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Abstract

Atmosphere only and ocean only variational data
assimilation (DA) schemes are able to use win-
dow lengths that are optimal for the error growth
rate, non-linearity and observation density of the
respective systems. Typical window lengths are
6-12 hours for the atmosphere and 2-10 days for
the ocean. However, in the implementation of
coupled DA schemes it has been necessary to
match the window length of the ocean to that
of the atmosphere, which may potentially sac-
rifice the accuracy of the ocean analysis in or-
der to provide a more balanced coupled state.
This paper investigates how extending the win-
dow length in the presence of model error affects
both the analysis of the coupled state and the
initialized forecast when using coupled DA with
differing degrees of coupling.

Results are illustrated using an idealized single
column model of the coupled atmosphere-ocean
system. It is found that the analysis error from
an uncoupled DA scheme can be smaller than
that from a coupled analysis at the initial time,
due to faster error growth in the coupled sys-
tem. However, this does not necessarily lead to
a more accurate forecast due to imbalances in
the coupled state. Instead coupled DA is more
able to update the initial state to reduce the im-

pact of the model error on the accuracy of the
forecast. The effect of model error is potentially
most detrimental in the weakly coupled formu-
lation due to the inconsistency between the cou-
pled model used in the outer loop and uncoupled
models used in the inner loop.

1 Introduction

Coupling processes between the atmosphere and
ocean are known to be important for seasonal
and climate prediction, for example for the ac-
curate prediction of the El Niño-Southern Os-
cillation (Barnett et al. 1993; Jin et al. 2008).
In addition to this, there is increasing evidence
to suggest the importance of atmosphere-ocean
interaction at the weather time scales, for ex-
ample for the prediction of the Madden-Jullen
Oscillation (Shelly et al. 2014), coastal fog and
extra-tropical cyclones (Siddorn et al. 2014; Vi-
tart et al. 2008).

Until recently the initialization of coupled
models for the prediction of the Earth system has
been performed using uncoupled atmosphere and
ocean states, produced from separate data as-
similation (DA) systems (e.g. Saha et al. (2006);
Molteni et al. (2011); Arribas et al. (2011);
MacLachlan et al. (2015)). These uncoupled
states are then effectively ‘stitched’ together to
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create an initial state for the coupled forecast.
There are a variety of known problems with us-
ing uncoupled initial conditions. These include

• the generation of imbalances between the
atmosphere and ocean systems leading to an
unrealistic and sudden adjustment to bal-
anced conditions in the first part of the fore-
cast (Balmaseda and Anderson 2009; Mull-
holland et al. 2015); and

• a sub-optimal use of observations, partic-
ularly those close to the air-sea interface
which depend on the physics of both the
ocean and atmosphere.

In an attempt to overcome many of these issues,
coupled DA methods, in which the atmosphere
and ocean are treated simultaneously, are be-
ing developed at operational centers worldwide
(Saha et al. 2010; Lea et al. 2015; Alves et al.
2014; Laloyaux et al. 2015). As well as for the
initialization of coupled models, coupled DA will
be used for reanalyses, in which it is necessary
to provide a consistent global transport of mass,
water, and energy on the relevant time scales
(Dee et al. 2014).

Coupled DA is a relatively new field of re-
search. Early studies include those by Galanti
et al. (2003), Zhang et al. (2007) and Sugiura
et al. (2008). Despite the techniques proposed
in these early studies not estimating the full at-
mosphere and ocean states simultaneously, re-
sults showed that using a coupled atmosphere-
ocean model during the assimilation significantly
improved the accuracy of reanalyses and fore-
casts of seasonal to interannual climate varia-
tions (such as El Niño). Another early study is
that of Lu and Hsieh (1998), who used a simple
5 dimensional coupled equatorial model to inves-
tigate the use of coupled DA for both state and

parameter estimation. Within this study we fo-
cus on the use of coupled DA for short-medium
range weather forecasting which can be sensi-
tive to the interaction between the atmospheric
boundary layer and the oceanic mixed layer.

Implementing a fully coupled DA scheme in
practice faces many challenges. An immediate
practical consideration is the increase in the size
of the state that needs to be estimated, which
makes the problem much more computationally
expensive. There are also more scientific chal-
lenges which are invariably related to the very
different nature of the two fluids. The atmo-
sphere is much less dense than the ocean and
also much more unstable. There are also funda-
mental differences in the available observations
of the atmosphere and ocean. The atmosphere is
relatively densely observed whilst the ocean by
its very nature is difficult to observe and sub-
surface observations generally only come from a
sparse array of in-situ observations. These dif-
ferences impact on essential aspects of the im-
plementation of coupled DA, such as the specifi-
cation of cross-covariances between errors in the
atmosphere and ocean systems (Han et al. 2013).

In previous work, we used an idealized single
column model to investigate different approxi-
mations to coupled DA in the 4D-Var framework
when no model error is present (Smith et al.
2015). It was found that when using a short
window length of 12 hours (consistent with that
used operationally for atmosphere only DA), a
strongly coupled formulation was able to pro-
vide the best analysis of the coupled initial state,
having both a smaller error and being more bal-
anced than an uncoupled formulation. A weakly
coupled approximation was seen to display some
of these same benefits as the strongly coupled
formulation but was more sensitive to the reso-
lution of the observations. In this paper we con-
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tinue this study, by investigating how the differ-
ent approximations to coupled DA compare as
the window length is extended and model error
becomes a greater issue.

Due to the different nature of the two fluids,
model error in the atmosphere has a much faster
growth rate than in the ocean. The growth rate
of the model error and the linearity assumption
restricts the length of the window in which obser-
vations can be assimilated in 4D-Var, and is an
important factor in why a short window length
of 6-12 hours is typically used in atmosphere
only data assimilation (Rawlins et al. 2007), and
a long window length of 2-10 days is typically
used in ocean only data assimilation (Weaver
et al. 2003). Coupling the two systems allows
for the model error to interact and may intro-
duce a faster model error growth rate in the
upper ocean than in an uncoupled simulation.
Therefore the model error in the coupled system
restricts the assimilation window to something
shorter than the optimal window length for an
uncoupled ocean DA scheme (Lea et al. 2015;
Laloyaux et al. 2015). As the ocean is poorly
observed, this severely limits the number of ob-
servations that can be assimilated and has the
effect of potentially sacrificing the accuracy of
the ocean initial state in order to provide a more
balanced coupled initial state. Even with the
use of a shortened window length, the ECMWF
have found it necessary to constrain the sea sur-
face temperature to a gridded analysis product
in order to avoid the rapidly growing bias in the
model (Laloyaux et al. 2015). There is therefore
motivation to understand the effect of extending
the window length, in the presence of increasing
model error, within the coupled DA framework.

The model error in the coupled system was
studied by both Magnusson et al. (2013) and
Smith et al. (2013) using the ECMWF IFS model

coupled to the NEMO ocean model (Madec
2008) and the HadCM3 model respectively. Both
found cold biases in surface temperatures. Mag-
nusson et al. (2013) believed this is due to im-
balances in the energy flux at the top of the
atmosphere and a strong uptake of heat in the
ocean. Magnusson et al. (2013) also looked at
the bias in the 10m wind speed and found it
to be large within the western Tropical Pacific.
They concluded that this is due to a positive cou-
pled feedback between wind and SST: too strong
winds lead to excessive upwelling which produces
a colder sea surface temperatures (SST) which in
turn produces stronger zonal winds.

Here we examine how model errors in the cou-
pled system affect the analysis and subsequent
forecast in coupled DA. The structure of the pa-
per is as follows. In section 2 the different ap-
proximations to coupled DA that we consider are
given. This is largely an overview of results re-
cently presented in Smith et al. (2015). In sec-
tion 3 the theoretical impact of model error is
presented with discussion of how the different
coupling strategies may be affected. In section
4 the design of the idealized experiments is pre-
sented and an illustration of the model error for
a case study is shown. In section 5 results are
shown for a series of assimilation experiments
applied to this case study in which the effect of
model error on the accuracy of the analysis and
initialized forecast are given. Finally conclusions
that can be drawn from these experiments are
detailed in section 6 along with a discussion of
the insight provided on how to account for model
error in coupled 4D-Var.
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2 Strategies for coupled DA

This present study will focus on incremental 4D-
Var methods (Courtier et al. 1994) in line with
those being developed at ECMWF and the Met
Office (Laloyaux et al. 2015; Lea et al. 2015).
We note that methods based on the ensemble
Kalman filter are also being developed with in-
teresting results (e.g. Frolov et al. (2016) and
Zhang et al. (2007)) but will not be included
in the comparison of methods presented here.
We consider three different strengths of coupling
within the 4D-Var scheme:

1. strongly coupled, in which the ocean and at-
mosphere are updated together. This is the
epitome of what coupled DA schemes are
trying to achieve, but is currently not prac-
tical for operational sized models;

2. weakly coupled, an approximation to
strongly coupled which makes use of the
inner loop structure of incremental 4D-Var
to simplify the algorithm. This makes it
feasible to implement in current operational
settings, particularly when different assim-
ilation schemes have been implemented in
the atmosphere and ocean;

3. and lastly uncoupled in which, the atmo-
sphere and ocean are updated indepen-
dently of each other.

An in-depth description and study of these dif-
ferent coupling strategies in the case of no model
error is given in Smith et al. (2015). Here a brief
summary of the different algorithms is given.

As stated above, each method is based on in-
cremental 4D-Var which minimizes iteratively a
series of linear approximations to the full 4D-Var

cost function given by

J(x0) = 1
2(x0 − xb

0)TB−1(x0 − xb
0)

+1
2(ŷ − Ĥ(x0))

TR̂−1(ŷ − Ĥ(x0)).
(1)

The two sources of information about the initial
state are given by xb

0 , the background state (or
first guess, usually provided by a previous fore-
cast valid for the time of interest) and ŷ, a vector
of all observations throughout the assimilation
window. The operator Ĥ(x0) is the generalized
observation operator, a mapping from the initial
state to all the observation variables and times.
This differs from the observation operator, Hi(.),
which maps the model state at time ti to obser-
vation variables at time ti. B is the background
error covariance matrix and R̂ is the observation
error covariance matrix.

The incremental 4D-Var algorithm can be ex-
pressed in terms of a series of outer and inner
loops, illustrated in figure 1. In the outer loop
the linearization state, xg

0:n over the time window
[t0, tn], and the innovations, δŷ, are evaluated.
The linearization state is given by

xg
0:n =


xg
0

M(xg
0, t0, t1)
...

M(xg
0, t0, tn)

 , (2)

where n is the number of time steps in the assim-
ilation window and M(x0, t0, ti) is the propaga-
tion of the model state at time t0 to time ti. The
vector xg

0 refers to the current estimate of the ini-
tial state; initially this will be the background,
but it will then be updated on each outer loop.
The innovations are then given by the difference
between the observations and the estimate of the
initial state mapped to observation space,

δŷ = ŷ − Ĥ(xg
0). (3)
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The computation of the initial state mapped to
observation space, Ĥ(xg

0), utilizes the lineariza-
tion state in the following way:(
Ĥ(xg

0)
)
i

= Hi(M(xg
0, t0, ti)) = Hi(x

g
i ). (4)

In the inner loop a linear approximation to
the full cost function (1) is then minimized with
respect to δx0 = x0 − xg

0:

J(δx0) = 1
2(δx0 − (xb

0 − xg
0))TB−1(δx0 − (xb

0 − xg
0))

+1
2(δŷ − Ĥδx0)

TR̂−1(δŷ − Ĥδx0)),
(5)

where Ĥδx0 is a tangent linear (TL) approxi-
mation to Ĥ(x0)−Ĥ(xg

0), linearized about xg
0:n.

This can be separated out in terms of the TL
approximation to the observation operator, H,
and the dynamical model, M.

Ĥ =


H0

H1M0:1
...

HnM0:n

 , (6)

where

M0:i =
∂M(x0, t0, ti)

∂x0
. (7)

Once the minimization of J(δx0) has met a
given criterion, the estimate of the initial state
is updated: xg

0 := xg
0+δx0. The ‘analysis’, which

is used to initialize the forecast, is then given by
xg
0 once the outer loop has converged, or a max-

imum number of iterations has been performed
(Courtier et al. 1994; Lawless 2013).

2.1 Strongly coupled

In strongly coupled DA the state vector, x0, in-
cludes both the atmospheric and oceanic vari-
ables. The non-linear (NL) model, M, used to
calculate (2) is the fully coupled model and the

exact TL approximation to Ĥ(x0) − Ĥ(xg
0) is

used in (5). Within this formulation, the co-
variance matrix B may include cross covariances
between errors in the atmosphere and ocean and
the observation operator may account for the
sensitivity of observations to both the atmo-
sphere and ocean. Exactly how to derive the
background error cross covariances between the
atmosphere and ocean is an area of active re-
search (e.g. Han et al. (2013)).

A benefit of 4D-Var over 3D-Var is that the
inclusion of the model dynamics allows for some
flow-dependence to develop in the background
error covariances (Thépaut et al. 1996). In Smith
et al. (2015) strongly coupled DA was found to
be able to generate implicit correlations between
the atmosphere and ocean states and hence ob-
servations of the atmosphere were able to influ-
ence the analysis of the ocean and vice versa,
even when no explicit correlations in the back-
ground errors were specified. This provided a
more balanced analysis and allowed for more in-
formation to be extracted from the observations.

2.2 Weakly coupled

In weakly coupled DA the coupling between the
atmosphere and ocean is only accounted for in
the outer loop. In practice, this means that the
state vector, x0, still includes both the atmo-
spheric and oceanic variables and the NL coupled
model is still used to calculate (2). However, in-
stead of using the exact TL approximation as
in strongly coupled DA, an uncoupled approxi-
mation is used. Therefore (5) can be split into
two cost functions, one corresponding to finding
the increment to the atmospheric state, δxatmos

0 ,
and the other corresponding to finding the incre-
ment to the oceanic state, δxocean

0 . This means
that although it is possible for the observation
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Figure 1: Left: Schematic of the incremental 4D-Var algorithm. Right: Illustration
of the the non-linear cost function (blue) and the linear approximations made on
each inner loop (green).

operator to account for the sensitivity of obser-
vations simultaneously to both the atmosphere
and ocean in (3), the calculation of δxatmos

0 and
δxocean

0 in the minimization of (5) does not ac-
count for this. Similarly it is not possible to in-
clude cross covariances between background er-
rors in the atmosphere and ocean.

As suggested by the name, this formulation re-
duces the strength of the coupling. Since the in-
novations (3) are computed in observation space
and H is able to contain contributions from both
the updated ocean and atmosphere, the strength
of the coupling can be seen to be related to the
density of the observations, particularly those
which are sensitive to the coupling of the ocean
and atmosphere. However as B, H and M are
not coupled, atmospheric observations cannot
update the ocean state directly, and vice versa.
Therefore, even if cross correlations between the
atmosphere and background errors were not in-
cluded in strongly coupled DA, it is not simply
a case of the weakly coupled scheme converging

to the strongly coupled scheme as more outer
loop iterations are performed. This means that
compared to strongly coupled DA the risk of ini-
tialization shock is increased and weakly coupled
DA is particularly sensitive to the frequency and
density of observations (Smith et al. 2015).

This approach is the essence of that currently
being investigated by the ECMWF (Laloyaux
et al. 2015) and Met Office (Lea et al. 2015).
However, in the initial implementation at these
centres there are some differences to the clean
form we present here. Most notably, both the
ECMWF and UK Met Office only use 4D-Var for
the atmosphere and instead use 3D-Var FGAT
(first guess at appropriate time) for the ocean.
Another important point is that the UK Met
Office currently only perform one outer-loop
whilst the ECMWF perform two, increasing the
strength of the coupling.
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2.3 Uncoupled

In uncoupled DA the state vector is separated
between the atmosphere and ocean components.
The uncoupled non-linear models are used to
compute (2), with the boundary conditions at
the interface specified externally, and the exact
TL approximation of each uncoupled model is
used in the minimization of (5) to approximate
the non-linear models used. There is therefore
no exchange in information between the atmo-
sphere and ocean and the analysis increments
δxatmos

0 and δxocean
0 may be inconsistent. It is

this inconsistency that can lead to initialization
shocks.

Our aim is to understand how each of these
coupling strategies react to errors in the cou-
pled model equations. In particular, we examine
whether there may be benefit to using the un-
coupled and weakly coupled formulations if the
error growth rate is larger in the coupled model
compared with the uncoupled model. In the next
section a brief summary of the theory of model
error in 4D-Var is given along with an exami-
nation of how model error may enter into the
different coupling strategies.

3 Model error in 4D-Var

There are many different potential sources of
model error in coupled atmosphere-ocean mod-
els. In practice it is rare to be able to identify
(and correct) a single cause of model error within
the model itself. Nevertheless attempts have
been made. For example Vannière et al. (2014)
demonstrated a systematic approach for iden-
tifying sources of error in tropical SSTs. This
involved performing 7 separate simulations us-
ing coupled and uncoupled models, with differ-

ent coupling, forcing and initialization strategies.
Such a method shows promise for aiding model
development to reduce model error but it cannot
eradicate it.

In 4D-Var, model error can be seen to manifest
itself through the calculation of the innovations,
(3), in which it is assumed that Ĥ(x0) provides
the exact mapping between state and observa-
tion space. In the presence of model error this
no longer holds. Instead, under the assumption
of additive model error, we have the following re-
lationship between the truth in state space, xt

0,
and the truth in observation space, ŷt:

ŷt = Ĥt(xt
0)

= Ĥ(xt
0) + εĤ,

(8)

where Ĥt is the exact mapping but Ĥ is the
mapping used within the assimilation. The error

in the generalized observation operator, εĤ, has
the same dimensions as the observation vector
and incorporates error in the model equations
described in (2). Within this current work it is
assumed that the error arises from the dynamical
equations rather than the observation operator
H. Errors may also be present in the observa-
tion operator, which are often considered to be
errors of representativity. This is a vast error of
research (e.g. Waller et al. (2013), van Leeuwen
(2014), Bormann et al. (2014)) but will not be
considered further in this current work, that is
we will assume the observation operator, H, to
be perfect.

If model error is unaccounted for then B, R̂
and Ĥ remain unchanged in the 4D-Var algo-
rithm. Therefore the computation of the analy-
sis, xa, can still be given by the theoretical linear
approximation:

xa = xb + K(ŷ − Ĥ(xb)), (9)
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where K is known as the Kalman gain matrix
given by BĤT(R̂ + ĤBĤT)−1. With multiple
outer loops xb in (9) would be replaced by the
current outer loop iterate, and K computed with
a Ĥ linearized around the current outer loop tra-
jectory. However, as the generalized observation
operator is no longer optimal the error covari-
ance of the analysis will be inflated, with covari-
ance equal to

Pa+KE[(εĤ−E(εĤ))(εĤ−E(εĤ))T]KT, (10)

where E[.] is the mathematical expectation and
Pa is the analysis error covariance if Ĥ(xt

0) were
correct. In deriving (10), it is assumed that the
model error is uncorrelated with the observation
and background error. In addition to this, if the

random variable εĤ is biased then the analysis
will be biased, that is

E[εa] = KE[εĤ], (11)

where εa = xa − xt
0 (the analysis minus the true

initial state). The derivations of (10) and (11)
can be found in the appendix. In a similar way,
it can be shown that the expected value of the
cost function evaluated at the analysis will also
be increased, as it becomes impossible to fit to
both the background and the observations in a
way which is consistent with the prescribed error
covariances (Dee 1995).

From equations (10) and (11) we see that the
impact that the model error has on the analysis
error depends on the Kalman gain matrix.
The larger the elements of K are, the greater
the impact of model error, or in other words
the more dominant the observations are (due
to either their number or their accuracy) in
computing the analysis, the greater the impact
of model error.

In addition to the non-linear model error
present in the outer loop, an error in the TL
approximation to the NL model used in the as-
similation is also present in the inner-loop of in-
cremental 4D-Var. Let

εTL = Ĥ(x0 + δx0)− Ĥ(x0)− Ĥδx0 (12)

be the tangent linear model error in observation
space. For each of the coupling strategies the
choices of Ĥ and Ĥ differ and so the error in
the generalized observation operator and the TL
model error is different in each case:

Strongly coupled:

εĤ = Ĥt(xt
0)− Ĥc(xt

0) (13a)

εTL = Ĥc(xg
0 + δx0)− Ĥc(xg

0)− Ĥcδx0 (13b)

Weakly coupled:

εĤ = Ĥt(xt
0)− Ĥc(xt

0) (14a)

εTL = Ĥc(xg
0 + δx0)− Ĥc(xg

0)− Ĥucδx0 (14b)

Uncoupled:

εĤ = Ĥt(xt
0)− Ĥuc(xt

0)(15a)

εTL = Ĥuc(xg
0 + δx0)− Ĥuc(xg

0)− Ĥucδx0(15b)

The superscripts c and uc refer to the cou-
pled and uncoupled assimilation models. We
note that the truth, Ĥt(xt

0), is always coupled
by definition. From these equations it is clear

that εĤ is the same for the weakly and strongly
coupled formulations due to the outer-loop cal-
culations being the same. For the strongly cou-
pled and uncoupled methods the exact tangent
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linear of the erroneous nonlinear model is used
in the inner loop. In these cases the incremen-
tal 4D-Var scheme is equivalent to a truncated
Gauss-Newton iteration and, provided that the
inner loop is solved to sufficient accuracy, the
outer loop iterates should converge to a mini-
mum of the corresponding discrete cost function
and the TL error should tend to zero. On the
other hand, for the weakly coupled assimilation
the uncoupled tangent linear models only pro-
vide an approximation to the true linearization
of the coupled model used in the outer loop. In
this case the incremental 4D-Var scheme is a per-
turbed Gauss-Newton method and, under cer-
tain conditions, will converge to a solution close
to the minimum of the discrete nonlinear cost
function, but not equal to it (Lawless et al. 2005;
Gratton et al. 2007). In practice, however, the
tangent linear model always contains some ap-
proximations, since it is usually run at a lower
resolution than the outer loop nonlinear model
and may not include the linearization of all phys-
ical parameterizations.

There are also differences in the way the lin-
earization trajectory is defined. For the weakly
coupled case, Ĥuc is linearized about the cou-
pled trajectory given by Ĥc(xg

0) and the bound-
ary conditions at the air-sea interface (BCs) used
to force Ĥuc are calculated using the NL cou-
pled model. For the uncoupled case, Ĥuc is lin-
earized about Ĥuc(xg

0). The BCs for the un-
coupled model runs, Ĥuc(xg

0) and Ĥuc, are pre-
scribed externally.

4 Experimental design

Following on from Smith et al. (2015) we make
use of a single column model of the coupled at-
mosphere and ocean. We aim to create an ex-

perimental set up in which we believe the model
error to have characteristics of the error seen in
an operational coupled atmosphere-ocean model.
That is, we wish for the growth rates of the
model error in the atmosphere to be much larger
than in the ocean and to be complex in nature.
Below details of the ‘true’ and erroneous model
are given. We assume the error to originate from
missing physics, erroneous parameter values and
errors in the large scale forcing.

4.1 ‘Truth’ model

The model which represents the truth in our
idealized experiments comprises of the ECMWF
single-column model (SCM), which originates
from an early cycle of the IFS (Integrated Fore-
casting System) code, coupled to a single-column
ocean mixed layer model. A brief description of
the key features of the model follows. A more
complete description of the dynamical core equa-
tions and discretization is given in Smith et al.
(2015).

4.1.1 The atmosphere

The atmospheric component of the coupled
model solves the primitive equations for prognos-
tic variables, temperature, T , specific humidity,
q, and ageostrophic zonal, u, and meridional, v,
wind. The model is forced externally by horizon-
tal advection for each of the prognostic variables
and by the geostrophic component of the winds.
Tendencies due to sub-grid scale physical pro-
cesses are also included to represent the effect
of radiation, turbulent mixing, moist convection
and clouds.

The vertical discretization of the equations for
the atmosphere component uses the hybrid ver-
tical co-ordinate scheme developed by Simmons
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and Burridge (1981) to describe the atmosphere
on 60 model levels. This allows for greater res-
olution in the planetary boundary layer (maxi-
mum resolution is ≈15m), with decreasing res-
olution towards the top of the model domain
(minimum resolution is ≈4km) at 0.1 hPa.

4.1.2 The ocean

The ocean mixed layer model is based on the
K-Profile Parametrization (KPP) vertical mix-
ing scheme of Large et al. (1994). The code
was originally developed by the NCAS Centre for
Global Atmospheric Modeling at the University
of Reading (Woolnough et al. 2007) and incor-
porated into the ECMWF SCM code by Takaya
et al. (2010).

The prognostic variables in the ocean are the
mean values of temperature, θ, salinity, s, and
zonal, uo and meridional, vo currents. The KPP
model describes mixing in the boundary layer
near to the surface and mixing in the interior
ocean. This includes the effects of shear instabil-
ity, internal wave breaking in the interior of the
ocean and double diffusion. The model is forced
by solar irradiance at the upper boundary and
by externally specified geostrophic currents.

The ocean model uses a stretched vertical grid
of Takaya et al. (2010) with 35 levels from the
surface to a depth of 250m. The resolution is
increased in the upper layers in order to simulate
the diurnal SST variability; the top model layer
is chosen to be 1m thick and there are 19 levels in
the top 25m. Some examples of the model level
heights/pressures for the atmosphere and ocean
are given in tables 1 and 2 respectively.

model level model full pressure level (hPa)1

17 18.815
22 54.624
25 95.980
30 202.230
33 288.093
39 501.637
49 861.497
56 995.055

Table 1: Locations of the reduced observations
in the atmosphere used in experiments in section
55.4.

model level depth (m)

1 1.000
5 5.277
10 11.406
16 20.173
20 28.100
23 37.366
25 46.985
27 61.498
29 83.818
31 118.214
33 170.778
35 250.00

Table 2: Reduced observation locations in the
ocean used in experiments in section 55.4.
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4.1.3 Atmosphere-Ocean coupling

Coupling of the atmosphere and ocean compo-
nents of the model occurs at every time step (15
minutes) via the exchange of latent and sensible
heat fluxes and surface momentum flux from the
atmosphere to the ocean. The updated ocean
model sea-surface temperature is passed back to
the atmosphere where it is then used in the com-
putation of the atmosphere lower boundary con-
ditions for the next step. Fluxes are estimated
from bulk formulae, with the method of Louis
et al. (1981) used to calculate the transfer coef-
ficients.

4.2 Assimilation and forecast models

The coupled model used for the coupled DA ex-
periments and to produce the coupled forecasts
is similar to that used in Smith et al. (2015). In
comparison with the truth model this has miss-
ing physics in the atmosphere, representing just
advection, vertical diffusion and turbulent mix-
ing. It also has a positive bias in the large scale
forcing of the horizontal advection terms for the
atmosphere. In the ocean, perturbed parameters
for the diffusion parameters are used (details of
which are given in table 3) and there is no non-
local mixing. The parameters that are perturbed
each affect the mixing in the erroneous model.
However their combined effect is minimal com-
pared to the errors propagating down from the
air-sea interface.

The uncoupled models used by the uncou-
pled DA experiments are the same as those used
for the coupled forecast with the exception that
there is no exchange in information between
the two components. Instead the surface fluxes
needed to force the ocean component and the
SSTs needed to force the atmosphere component

are prescribed externally. In this study we con-
sider two options:

1. poor BCs: BCs given by ERA interim (Dee
et al. 2011) and Mercator (Lellouche et al.
2013) reanalyses products. These products
are inevitably inconsistent with the ideal-
ized model used in these experiments. In
addition to this the SSTs obtained from
the Mercator product have no diurnal cycle,
with only a daily averaged value provided.

2. good BCs: BCs given by output from the
truth model, Mt(xt

0). The output is pre-
scribed at every 6 hours with linear interpo-
lation to provide BCs at intermediate times.

4.3 Illustration of model error

The model error that results from this set up is
illustrated for a case study relevant for July 2014
for a point in the NW Pacific (188.75◦E, 25◦N).
The initial conditions are obtained by running
the truth model for 1 day initialized by data
taken from ERA Interim Re-analysis for the at-
mosphere and Mercator Ocean reanalysis for the
ocean valid at 00:00UTC on the 2nd July 2014.
Obtaining the initial conditions in this way en-
sures that they lie on the true model ‘attractor’.
Forcing fields are also calculated from these re-
analysis products, specified 6 hourly throughout
the forecast period, with linear interpolation be-
tween these times. The true evolution of the at-
mospheric and oceanic temperature over an in-
tegration time of 4 days is shown in figure 2.

In figures 3 to 6 the NL and TL model error
for temperature in the atmosphere and ocean are
shown, computed using equations (13) to (15).
If we assume that the entire state is observed
at every time step then the NL model error is
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name description true value value used in
assimilation and
forecast

RRINFTY Critical Richardson number for shear instability 0.8 0.7
RDIFMIW background/internal waves viscosity(m2/s) 1.5×10−4 1.0×10−5

RDIFSIW background/internal waves diffusivity(m2/s) 1.5×10−5 1.0×10−5

RDIFMMAX max viscosity due to shear instability (m2/s) 5×10−3 1.0×10−3

RDIFSMAX max diffusivity due to shear instability (m2/s) 5×10−3 1.0×10−3

Table 3: Parameters modified to create model error in the ocean component of the coupled model.

equivalent to εĤ and the TL error is equivalent
to εTL. In this case the TL error has been com-
puted for a perturbation equal to the truth mi-
nus the background to be used in the assimila-
tion experiments presented in section 5.

In figures 3 and 4 we see that in the atmo-
sphere the NL and TL model error are fairly
insensitive to the coupling strategy above the
boundary layer (level 50 and above) and within
the boundary layer only small differences can be
seen. This suggests that for our model set up
the lower boundary is not a great source of er-
ror. This could also be expected in general as the
ocean acts as a ‘slave’ to the atmosphere and so
changes to the ocean will not have an immediate
effect on the atmosphere at short time-scales. In
each case we see a large warm bias forming in
the NL model between levels 40-50, which cor-
responds to approximately 1.2-4.7km. There is
also a cool bias developing at level 30 which cor-
responds to approximately 12km, roughly the
top of the troposphere. Compared to the NL
model error the TL model error is small (ap-
proximately 20% of its value) and should reduce
throughout the minimization procedure.

Figures 5 and 6 show that the behavior of the
model error in the ocean is much more sensi-

tive to the upper boundary, suggesting that the
atmosphere is a large source of error over the
two day forecast window. For the coupled NL
model (used in the strongly and weakly cou-
pled scheme) we see that there is a cool bias
at the surface, peaking at the diurnal maximum
(roughly 24 hours and 48 hours into the fore-
cast), overlying a warm bias. This suggests that
in the coupled model the heat originating from
the atmosphere is being mixed down too quickly.
This is seen to result in a large warm bias at
level 20 (approximately 25m) after 1 day, corre-
sponding to the thermocline being deepened too
quickly. This hypothesis is consistent with the
error in the lower winds which are also seen to
have a positive bias (not shown) and are there-
fore causing too much momentum to be passed
to the ocean and hence too much mixing in
the upper ocean. Experiments (not shown) in
which the uncoupled ocean model is run with
the true heat fluxes but erroneous momentum
fluxes (either computed from the coupled erro-
neous model or prescribed externally from the
ERA interim product) show that the errors in
the momentum fluxes explain a large part of the
errors in the NL ocean model component seen in
figure 5.
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Figure 2: The simulated true evolution of
temperature in the atmosphere (top) and
ocean (bottom) over an integration time 4
days.

For the uncoupled model, figures 5 and 6 show
the error in the ocean to be very sensitive to the
prescribed BCs. In particular we note that when
the error in the BCs is negligible (last panel) the
NL and TL model error is substantially reduced.
When poor BCs are used, the error in the oceanic
temperature may be larger than in the coupled
model, but because the errors are not dynam-
ically coupled to the atmosphere they are of a
completely different nature to the errors in the
ocean component of the coupled model. Most

notably there is an underestimation of the mix-
ing of the heat into the ocean caused by an un-
derestimation of the prescribed surface momen-
tum flux (not shown), whereas in the coupled
model there is an overestimation of the mixing
as discussed above.

In contrast to the atmosphere, the TL error
in the ocean (figure 6) is of comparable mag-
nitude to the error in the NL model (figure 5).
However, both are substantially smaller than the
errors seen in the atmosphere.

In both the atmosphere and ocean it is inter-
esting to note that the error in the approximate
TL used by the weakly coupled formulation is
only slightly larger than using the exact TL in
the strongly coupled formulation. The main dif-
ference in the atmosphere occurs in the lowest 10
levels (corresponding to the BL) where the errors
are seen to be maintained longer into the simu-
lation. In the ocean the greatest differences are
at around level 20 (corresponding to the ther-
mocline). Although these difference are small,
we will see in section 55.4 that in some circum-
stances they can lead to differences in the bal-
ance between the ocean and atmosphere analy-
ses.

4.4 Assimilation experiment design

Within this section the details of the assimilation
experiments setup are given. The aim of the
experiments is to study the effect of the model
error on the assimilation of observations. We
concentrate on the case study presented above
so that the link between the resulting analysis
and the realization of the model error is explicit.
Experiments using data from a June 2013 case
study for the same location gave qualitatively
similar results so are not included but give us
the confidence that our results are robust.
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The experimental design is essentially a biased
twin experiment, in which the truth is known
(see section 44.1) and observations are made di-
rectly from this known truth. A biased model
(see section 44.2) is then used to assimilate these
observations.

In the following experiments the background
error covariance matrix B is assumed to be di-
agonal. This is a large simplification but allows
for a clean comparison between the three dif-
ferent coupling strategies introduced in section
2. The variances of the background error are
estimated from the variance in a time-series of
model output as described in Smith et al. (2015).
The background is then computed by generating
white noise with the background error variances,
adding it to the true profile at 24 hours prior
to the initial time of interest and running the
coupled forecast model forward 24 hours. This
ensures that the background profile lies on the
coupled model attractor. As the errors in the
background will have grown throughout the fore-
cast the background error variances are then in-
flated so that they are consistent with the errors
in the background profile. The background error
standard deviations are shown in figure 7.

In the following experiments observations are
made of the truth at every model level at 3
hourly intervals in the atmosphere and at 6
hourly intervals in the ocean. The spatial den-
sity of the observations has been chosen to ac-
centuate the effect of the model error, which as
seen in (10) and (11) is greatest when the obser-
vations play a dominant role in calculating the
analysis, implying that the effect of model error
will be greater with denser observations, espe-
cially when coinciding with the region of large
model error. The frequency of the observations
has been chosen to mimic the reduced availabil-
ity of observations in the ocean compared to the

atmosphere.

The observations, simulated from the truth
model, are consistent with a prescribed error
variance which is assumed to be known exactly
in the assimilation. The observation error stan-
dard deviations, the values of which are plotted
in figure 7, are constant for each variable and in-
dependent of height. We note that humidity is
not observed.

The inner loop is stopped when the relative
change in the gradient is less than 0.001. The
number of iterations needed depends on the as-
similation scheme used and the window length.
In general more iterations are necessary with
the strongly coupled scheme. To improve con-
vergence a simple preconditioning of the control
vector is used. Instead of minimizing (5) with re-
spect to δx0 it is instead minimized with respect
to a transformed variable equal to B−1/2δx0.
Such a transformation is commonly used in oper-
ational data assimilation (see, for example, Ban-
nister (2008) and references therein). In addi-
tional tests (not shown) it has been found that
for all DA strategies three outer loop iterations
are sufficient for convergence, however results
will also be shown for the weakly coupled scheme
in which only one outer loop is performed.

5 Assimilation results

5.1 Sensitivity to window length

It can be expected that the assimilation re-
sults will be sensitive to the assimilation win-
dow length. If no model error is present and
the TL error remains small then increasing the
window length can be expected to reduce the
analysis error as more observations become avail-
able for assimilation. However, in the presence of
model error the analysis error will increase in ac-
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cordance with (10) and (11) as the model error
grows throughout the window and the greater
number of observations accentuates its effect. In
figures 8 and 9 the absolute analysis errors (com-
puted from the difference from the true state) at
the initial time for the different coupling strate-
gies are given for assimilation window lengths of
6 and 48 hours.

In figure 8 we see an increase in the analysis
error of atmospheric temperature for all coupling
strategies as the window length increases (note
the change in the x-axis scale). This is most
noticeable at levels 45 and 25-30 where the anal-
ysis becomes significantly poorer than the back-
ground (gray line). These levels coincide with
the large biases seen in the assimilation model
which develop after approximately 12 hours (see
figure 3).

In figure 9 we see that for the analysis of
oceanic temperature the error does not increase
in the same way as the window length is in-
creased. Instead it appears in places that the
analysis error reduces, particularly between lev-
els 6 to 10, with the uncoupled DA schemes (red
lines) showing the greatest reduction in error.
This is consistent with the longer window length
allowing for the observations to provide more in-
formation about the true ICs and the diurnal
cycle of the evolution of the mixed layer. The
fact that the uncoupled analyses (especially with
the good BCs) outperforms the coupled analyses
was expected from figure 5. The opposite is true
closer to the surface at around level 2 despite
the improvement in temperature at level 1. This
could be indicative of the inability of the un-
coupled methods to utilize information from the
atmospheric observations to constrain the ocean
analysis.

It is interesting to note the difference between
the analyses using the weakly coupled scheme

when 1 and 3 outer loops are performed (green
dashed-dot and green dashed lines respectively).
We see that for both window lengths an im-
proved analysis is given when only one outer
loop is performed around levels 6-9. The rea-
son for this could be due to the fact that the
model error due to the coupling is only experi-
enced in the weakly coupled scheme during the
outer loop update, and so more outer loops im-
plies that the coupled model has a greater influ-
ence on the analysis (see Smith et al. (2015)).
Therefore performing fewer outer loops reduces
the effect of the model error allowing for a more
accurate analysis.

We also observe differences between the cou-
pled and uncoupled analyses at level 18, just
above the thermocline, where the coupled analy-
ses are more accurate than the uncoupled. From
figure 5 we see that the model error in this region
propagates down from the surface. Therefore the
larger analysis error seen in the coupled analy-
ses at the surface down to level 10, for a 48 hour
window, may in fact be correcting for the error
deeper down and hence allowing for the model
prediction in this region to become more consis-
tent with the observations and the information
in the observations to be interpreted correctly.
No scheme is able to correct the large error at
the thermocline due to the relatively small back-
ground error variances in this region (caused by
the fact that there was little variation in this
feature in the forecast used to estimate the back-
ground error variances, see section 44.4).

5.2 Forecast error when initialized
from the analyses

The potential for the coupled DA scheme to pro-
duce a poorer ocean analysis in the presence of
model error has been demonstrated. However,
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often the aim of data assimilation is not to pro-
duce the most accurate initial conditions but the
most accurate forecast. In this section we look
at the error in the forecast produced using the
coupled erroneous model when initialized by the
different analyses computed with the 48hr assim-
ilation window in the previous section. Figure
10 shows the error in the forecast of atmospheric
temperature. The top two panels show the error
in the forecast using the erroneous model when
initialized with the true ICs (left) and the back-
ground (right). The other panels show the error
in the forecast when initialized with the different
coupling DA strategies (due to the similarity be-
tween the weakly coupled results when 1 and 3
outer loops are performed, only the results with
3 outer loops are shown). It can be seen that
the error in the analysis at the initial time (seen
in figure 8 in which the error in the analyses
was larger than for the background between lev-
els 25 and 30 and at level 45 in the case of a
48 hour window length) has helped to restrict
the growth of the warm bias around level 45 and
the cool bias around level 30 in the forecast ini-
tialized by the analyses at later times, compared
with using the true ICs. This is because, in or-
der to minimize the cost function an analysis was
found which gave a good fit to the observations
throughout the 48hr assimilation window and
not just at the beginning of the window. This
effect of model error in variational data assimi-
lation has been noted previously in the work of
Wergen (1992) and Griffith and Nichols (2000).

In figure 11 the forecast error for the atmo-
spheric variables is summarized by the root mean
square error (RMSE) averaged over all atmo-
spheric levels, plotted as a function of time. The
reduction in the forecast error for temperature
initialized using the analyses (colored lines) com-
pared to the true ICs (black line) is clear af-

ter 12 hours into the assimilation window and
is maintained throughout the 48 hour assimila-
tion widow and the following 2 day forecast. The
forecast error is also seen to be mostly reduced
for the wind fields, which displays an inertial os-
cillation in magnitude. Note that humidity is un-
observed which explains why the forecast error
is not reduced when initialized with the analyses
compared to initialing with the truth.

In figure 12 the error in the forecast of oceanic
temperature when initialized by the different
states is shown. The reduction in the forecast
error when initialized using the different analy-
ses compared with initialization from the truth
is not as clear as for the atmosphere. However,
the forecasts initialized using the coupled DA
strategies (middle row) do result in an improved
forecast in the region of the thermocline com-
pared to the forecast initialized with the true
state, which is particularly noticeable beyond
2 days. This is because, although using the
coupled non-linear model in the assimilation re-
sulted in a larger analysis error in some regions
of the ocean, it is consistent with the coupled
model used to produce the forecast. Therefore,
as in figure 10, errors at the initial time have
helped to restrict the growth of the errors due
to the imperfect model. It is interesting to note
that this is also the case for the weakly coupled
analysis with only 1 outer loop which was seen
to give a more accurate analysis of the ocean
temperature than when more outer loops were
performed (see figure 9). We can therefore spec-
ulate that in this case even with just one outer
loop the weakly coupled scheme, by linearizing
around the coupled trajectory, has allowed for an
analysis consistent with the coupled model. The
improvement seen in the error in the thermo-
cline suggests that the assimilation has reduced
the amount of heat being mixed down from the
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surface. From figure 13 we can see that this is
not due to a substantial improvement in the mo-
mentum fluxes. In fact the fluxes initialized by
the strongly coupled analysis are worse in many
places, and may support the idea that surface
heat fluxes are compensating for errors elsewhere
in the coupled model, as found in the studies
of de Szoeke and Xie (2008) and Zheng et al.
(2011).

The results presented in figure 12 clearly
demonstrate the advantage of using the coupled
scheme over the uncoupled scheme in reducing
the error in the ocean forecast. Despite the
model error it is important that the assimilation
and the forecast models are consistent with one
another. In the next section we show that this is
particularly true when forecasting using the cou-
pled system, as it is essential not only that the
analysis allows for a good fit to the observations
but also that the atmosphere and ocean analyses
are in balance with one another.

5.3 Initialization shock

A benefit of coupled DA in the absence of model
error is its ability to reduce the occurrence of
initialization shock by updating the atmosphere
and ocean as a coherent system and in turn find
an analysis which lies on the forecast model at-
tractor. In previous work (Smith et al. 2015)
initialization shock was found to be evident in
the first few hours of forecast of sea surface tem-
perature (SST). We now examine whether cou-
pled assimilation can still reduce the shock when
model error is present and so the true attractor
and model attractor differ.

In figure 14, 72-hour and 3-hour forecasts of
the sea surface temperature (SST) are given us-
ing the coupled model initialized using the differ-
ent assimilation schemes with a 48hr assimilation

window. It is clear that although the uncoupled
analyses are closer to the true SST at the ini-
tial time they quickly deviate from the truth and
have a much less realistic forecast during the first
hour than the coupled analyses. Beyond the first
few hours the forecasts initialized using the un-
coupled analyses continue to be poorer than the
forecasts initialized using the coupled analyses.
We can therefore conclude that, in this case, the
presence of model error at the atmosphere-ocean
interface does not adversely affect the ability of
the coupled DA to produce a state consistent
with the coupled forecast model. The fact that
the forecasts initialized with the coupled analy-
ses still have a large cool bias in the SST, com-
parative to the bias when initialized by the un-
coupled analyses, is most likely related to the
reduction in the warm bias seen in the thermo-
cline see figure 12.

5.4 Effect of strength of coupling in
‘weakly coupled’ DA

The strength of the coupling in weakly coupled
DA is controlled by the number of outer loops
performed and the resolution of the observations
(Smith et al. 2015). In the previous experiment
(using 3 outer loops and dense observations) the
weakly coupled scheme is seen to perform in a
similar way to the strongly coupled scheme.

Within this section we wish to understand how
the model error affects the analysis when the
strength of coupling in weakly coupled DA is re-
duced. Unfortunately the number of outer loops
and the resolution of the observations also have a
significant impact on the analysis in other ways
too, making it difficult to perform a clean ex-
periment showing just the effect of the reduced
coupling. For example reducing the number of
outer loops reduces the ability to find the mini-
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mum of the cost function and reducing the num-
ber of observations means that the effect of the
observations and model error on the analysis is
reduced (see (10) and (11)), so that there will be
less deviation from the background no matter
which assimilation scheme is used.

Given these caveats the assimilation experi-
ments are now repeated using sparser observa-
tion (both temporally and spatially). In the at-
mosphere the frequency of the observations is
matched to the 6 hour frequency of the oceans
(the frequency of the ocean observations remains
at 6 hourly) and in both systems the vertical
resolution of the observations is reduced to the
levels given in tables 1 and 2. With this set up
little difference was seen in the results between
using 1 or 3 outer loops in the weakly coupled
formulation. This is because reducing the obser-
vations means that the effect of the outer loop
update of the innovations is reduced. Therefore
all the results that follow use 3 outer loops.

In figures 15 and 16 we see that the analysis er-
ror is more comparable to the denser observation
case with a 48 hour window (see figures 8 and 9)
if we increase the window length to 96 hours. In
particular we see that we still get a large spike in
the analysis error at level 45 in the atmospheric
temperature and we see a reduction in the anal-
ysis error (compared to the background error)
when the uncoupled methods are used around
levels 5-10 in the oceanic temperature. This is
because we are still assimilating a similar number
of observations so that the effect of the observa-
tions and model error is still significant allowing
for the analysis to divert from the background.

We expect this setup to reduce the strength of
the coupling within the weakly coupled scheme
because although observations are available for
a longer period of time the spatial and tempo-
ral frequency of the observations is reduced and

so there is less information in observation space
about the coupling between the atmosphere and
ocean. In figure 17 this is illustrated by again
looking at the initialized forecast of SST. Com-
pared to figure 14, we see that the initializa-
tion shock has increased for both the strongly
and weakly coupled schemes, but the difference
is much greater for the weakly coupled scheme,
with the effect of the initial imbalance seen be-
yond the first hour of the forecast.

These experiments illustrate the potential
risks of the weakly coupled scheme in the pres-
ence of significant model error. As it is in the
outer loop that the observations and model are
compared, the discrepancy due to the coupled
model error will be similar for both the strongly
and weakly coupled formulations. However, be-
cause the uncoupled TL models used in the in-
ner loop are inconsistent with the coupled NL
model used in the outer loop, the weakly cou-
pled scheme is unable to find an analysis incre-
ment which allows for an agreement between the
observations and the model as successfully as the
strongly coupled scheme if there is not enough in-
formation about the coupling from the observa-
tions. This means that not only can we expect a
poorer analysis with the weakly coupled scheme
but also a larger forecast error and a greater ini-
tialization shock.

6 Conclusions and discussion

There is strong motivation for the development
of coupled DA methods, namely their ability to
produce a more balanced coupled analysis state
and to make better use of near surface observa-
tions. However, a limiting factor in the imple-
mentation of coupled DA is the model error in
the atmosphere which restricts the length of the
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assimilation window that can be used to some-
thing shorter than in an uncoupled ocean only
scheme. Within this study we have aimed to give
insight into the effect of lengthening the window
when model error is present to see if the benefits
of coupled DA are still evident. A summary of
our key findings follows.

The effect of the model error in coupled DA
depends not only on the nature of the error in
the coupled model but also on the coupling strat-
egy used within the DA scheme. It is possible for
errors in the coupled system to introduce an er-
ror in the ocean component near to the surface
which has faster timescales than in the uncou-
pled ocean model (as seen in figure 5 comparing
the coupled model error to the uncoupled model
error with good BCs). This new source of error
means that the accuracy of the ocean analysis
may be degraded using a coupled scheme com-
pared to using an uncoupled DA scheme which
(in the absence of this fast error growth) is able
to utilize a longer window length . This was
shown to be evident for a case study in which
we found the errors in the analysis of the ocean
to be smaller in some regions when using an un-
coupled scheme and a 48 hour window (figure
9).

The clear problem with an uncoupled scheme,
however, is that despite allowing a smaller error
in the analysis of the ocean, the atmospheric and
oceanic analyses are inconsistent with the fore-
cast model. This means that the error growth
rate in the coupled model forecast may actually
be larger when initialized using the uncoupled
analyses and an initialization shock may become
apparent in the forecast of the SSTs (see figure
14).

With dense observations and 3 outer loops, the
weakly coupled scheme was seen to perform in
a very similar manner to the strongly coupled

scheme, responding in a similar way as the as-
similation window was increased (figure 9) and
reducing the error in the forecast by a similar
degree (figure 12). When the number of outer
loops was reduced to one and observations were
dense, it was seen that weakly coupled scheme
gave a better analysis than the strongly coupled
scheme in some regions due to the reduction of
the impact of the coupled error in the outer loop
calculation of the innovations, although the cou-
pling was still strong enough to allow for the
analysis to be consistent with the coupled model
and so the forecast was better than that ini-
tialised from the uncoupled analyses. For ex-
ample, the error in the thermocline was reduced
(figure 12) and initialisation shock was smaller
(figure 14). However, if the density of the obser-
vations is reduced then the strength of coupling
is also seen to reduce, but instead of tending to-
wards the uncoupled scheme (as is the case when
no model error is present (Smith et al. 2015))
it can give a much poorer analysis and forecast
than both the uncoupled and strongly coupled
schemes. This is because, although the infor-
mation in the observations about the coupling
is reduced, the inconsistency between the obser-
vations and the NL coupled model seen in the
outer loop remains. Therefore, unlike with the
strongly coupled scheme which used the coupled
model within both the inner and outer loop, the
weakly coupled scheme is unable to find an up-
date to the background state which allows for
the initialized model to become more consistent
with the observations. Therefore the problem
of model error is likely to be much more prob-
lematic in the weakly coupled schemes, which
are currently being implemented at centers such
as the UK Met Office and ECMWF, than in
a strongly coupled scheme. To address this is-
sue, the implementation of coupled DA has been
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forced to use a short assimilation window length
(6 hours at the Met Office and 24 hours at the
ECMWF).

To conclude, the benefits of a coupled DA
scheme are still evident even in the presence of
model error. However, if the aim is to find the
best analysis then it is important to choose an
assimilation window length in which the model
error remains negligible. In practice this means
choosing a window length consistent with an at-
mosphere only assimilation which will severely
limit the number of ocean observations avail-
able for assimilation. If the purpose is to give
an improved forecast then using a longer win-
dow length may help to reduce the model er-
ror growth (particularly in the observed fields)
by finding the initial conditions which limit it.
However, in order to use coupled 4D-Var to its
full potential it is necessary to take into account
model error in the assimilation, allowing for the
window length and number of ocean observa-
tions available for assimilation to be increased
and theoretically a more accurate analysis to be
found. Allowing for model error in variational
data assimilation greatly increases the complex-
ity of the data assimilation problem and is an
active area of research (e.g. Fisher et al. (2011),
Moore et al. (2011)).

One method, known as weak constraint 4D-
Var, aims to estimate the model error along with
the initial conditions (Griffith and Nichols 2000;
Trémolet 2006). In theory this allows for the
model to be corrected using the observations.
However, in practice it is very difficult to obtain
accurate results from weak constraint 4D-Var,
as it is necessary to have a good understanding
of the elusive model error statistics (see Todling
(2014) and references therein). This is particu-
larly challenging in coupled data assimilation as
the model error statistics do not only need to

be specified for the ocean and atmosphere but
an understanding of the cross-correlations is also
needed for strongly coupled DA. One possibility
is to only estimate the error in the atmospheric
component assuming that the error in the ocean
is comparatively negligible and has its origins in
the atmosphere for the timescale of the assimi-
lation window.

An alternative method is to use parameter es-
timation as well as initial state estimation, es-
sentially tuning the model parameters to give a
better fit to the observations via the assimilation.
Kondrashov et al. (2008) argue that systematic
errors in many tropical ocean-atmosphere gen-
eral circulation models are caused by incorrect
parameter values. Even if the model error is not
entirely due to erroneous parameter values, pa-
rameter estimation can be used to reduce model
error if the model is sensitive to the parameters
and the observations are sufficient (Navon 1997).
This idea was used by Liu et al. (2014) with the
Fast Ocean Atmosphere Model (FOAM) and a
coupled ensemble adjustment Kalman filter (An-
derson 2001). They successfully estimated the
solar penetration depth (SPD) in twin experi-
ments. SPD is thought to be a parameter that
may have significant impact on the surface cli-
mate (see Liu et al. (2014) for references). They
also tried to estimate two additional parameters
related to the momentum and latent heat fluxes.
This was less successful due to the nonlinear rela-
tionships between the parameters and state vari-
ables weakening the correlations between fore-
cast error and parameter uncertainty. Estima-
tion of the bulk adjustment factors was also per-
formed by Mochizuki et al. (2009) using a 4D-
Var technique. This was found to reduce model
biases in climatological fields.

With both the weak constraint and parameter
estimation methods it is unclear if the estimates
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of respectively model error and the parameter
values should be used in the subsequent forecast.
If they are not used then the models used in the
assimilation and the forecast will be inconsistent,
and so, in a similar way to the uncoupled DA
scheme, the analyses will not lie on the forecast
model attractor. Hence the forecast error growth
may be large even if the analysis error is small.
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A Derivation of analysis error
covariance and bias in the
presence of model error

The analysis was given in (9) in terms of the
background, xb, the observations over the as-
similation window , ŷ, the generalized non-linear
observation operator, Ĥ and the Kalman gain
matrix, K. In the presence of model error the
mapping Ĥ is erroneous as described by (8). The
Kalman gain matrix is therefore no longer opti-
mal and this has an impact on the analysis error.
Let ε̃a be the analysis error when there is no er-
ror present in Ĥ (i.e. Ĥ = Ĥt) and εa be the
analysis error when there is error present.

εa = xa − xt
0

= xb − xt
0 + K(ŷ − Ĥ(xb))

= xb − xt
0

+K(ŷ − Ĥt(xt
0) + Ĥt(xt

0)

−Ĥ(xt
0) + Ĥ(xt

0)− Ĥ(xb))

= εb + K(εo + εĤ −Hεb)

= ε̃a + KεĤ

(16)

If we assume that εb and εo are unbiased then
ε̃a is also unbiased and the expected value of εa

is

E[εa] = KE[εĤ] (17)

as stated in (11).

Similarly if we assume that εb and εo are un-

correlated with εĤ, we can compute the analysis
error covariance as

E[(εa − E(εa))(εa − E(εa))T]

= E[(ε̃a + KεĤ −KE[εĤ])(ε̃a + KεĤ −KE[εĤ])T]

= E[ε̃a(ε̃a)T] + KE[εĤ − E[εĤ])(εĤ − E[εĤ])T]KT

= Pa + KE[εĤ − E[εĤ])(εĤ − E[εĤ])T]KT

(18)
where Pa is the analysis error covariance if no
model error were present, as stated in (10).
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Figure 3: Nonlinear model error εĤ for atmospheric temperature (K). The different
panels show the errors present in the four different coupling strategies, from left
to right: strongly coupled DA, weakly coupled DA, uncoupled DA (poor BCs) and
uncoupled DA (good BCs).
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Figure 4: Tangent linear model error εTL for atmospheric temperature (K). The
different panels are as in Figure 3.
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Figure 5: Nonlinear model error εĤ for oceanic temperature (K). The different panels
are as in Figure 3.
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Figure 6: Tangent linear model error εTL for oceanic temperature (K). The different
panels are as in Figure 3.

30



0 1 2

20

30

40

50

60

temp (K)

le
v
e
l

0 1 2

x 10
−3

20

30

40

50

60

 q (kg/kg)

le
v
e
l

0 5 10

20

30

40

50

60

u−wind (m/s)

le
v
e
l

0 5 10

20

30

40

50

60

v−wind (m/s)

le
v
e
l

 

 

0 0.5

5

10

15

20

25

ocean temperature (K)

le
v
e
l

0 2 4

x 10
−3

5

10

15

20

25

salinity (psu)

le
v
e
l

0 0.05 0.1

5

10

15

20

25

u current (m/s)

le
v
e
l

0 0.05 0.1

5

10

15

20

25

v current (m/s)

le
v
e
l

 

 

Figure 7: Profile of background error standard deviations for each of the prognostic
variables (solid line) and the observation error standard deviations (dashed line).
Note that humidity is unobserved.
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Figure 9: As in figure 8 but for ocean temperature.
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Figure 10: Forecast error in forecasts of atmospheric temperature produced using the
erroneous coupled model initialized using different initial conditions. The top two
panels show results when the model is initialized using the true state (left) and the
background state (right). The other four panels show results when the assimilation
model is initialized using the analysis produced by the different coupling strategies
using a 48hr window and 3 hourly atmospheric observations and 6 hourly oceanic
observations. The blue vertical line indicates the end of the 2 day assimilation
window.
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Figure 12: As in figure 10 but for ocean temperature.
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Figure 13: Forecasts of the surface fluxes when initialized using the different analyses
(colored lines as in figure 8). These can be compared to the truth (thick black line).

37



0 10 20 30 40 50 60 70
297.3

297.4

297.5

297.6

297.7

297.8

297.9

298

298.1

298.2

time (hours)

S
S

T
 (

K
)

0 1 2

297.6

297.8

298

S
S

T
 (

K
)

 

 

Figure 14: Forecasts of SST initialized using the different coupling DA strategies
(colored lines as in figure 8). These can be compared to the truth (thick black line).
Inset shows just the first three hours to highlight any initialization shock.

38



0 1 2 3

15

20

25

30

35

40

45

50

55

60

atmos t (K)

le
v
e

l

window length 48hr

0 2 4 6 8

15

20

25

30

35

40

45

50

55

60

atmos t (K)

le
v
e

l

window length 96hr

 

 

background

strongly coupled

uncoupled (poor BCs)

uncoupled (good BCs)

weakly coupled

Figure 15: Analysis error for atmospheric temperature using reduced observations
with a 48 and 96 hour assimilation window.
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Figure 16: As in figure 15 but for ocean temperature.
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Figure 17: As in figure 14 but for a reduced observation resolution and a 96 hour
assimilation window.
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