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ABSTRACT

Atmosphere-only and ocean-only variational data assimilation (DA) schemes are able to use window

lengths that are optimal for the error growth rate, nonlinearity, and observation density of the respective

systems. Typical window lengths are 6–12 h for the atmosphere and 2–10 days for the ocean. However, in the

implementation of coupledDA schemes it has been necessary tomatch the window length of the ocean to that

of the atmosphere, which may potentially sacrifice the accuracy of the ocean analysis in order to provide a

more balanced coupled state. This paper investigates how extending the window length in the presence of

model error affects both the analysis of the coupled state and the initialized forecast when using coupled DA

with differing degrees of coupling.

Results are illustrated using an idealized single-column model of the coupled atmosphere–ocean system. It

is found that the analysis error from an uncoupled DA scheme can be smaller than that from a coupled

analysis at the initial time, due to faster error growth in the coupled system.However, this does not necessarily

lead to a more accurate forecast due to imbalances in the coupled state. Instead coupled DA is more able to

update the initial state to reduce the impact of the model error on the accuracy of the forecast. The effect of

model error is potentially most detrimental in the weakly coupled formulation due to the inconsistency be-

tween the coupled model used in the outer loop and uncoupled models used in the inner loop.

1. Introduction

Coupling processes between the atmosphere and

ocean are known to be important for seasonal and cli-

mate prediction, for example, for the accurate predic-

tion of El Niño–SouthernOscillation (Barnett et al. 1993;

Jin et al. 2008). In addition to this, there is increasing evi-

dence to suggest the importance of atmosphere–ocean

interaction at the weather time scales, for example for the

prediction of the Madden–Julian oscillation (Shelly et al.

2014), coastal fog, and extratropical cyclones (Siddorn

et al. 2014; Vitart et al. 2008).

Until recently the initialization of coupled models for

the prediction of the Earth system has been performed

using uncoupled atmosphere and ocean states, produced

from separate data assimilation (DA) systems (e.g.,

Saha et al. 2006; Molteni et al. 2011; Arribas et al. 2011;

MacLachlan et al. 2015). These uncoupled states are

then effectively ‘‘stitched’’ together to create an initial

state for the coupled forecast. There are a variety of

known problemswith using uncoupled initial conditions.

These include the following:

d the generation of imbalances between the atmosphere

and ocean systems leading to an unrealistic and

sudden adjustment to balanced conditions in the

first part of the forecast (Balmaseda and Anderson

2009; Mullholland et al. 2015); and
d a suboptimal use of observations, particularly those

close to the air–sea interface, which depend on the

physics of both the ocean and atmosphere.

In an attempt to overcomemany of these issues, coupled

DA methods, in which the atmosphere and ocean are

treated simultaneously, are being developed at operational
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centers worldwide (Saha et al. 2010; Lea et al. 2015;

Alves et al. 2014; Laloyaux et al. 2016). As well as for

the initialization of coupled models, coupled DA will

be used for reanalyses, in which it is necessary to provide a

consistent global transport of mass, water, and energy on

the relevant time scales (Dee et al. 2014).

CoupledDA is a relatively new field of research. Early

studies include those by Galanti et al. (2003), Zhang

et al. (2007), and Sugiura et al. (2008). Despite the

techniques proposed in these early studies not estimat-

ing the full atmosphere and ocean states simultaneously,

results showed that using a coupled atmosphere–ocean

model during the assimilation significantly improved the

accuracy of reanalyses and forecasts of seasonal to

interannual climate variations (such as El Niño). An-

other early study is that of Lu and Hsieh (1998), who

used a simple five-dimensional coupled equatorial

model to investigate the use of coupled DA for both

state and parameter estimation. Within this study we

focus on the use of coupled DA for short- to medium-

range weather forecasting, which can be sensitive to the

interaction between the atmospheric boundary layer

and the oceanic mixed layer.

Implementing a fully coupled DA scheme in practice

faces many challenges. An immediate practical consid-

eration is the increase in the size of the state that needs

to be estimated, which makes the problem much more

computationally expensive. There are also more scien-

tific challenges that are invariably related to the very

different nature of the two fluids. The atmosphere is

much less dense than the ocean and also much more

unstable. There are also fundamental differences in the

available observations of the atmosphere and ocean.

The atmosphere is relatively densely observed, while the

ocean by its very nature is difficult to observe and sub-

surface observations generally only come from a sparse

array of in situ observations. These differences impact

on essential aspects of the implementation of coupled

DA, such as the specification of cross covariances be-

tween errors in the atmosphere and ocean systems (Han

et al. 2013).

In previous work, we used an idealized single-column

model to investigate different approximations to cou-

pledDA in the 4D-Var framework when nomodel error

is present (Smith et al. 2015). It was found that when

using a short window length of 12 h (consistent with that

used operationally for atmosphere only DA), a strongly

coupled formulation was able to provide the best anal-

ysis of the coupled initial state, having both a smaller

error and being more balanced than an uncoupled for-

mulation. A weakly coupled approximation was seen

to display some of these same benefits as the strongly

coupled formulation but was more sensitive to the

resolution of the observations. In this paper we continue

this study, by investigating how the different approxi-

mations to coupledDA compare as the window length is

extended and model error becomes a greater issue.

Because of the different nature of the two fluids,

model error in the atmosphere has a much faster growth

rate than in the ocean. The growth rate of the model

error and the linearity assumption restricts the length of

the window in which observations can be assimilated in

4D-Var, and is an important factor in why a short win-

dow length of 6–12h is typically used in atmosphere-

only data assimilation (Rawlins et al. 2007), and a long

window length of 2–10 days is typically used in ocean-

only data assimilation (Weaver et al. 2003). Coupling

the two systems allows for the model error to interact

and may introduce a faster model error growth rate in

the upper ocean than in an uncoupled simulation.

Therefore, the model error in the coupled system re-

stricts the assimilation window to something shorter

than the optimal window length for an uncoupled ocean

DA scheme (Lea et al. 2015; Laloyaux et al. 2016). As

the ocean is poorly observed, this severely limits the

number of observations that can be assimilated and has

the effect of potentially sacrificing the accuracy of the

ocean initial state in order to provide a more balanced

coupled initial state. Even with the use of a shortened

window length, the ECMWF have found it necessary

to constrain the sea surface temperature to a gridded

analysis product in order to avoid the rapidly growing

bias in the model (Laloyaux et al. 2016). There is,

therefore, motivation to understand the effect of ex-

tending the window length, in the presence of increasing

model error, within the coupled DA framework.

The model error in the coupled system was studied by

both Magnusson et al. (2013) and Smith et al. (2013)

using the ECMWF Integrated Forecast System (IFS)

model coupled to the NEMO ocean model (Madec

2008) and the HadCM3model, respectively. Both found

cold biases in surface temperatures. Magnusson et al.

(2013) believed this is due to imbalances in the energy

flux at the top of the atmosphere and a strong uptake of

heat in the ocean.Magnusson et al. (2013) also looked at

the bias in the 10-m wind speed and found it to be large

within the western tropical Pacific. They concluded that

this is due to a positive coupled feedback between wind

and SST: too strong winds lead to excessive upwelling,

which produces a colder sea surface temperature (SST)

that in turn produces stronger zonal winds.

Here we examine how model errors in the coupled

system affect the analysis and subsequent forecast in

coupled DA. The structure of the paper is as follows. In

section 2, the different approximations to coupled DA

that we consider are given. This is largely an overview of
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results recently presented in Smith et al. (2015). In sec-

tion 3, the theoretical impact of model error is presented

with discussion of how the different coupling strategies

may be affected. In section 4, the design of the idealized

experiments is presented and an illustration of the

model error for a case study is shown. In section 5, re-

sults are shown for a series of assimilation experiments

applied to this case study in which the effect of model

error on the accuracy of the analysis and initialized

forecast are given. Finally, conclusions that can be

drawn from these experiments are detailed in section 6

along with a discussion of the insight provided on how to

account for model error in coupled 4D-Var.

2. Strategies for coupled DA

This present study will focus on incremental 4D-Var

methods (Courtier et al. 1994) in line with those being

developed at ECMWF and the Met Office (Laloyaux

et al. 2016; Lea et al. 2015). We note that methods based

on the ensemble Kalman filter are also being developed

with interesting results (e.g., Frolov et al. 2016; Zhang

et al. 2007) but will not be included in the comparison of

methods presented here. We consider three different

strengths of coupling within the 4D-Var scheme:

1) strongly coupled, in which the ocean and atmosphere

are updated together. This is the epitome of what

coupled DA schemes are trying to achieve, but is

currently not practical for operational sized models;

2) weakly coupled, an approximation to strongly cou-

pled, which makes use of the inner-loop structure of

incremental 4D-Var to simplify the algorithm. This

makes it feasible to implement in current operational

settings, particularly when different assimilation

schemes have been implemented in the atmosphere

and ocean; and

3) uncoupled, in which the atmosphere and ocean are

updated independently of each other.

An in-depth description and study of these different

coupling strategies in the case of no model error is given

in Smith et al. (2015). Here a brief summary of the dif-

ferent algorithms is given.

As stated above, each method is based on incremental

4D-Var, which minimizes iteratively a series of linear

approximations to the full 4D-Var cost function given by

J(x
0
)5

1

2
(x

0
2 xb0)

TB21(x
0
2 xb0)

1
1

2

�
ŷ2 Ĥ (x

0
)
�T
R̂21

�
ŷ2 Ĥ (x

0
)
�
. (1)

The two sources of information about the initial state

are given by xb0, the background state (or first guess,

usually provided by a previous forecast valid for the

time of interest), and ŷ, a vector of all observations

throughout the assimilation window. The operator

Ĥ (x0) is the generalized observation operator, a map-

ping from the initial state to all the observation variables

and times. This differs from the observation operator

H i( ), which maps the model state at time ti to obser-

vation variables at time ti. The variable B is the back-

ground error covariance matrix and R̂ is the observation

error covariance matrix.

The incremental 4D-Var algorithm can be expressed

in terms of a series of outer and inner loops, illustrated in

Fig. 1. In the outer loop, the linearization state xg0:n over

the time window [t0, tn], and the innovations dŷ are

evaluated. The linearization state is given by

xg0:n 5

2
66664

xg0
M(xg0, t0, t1)

..

.

M(xg0, t0, tn)

3
77775
, (2)

where n is the number of time steps in the assimilation

window and M(x0, t0, ti) is the propagation of the

FIG. 1. (left) Schematic of the incremental 4D-Var algorithm. (right) Illustration of the nonlinear

cost function (blue) and the linear approximations made on each inner loop (green).
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model state at time t0 to time ti. The vector xg0 refers to

the current estimate of the initial state; initially this will

be the background, but it will then be updated on each

outer loop. The innovations are then given by the dif-

ference between the observations and the estimate of

the initial state mapped to observation space:

dŷ5 ŷ2 Ĥ (xg0) . (3)

The computation of the initial state mapped to obser-

vation space, Ĥ (xg0), utilizes the linearization state in

the following way:

�
Ĥ (xg0)

�
i
5H

i

�
M(xg0, t0, ti)

�
5H

i
(xgi ) . (4)

In the inner loop a linear approximation to the full

cost function (1) is then minimized with respect to

dx0 5 x0 2 xg0:

J(dx
0
)5

1

2
[dx

0
2 (xb02 xg0)]

TB21[dx
0
2 (xb0 2 xg0)]

1
1

2
(dŷ2 Ĥdx

0
)TR̂21(dŷ2 Ĥdx

0
) , (5)

where Ĥdx0 is a tangent linear (TL) approximation to

Ĥ (x0)2 Ĥ (xg0), linearized about xg0:n. This can be sep-

arated out in terms of the TL approximation to the ob-

servation operator H and the dynamical model M:

Ĥ5

0
BBBB@

H
0

H
1
M

0:1

..

.

H
n
M

0:n

1
CCCCA
, (6)

where

M
0:i
5

›M(x
0
, t

0
, t

i
)

›x
0

. (7)

Once the minimization of J(dx0) has met a given cri-

terion, the estimate of the initial state is updated:

xg0dxg0 1 dx0. The ‘‘analysis,’’ which is used to initialize

the forecast, is then given by xg0 once the outer loop has

converged, or a maximum number of iterations has been

performed (Courtier et al. 1994; Lawless 2013).

a. Strongly coupled

In strongly coupled DA the state vector x0 includes

both the atmospheric and oceanic variables. The non-

linear (NL) model M used to calculate (2) is the fully

coupled model, and the exact TL approximation to

Ĥ (x0)2 Ĥ (xg0) is used in (5). Within this formulation,

the covariance matrix B may include cross covariances

between errors in the atmosphere and ocean and the

observation operator may account for the sensitivity of

observations to both the atmosphere and ocean. Exactly

how to derive the background error cross covariances

between the atmosphere and ocean is an area of active

research (e.g., Han et al. 2013).

A benefit of 4D-Var over 3D-Var is that the inclusion

of the model dynamics allows for some flow dependence

to develop in the background error covariances

(Thépaut et al. 1996). In Smith et al. (2015) strongly

coupled DA was found to be able to generate implicit

correlations between the atmosphere and ocean states

and, hence, observations of the atmosphere were able to

influence the analysis of the ocean and vice versa, even

when no explicit correlations in the background errors

were specified. This provided a more balanced analysis

and allowed for more information to be extracted from

the observations.

b. Weakly coupled

In weakly coupled DA the coupling between the at-

mosphere and ocean is only accounted for in the outer

loop. In practice, this means that the state vector x0 still

includes both the atmospheric and oceanic variables and

the NL coupled model is still used to calculate (2).

However, instead of using the exact TL approximation

as in strongly coupled DA, an uncoupled approximation

is used. Therefore, (5) can be split into two cost func-

tions: one corresponding to finding the increment to the

atmospheric state dxatmos
0 , and the other corresponding

to finding the increment to the oceanic state dxocean0 . This

means that although it is possible for the observation

operator to account for the sensitivity of observations

simultaneously to both the atmosphere and ocean in (3),

the calculation of dxatmos
0 and dxocean0 in the minimization

of (5) does not account for this. Similarly, it is not pos-

sible to include cross covariances between background

errors in the atmosphere and ocean.

As suggested by the name, this formulation reduces

the strength of the coupling. Since the innovations in (3)

are computed in observation space and H is able to

contain contributions from both the updated ocean and

atmosphere, the strength of the coupling can be seen to

be related to the density of the observations, particularly

those that are sensitive to the coupling of the ocean and

atmosphere. However, as B, H, and M are not coupled,

atmospheric observations cannot update the ocean state

directly, and vice versa. Therefore, even if cross corre-

lations between the atmosphere and background errors

were not included in strongly coupled DA, it is not

simply a case of the weakly coupled scheme converging

to the strongly coupled scheme as more outer loop it-

erations are performed. This means that compared to
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strongly coupled DA the risk of initialization shock is

increased and weakly coupled DA is particularly sensi-

tive to the frequency and density of observations (Smith

et al. 2015).

This approach is the essence of that currently being

investigated by the ECMWF (Laloyaux et al. 2016) and

Met Office (Lea et al. 2015). However, in the initial

implementation at these centers there are some differ-

ences to the clean form we present here. Most notably,

both the ECMWF and Met Office only use 4D-Var for

the atmosphere and instead use 3D-Var first guess at

appropriate time (FGAT) for the ocean. Another im-

portant point is that the Met Office currently only per-

forms one outer loop while the ECMWF perform two,

increasing the strength of the coupling.

c. Uncoupled

In uncoupled DA the state vector is separated be-

tween the atmosphere and ocean components. The

uncoupled nonlinear models are used to compute (2),

with the boundary conditions at the interface specified

externally, and the exact TL approximation of each

uncoupled model is used in the minimization of (5) to

approximate the nonlinear models used. There is,

therefore, no exchange in information between the at-

mosphere and ocean and the analysis increments dxatmos
0

and dxocean0 may be inconsistent. It is this inconsistency

that can lead to initialization shocks.

To conclude this section, we state that our aim is to

understand how each of these coupling strategies (sec-

tions 2a–c) reacts to errors in the coupled model equa-

tions. In particular, we examine whether there may be

benefit to using the uncoupled and weakly coupled for-

mulations if the error growth rate is larger in the coupled

model compared with the uncoupled model. In the next

section, a brief summary of the theory of model error in

4D-Var is given along with an examination of how model

error may enter into the different coupling strategies.

3. Model error in 4D-Var

There are many different potential sources of model

error in coupled atmosphere–ocean models. In practice

it is rare to be able to identify (and correct) a single

cause of model error within the model itself. Neverthe-

less, attempts have been made. For example Vannière
et al. (2014) demonstrated a systematic approach for

identifying sources of error in tropical SSTs. This in-

volved performing seven separate simulations using

coupled and uncoupled models, with different coupling,

forcing, and initialization strategies. Such a method

shows promise for aiding model development to reduce

model error but it cannot eradicate it.

In 4D-Var, model error can be seen to manifest itself

through the calculation of the innovations (3), in which it

is assumed that Ĥ (x0) provides the exact mapping be-

tween state and observation space. In the presence of

model error this no longer holds. Instead, under the

assumption of additive model error, we have the fol-

lowing relationship between the truth in state space xt0
and the truth in observation space ŷt:

ŷt 5 Ĥ t(xt0)5 Ĥ (xt0)1 �Ĥ , (8)

where Ĥ t is the exact mapping but Ĥ is the mapping

used within the assimilation. The error in the general-

ized observation operator �Ĥ has the same dimensions

as the observation vector and incorporates error in the

model equations described in (2). Within this current

work it is assumed that the error arises from the dy-

namical equations rather than the observation operator

H . Errors may also be present in the observation oper-

ator, which are often considered to be errors of repre-

sentativity. This is a vast error of research (e.g., Waller

et al. 2014; van Leeuwen 2015; Bormann et al. 2014), but

will not be considered further in this current work; that is,

we will assume the observation operatorH to be perfect.

If model error is unaccounted for then B, R̂, and Ĥ

remain unchanged in the 4D-Var algorithm. Therefore,

the computation of the analysis xa can still be given by

the theoretical linear approximation:

xa 5 xb 1K
�
ŷ2 Ĥ (xb)

�
, (9)

where K is known as the Kalman gain matrix given by

BĤT(R̂1 ĤBĤT)21. With multiple outer loops xb in (9)

would be replaced by the current outer-loop iterate, and

K computed with a Ĥ linearized around the current

outer-loop trajectory. However, as the generalized ob-

servation operator is no longer optimal the error co-

variance of the analysis will be inflated, with covariance

equal to

Pa 1KE½ð�Ĥ 2E½�Ĥ �Þð�Ĥ 2E½�Ĥ �ÞT�KT , (10)

whereE[ ] is the mathematical expectation and Pa is the

analysis error covariance if Ĥ (xt0) were correct. In de-

riving (10), it is assumed that the model error is un-

correlated with the observation and background error.

In addition to this, if the random variable �Ĥ is biased

then the analysis will be biased, that is

E[�a]5KE½�Ĥ � , (11)

where �a 5 xa 2 xt0 (the analysis minus the true initial

state). The derivations of (10) and (11) can be found in
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the appendix. In a similar way, it can be shown that the

expected value of the cost function evaluated at the

analysis will also be increased, as it becomes impossible

to fit to both the background and the observations in a

way that is consistent with the prescribed error co-

variances (Dee 1995).

From (10) and (11) we see that the impact that the

model error has on the analysis error depends on the

Kalman gain matrix. The larger the elements of K are,

the greater the impact of model error, or in other words

the more dominant the observations are (due to either

their number or their accuracy) in computing the anal-

ysis, the greater the impact of model error.

In addition to the nonlinear model error present in the

outer loop, an error in the TL approximation to the NL

model used in the assimilation is also present in the inner

loop of incremental 4D-Var. Let

�TL 5 Ĥ (x
0
1 dx

0
)2 Ĥ (x

0
)2 Ĥdx

0
(12)

be the tangent linear model error in observation space.

For each of the coupling strategies the choices of Ĥ and

Ĥ differ and so the error in the generalized observation

operator and the TL model error is different in each

case:

Strongly coupled:

�Ĥ 5 Ĥ t(xt0)2Ĥ c(xt0) (13a)

�TL 5 Ĥ c(xg01 dx
0
)2Ĥ c(xg0)2 Ĥcdx

0
. (13b)

Weakly coupled:

�Ĥ 5 Ĥ t(xt0)2 Ĥ c(xt0) (14a)

�TL 5 Ĥ c(xg0 1 dx
0
)2 Ĥ c(xg0)2 Ĥucdx

0
. (14b)

Uncoupled:

�Ĥ 5 Ĥ t(xt0)2 Ĥ uc(xt0) (15a)

�TL 5 Ĥ uc(xg0 1 dx
0
)2Ĥ uc(xg0)2 Ĥucdx

0
. (15b)

The superscripts ‘‘c’’ and ‘‘uc’’ refer to the coupled

and uncoupled assimilation models. We note that the

truth, Ĥ t(xt0), is always coupled by definition. From

these equations it is clear that �Ĥ is the same for the

weakly and strongly coupled formulations due to the

outer-loop calculations being the same. For the strongly

coupled and uncoupledmethods the exact tangent linear

of the erroneous nonlinear model is used in the inner

loop. In these cases the incremental 4D-Var scheme is

equivalent to a truncated Gauss–Newton iteration and,

provided that the inner loop is solved to sufficient

accuracy, the outer-loop iterates should converge to a

minimum of the corresponding discrete cost function

and the TL error should tend to zero. On the other hand,

for the weakly coupled assimilation the uncoupled tan-

gent linear models only provide an approximation to the

true linearization of the coupled model used in the outer

loop. In this case the incremental 4D-Var scheme is a

perturbed Gauss–Newton method and, under certain

conditions, will converge to a solution close to the

minimum of the discrete nonlinear cost function, but not

equal to it (Lawless et al. 2005; Gratton et al. 2007). In

practice, however, the tangent linear model always

contains some approximations, since it is usually run at a

lower resolution than the outer-loop nonlinear model

and may not include the linearization of all physical

parameterizations.

There are also differences in the way the linearization

trajectory is defined. For the weakly coupled case, Ĥuc is

linearized about the coupled trajectory given by Ĥ c(xg0)

and the boundary conditions at the air–sea interface

(BCs) used to force Ĥuc are calculated using the NL

coupled model. For the uncoupled case, Ĥuc is linearized

about Ĥ uc(xg0). The BCs for the uncoupled model runs,

Ĥ uc(xg0) and Ĥuc, are prescribed externally.

4. Experimental design

Following on from Smith et al. (2015) we make use

of a single-column model of the coupled atmosphere–

ocean. We aim to create an experimental setup in which

we believe the model error to have characteristics of the

error seen in an operational coupled atmosphere–ocean

model. That is, we wish for the growth rates of themodel

error in the atmosphere to be much larger than in the

ocean and to be complex in nature. Below details of

the ‘‘true’’ and erroneous model are given. We assume

the error to originate from missing physics, erroneous

parameter values, and errors in the large-scale forcing.

a. ‘‘Truth’’ model

The model that represents the truth in our idealized

experiments comprises the ECMWF single-column

model (SCM), which originates from an early cycle of

the IFS code, coupled to a single-column ocean mixed

layer model. A brief description of the key features of

the model follows. A more complete description of the

dynamical core equations and discretization is given in

Smith et al. (2015).

1) THE ATMOSPHERE

The atmospheric component of the coupled model

solves the primitive equations for prognostic variables:

temperature T, specific humidity q, and ageostrophic
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zonal u and meridional y wind. The model is forced ex-

ternally by horizontal advection for each of the prog-

nostic variables and by the geostrophic component of the

winds. Tendencies due to subgrid-scale physical processes

are also included to represent the effect of radiation,

turbulent mixing, moist convection, and clouds.

The vertical discretization of the equations for the

atmosphere component uses the hybrid vertical co-

ordinate scheme developed by Simmons and Burridge

(1981) to describe the atmosphere on 60 model levels.

This allows for greater resolution in the planetary

boundary layer (maximum resolution is ’15m), with

decreasing resolution toward the top of the model do-

main (minimum resolution is ’4 km) at 0.1 hPa.

2) THE OCEAN

The ocean mixed layer model is based on theK-profile

parameterization (KPP) vertical mixing scheme of Large

et al. (1994). The code was originally developed by the

National Centre for Atmospheric Science (NCAS) Cen-

tre forGlobalAtmosphericModeling at theUniversity of

Reading (Woolnough et al. 2007) and incorporated into

the ECMWF SCM code by Takaya et al. (2010).

The prognostic variables in the ocean are the mean

values of temperature u, salinity s, and zonal uo and

meridional yo currents. The KPP model describes mix-

ing in the boundary layer near the surface and mixing in

the interior ocean. This includes the effects of shear in-

stability, internal wave breaking in the interior of the

ocean, and double diffusion. The model is forced by

solar irradiance at the upper boundary and by externally

specified geostrophic currents.

The ocean model uses a stretched vertical grid of

Takaya et al. (2010) with 35 levels from the surface to a

depth of 250m. The resolution is increased in the upper

layers in order to simulate the diurnal SST variability;

the top model layer is chosen to be 1m thick and there

are 19 levels in the top 25m. Some examples of the

model level heights/pressures for the atmosphere and

ocean are given in Tables 1 and 2, respectively.

3) ATMOSPHERE–OCEAN COUPLING

Coupling of the atmosphere and ocean components of

the model occurs at every time step (15min) via the

exchange of latent and sensible heat fluxes and surface

momentum flux from the atmosphere to the ocean. The

updated ocean model sea surface temperature is passed

back to the atmosphere where it is then used in the

computation of the atmosphere lower boundary condi-

tions for the next step. Fluxes are estimated from bulk

formulas, with the method of Louis et al. (1981) used to

calculate the transfer coefficients.

b. Assimilation and forecast models

The coupled model used for the coupled DA experi-

ments and to produce the coupled forecasts is similar to

that used in Smith et al. (2015). In comparison with the

truth model this has missing physics in the atmosphere,

representing just advection, vertical diffusion, and tur-

bulent mixing. It also has a positive bias in the large-

scale forcing of the horizontal advection terms for the

atmosphere. In the ocean, perturbed parameters for the

diffusion parameters are used (details of which are given

in Table 3) and there is no nonlocal mixing. The pa-

rameters that are perturbed each affect themixing in the

erroneous model. However, their combined effect is

minimal compared to the errors propagating down from

the air–sea interface.

The uncoupled models used by the uncoupled DA ex-

periments are the same as those used for the coupled

forecast with the exception that there is no exchange in

information between the two components. Instead the

surface fluxes needed to force the ocean component and the

SSTs needed to force the atmosphere component are pre-

scribed externally. In this study we consider two options:

1) poor BCs: BCs given by ERA-Interim (Dee et al.

2011) andMercator (Lellouche et al. 2013) reanalyses

TABLE 1. Locations of the reduced observations in the atmo-

sphere used in experiments in section 5d. Pressure level values are

based on a surface pressure of 1018.5 hPa.

Model level Model full pressure level (hPa)

17 18.815

22 54.624

25 95.980

30 202.230

33 288.093

39 501.637

49 861.497

56 995.055

TABLE 2. Reduced observation locations in the ocean used in ex-

periments in section 5d.

Model level Depth (m)

1 1.000

5 5.277

10 11.406

16 20.173

20 28.100

23 37.366

25 46.985

27 61.498

29 83.818

31 118.214

33 170.778

35 250.00
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products. These products are inevitably inconsistent

with the idealizedmodel used in these experiments. In

addition to this, the SSTs obtained from the Mercator

product have no diurnal cycle, with only a daily

averaged value provided.

2) goodBCs: BCs given by output from the truthmodel,

M t(xt0). Theoutput is prescribed at every 6hwith linear

interpolation to provide BCs at intermediate times.

c. Illustration of model error

The model error that results from this setup is illus-

trated for a case study relevant for July 2014 for a point

in the northwestern Pacific (258N, 188.758E). The initial

conditions are obtained by running the truth model for

1 day initialized by data taken from ERA-Interim re-

analysis for the atmosphere and Mercator ocean re-

analysis for the ocean valid at 0000 UTC 2 July 2014.

Obtaining the initial conditions in this way ensures that

they lie on the true model ‘‘attractor.’’ Forcing fields are

also calculated from these reanalysis products, specified

6-hourly throughout the forecast period, with linear in-

terpolation between these times. The true evolution of

the atmospheric and oceanic temperature over an in-

tegration time of 4 days is shown in Fig. 2.

In Figs. 3–6 the NL and TL model error for tempera-

ture in the atmosphere and ocean are shown, computed

using (13)–(15). If we assume that the entire state is ob-

served at every time step then the NL model error is

equivalent to �Ĥ and the TL error is equivalent to �TL. In

this case the TL error has been computed for a pertur-

bation equal to the truthminus the background to be used

in the assimilation experiments presented in section 5.

In Figs. 3 and 4 we see that in the atmosphere the NL

and TL model error are fairly insensitive to the coupling

strategy above the boundary layer (level 50 and above)

and within the boundary layer only small differences can

be seen. This suggests that for our model setup the lower

boundary is not a great source of error. This could also be

expected in general as the ocean acts as a ‘‘slave’’ to the

atmosphere and so changes to the ocean will not have an

immediate effect on the atmosphere at short time scales.

In each case we see a large warm bias forming in the NL

model between levels 40 and 50, which corresponds to

approximately 1.2–4.7km. There is also a cool bias de-

veloping at level 30, which corresponds to approximately

12km, roughly the top of the troposphere. Compared to

the NL model error the TL model error is small (ap-

proximately 20% of its value) and should reduce

throughout the minimization procedure.

Figures 5 and 6 show that the behavior of the model

error in the ocean is much more sensitive to the upper

boundary, suggesting that the atmosphere is a large

source of error over the 2-day forecast window. For the

coupled NL model (used in the strongly and weakly

coupled scheme) we see that there is a cool bias at the

TABLE 3. Parameters modified to create model error in the ocean component of the coupled model.

Name Description True value Value used in assimilation and forecast

RRINFTY Critical Richardson number for shear instability 0.8 0.7

RDIFMIW Background/internal waves viscosity(m2 s21) 1.5 3 1024 1.0 3 1025

RDIFSIW Background/internal waves diffusivity(m2 s21) 1.5 3 1025 1.0 3 1025

RDIFMMAX Max viscosity due to shear instability (m2 s21) 5 3 1023 1.0 3 1023

RDIFSMAX Max diffusivity due to shear instability (m2 s21) 5 3 1023 1.0 3 1023

FIG. 2. The simulated true evolution of temperature in the (top)

atmosphere and (bottom) ocean over an integration time 4 days.
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surface, peaking at the diurnal maximum (roughly 24

and 48h into the forecast), overlying a warm bias. This

suggests that in the coupled model the heat originating

from the atmosphere is being mixed down too quickly.

This is seen to result in a large warm bias at level 20

(approximately 25m) after 1 day, corresponding to the

thermocline being deepened too quickly. This hypoth-

esis is consistent with the error in the lower winds, which

are also seen to have a positive bias (not shown) and are,

therefore, causing too much momentum to be passed to

the ocean and, hence, too much mixing in the upper

ocean. Experiments (not shown) in which the uncoupled

ocean model is run with the true heat fluxes but erro-

neous momentum fluxes (either computed from the

coupled erroneous model or prescribed externally from

the ERA-Interim product) show that the errors in the

momentumfluxes explain a large part of the errors in the

NL ocean model component seen in Fig. 5.

For the uncoupledmodel, Figs. 5 and 6 show the error in

the ocean to be very sensitive to the prescribed BCs. In

particular, we note that when the error in the BCs is neg-

ligible (last panel) the NL and TL model error is

substantially reduced. When poor BCs are used, the error

in the oceanic temperature may be larger than in the

coupledmodel, but because the errors are not dynamically

coupled to the atmosphere they are of a completely dif-

ferent nature to the errors in the ocean component of the

coupled model. Most notably there is an underestimation

of the mixing of the heat into the ocean caused by an un-

derestimation of the prescribed surface momentum flux

(not shown), whereas in the coupled model there is an

overestimation of the mixing as discussed above.

In contrast to the atmosphere, the TL error in the

ocean (Fig. 6) is of comparable magnitude to the error in

the NL model (Fig. 5). However, both are substantially

smaller than the errors seen in the atmosphere.

In both the atmosphere and ocean it is interesting to

note that the error in the approximate TL used by the

weakly coupled formulation is only slightly larger than

using the exact TL in the strongly coupled formulation.

The main difference in the atmosphere occurs in the

lowest 10 levels (corresponding to the BL) where the

errors are seen to be maintained longer into the simu-

lation. In the ocean the greatest differences are at

FIG. 3. Nonlinear model error �Ĥ for atmospheric temperature (K). The different panels show the errors present

in the four different coupling strategies: (top) strongly coupled DA and weakly coupled DA, (bottom left) un-

coupled DA (poor BCs), and (bottom right) uncoupled DA (good BCs).
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around level 20 (corresponding to the thermocline).

Although these differences are small, we will see in

section 5d that in some circumstances they can lead to

differences in the balance between the ocean and at-

mosphere analyses.

d. Assimilation experiment design

Within this section the details of the assimilation ex-

periments setup are given. The aim of the experiments is

to study the effect of the model error on the assimilation

of observations. We concentrate on the case study pre-

sented above so that the link between the resulting

analysis and the realization of themodel error is explicit.

Experiments using data from a June 2013 case study for

the same location gave qualitatively similar results so

are not included but give us the confidence that our re-

sults are robust.

The experimental design is essentially a biased twin

experiment, in which the truth is known (see section 4a)

and observations are made directly from this known

truth. A biased model (see section 4b) is then used to

assimilate these observations.

In the following experiments the background error co-

variancematrixB is assumed to be diagonal. This is a large

simplification but allows for a clean comparison between

the three different coupling strategies introduced in

section 2. The variances of the background error are

estimated from the variance in a time series of model

output as described in Smith et al. (2015). The back-

ground is then computed by generating white noise

with the background error variances, adding it to the

true profile at 24 h prior to the initial time of interest

and running the coupled forecast model forward 24 h.

This ensures that the background profile lies on the

coupled model attractor. As the errors in the back-

ground will have grown throughout the forecast the

background error variances are then inflated so that

they are consistent with the errors in the background

profile. The background error standard deviations are

shown in Fig. 7.

In the following experiments observations are made

of the truth at every model level at 3-hourly intervals in

the atmosphere and at 6-hourly intervals in the ocean.

The spatial density of the observations has been chosen

to accentuate the effect of themodel error, which as seen

in (10) and (11) is greatest when the observations play a

dominant role in calculating the analysis, implying that

the effect of model error will be greater with denser

observations, especially when coinciding with the region

of large model error. The frequency of the observations

FIG. 4. As in Fig. 3, but for tangent linear model error �TL for atmospheric temperature (K).
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has been chosen to mimic the reduced availability of

observations in the ocean compared to the atmosphere.

The observations, simulated from the truth model, are

consistent with a prescribed error variance that is as-

sumed to be known exactly in the assimilation. The

observation error standard deviations, the values of

which are plotted in Fig. 7, are constant for each variable

and independent of height. We note that humidity is not

observed.

The inner loop is stopped when the relative change in

the gradient is less than 0.001. The number of iterations

needed depends on the assimilation scheme used and the

window length. In general, more iterations are neces-

sary with the strongly coupled scheme. To improve

convergence a simple preconditioning of the control vector

is used. Instead of minimizing (5) with respect to dx0 it is

instead minimized with respect to a transformed variable

equal to B21/2dx0. Such a transformation is commonly

used in operational data assimilation [see, e.g., Bannister

(2008) and references therein]. In additional tests (not

shown) it has been found that for all DA strategies three

outer loop iterations are sufficient for convergence; how-

ever, results will also be shown for the weakly coupled

scheme in which only one outer loop is performed.

5. Assimilation results

a. Sensitivity to window length

It can be expected that the assimilation results will be

sensitive to the assimilation window length. If no model

error is present and the TL error remains small then

increasing the window length can be expected to reduce

the analysis error as more observations become available

for assimilation. However, in the presence of model error

the analysis error will increase in accordance with (10)

and (11) as themodel error grows throughout the window

and the greater number of observations accentuates its

effect. In Figs. 8 and 9 the absolute analysis errors

(computed from the difference from the true state) at the

initial time for the different coupling strategies are given

for assimilation window lengths of 6 and 48h.

In Fig. 8 we see an increase in the analysis error of

atmospheric temperature for all coupling strategies

as the window length increases (note the change in the

x-axis scale). This is most noticeable at levels 45 and

25–30 where the analysis becomes significantly poorer

than the background (gray line). These levels coincide

with the large biases seen in the assimilation model that

develop after approximately 12 h (see Fig. 3).

FIG. 5. As in Fig. 3, but for nonlinear model error �Ĥ for oceanic temperature (K).
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In Fig. 9 we see that for the analysis of oceanic tem-

perature the error does not increase in the sameway as the

window length is increased. Instead it appears in places

that the analysis error reduces, particularly between levels

6 and 10, with the uncoupled DA schemes (red lines)

showing the greatest reduction in error. This is consistent

with the longer window length allowing for the observa-

tions to provide more information about the true ICs and

the diurnal cycle of the evolution of the mixed layer. The

fact that the uncoupled analyses (especially with the good

BCs) outperform the coupled analyses was expected from

Fig. 5. The opposite is true closer to the surface at around

level 2 despite the improvement in temperature at level 1.

This could be indicative of the inability of the uncoupled

methods to utilize information from the atmospheric ob-

servations to constrain the ocean analysis.

It is interesting to note the difference between the an-

alyses using the weakly coupled scheme when one and

three outer loops are performed (green dashed–dotted

and green dashed lines, respectively).We see that for both

window lengths an improved analysis is given when only

one outer loop is performed around levels 6–9. The reason

for this could be due to the fact that themodel error due to

the coupling is only experienced in the weakly coupled

scheme during the outer-loop update, and so more outer

loops implies that the coupled model has a greater influ-

ence on the analysis [see Smith et al. (2015)]. Therefore,

performing fewer outer loops reduces the effect of the

model error allowing for a more accurate analysis.

We also observe differences between the coupled and

uncoupled analyses at level 18, just above the thermocline,

where the coupled analyses are more accurate than the

uncoupled. From Fig. 5 we see that the model error in this

region propagates down from the surface. Therefore, the

larger analysis error seen in the coupled analyses at the

surface down to level 10, for a 48-h window,may in fact be

correcting for the error deeper down and, hence, allowing

for the model prediction in this region to become more

consistent with the observations and the information in

the observations to be interpreted correctly. No scheme is

able to correct the large error at the thermocline due to

the relatively small background error variances in this

region (caused by the fact that there was little variation in

this feature in the forecast used to estimate the back-

ground error variances, see section 4d).

b. Forecast error when initialized from the analyses

The potential for the coupled DA scheme to produce

a poorer ocean analysis in the presence of model error

has been demonstrated. However, often the aim of data

FIG. 6. As in Fig. 3, but for tangent linear model error �TL for oceanic temperature (K).
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assimilation is not to produce the most accurate initial

conditions but the most accurate forecast. In this section

we look at the error in the forecast produced using the

coupled erroneous model when initialized by the differ-

ent analyses computed with the 48-h assimilation window

in the previous section. Figure 10 shows the error in the

forecast of atmospheric temperature. The top two panels

show the error in the forecast using the erroneous model

when initialized with the true ICs (left) and the back-

ground (right). The other panels show the error in the

forecast when initialized with the different coupling DA

strategies (due to the similarity between the weakly

coupled results when one and three outer loops are per-

formed, only the results with three outer loops are

shown). It can be seen that the error in the analysis at the

initial time (seen in Fig. 8 in which the error in the ana-

lyses was larger than for the background between levels

25 and 30 and at level 45 in the case of a 48-h window

length) has helped to restrict the growth of the warm bias

around level 45 and the cool bias around level 30 in the

forecast initialized by the analyses at later times, com-

pared with using the true ICs. This is because, in order to

minimize the cost function an analysis was found that

gave a good fit to the observations throughout the 48-h

assimilation window and not just at the beginning of the

window. This effect of model error in variational data

assimilation has been noted previously in the work of

Wergen (1992) and Griffith and Nichols (2000).

In Fig. 11 the forecast error for the atmospheric var-

iables is summarized by the root-mean-square error

(RMSE) averaged over all atmospheric levels, plotted

as a function of time. The reduction in the forecast error

for temperature initialized using the analyses (colored

lines) compared to the true ICs (black line) is clear after

12 h into the assimilation window and is maintained

throughout the 48-h assimilation window and the fol-

lowing 2-day forecast. The forecast error is also seen to

be mostly reduced for the wind fields, which displays an

inertial oscillation in magnitude. Note that humidity is

unobserved, which explains why the forecast error is not

reduced when initialized with the analyses compared to

initialing with the truth.

In Fig. 12 the error in the forecast of oceanic tem-

perature when initialized by the different states is

shown. The reduction in the forecast error when ini-

tialized using the different analyses compared with ini-

tialization from the truth is not as clear as for the

atmosphere. However, the forecasts initialized using the

coupled DA strategies (middle row) do result in an

improved forecast in the region of the thermocline

FIG. 7. Profile of background error standard deviations for each of the prognostic variables (solid line) and the observation error standard

deviations (dashed line). Note that humidity is unobserved.
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compared to the forecast initialized with the true state,

which is particularly noticeable beyond 2 days. This is

because, although using the coupled nonlinear model in

the assimilation resulted in a larger analysis error in

some regions of the ocean, it is consistent with the

coupled model used to produce the forecast. Therefore,

as in Fig. 10, errors at the initial time have helped to

restrict the growth of the errors due to the imperfect

model. It is interesting to note that this is also the case

for the weakly coupled analysis with only one outer loop

that was seen to give a more accurate analysis of the

ocean temperature than when more outer loops were

performed (see Fig. 9).We can, therefore, speculate that

in this case even with just one outer loop the weakly

coupled scheme, by linearizing around the coupled tra-

jectory, has allowed for an analysis consistent with the

FIG. 9. As in Fig. 8, but for ocean temperature.

FIG. 8. Absolute error in the analysis of atmospheric temperature at initial time using the four different coupling

strategies. The window length increases from (left) 6 to (right) 48 h.
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coupled model. The improvement seen in the error in

the thermocline suggests that the assimilation has re-

duced the amount of heat being mixed down from the

surface. From Fig. 13 we can see that this is not due to a

substantial improvement in the momentum fluxes. In

fact the fluxes initialized by the strongly coupled analysis

are worse in many places, and may support the idea that

surface heat fluxes are compensating for errors else-

where in the coupledmodel, as found in the studies of de

Szoeke and Xie (2008) and Zheng et al. (2011).

The results presented in Fig. 12 clearly demonstrate

the advantage of using the coupled scheme over the

uncoupled scheme in reducing the error in the ocean

forecast. Despite the model error it is important that the

assimilation and the forecast models are consistent with

one another. In the next section we show that this is

particularly true when forecasting using the coupled

system, as it is essential not only that the analysis allows

for a good fit to the observations but also that the at-

mosphere and ocean analyses are in balance with one

another.

c. Initialization shock

A benefit of coupled DA in the absence of model

error is its ability to reduce the occurrence of initiali-

zation shock by updating the atmosphere and ocean as a

FIG. 10. Forecast error in forecasts of atmospheric temperature produced using the erroneous coupled model

initialized using different initial conditions. (top) The results when the model is initialized using the (left) true state

and (right) the background state. (middle),(bottom) Results when the assimilation model is initialized using the

analysis produced by the different coupling strategies using a 48-h window, 3-hourly atmospheric observations, and

6-hourly oceanic observations. The blue vertical line indicates the end of the 2-day assimilation window.
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coherent system, and in turn find an analysis that lies on

the forecast model attractor. In previous work (Smith

et al. 2015) initialization shock was found to be evident

in the first few hours of forecast of SST. We now ex-

amine whether coupled assimilation can still reduce the

shock when model error is present and so the true at-

tractor and model attractor differ.

In Fig. 14, 72- and 3-h forecasts of the SST are given

using the coupled model initialized using the different

assimilation schemes with a 48-h assimilation window. It

is clear that although the uncoupled analyses are closer

to the true SST at the initial time they quickly deviate

from the truth and have a much less realistic forecast

during the first hour than the coupled analyses. Beyond

the first few hours the forecasts initialized using the

uncoupled analyses continue to be poorer than the

forecasts initialized using the coupled analyses. We can,

therefore, conclude that, in this case, the presence of

model error at the atmosphere–ocean interface does not

adversely affect the ability of the coupled DA to

produce a state consistent with the coupled forecast

model. The fact that the forecasts initialized with the

coupled analyses still have a large cool bias in the SST,

comparative to the bias when initialized by the un-

coupled analyses, is most likely related to the reduction

in the warm bias seen in the thermocline (see Fig. 12).

d. Effect of strength of coupling in ‘‘weakly
coupled’’ DA

The strength of the coupling in weakly coupled DA is

controlled by the number of outer loops performed and

the resolution of the observations (Smith et al. 2015). In

the previous experiment (using three outer loops and

dense observations), the weakly coupled scheme is seen to

perform in a similar way to the strongly coupled scheme.

Within this section we wish to understand how the

model error affects the analysis when the strength of

coupling in weakly coupled DA is reduced. Unfortu-

nately the number of outer loops and the resolution of

the observations also have a significant impact on the

analysis in other ways, too, making it difficult to perform a

clean experiment showing just the effect of the reduced

coupling. For example, reducing the number of outer

loops reduces the ability to find the minimum of the cost

function and reducing the number of observations means

that the effect of the observations andmodel error on the

analysis is reduced [see (10) and (11)], so that therewill be

less deviation from the background no matter which as-

similation scheme is used.

Given these caveats the assimilation experiments are

now repeated using sparser observation (both tempo-

rally and spatially). In the atmosphere the frequency of

FIG. 11. RMSE during the 48-h assimilation window and subsequent 48-h forecast window using the coupled

model for the atmospheric variables. Colored lines are the RMSE in the forecast when initialized with the different

analyses, and the black line is the RMSE in the forecast when initialized with the truth.
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the observations is matched to the 6-h frequency of the

oceans (the frequency of the ocean observations remains

at 6-hourly) and in both systems the vertical resolution of

the observations is reduced to the levels given in Tables 1

and 2. With this setup little difference was seen in the

results between using one or three outer loops in the

weakly coupled formulation. This is because reducing

the observations means that the effect of the outer-loop

update of the innovations is reduced. Therefore, all the

results that follow use three outer loops.

In Figs. 15 and 16 we see that the analysis error is more

comparable to the denser observation case with a 48-h

window (see Figs. 8 and 9) if we increase the window

length to 96h. In particular, we see that we still get a

large spike in the analysis error at level 45 in the atmo-

spheric temperature and we see a reduction in the

analysis error (cf. the background error) when the un-

coupled methods are used around levels 5–10 in the

oceanic temperature. This is because we are still

assimilating a similar number of observations so that the

effect of the observations and model error is still sig-

nificant allowing for the analysis to divert from the

background.

We expect this setup to reduce the strength of the

coupling within the weakly coupled scheme because,

although observations are available for a longer period

of time, the spatial and temporal frequency of the ob-

servations is reduced, and so there is less information in

observation space about the coupling between the at-

mosphere and ocean. In Fig. 17 this is illustrated by

again looking at the initialized forecast of SST. Com-

pared to Fig. 14, we see that the initialization shock has

increased for both the strongly and weakly coupled

schemes, but the difference is much greater for the

weakly coupled scheme, with the effect of the initial

imbalance seen beyond the first hour of the forecast.

FIG. 12. As in Fig. 10, but for ocean temperature.
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These experiments illustrate the potential risks of the

weakly coupled scheme in the presence of significant

model error. As it is in the outer loop that the obser-

vations and model are compared, the discrepancy due to

the coupled model error will be similar for both the

strongly and weakly coupled formulations. However,

because the uncoupled TLmodels used in the inner loop

are inconsistent with the coupled NL model used in the

outer loop, the weakly coupled scheme is unable to find

an analysis increment that allows for an agreement be-

tween the observations and the model as successfully as

the strongly coupled scheme if there is not enough in-

formation about the coupling from the observations.

This means that not only can we expect a poorer analysis

with the weakly coupled scheme but also a larger fore-

cast error and a greater initialization shock.

6. Conclusions and discussion

There is strong motivation for the development of

coupled DAmethods, namely, their ability to produce a

more balanced coupled analysis state and tomake better

use of near-surface observations. However, a limiting

factor in the implementation of coupled DA is the

model error in the atmosphere, which restricts the

length of the assimilation window that can be used to

something shorter than in an uncoupled ocean-only

scheme. Within this study we have aimed to give in-

sight into the effect of lengthening the window when

model error is present to see if the benefits of coupled

DA are still evident. A summary of our key findings

follows.

The effect of the model error in coupled DA depends

not only on the nature of the error in the coupled model,

but also on the coupling strategy used within the DA

scheme. It is possible for errors in the coupled system to

introduce an error in the ocean component near to the

surface, which has faster time scales than in the uncou-

pled ocean model (as seen in Fig. 5 comparing the

coupled model error to the uncoupled model error with

good BCs). This new source of error means that the

accuracy of the ocean analysis may be degraded using a

FIG. 13. Forecasts of the surface fluxes when initialized using the different analyses (colored lines as in Fig. 8). These

can be compared to the truth (thick black line).
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coupled scheme compared to using an uncoupled DA

scheme that (in the absence of this fast error growth) is

able to utilize a longer window length. This was shown to

be evident for a case study in which we found the errors

in the analysis of the ocean to be smaller in some regions

when using an uncoupled scheme and a 48-h window

(Fig. 9).

The clear problem with an uncoupled scheme,

however, is that despite allowing a smaller error in the

analysis of the ocean, the atmospheric and oceanic

analyses are inconsistent with the forecast model. This

means that the error growth rate in the coupled model

forecast may actually be larger when initialized using

the uncoupled analyses and an initialization shock

may become apparent in the forecast of the SSTs (see

Fig. 14).

With dense observations and three outer loops, the

weakly coupled scheme was seen to perform in a very

similar manner to the strongly coupled scheme,

responding in a similar way as the assimilation window

was increased (Fig. 9) and reducing the error in the

forecast by a similar degree (Fig. 12). When the number

of outer loops was reduced to one and observations were

dense, it was seen that weakly coupled scheme gave a

better analysis than the strongly coupled scheme in some

regions due to the reduction of the impact of the coupled

error in the outer-loop calculation of the innovations,

although the coupling was still strong enough to allow

for the analysis to be consistent with the coupled model.

Hence, the forecast was better than that initialized from

the uncoupled analyses. For example, the error in the

FIG. 15. Analysis error for atmospheric temperature using reduced observations with a 48- and 96-h

assimilation window.

FIG. 14. Forecasts of SST initialized using the different coupling

DA strategies (colored lines as in Fig. 8). These can be compared to

the truth (thick black line). The inset shows just the first three hours

to highlight any initialization shock.
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thermocline was reduced (Fig. 12) and initialization

shock was smaller (Fig. 14). However, if the density of

the observations is reduced then the strength of coupling

is also seen to reduce, but instead of tending toward the

uncoupled scheme [as is the case when no model error is

present (Smith et al. 2015)] it can give a much poorer

analysis and forecast than both the uncoupled and

strongly coupled schemes. This is because, although the

information in the observations about the coupling is

reduced, the inconsistency between the observations

and the NL coupled model seen in the outer loop re-

mains. Therefore, unlike with the strongly coupled

scheme that used the coupled model within both the

inner and outer loop, the weakly coupled scheme is

unable to find an update to the background state that

allows for the initialized model to become more con-

sistent with the observations. Therefore, the problem of

model error is likely to bemuchmore problematic in the

weakly coupled schemes, which are currently being

implemented at centers such as the Met Office and

ECMWF, than in a strongly coupled scheme. To address

this issue, the implementation of coupled DA has been

forced to use a short assimilation window length (6 h at

the Met Office and 24 h at the ECMWF).

To conclude, the benefits of a coupled DA scheme

are still evident even in the presence of model error.

However, if the aim is to find the best analysis then it is

important to choose an assimilation window length in

which the model error remains negligible. In practice

this means choosing a window length consistent with an

atmosphere-only assimilation that will severely limit

the number of ocean observations available for assim-

ilation. If the purpose is to give an improved forecast

then using a longer window length may help to reduce

the model error growth (particularly in the observed

fields) by finding the initial conditions that limit it.

However, in order to use coupled 4D-Var to its full

FIG. 17. As in Fig. 14, but for a reduced observation resolution and

a 96-h assimilation window.

FIG. 16. As in Fig. 15, but for ocean temperature.
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potential it is necessary to take into account model

error in the assimilation, allowing for the window

length and number of ocean observations available for

assimilation to be increased and theoretically a more

accurate analysis to be found. Allowing for model error

in variational data assimilation greatly increases the

complexity of the data assimilation problem and is an

active area of research (e.g., Fisher et al. 2011; Moore

et al. 2011).

One method, known as weak constraint 4D-Var, aims

to estimate the model error along with the initial con-

ditions (Griffith and Nichols 2000; Trémolet 2006). In

theory this allows for themodel to be corrected using the

observations. However, in practice it is very difficult to

obtain accurate results from weak constraint 4D-Var, as

it is necessary to have a good understanding of the elu-

sive model error statistics [see Todling (2015) and ref-

erences therein]. This is particularly challenging in

coupled data assimilation as themodel error statistics do

not only need to be specified for the ocean and atmo-

sphere but an understanding of the cross correlations is

also needed for strongly coupled DA. One possibility is

to only estimate the error in the atmospheric component

assuming that the error in the ocean is comparatively

negligible and has its origins in the atmosphere for the

time scale of the assimilation window.

An alternative method is to use parameter estima-

tion as well as initial state estimation, essentially tuning

the model parameters to give a better fit to the obser-

vations via the assimilation. Kondrashov et al. (2008)

argue that systematic errors in many tropical ocean–

atmosphere general circulation models are caused by

incorrect parameter values. Even if the model error is

not entirely due to erroneous parameter values, pa-

rameter estimation can be used to reduce model error

if the model is sensitive to the parameters and the

observations are sufficient (Navon 1998). This idea

was used by Liu et al. (2014) with the Fast Ocean

Atmosphere Model (FOAM) and a coupled ensemble

adjustment Kalman filter (Anderson 2001). They suc-

cessfully estimated the solar penetration depth (SPD)

in twin experiments. SPD is thought to be a parameter

that may have significant impact on the surface climate

[see Liu et al. (2014) for references]. They also tried to

estimate two additional parameters related to the mo-

mentum and latent heat fluxes. This was less successful

because of the nonlinear relationships between the

parameters and state variables weakening the corre-

lations between forecast error and parameter un-

certainty. Estimation of the bulk adjustment factors

was also performed by Mochizuki et al. (2009) using a

4D-Var technique. This was found to reduce model

biases in climatological fields.

With both the weak constraint and parameter esti-

mation methods it is unclear if the estimates of re-

spectivemodel error and the parameter values should be

used in the subsequent forecast. If they are not used,

then themodels used in the assimilation and the forecast

will be inconsistent, so, in a similar way to the uncoupled

DA scheme, the analyses will not lie on the forecast

model attractor. Hence, the forecast error growth may

be large even if the analysis error is small.
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APPENDIX

Derivation of Analysis Error Covariance and Bias in
the Presence of Model Error

The analysis was given in (9) in terms of the back-

ground xb, the observations over the assimilation win-

dow ŷ, the generalized nonlinear observation operator

Ĥ , and the Kalman gain matrix K. In the presence of

model error the mapping Ĥ is erroneous as described

by (8). The Kalman gain matrix is, therefore, no longer

optimal and this has an impact on the analysis error. Let
~�a be the analysis error when there is no error present in

Ĥ (i.e., Ĥ 5 Ĥ t) and �a be the analysis error when

there is error present:

�a 5 xa 2 xt0

5 xb 2 xt0 1K
�
ŷ2 Ĥ (xb)

�

5 xb 2 xt0 1K
�
ŷ2 Ĥ t(xt0)1 Ĥ t(xt0)

2 Ĥ (xt0)1 Ĥ (xt0)2 Ĥ (xb)
�

5 �b 1K
�
�o 1 �Ĥ 2H�b

�

5 ~�a 1K�Ĥ . (A1)

If we assume that �b and �o are unbiased then ~�a is also

unbiased and the expected value of �a is

E[�a]5KE½�Ĥ � , (A2)

as stated in (11).

Similarly if we assume that �b and �o are uncorrelated

with �Ĥ , we can compute the analysis error covariance as
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E[(�a 2E[�a])(�a 2E[�a])T]5E½ð~�a 1K�Ĥ 2KE½�Ĥ �Þð~�a 1K�Ĥ 2KE½�Ĥ �ÞT�
5E[~�a(~�a)T]1KE½ð�Ĥ 2E½�Ĥ �Þð�Ĥ 2E½�Ĥ �ÞT�KT

5Pa 1KE½ð�Ĥ 2E½�Ĥ �Þð�Ĥ 2E½�Ĥ �ÞT�KT , (A3)

where Pa is the analysis error covariance if no model

error were present, as stated in (10).
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