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Determining solar effects in Neptune’s atmosphere
K.L. Aplin1 & R.G. Harrison2

Long-duration observations of Neptune’s brightness at two visible wavelengths provide a

disk-averaged estimate of its atmospheric aerosol. Brightness variations were previously

associated with the 11-year solar cycle, through solar-modulated mechanisms linked with

either ultraviolet or galactic cosmic ray (GCR) effects on atmospheric particles. Here, we use

a recently extended brightness data set (1972–2014), with physically realistic modelling to

show, rather than alternatives, ultraviolet and GCR are likely to be modulating Neptune’s

atmosphere in combination. The importance of GCR is further supported by the response

of Neptune’s atmosphere to an intermittent 1.5- to 1.9-year periodicity, which occurred

preferentially in GCR (not ultraviolet) during the mid-1980s. This periodicity was detected

both at Earth, and in GCR measured by Voyager 2, then near Neptune. A similar coincident

variability in Neptune’s brightness suggests nucleation onto GCR ions. Both GCR and

ultraviolet mechanisms may occur more rapidly than the subsequent atmospheric particle

transport.
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L
ong-term observations of Neptune from a ground-based
telescope show variations in the planet’s disk-averaged
brightness, which are associated with changes in the

reflectivity (albedo) of the planet from its atmospheric aerosol
and clouds. Although seasonal variations dominate the time
series, Lockwood and Thompson1 showed, using data from 1972
to 1996, that small fluctuations in Neptune’s brightness at two
visible wavelengths followed the 11-year solar cycle. They
examined two quantities known to vary closely with solar
activity. The first, solar ultraviolet radiation, is linked to
photochemical variations in Neptune’s atmospheric aerosol
particles, and the second, galactic cosmic rays (GCR), may
create some of Neptune’s aerosol through ion-induced nucleation.
It was not possible to discriminate between the ultraviolet and
GCR effects, although the relationship with ultraviolet was
slightly more statistically robust1. The Neptune magnitude-solar
activity relationship broke down after 1996 (refs 1,2), but recent
extension of the data3 encourages its re-examination. Supporting
evidence for a solar cycle in infrared observations from 1975 to
2007 (ref. 4) further motivates a fresh consideration of the origin
of the short-term variability in Neptune’s albedo.

Both the ultraviolet and GCR mechanisms can, in principle,
account for the changes observed in the photometric
observations, which originate in Neptune’s stratosphere and
troposphere1,5. The ultraviolet mechanism was originally
proposed6 to explain the solar cycle signal when it was first
reported in Neptune’s albedo7. It was suggested that ultraviolet-
triggered surface chemistry on pre-existing aerosol particles
varied the optical properties of Neptune’s stratospheric aerosol
through a darkening in colour (‘tanning’), detectable in the
photometric measurements. The GCR-driven mechanism was
proposed for Neptune8,9, through direct (‘Wilson’) condensation
of supersaturated gas onto atmospheric ions10, causing
particle growth ultimately detectable at optical wavelengths.
The possibility that charge-related effects could modulate the
atmospheres of the outer planets, where variations in solar
irradiance are proportionately less important11, contrasts with the
small likely role of energetic particles in Earth’s atmosphere12 and
provides a further motivation for this study.

The two proposed mechanisms for external solar forcing of
Neptune are essentially heliospheric (through GCR) or photo-
spheric (through solar ultraviolet) in origin. The analysis to
investigate them here uses two approaches. First, the relationships
between Neptune’s magnitude, solar ultraviolet radiation and
GCRs are studied with multiple regression, allowing both the
proposed mechanisms to act together. We find that, when the
extra degrees of freedom are accounted for, including both
ultraviolet and GCR improves prediction of the magnitude
fluctuations. Second, we examine the relatively rapid fluctuations
apparent during the mid-1980s in the Neptune astronomical data.
This enhanced variability coincided with a known episode of
quasi-periodic fluctuations present in GCR13, centred around
1.68 years. Investigating Neptune’s atmospheric variability in the
1.5 to 2 year range therefore presents a method by which to
separate the two different suggested solar-modulated influences,
an approach previously used to separate coincident terrestrial
atmospheric responses14.

Results
The extended Neptune photometric data set 1972–2014.
Regular photometric observations of the magnitude (brightness)
of Neptune have been made since 1972, through well-
characterised visible bandpass filters of width B20 nm centred at
472 nm (‘b’, blue) and 551 nm (‘y’, green) using a 21-in telescope
at Lowell Observatory, Arizona2, Fig. 1a. Each magnitude value is

typically determined from between 4 and 39 nights of data
(median 9 nights), taken around the time the planet is brightest in
the sky (opposition)3. Standard errors in the magnitude
measurements, determined from the standard deviations and
number of nights of observation were typically ±0.001 (ref. 3).
Sampling intervals varied between 0.7 and 1.2 years, with median
interval of 1.04 years. Figure 1 summarizes the data, with Fig. 1a
showing the measured magnitudes, Fig 1b showing the
magnitude fluctuations, Fig. 1c showing the ultraviolet data and
Fig. 1d showing GCR measured both at Earth and in space. More
information on the data is given in the ‘Methods’ section.

The correlation between the 29 data points and 30-day running
means of ultraviolet, sunspots and GCR with a range of lags
was calculated previously1. The correlation between Neptune’s
magnitude fluctuations and ultraviolet was statistically significant,
whereas the correlation with GCR was not, on which basis it was
concluded that ultraviolet was the more likely mechanism1. This
analysis1 did not allow for the possibility that both the physically
plausible mechanisms involving ultraviolet and GCR could
be acting in combination in Neptune’s atmosphere to cause the
observed albedo variations. If so, multiple regression may be
more appropriate than treating the two proposed mechanisms
independently. The earlier analysis1 was statistically rather than
physically based, whereas we have used standard ion–aerosol
theory to guide our statistical approach. Finally, extra data have
recently been made available3, which we now include.

Previous analyses1 assumed linear relationships between
ultraviolet (UV) and albedo, and GCR and albedo. Although
the ultraviolet-albedo relationship is generally assumed to be
linear6, this assumption is not necessarily appropriate for the
GCR mechanism. In this case, the albedo changes are likely to be
proportional to the number of ion-induced particles. The number
of particles formed is controlled by the ion-induced nucleation
rate9, which is proportional to the atmospheric ion (or electron)
concentration n, where the ions are singly charged, nanometre-
sized clusters created by GCR ionization11 with volumetric
production rate q. In ion–aerosol theory, there are two possible
limiting regimes linking n and q. First, the recombination limit of
negligible aerosol, in which the ion concentration n is controlled
by ion–ion or ion–electron self-recombination and n / ffiffiffi

q
p

.
Second, in the attachment regime, the ion concentration is
limited by attachment to any pre-existing particles (such as
aerosols, haze, clouds or dust) and npq (for example, see ref. 11).
Assuming that the GCR count rate provides an estimate of q
(for example, see ref. 15), a set of possible statistical relationships
was investigated of the form:

fb;y ¼ kb;yUVþ lb;yGCRþmb;y

ffiffiffiffiffiffiffiffiffiffi
GCR
p

þ xb;y ð1Þ

where fb,y are the measured magnitude fluctuations in the
b (472 nm) or y (551 nm) wavelength ranges, k, l and m are
coefficients for the b or y data representing the ultraviolet
mechanism, ion attachment and ion recombination, respectively,
and x is a constant for the b or y data. Daily Lyman-alpha and
Oulu neutron counter (GCR) data, averaged for ±20 days
around the observation date given in ref. 3, were used as
measurements of ultraviolet (UV) and GCR (see the ‘Methods’
section). The regressions were weighted according to the standard
errors in the magnitude data described above, and the errors in
ultraviolet and GCR data were assumed to be negligible in
comparison with those in the magnitude data. As the attachment
and recombination regimes cannot act simultaneously at the
same location, this set of statistical relationships represents the
integrated effect of the different atmospheric layers observed at
Earth through each filter.

The adjusted coefficient of determination (R2), that is, fraction
of the variance explained by the fit, corrected for the number of
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points and fitted variables, was used to evaluate each model,
summarized in Table 1. For the y filter, adjusted R2 was improved
to 0.14 (see case 7 in Table 1) when both the ultraviolet and
GCR-related mechanisms were included rather than considering
the mechanisms separately, which only explained 2–8% of the
variance. Considering both GCR-created ionization and ultra-
violet therefore permits rejection of the null hypothesis, which is
that including both ultraviolet and GCR does not improve the fit
(for example, see ref. 16). The improvement from including both
GCR and ultraviolet is less marked for the b filter data, with the fit
between ultraviolet and magnitude fluctuation slightly better than

for GCR, ultraviolet and magnitude fluctuation. The measured
and modelled magnitude fluctuations are compared in Fig. 2.

One possible explanation for the differences between the b and
y filter responses relates to the different parts of Neptune’s
atmosphere accessed by each filter. The 442 nm b filter responds
to stratospheric haze particles, whereas the 551 nm y filter is more
sensitive to the optical properties of tropospheric aerosols6.
Ultraviolet will be absorbed by, for example, haze layers17

as it passes through the atmosphere, whereas highly energetic
secondary GCR, typically muons of several GeV, can readily
penetrate the deep atmosphere (for example, see ref. 11), with the
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Figure 1 | Time series of Neptune’s brightness and solar modulated parameters. (a) Neptune brightness (astronomical magnitude, where smaller values

represent a greater signal) time series at 472 nm (blue squares) and 551 nm (green circles), from ref. 3, each smoothed with a lowess fit (blue dashed line

or green solid line). (b) Magnitude fluctuations after detrending (a) with a lowess fit. The maximum s.e.m. in each data set is shown as a single error bar on

the far left. (c) Lyman-alpha (ultraviolet) radiation at 121.5 nm. (d) Cosmic ray count rate at Earth’s surface and in the heliosphere, showing terrestrial

neutron monitor data from Oulu, Finland, (black) and Voyager 2 LECP instrument daily mean flux of cosmic ray protons 470 MeV (grey). Data are

described in full in the ‘Methods’ section.

Table 1 | Summary of multiple regression analysis.

Case Physical interpretation Coefficients in equation (1) Adjusted coefficient of determination (R2) and
statistical significance P value

y(551 nm) b(472 nm)

1 GCR only (ion-particle attachment limited) k¼0, m¼0; l free to vary 0.02 0.13 (Po0.01)
2 OGCR only (ion–ion/ion–electron recombination limited) k¼0, l¼0; m free to vary 0.02 0.13 (Po0.01)
3 GCRþOGCR k¼0, l and m free to vary 0.03 0.12 (Po0.05)
4 Ultraviolet only l¼0, m¼0; k free to vary 0.08 (Po0.05) 0.20 (Po0.01)
5 UltravioletþGCR m¼0; k and l free to vary 0.08 (Po0.05) 0.18 (Po0.1)
6 UltravioletþOGCR l¼0; k and m free to vary 0.07 (Po0.1) 0.18 (Po0.1)
7 UltravioletþGCRþOGCR k, l and m free to vary 0.14 (Po0.05) 0.19 (Po0.05)

GCR, galactic cosmic ray.
Fits are weighted according to the errors on the measurements3. Statistical significances of the fits are indicated where better than 90% (Po0.1). The adjusted coefficient of determination (R2) gives the
fraction of the variance explained by the fit, whilst accounting for the different number of variables in each fit.
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maximum ionization, known in the terrestrial atmosphere as the
Pfotzer–Regener maximum15, expected at about 40 hPa (ref. 9).
It is therefore plausible that particles seen by the b filter in the
haze layers would respond preferentially to ultraviolet, but that
the changes in the y filter wavelength can be better explained by
the inclusion of GCR in the model.

Spectral analysis. Particle detectors on the Voyager 2 spacecraft
measured primary GCR as they passed out of the Solar System.
These measurements showed variability on 1 to 2 year time-
scales18, which was at its strongest in primary GCR in the 1980s,
consistently with terrestrial neutron monitor data19. Although
similar variability is apparent in terrestrial GCR (neutron
monitor) measurements, it is not in the solar 10.7-cm radio
flux, a widely-used index of solar radiative emissions20. Beyond
GCR data, this variability in the 1980s has also been identified in
other heliospherically modulated quantities19, such as terrestrial
surface atmospheric electricity data21. In contrast, such variability
is not apparent in photospheric quantities such as solar
ultraviolet, which makes this periodicity a useful diagnostic for
separating photospheric and heliospherically modulated effects14.

To pursue this for Neptune’s atmosphere we consider whether
the cosmic ray variability observed at Earth is also present at
Neptune. After establishing that it is, we then consider when the
variability on these timescales occurs in Neptune’s atmosphere,
GCR and, for completeness, solar ultraviolet. One approach to
evaluating variations such as these within specified frequency
ranges is to use a periodogram, or a series of periodograms
selecting successive time intervals. Using successive period-
ograms, calculated using the Lomb–Scargle method for irregularly
spaced data, the temporal variations of spectral power density
(SPD) between 1.5 and 1.9 years in Neptune’s magnitude,
cosmic rays from both Voyager 2 and Oulu and ultraviolet
(Lyman-alpha) radiation are shown in Fig. 3 as a moving-window
spectrogram. The cosmic ray data used are protons of energy
470 MeV measured by the Voyager 2 Low Energy Charged
Particle (LECP) instrument22. Figure 3a presents a spectrogram
of the data from Voyager 2, indicating strong spectral power at
1.5–1.9-year periodicities from about 1983 to 1987, when Voyager
2 was travelling from Saturn to Neptune. (Further details of the
spectral data processing are given in the ‘Methods’ section).
Voyager 2’s closest approach to Uranus was on 24 January 1986,
and to Neptune on 25 August 1989 (ref. 23).

Figure 3a–c shows spectrograms generated from the data
collected at Neptune, Fig. 3d shows terrestrial cosmic rays

measured at Oulu in Finland and Fig. 3e shows the ultraviolet
data. The Oulu and Voyager 2 cosmic ray data support earlier
findings17, in that the spectral variability appears first in GCR at
Earth (Fig. 3d), before reaching Voyager 2 (Fig. 3a) consistent
with outward propagation of a heliospheric feature. The Neptune
and Voyager 2 spectrograms show similarities in their time
evolution, with coincident increased SPD during the 1980s. To
evaluate the significance of this enhanced SPD, a Monte-Carlo
procedure was used. Using random shuffling of the magnitude
fluctuation data, many (50,000) randomised power spectra were
obtained; a spectral peak at B1.6 years has a probability of being
caused by chance of about 1% (Po0.02), see Fig. 4.

In contrast, the spectrogram derived from the Lyman-alpha
data (Fig. 3e) shows minimal variability in the range of
periodicities considered during the mid-1980s. Hence the
Voyager 2 cosmic ray data establish that the 1.5–1.9-year
periodicity was present both in Neptune’s atmosphere and in
GCR near Neptune during the 1980s.

The 1.5–1.9-year spectral feature in heliospheric GCR can be
used as a ‘fingerprint’ of a possible GCR influence in atmospheric
properties such as clouds14. Comparing the strength of this
feature on Neptune with GCR therefore provides a method to
separate ultraviolet and GCR effects on Neptune’s albedo.
However, there may be a lag in Neptune’s measured albedo in
response to external forcing, due to the internal timescales of
particle production and movement in Neptune’s atmosphere.
These processes were described6 as methane being injected into
the stratosphere and upper troposphere by convection, where
photochemical, nucleation and sedimentation processes act on
timescales of typically a few Earth years. The photochemical
colour changes postulated to be the ultraviolet mechanism
providing solar modulation of the albedo are thought to act on
0.2–2-year timescales6. Guided by these ideas, it was found that
the fit statistics summarized in Table 1 could be improved by
allowing Neptune’s albedo to lag ultraviolet and GCR.

We have further investigated the delays in Neptune’s
atmospheric response by carrying out a lag correlation analysis
between the average 1.5–1.9-year SPD in GCR, as for Fig. 3, and
the same quantity in Neptune’s magnitude, Fig. 5a. The peak
response is achieved at a lag of 3 years for both wavelengths, and
Fig. 5b indicates that, with a 3-year lag, 32% of the variance in the
Neptune 472 nm SPD can be explained by GCR at Po0.001
confidence (18% for the 551 nm SPD at Po0.05 confidence). The
calculated lag is robust to errors in the SPD, as determined by
recalculating the spectra many (10,000) times, including a
normally distributed random error within the quoted uncertainty
on the magnitude measurements3. Supplementary Fig. 1 is a
version of Fig. 5 calculated for the 1.5–1.9-year SPD in
Lyman-alpha (ultraviolet) radiation. Unlike the GCR-magnitude
relationship in SPD (Fig. 5) which shows an almost linear
dependency in the 1980s, there is no statistically significant linear
effect between the 482 nm SPD and ultraviolet (or, indeed, for the
551 nm SPD against the ultraviolet SPD, not plotted). This
indicates that some of the spectral features previously identified in
the GCR data during the 1980s have propagated into Neptune’s
atmosphere for detection at 472 nm, which is not replicated for
the ultraviolet data.

Returning to the GCR effects, and restricting the analysis to
data from the 1980s, when the spectral feature was particularly
strong and known to be present close to Neptune, then 87% of the
variance in this intermittent periodicity at 472 nm can be
explained solely by GCR at the Po0.001 confidence level. For
the y data at 551 nm, the R2 remains 18% during the 1980s.

Estimates using classical cloud physics theory24 for plausible
parameters of ion-induced particle growth at Neptune (see the
‘Methods’ section) indicate that newly nucleated particles could
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grow to optical wavelengths relatively quickly, with timescales
from tens of minutes to hours. This rapid ion growth timescale
implies that the lagged GCR effects observed in Neptune’s
magnitude fluctuations could arise from the propagation of the
1.5–1.9-year periodicity outwards through the heliosphere,

suggested by the lag between the spectral features in Voyager 2
(Fig. 3a) and Oulu (Fig. 3d).

The two analyses presented in this paper, by multiple
regression and spectral techniques, represent different effects.
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The multiple regression evaluates the net response of Neptune’s
magnitude to both GCR and ultraviolet forcing, whereas the SPD
approach only addresses the sensitivity of Neptune’s atmosphere
to one forcing, that of GCR on 1.5–1.9-year timescales. For
472 nm, variability at these periodicities during the 1980s is well
explained by GCR. In terms of net response over the whole data
set (1972–2014), fluctuations in the 472 nm filter data are most
effectively accounted for by ultraviolet variations alone, but at
551 nm there is a combined effect of GCR and ultraviolet.

Discussion
Two alternative origins have previously been proposed2 for the
decadal variations observed in Neptune’s atmosphere, external
forcing (solar modulation) or chance. On the basis of a statistical
argument, GCR or ultraviolet presented alternatives as solar
forcing agents1. Including the most recent data, we now find that
considering GCR and ultraviolet as joint contributors to
Neptune’s atmospheric variability is stronger than an either–or
scenario. Our model’s explanatory power is enhanced by
including realistic ion–aerosol physics, allowing for ion loss
both by attachment to aerosol and by ion–ion or ion–electron
recombination.

Ion–aerosol theory considerations indicate that, in cloudy or
hazy conditions, ions attach to aerosol particles (see equation 1).
This has two consequences. First, haze particles or cloud droplets
will become charged by ion attachment. The charge does
not depend on the ionization rate25, so will not generate the
photometric variability analysed here. Second, the associated ion
depletion will reduce opportunities for ion-induced nucleation.
As Neptune’s stratosphere and troposphere are rich in haze and
cloud particles5,6, this suggests a role for transport processes6,26

in moving nucleated particles to regions where they become
detectable in the photometric observations.

Our work provides new evidence for solar forcing in Neptune’s
atmosphere on sub-seasonal timescales, through both ultraviolet-
driven and GCR mechanisms. The lags in Neptune’s response to
external forcing present in both GCR and ultraviolet data over
the entire time series, and in the GCR SPD during the 1980s,
are consistent both with each other and with known particle
movement timescales6. Further investigation is needed to
understand the potentially very different timescales associated
with both particle-modulating mechanisms, and the relevant
transport processes within Neptune’s atmosphere.

Methods
Neptune magnitude data. The Neptune magnitude data has been obtained by
Dr W Lockwood and collaborators from the Lowell Observatory, Arizona over
many years2,3. Neptune’s magnitude is measured with a 21-in reflector telescope
using differential photometry, a technique based on measuring the brightness of a
target object relative to comparison stars. The data are filtered in the visible with
filters called ‘b’ (centred on 472 nm) and ‘y’ (centred on 551 nm). Filter-response
functions and details of the long-term stability and errors are all given in ref. 2.

Detrending the Neptune magnitude data is necessary to remove the slow
seasonal related increase in Neptune’s brightness (for example, see refs 1,2,27).
Following the approach in ref. 1, we have applied smoothing curves to the
magnitude data to remove the low-frequency seasonal changes and look at
fluctuations occurring on more rapid timescales. A quadratic detrend was applied
in earlier analyses1,2, but rather than assume an arbitrary polynomial, we have
applied robust local smoothing methods and compared them with the quadratic
in Fig. 6a. The lowess28 fit and the newer algorithm, loess29, are well-established
non-parametric local smoothers, weighted towards points near the region to be
fitted. It can be seen from Fig. 6b that the key features in the magnitude
fluctuations are preserved independently of the smoothing fit chosen.

A Kolmogorov–Smirnov (KS) statistical test has also been used to establish
whether the magnitude fluctuations calculated using any of the three smoothing fits
differ statistically. Importantly, the Kolmogorov–Smirnov test does not make any
assumptions about the distribution of the data (for example, see ref. 30). Table 2
indicates that for most of the types of smoothing used, the calculated magnitude
fluctuations are not significantly different.

Cosmic ray data. GCRs are energetic particles generated outside the Solar
System. They are mainly protons, which are most abundant, and alpha particles
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Table 2 | Kolmogorov–Smirnov test results (P values) for
Neptune magnitude fluctuations de-trended with different
techniques.

Lowess Loess Quadratic

Lowess 0.436 0.292
Loess 0.292 0.035
Quadratic 0.064 0.009

If P40.05 the data do not statistically differ from each other, indicated in bold. The b 472 nm
data are shown bottom left and the y 551 nm data are shown top right.
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(helium nuclei)31. Cosmic rays ionize atmospheres by colliding with molecules and
inducing a cascade of secondary ionizing and non-ionizing particles; they are the
major source of ionization in many planetary atmospheres11. Neutron monitor
measurements of GCR are used here as an indicator of atmospheric ionization.
Neutrons are non-ionizing radiation formed by GCR decaying in Earth’s
atmosphere and are measured by a network of terrestrial monitors, described
below. GCR can also be measured directly by spacecraft. Voyager 2 proton data,
available from 1977 onwards, is useful for comparison, since it represents the
cosmic ray flux near or at Neptune for some of the time period of interest.
However, because of the variable lag of up to 4 months between the time series of
neutron monitor data and Voyager 2 data, depending on the position of Voyager 2,
we have chosen to focus on data from the Oulu neutron monitor, which has been
in continuous operation since the 1960s (ref. 32).

Oulu. The Oulu neutron monitor detects neutrons generated by primary GCR
decaying in the atmosphere. Integrated over the atmospheric column, neutron
monitor data is a reasonable proxy for cosmic ray ionization in Earth’s atmosphere
(although not necessarily in the lower troposphere15). As the physics of
atmospheric ionization is fundamentally similar at Neptune and on Earth11, we use
the Oulu data as a source of long-term cosmic ray data. The Oulu neutron monitor
is essentially unchanged since installation in the 1960s, but there is an ‘efficiency’
factor applied to the data to include the effects of changes in hardware and software
(as well as the routinely applied atmospheric pressure correction). The data are
fully explained at http://cosmicrays.oulu.fi/ and in ref. 32. Our analysis uses 1-day
averages, although 5-min resolution data is available from 1968.

Voyager. The Voyager 2 proton data (energy470 MeV) was obtained by the
LECP instrument22, although time series of 470 MeV ions and high-energy alphas
and protons from the Cosmic Ray Subsystem instrument33 are similar and could
equally have been used. Data (available and described in detail at http://sd-
www.jhuapl.edu/VOYAGER/) are sampled at 1 s intervals, but recorded as daily
average count rates, with the standard deviations reported. The median standard
deviation of these was 0.003 s� 1 (with an interquartile range of 0.002–0.004 s� 1)
compared with a median count rate of 0.072 s� 1 that is, a fractional standard
deviation of ±4%.

Lyman-alpha ultraviolet data. The Lyman-alpha data is a composite time series
of the solar hydrogen 121.57 nm emission line, and represents ultraviolet emissions
from the entire solar disc34. It is generated from a combination of satellite
measurements and models extending back to 1947, available at http://
lasp.colorado.edu/lisird/lya/. For the time period relevant to this paper, the data is
taken from the Atmospheric Explorer-E (1977–1980), Solar Mesospheric Explorer
SME (1981–1989), the Upper Atmosphere Research Satellite (UARS) SOLSTICE
instrument (1991–2000), Solar Radiation and Climate Experiment (SORCE)
SOLSTICE instrument (2003–2010) and Solar Dynamics Observatory (SDO)
EVE (2010–2015). The times where no satellite data is available (1972–1977 and
2001–2003) are filled in by model calculations35. Detailed discussion of this data set
is outside the scope of this paper35, but the uncertainty is estimated to be ±10%.

Spectral analysis. The periodograms in Fig. 3 were all generated from data
selected using an 8-year moving window having a 0.5 cosine bell taper, with steps
of 0.5 years between successive data window evaluations. The data were first
de-trended to obtain magnitude fluctuations using a loess fit. (The fluctuations
were demonstrated to be insensitive to the choice of detrend used in Neptune

magnitude data above). The selected data window was cosine tapered (tapering
factor 0.5), to reduce the truncation effects of the short data windows. The
Lomb–Scargle36,37 approach for irregularly spaced data was used, with the code38

implemented in R. In the case of irregularly spaced data, the minimum detectable
period is 2s, where s is the minimum sampling period of the data set. In the
Neptune data the minimum sampling interval is 0.7 years, giving a minimum
detectable periodicity of 1.4 years (refs 39,40).

The 1.5–1.9-year periodicity described in the GCR data in the ‘Results’ section
was independently confirmed to occur in the 1980s by an additional analysis of the
daily GCR data. This analysis used a phase-preserving 1.55–1.81-year Lanczos
bandpass filter41 of half-length 8 years, with missing values addressed by multiple
bootstrapped realizations14. Computer code is available on request.

Droplet nucleation onto ions in Neptune’s atmosphere. The saturation
ratio S required for ions to grow into ultrafine droplets by condensation can be
determined using the Thomson equation (2), which describes the equilibrium
saturation ratio needed for ion-induced nucleation to become energetically
favourable11. In equation 2 r is radius, r fluid density, M the mass of the
condensing molecule, q charge, gT the surface tension, kB Boltzmann’s constant, T
temperature, eo the permittivity of free space (all in SI units) and er relative
permittivity:

ln S ¼ M
kBTr

2gT

r
� q2

32p2e0r4
1� 1

er

� �� �
ð2Þ

A similar approach was taken to calculate the saturation ratio at which
ion-induced nucleation could occur on Neptune9. Here, we apply the Thomson
equation for methane and diacetylene (butadiyne), two species thought likely to
form droplets through ion-induced nucleation at the pressures and temperatures
appropriate for Neptune9. Diacetylene nucleates onto singly charged ions of critical
radius 1 nm at a saturation ratio of B500, whereas methane needs a saturation
ratio of B15 for nucleation onto ions (Fig. 7). As these large saturation ratios are
expected in the cold Neptune environment9, condensation can occur onto freshly
produced B1 nm cluster ions. Figure 7 also shows that ion-induced nucleation
occurs more easily at lower saturation ratios on multiply charged large ions. For a
typical charge of 2e on 10nm particles in Neptune’s atmosphere, arising from
asymmetry in positive ion and free electron mobilities (ref. 25), estimates of the
saturation ratio required for nucleation are B100 (diacetylene), and B5
(methane), consistent with the ‘relatively efficient’ ion-induced nucleation
predicted in ref. 9.

Droplet growth by condensation. We now estimate the rate of droplet growth for
methane condensation at 75 K and 1,100 hPa on Neptune with methane saturation
ratio of 2.7 in a hydrogen atmosphere9. (There is not enough data available to carry
out the calculation for diacetylene).

Following ref. 24, the rate of growth of a droplet of radius r is given by

r
dr
dt
¼ S� 1

L
Rv T � 1
� �

LrL
KTf /ð Þ þ

rLRv T
Des Tð Þg bð Þ

h i ð3Þ

where, S is the saturation ratio, T is the temperature, L is the latent heat of
vapourization, Rv is the gas constant for the condensing species, D is the diffusion
coefficient for the condensing species, K is the thermal conductivity, rv is the
vapour density and es(T) is the saturation vapour pressure. Two normalization

Table 3 | Quantities used to estimate growth rate of methane droplets in hydrogen at B100 K.

Quantity and description Value used (SI units) Comment

cv specific heat of background gas
at constant volume

6.236� 103 J kg� 1 K� 1 Assumes no modes are excited at these temperatures, so 3/2 kB per mole (where kB is the
Boltzmann constant) (for example, see ref. 42)

D diffusion coefficient 3� 10� 5 m2s� 1 at 90 K (methane diffusing in methane)43

es(T) saturation vapour pressure 1.03 Pa Calculated at 75 K ref. 9
K thermal conductivity 0.509 W m K� 1 at 73.2 K and 1,013 hPa ref. 44
L latent heat of vapourization 5.1� 105 J kg� 1 at 110 K ref. 45
R’ gas constant (background) 4.124� 103 J kg� 1 K� 1 Calculated from universal gas constant and molecular mass
Rv gas constant (condensing
species)

5.183� 102 J kg� 1 K� 1

r radius Initial value 1 nm
P pressure 1.1� 105 Pa Conditions defined in ref. 9
S supersaturation 2.7
T temperature 75 K
a-coefficient 1 From ref. 24
b-coefficient 0.04
rv density of condensing species 471 kg m� 3 Calculated at 75 K ref. 9
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factors, f(a) and g(b), are also defined24 where,

f /ð Þ ¼ r

rþ K
/p

� � ffiffiffiffiffiffiffiffiffi
2pR0T
p

cv þR0=2

ð4Þ

with p the pressure and R’ the gas constant of the background gas, and a is 1. The
second normalization factor is given by

g bð Þ ¼ r

rþ D
b

ffiffiffiffiffiffi
2p

Rv T

q ð5Þ

where, 0.02obo0.04 and is taken here to be 0.04. The terms used in the
calculation are listed in Table 3.

Inserting values from Table 3, we find that the estimated droplet growth rate is
of order 4 nm s� 1, which is insensitive to both the initial radius, and the radius as
the droplet grows. This insensitivity to radius arises from the 1/r term in equation 3
being compensated by the r terms in equations 4 and 5.
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13. Valdés-Galicia, J. F., Pérez-Enrı́quez, R. & Otaoloa, J. A. The cosmic-ray 1.68
year variation: a clue to understand the nature of the solar cycle? Solar Phys.
167, 409–417 (1996).

14. Harrison, R. G. Discrimination between cosmic ray and solar irradiance effects
on clouds, and evidence for geophysical modulation of cloud thickness. Proc.
Roy. Soc. A 464, 2575–2590 (2008).

15. Harrison, R. G., Nicoll, K. A. & Aplin, K. L. Vertical profile measurements of
lower troposphere ionisation. J. Atmos. Solar. Terr. Phys. 119, 203–210 (2014).

16. Vaughan, S. Scientific Inference: Learning from Data (Cambridge University
Press, 2013).

17. Pryor, W. R. & Hord, C. W. A study of photopolarimeter system UV
absorption data on Jupiter, Saturn, Uranus, and Neptune: implications for
auroral haze formation. Icarus 91, 161–172 (1991).

18. Kato, C., Munakata, K., Yasue, S., Inoue, K. & McDonald, F. B. A 1.7-year
quasi-periodicity in cosmic ray intensity variation observed in the outer
heliosphere. J. Geophys. Res. 108, 1367 (2003).

19. Rouillard, A. & Lockwood, M. Oscillations in the open solar magnetic flux with
a period of 1.68 years: imprint on galactic cosmic rays and implications for
heliospheric shielding. Ann. Geophys. 22, 4381–4395 (2004).

20. Kane, R. P. Short-term periodicities in solar indices. Solar Phys. 227, 155–175
(2005).
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