheme that appears to be sustainable in the long run, although with 

medium term difficulties that are gradually solved as the active membership 

switches from the final salary section to the cheaper CRB section. These results 

indicate that a further redesign of USS is needed in the medium term to cope with 

progressively higher contribution rates and lower funding ratios40. However, in the 

long run, when all the active members are in the cheaper CRB section, USS will 

become a well-funded scheme with a total contribution rate just above the pre-

October 2011 value of 22.35%. Subsequent rule changes to deal with the medium 

term problems will only increase the long run strength of USS. The robustness checks 

broadly support these conclusions. 

                                                           
40

 In April 2016 there was another major rule change - the final salary section was closed to future 
accruals and the CRB section offered to these members. Contribution rates to the CRB scheme 
increased to 8% for members and 18% for the sponsor, i.e. 26% in total. Pensionable salary for the 
CRB section was capped (initially £55,000), with earnings above this cap eligible for a new defined 
contribution section. 
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The rule change in October 2011 resulted in the transfer of about £32.5 billion of 

wealth from the members to the sponsor during the 2011 to 2065 period. This is 

equivalent to about £600 million per year, or over 60% of the sponsor’s contribution 

in 2011 of £938.4 million. The reduction in the present value in 2011 of the sponsor’s 

pension contributions over this period is 26% using either SDFs or riskless rates. The 

cost of this wealth transfer is very unevenly distributed across the various age 

cohorts and sections, with the burden rising from near zero for pensioners and those 

close to retirement in 2011, to about 65% of their pension wealth for future 

members. Since pensions are deferred pay, this represents a substantial pay cut. 

Before the October 2011 rule change the total annual contributions to the scheme 

were 22.35% of salaries, but the above analysis suggests that the long run annual 

cost of providing this scheme was closer to 27% of salaries, of which 6.35% was paid 

by the members from their salaries, leaving 20.65% to be paid by the sponsor of this 

‘balance of cost’ scheme. We have estimated that future members have experienced 

a drop in their pension wealth of 65%, which is equivalent to a drop of approximately 

0.65×0.2065/1.2065 ≈ 11% in their total compensation, or 0.65×0.2065 = 13% in 

their salaries. 

Appendix 5.A - USS Rules Pre and Post-October 2011 

The final salary section was closed to new members in October 2011, but remains 

open for accruals by existing members, while the CRB section has been open to new 

members and accruals since October 2011.  

Rules that Changed in October 2011 

1. Contribution Rate - Final Salary. The contribution rate for active members of the 

final salary section increased from 6.35% to 7.5%. 
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2. Contribution Rate – ‘Cap and Share’. Before October 2011 USS was a ‘balance of 

cost’ scheme, where the sponsor is ultimately responsible for meeting the pensions 

promise. Post-October 2011 for both the final salary and CRB sections, any increase 

in the contribution rate is shared between the sponsor and active members in the 

proportions 65% to the sponsor and 35% to the members. If there is a large surplus, 

contribution rates are reduced in the same proportions.  

3. Inflation Indexation for Pensions in Payment. Until April 2011 RPI was used to fully 

uprate USS pensions in payment and deferred pensions, but the government 

changed this to CPI in April 2011. So before October 2011 there was full indexation 

of pensions in payment using CPI. Post-October 2011 for both the final salary and 

CRB sections if inflation, as measured by the CPI, is less than 5% there is full 

indexation. For inflation between 5% and 15% indexation is 5% plus half of the 

excess over 5%. If inflation is more than 15% indexation is capped at 10%. In periods 

of negative inflation pensions are not reduced, but no increase is applied. Benefits 

accrued before October 2011 in the final salary section increase fully in line with 

official pensions, i.e. uncapped CPI.  

4. Up-rating of the Accrued Benefits of Deferred Pensioners. Before October 2011 

there was no cap on the up-rating of the accrued benefits of deferred pensioners. 

After the rule change in October 2011 the accrued benefits of deferred pensioners 

are uprated by CPI, capped at 2.5%.  

5. Normal Retirement Age (NRA). Before October 2011 the NRA was 65 years. In 

October 2011 this was changed so that the USS NRA for the final salary and CRB 

sections increases with the state retirement age. This will rise to 66 years in about 

2020, 67 years in about 2028, and 68 in about 2046.  

Some Other Rules Which Did Not Change in October 2011 

6. Accrual Factor. For both the final salary and CRB sections the accrual rate is 1/80th 

plus a lump sum of three times the pension. Using a commutation factor of 1:16 to 

convert the lump sum into a pension, the accrual factor including the lump sum is 

1/67.37 for both sections.  
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7. Lump Sum. On retirement, pensioners can choose to take up to 25% of the value 

of their pension as a tax free lump sum. Pensioners are assumed to follow the USS 

default and take three times the annual value of their pension as a lump sum. Their 

subsequent pension payments are then based on an accrual factor of 1/80ths, rather 

than 1/67.37ths. 

8. Revaluation Rate for the CRB Section. The revaluation rate used to uprate the 

average salary for active members of the CRB section each year to allow for inflation 

is the same as the inflation rate used to up-rate pensions in payment. 

9. Pensionable Salary for the Final Salary Section. The pensionable final salary is the 

greater of: (a) the member's highest salary for any period of 12 complete months 

ending on the last day of a month during the last three years before retirement, and 

(b) the highest yearly average of the total salary of the member for any three 

consecutive years ending at the end of any month within the last ten years before 

retirement. Both amounts are increased, except for the last year before retirement, 

in proportion to any increase in the RPI between that published at the last day of the 

relevant year and that published at retirement. 

10. Spouses Pensions. When a pensioner dies their spouse, civil partner or 

dependant partner (regardless of sex) receives a pension for life. The spouse’s or civil 

partner’s pension is 1/160th times pensionable salary at retirement times 

pensionable service at retirement, plus pension increases from retirement to death. 

Note that this calculation ignores the actual lump sum chosen by the pensioner, and 

assumes they took the standard amount of three times their initial pension. 

Appendix 5.B.1 Final Salary (FS) Scheme 

The actuarial liability for active and deferred members of the cohort x at time t is 

given by:- 

 
 

x,FS x,FS
x,FS

A/D,t A/D,t
A/D,t

R -G -Wx,FSx,FS x,FS x,FS x,FS
A/D,tA/D,t A/D,t A/D,t A/D,tx,FS x,FS

A/D,t A/D,t x,FS x,FSx,FS
A/D,t A/D,tA/D,t

1+ eP ×S 1+ h 1+ h
L = N × × × 1 1

1+ p 1+ pA 1+ h
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 
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    (B.5.1) 

where A is the accrual rate (constant), 
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x,FS

A/D,t
h  

is the annual nominal discount rate at time t, 

x,FS

A/D,t
R  is the forecast retirement age of the active/deferred members in cohort x  at 

time t, 

x,FS

A/D,t
G  is the average age of the active/deferred members in cohort x  at time t, 

x,FS

A/D,t
W  is the life expectancy at retirement of the active/deferred members in cohort   

x at time t, 

x,FS

A/D,t
p  

is the annual rate of growth of the price level at time t, 

x,FS

A/D,t
P  is the past years of service of active/deferred members in cohort x  at time t, 

x,FS

A/D,t
S  is the annual salary of the active/deferred members in cohort x  at time t, 

x,FS

A/D,t
e  is the expected nominal rate of salary growth per annum between time t and 

retirement of the active/deferred members in cohort x , 

x,FS

A/D,t
N  is the number of the active/deferred members in cohort x  at time t. 

The actuarial liability for pensioners in cohort x at time t is given by:- 

  

x,FS
P,t-q

x,FS x,FS

P,t P,tx,FS x,FS x,FS

P,t P,t P,t x,FS x,FS

P,t P,t

1+ h 1+ h
L = N × PEN × 1 1

1+ p 1+ p

                      

                                           (B.5.2) 

where x,FS

P,t
N  is the number of the pensioners in cohort x  at time t, 

x,FS

P,t
PEN  is the annual pension of the pensioners in cohort x  at time t, 

x,FS

P,t
p  is the annual rate of growth of the price level at time t, 

x,FS

P,t
h  is the annual nominal discount rate at time t, 

x,FS

P,t
q  is the life expectancy of the pensioners in cohort x  at time t. 

The total actuarial liability of the FS scheme is given by:- 
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 FS, Total x,FS x,FS x,FS

t A,t D,t P,tL = L +L +L
x 

                                                                                         (B.5.3) 

Appendix 5.B.2 Career Revalued Benefit (CRB) Scheme  

The actuarial liability for active and deferred members in cohort x at time t is given 

by:- 

 
 

x,CRB x,CRB
x,CRB

A/D,t A/D,t
A/D,t

R -G -Wx,CRBx,CRB x,CRB x,CRB x,CRB
A/D,tA/D,t A/D,t A/D,t A/D,tx,CRB x,CRB

A/D,t A/D,t x,CRB x,CRBx,CRB
A/D,t A/D,tA/D,t

1+ eP ×S 1+ h 1+ h
L = N × × × 1

1+ p 1+ pA 1+ h
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where A is the accrual rate (constant), 

x,CRB

A/D,t
h  is the annual nominal discount rate at time t, 

x,CRB

A/D,t
R  is the forecast retirement age of the active/deferred members in cohort x  at 

time t, 

x,CRB

A/D,t
G  is the average age of the active/deferred members in cohort x  at time t, 

x,CRB

A/D,t
W  is the life expectancy at retirement of the active/deferred members in cohort   

x at time t, 

x,CRB

A/D,t
p  is the annual rate of growth of the price level at time t, 

x,CRB

A/D,t
P  is the past years of service of active/deferred members in cohort x  at time t, 

x,CRB

A/D,t
S

 is the average annual revalued earnings of the active/deferred members in 

cohort x at time t , 

x,CRB

A/D,t
e  is the expected nominal rate of salary growth per annum between time t and 

retirement of the active/deferred members in cohort x , 

x,CRB

A/D,t
N  is the number of the active/deferred members in cohort x  at time t. 

The actuarial liability for the pensioners in cohort x at time t is given by:- 
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P,t-q

x,CRB x,CRB

P,t P,tx,CRB x,CRB x,CRB

P,t P,t P,t x,CRB x,CRB

P,t P,t

1+ h 1+ h
L = N × PEN × 1 1

1+ p 1+ p
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                                  (B.5.5) 

where x,CRB

P,t
N  is the number of the pensioners in cohort x  at time t, 

x,CRB

P,t
PEN  is the annual pension of the pensioners in cohort x  at time t, 

x,CRB

P,t
p  is the annual rate of growth of the price level at time t, 

x,CRB

P,t
h  is the annual nominal discount rate at time t, 

x,CRB

P,t
q  is the life expectancy of the pensioners in cohort x  at time t. 

Finally, the total actuarial liability of the CRB scheme is given by:- 

 CRB, Total x,CRB x,CRB x,CRB

t A,t D,t P,tL = L +L +L
x 

                                                                               (B.5.6) 

Appendix 5.C Time Varying Price of Risk 

Following Cochrane and Piazzesi (2005, equation 8) and other studies, we compute 

the column vector ϕt for equation (5.4) using the following expression:- 

                                          

1 1

t

1
( )

2
diag  

   
 
c Bx  φt                                  (C.5.1) 

If investors are risk neutral, an absence of arbitrage opportunities requires the spot 

rate expected next period to equal the implied forward rate for next period. 

Following Hoevenaars (2011), Hoevenaars, Molenaar and Ponds (2010), and 

Hoevenaars and Ponds (2008), we set the implied forward interest rate next period 

(t+1) (i.e. the first two right hand terms in equation 5.4) equal to the spot interest 

rate for next period from the VAR(1) model. The parameters Σ and B come from the 

VAR(1) model in equation (5.2), while the column vector xt contains the state 

variables of the VAR(1) model at time t. 
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Figure 5.1: Post-October 2011 Scheme Mean Funding Ratios for the Three Asset Allocation Strategies 

 

 

Figure 5.2: Pre-October 2011 Scheme Mean Funding Ratios for the Three Asset Allocation Strategies 
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Figure 5.3: Post-October 2011 Mean Contribution Rates for the Three Asset Allocation Strategies 

 

 

Figure 5.4: Pre-October 2011 Mean Contribution Rates for the Three Asset Allocation Strategies 
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Figure 5.5: Mean Risk Shifting Asset Allocation for the Pre and Post-October 2011 Schemes 

 

 

Figure 5.6: Mean Risk Management Asset Allocation for the Pre and Post-October 2011 Schemes 
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Figure 5.7: Percentage Drop in the NPV for Each Age Cohort Due to the Rule Change Using SDF 

 

 

Figure 5.8: £s Loss Per Head for Actives in Each Age Cohort Using SDF 
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Figure 5.9: Losses Per Age Cohort in £bn. Using SDF 

 

 

Figure 5.10: Mean Percentage Drop Per Head for Actives in Pension Received at Age 65. 
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Figure 5.11: Mean Percentage Drop in the NPV for Each Age Cohort Due to the Rule Change Using  
Riskless Rates 

 

 

Figure 5.12: Mean £s Expected Loss Per Head for Actives in Each Age Cohort Using Riskless Rates 
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Figure 5.13: Coefficient of Variation of the NPVs of the Pre and Post-October 2011 Schemes Using 
Riskless Rates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

17 22 27 32 37 42 47 52 57 62 67 72 77 82 87 92 

Age-Cohorts 

New-Members - New Scheme New-Members - Old Scheme 

Old-Members - New Scheme Old-Members - Old Scheme 



204 
 

 
Independent 
Variables 

Dependent Variables 

UK Equities EU Equities US Equities β1 β2 β3 RPI CPI US Div. Yield UK Div. Yield Real Estate Hedge Funds Commodities 

UK Equities−1 −0.3612 −0.1091 −0.1422 −0.0018 0.0109 0.0214 0.0195 0.0139 0.0039 −0.0034 −0.0286 −0.0981 −0.3404 

EU Equities−1 −0.0713 −0.2966 −0.0390 −0.0014 0.0046 −0.0118 0.0130 0.0100 0.0016 0.0053 0.0288 0.0035 −0.0884 

US Equities−1 0.4112 0.2087 0.0848 −0.0009 −0.0028 −0.0206 −0.0119 −0.0054 −0.0029 0.0001 −0.0086 0.0867 0.3040 

β1−1 −0.4952 −0.7877 0.0688 0.9448*** 0.0285 0.2721 −0.0002 0.0120 −0.0059 0.0057 −0.3170 −0.4678 −0.9858 

β2−1 1.4921 2.3739** 1.0690 0.0280 0.8903*** 0.1488 −0.0556 −0.0452 −0.0212 −0.0685** −0.3659 −0.2860 −1.8285 

β3−1 0.1642 1.0112* 0.4500 0.0032 0.1225*** 0.7355*** 0.0095 −0.0481 −0.0148* −0.0136 −0.1362 0.3279 0.4958 

RPI−1 −2.4706 2.1284 0.2694 −0.1250 0.6941** −1.0608 0.4349 0.1389 0.0375 −0.0509 −1.0724 −2.7645 0.6554 

CPI−1 2.3009 −1.5969 1.6955 −0.0677 −0.3465 −0.1462 −0.8695** −0.5552** −0.0547 0.0524 0.6412 3.1756 −0.2533 

US Div. Yield−1 −2.2987 −0.0907 −6.4177 0.5929** −0.7719* 0.6549 0.7525* 0.8630** 1.1043*** 0.4032** −3.0353** −3.2437 3.2957 

UK Div. Yield−1 8.5757** 11.1708** 10.2069** −0.2728 0.5048* −0.7728 −0.4421 −0.5186** −0.1840** 0.4519*** 2.0274* 3.9016* −6.2207 

Real Estate−1 1.3405*** 1.6201*** 1.2460*** 0.0227 −0.0048 0.13058 0.0093 −0.0228 −0.0191*** −0.0335*** 0.7855*** 0.5234*** −0.1845 

Hedge Funds−1 0.0461 0.3166 −0.0197 −0.0008 −0.0126 0.0248 −0.0070 −0.0119 −0.0026 −0.0137 0.0670 0.0706 0.9494* 

Commodities−1 −0.0569 −0.1527 −0.1455 0.0033 −0.0054 −0.0162 0.0028 0.0058 0.0027 0.0043 −0.0617** −0.0368 −0.0026 

Constant −0.1815** −0.2814*** −0.2174*** 0.0023 −0.0080 0.0098 0.0089 0.0064 0.0037*** 0.0083*** 0.0033 −0.0467 0.1586 

R
2
 0.3274 0.3435 0.3005 0.9543 0.9268 0.6950 0.3788 0.3488 0.9246 0.8813 0.7435 0.3276 0.2002 

Adj. R
2
 0.1740 0.1938 0.1410 0.9438 0.9101 0.6255 0.2372 0.2003 0.9074 0.8543 0.6850 0.1743 0.0178 

F statistic 2.1339 2.2941 1.8840 91.4837 55.4779 9.9930 2.6740 2.3484 53.7874 32.5666 12.7083 2.1364 1.0976 

 

Table 5.1: VAR(1) Model Used to Generate the Forecasts 

***, ** and * represent significance at the 1%, 5% and 10% levels respectively 
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   UK Equities EU Equities US Equities β1 β2 β3 RPI CPI US Div. Yield UK Div. Yield Real Estate Hedge Funds Commodities 
  UK Equities 0.004450 0.004534 0.004095 0.000034 -0.000011 0.000173 0.000046 0.000004 -0.000067 -0.000131 0.000318 0.001792 0.001023 
  EU Equities 0.004534 0.006844 0.004626 0.000039 0.000007 0.000181 0.000076 -0.000012 -0.000079 -0.000132 0.000427 0.002192 0.001609 
  US Equities 0.004095 0.004626 0.004966 0.000031 0.000005 0.000140 0.000090 0.000021 -0.000082 -0.000117 0.000155 0.001773 0.001213 
  β1 0.000034 0.000039 0.000031 0.000010 -0.000013 0.000023 -0.000000 -0.000000 -0.000000 -0.000001 0.000006 0.000017 0.000052 
  β2 -0.000011 0.000007 0.000005 -0.000013 0.000026 -0.000042 0.000006 0.000002 -0.000001 0.000002 -0.000007 -0.000001 0.000047 
  β3 0.000173 0.000181 0.000140 0.000023 -0.000042 0.000227 -0.000004 -0.000001 -0.000002 -0.000005 0.000115 0.000121 0.000038 
  RPI 0.000046 0.000076 0.000090 -0.000000 0.000006 -0.000004 0.000029 0.000021 -0.000002 0.000002 0.000003 0.000051 0.000277 
  CPI 0.000004 -0.000012 0.000021 -0.000000 0.000002 -0.000001 0.000021 0.000020 -0.000001 0.000003 -0.000005 0.000014 0.000209 
  US Div. Yield -0.000067 -0.000079 -0.000082 -0.000000 -0.000001 -0.000002 -0.000002 -0.000001 0.000002 0.000002 -0.000006 -0.000031 -0.000032 
  UK Div. Yield -0.000131 -0.000132 -0.000117 -0.000001 0.000002 -0.000005 0.000002 0.000003 0.000002 0.000005 -0.000015 -0.000048 0.000038 
  Real Estate 0.000318 0.000427 0.000155 0.000006 -0.000007 0.000115 0.000003 -0.000005 -0.000006 -0.000015 0.000390 0.000225 0.000364 
  Hedge Funds 0.001792 0.002192 0.001773 0.000017 -0.000001 0.000121 0.000051 0.000014 -0.000031 -0.000048 0.000225 0.001424 0.001159 
  Commodities 0.001023 0.001609 0.001213 0.000052 0.000047 0.000038 0.000277 0.000209 -0.000032 0.000038 0.000364 0.001159 0.011842 
 
 
                   

 

              

Appendix 5.D: Covariance Matrix of the VAR(1) Model Residuals 
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6 Conclusions and Future Research 

6.1 Summary and Conclusions 

The main purpose of the thesis is to examine three different but interconnected 

problems, which are presented in Chapters 3, 4 and 5, and lie in the broad area of 

portfolio and investment management for long-term institutional investors with the 

main emphasis on pension funds. Initially, Chapter 1 (Introduction) describes the 

framework and structure of the thesis and highlights the scientific contributions and 

the most important outcomes of each of the main chapters. 

Chapter 2 is a literature review and its main goal is to help the reader get familiar 

with the fundamental aspects of portfolio theory, asset liability management (ALM) 

modelling and pension schemes design – the three most important elements of the 

Chapters that follow the second Chapter. Specifically, in Chapter 2 there is discussion 

of Markowitz (1952) portfolio theory and the most important criticisms of it (e.g. 

high sensitivity to the input parameters). Furthermore, Chapter 2 provides a 

comprehensive review of the latest portfolio techniques that try to address the 

estimation risk in the input parameters and construct portfolios with better out-of-

sample performance. Chapter 2 also describes the close relation between Operations 

Research (OR) and ALM modelling, and explains the usefulness of asset-liability 

management models for long-term investors such as pension funds, insurance 

companies and endowments. It also describes the most popular methods used to 

solve the ALM problem such as stochastic programming, portfolio theory, stochastic 

simulation and dynamic programming, as well as the computational issues 
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(computational intractability) the majority of the existing techniques face. Chapter 2 

provides a detailed description of the most important types of pension schemes in 

the UK and US such as defined benefit and defined contribution pension schemes. In 

addition it gives a comprehensive review of the methodology and the corresponding 

outcomes of the most recent pension studies that quantify the redistributive effects 

between the different stakeholders of a pension scheme due to various pension rule 

changes. 

Chapter 3 deals with the application of a computationally tractable pension asset-

liability management (ALM) model, which is based on robust optimization 

techniques, to a real world pension scheme (USS). Robust optimization is a numerical 

approach that takes into account the worst-case value of the stochastic input 

parameters within their uncertainty sets by adopting a maximin approach in the 

optimization process. Portfolio optimization models based on robust optimization 

methods are computationally tractable and can more easily solve large scale 

optimization problems in comparison to other popular asset-liability management 

model techniques that are based on the generation of future scenarios such as 

stochastic programming and stochastic simulation. Hence robust optimization is 

particularly well suited to solving the ALM problem. This study is also unusual since it 

considers three different types of pension liabilities for active members, deferred 

members and pensioners and uses the Sharpe ratio as the objective function in the 

optimization process. Using four different benchmarks; the Sharpe and Tint, Bayes-

Stein and Black-Litterman models, as well as the actual USS investment decisions, 

the proposed robust formulated ALM model has a clearly better out-of-sample 
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performance over 20 portfolio metrics that measure various important portfolio 

characteristics (risk, risk-adjusted performance, stochastic dominance, 

diversification, stability, contribution rate, funding ratio and cumulative wealth, 

amongst others), and six robustness checks such as a different set of estimation 

periods, a relaxation of the constraints on the asset weights, a different set of asset 

classes and the use of uncertainty sets with smaller size, amongst others. 

Chapter 4 considers the construction of socially responsible investment portfolios. A 

limited number of studies try to construct optimal SRI portfolios, and the majority of 

the existing studies are mainly based on the Markowitz (1952) mean-variance 

portfolio optimization process that ignores the serious negative effects of estimation 

risk in the input parameters. Chapter 4 explores whether the selection of the 

optimization method matters in the SRI industry and attempts to give some answers 

to the question of which portfolio construction techniques tend to create superior 

socially responsible investment portfolios. More precisely, three ‘formal’ portfolio 

optimization techniques (Markowitz mean-variance, norm-constrained and Black-

Litterman based portfolios) and three more simplistic portfolio asset allocation 

methods (1/N, risk-parity and reward-to-risk timing portfolios) are applied to the 

same SRI-screened universe of US stocks using 14 performance metrics that measure 

a variety of different important portfolio characteristics such as risk, risk-adjusted 

performance, diversification and stability. The out-of-sample performance 

evaluations show that SRI portfolios based on more formal optimization techniques 

(Markowitz, norm-constrained and Black-Litterman portfolios) are less risky and have 

superior risk-return trade-offs to SRI portfolios constructed with the less quantitative 
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portfolio techniques (1/N, risk-parity and reward-to-risk timing portfolios). SRI 

portfolios based on the Black-Litterman portfolio technique usually have the best 

performance, in contrast the equally-weighted portfolio strategy (1/N) which usually 

has the worst performance on these criteria. Finally, the main conclusions drawn of 

Chapter 4 remain unchanged by various robustness checks such as the use of 

different estimation windows, the employment of more demanding criteria for the 

construction of SRI portfolios as well as alternative evaluation of portfolio 

performance. 

The main objective of Chapter 5 is to investigate the long term performance of a real 

world pension scheme (USS) before and after the recent pension rule changes of 

October 2011 (pre-October and post-October 2011 scheme), and to quantify the 

redistributive effects between the different stakeholders of the pension scheme. In 

October 2011 USS closed the final salary (FS) scheme, where the sponsor bears all 

the risks such as investment, longevity, interest rate, inflation, salary growth and 

regulatory risk, and opened new a career average revalued earnings (CARE) scheme 

for the new members, and introduced a ‘cap and share’ rule for pension 

contributions. This study also incorporates many significant features not previously 

mentioned in the relevant pension literature such as lump sum payments, deferred 

members, spouses’ pensions, a pension scheme that contains both a final salary  and 

a CARE section, as well as an increasing retirement age over time, amongst others. 

Furthermore, the model applies three asset allocation strategies (fixed-mix, risk-

shifting and risk management) and a VAR(1) model with 13 state variables is applied 
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to generate future asset returns, inflation rates and the factors of the Nelson-Siegel 

yield curve. 

The corresponding empirical analysis shows that the pre-October 2011 scheme is not 

viable in the long run, in contrast to the post-October 2011 scheme that seems to be 

sustainable in the long term, although with some problems in the middle run, while 

the fixed-mix and risk-shifting approaches are preferable to risk management for 

both the schemes. The quantitative analysis of the redistributive effects shows that 

future members lose about 65% of their pension wealth, with an increase in the 

corresponding risk of a third, while the older members lose nothing with an 

insignificant increase in risk. The costs associated to the sponsor decrease by about a 

quarter. Finally, the core conclusions drawn in Chapter 5 remain the same when 

conducting different robustness checks such as the use of riskless discount factors 

instead of SDFs and the employment of a different upper bound on the contribution 

rate. 

6.2 Suggestions for Future Research 

Inevitably, research is always subject to further improvement and extensions. Hence, 

the second half of this chapter is devoted to briefly provide some research directions 

for potential future research. 

Although stochastic programming is one of the most popular techniques for solving 

ALM problems, the robust asset-liability management model formulated in Chapter 3 

is benchmarked against ALM models that are mainly based on portfolio theory 

techniques such as the Sharpe and Tint, Bayes-Stein and Black-Litterman portfolios, 
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as well as the actual USS performance. As discussed in Chapter 3, stochastic 

programming faces problems of computational intractability and cannot be used to 

solve the USS problem presented in Chapter 3. However, for someone who may be 

interested in a comparison between stochastic programming and robust 

optimization, future research could set up a small hypothetical example with a 

limited number of time periods for portfolio evaluation, and a pension fund that 

invests in a significantly smaller number of assets than those used in Chapter 3. 

However, it should be stressed again that stochastic programming cannot efficiently 

solve real-world ALM models and only comparison between the two methods can 

only be carried out in a non realistic environment. 

Chapter 3 uses five asset classes; equities (UK, EU and US equities), bonds (UK and 

US government bonds), UK property, alternative investments (commodities and 

hedge funds) and cash. As an additional analysis, we also replaced the 20 year UK 

and US government bonds with UK private equity and UK infrastructure, and the S&P 

GSCI total return index with the S&P GSCI Light Energy return index as a robustness 

check. One could argue that the inclusion of futures and options positions could 

enhance the risk-return trade-off by hedging various positions and deal with risks on 

the liability side, such as sudden outflows. This study does not use futures and 

options because the Universities Superannuation Scheme is a long term institutional 

that does not consider short term profit, and hence futures and options are not used 

for speculative reasons. However, we recognize that the use of futures and options 

by pension schemes is a developing area, and future research could explore the 
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benefits from long term hedge positions in the Over-the-Counter (OTC) markets (e.g. 

interest rate swaps). 

In Chapter 4, three different optimal diversification and three alternative naive 

diversification approaches are applied to the same SRI-screened universe subject to 

non-negativity constraints on the asset weights to rule out short selling. Although SRI 

portfolios mainly belong to the mutual fund category and hence non-negativity 

constraints on the portfolio weights should automatically be applied as in Chapter 4, 

Drut (2012), Ballestro et al. (2012) and Utz et al. (2014) allow short sales in the SRI 

context. Future research could investigate the effectiveness of short sales 

restrictions in the process of constructing optimal SRI portfolios, in line with Board 

and Sutcliffe (1994). 

The empirical results in Chapter 4 also show that SRI portfolios based on the Black-

Litterman approach have a better out-of-sample performance that the other 

portfolio techniques. However, there are more advanced versions of Black-Litterman 

than the one used in Chapter 4, and future research could be carried out to 

investigate the actual performance of more sophisticated versions of the Black-

Litterman approach (e.g. Bessler et al. (forthcoming)) on the construction of SRI 

portfolios, see for instance Bessler, Opfer and Wolff (forthcoming). 

Chapter 5 investigates the performance of USS before and after the recent pension 

rule changes of October 2011 and quantifies the corresponding redistributive effects 

between the various stakeholders of the scheme. Although the post-October 2011 

scheme seems to be viable in the long run and has a superior performance to the 

pre-October 2011 scheme in terms of the funding ratio, it faces medium-term 
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problems due to the frozen defined benefit scheme that will continue to serve the 

existing members for many decades in the future. For this reason, pension trustees 

plan to implement more reforms to enhance the sustainability of USS, e.g. by 

transferring the members that are currently served by the defined benefit (DB) 

scheme to a career average revalued earnings (CARE) scheme and diversifying more 

their portfolio by adding more asset classes. As a result, future research could consist 

of the implementation of additional reforms for the sustainability of the scheme, as 

well as the investigation of how additional asset classes (e.g. alternatives) can add 

value in the portfolio and improve the mid and long term performance of the 

scheme. 
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