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Abstract. Probabilistic hydro-meteorological forecasts have over the last decades been used more frequently to communicate

forecast uncertainty. This uncertainty is twofold, as it constitutes both an added value and a challenge for the forecaster and the

user of the forecasts. Many authors have demonstrated the added (economic) value of probabilistic over deterministic forecasts

across the water sector (e.g. flood protection, hydroelectric power management and navigation). However, the richness of the

information is also a source of challenges for operational uses, due partially to the difficulty to transform the probability of5

occurrence of an event into a binary decision. This paper presents the results of a risk-based decision-making game on the

topic of flood protection mitigation, called “How much are you prepared to pay for a forecast?”. The game was played at

several workshops in 2015, which were attended by operational forecasters and academics working in the field of hydro-

meteorology. The aim of this game was to better understand the role of probabilistic forecasts in decision-making processes

and their perceived value by decision-makers. Based on the participants’ willingness-to-pay for a forecast, the results of the10

game show that the value (or the usefulness) of a forecast depends on several factors, including the way users perceive the

quality of their forecasts and link it to the perception of their own performances as decision-makers.

1 Introduction

In a world where hydrological extreme events, such as droughts and floods, are likely to be increasing in intensity and frequency,

vulnerabilities are also likely to increase (WMO, 2011; Wetherald and Manabe, 2002; Changnon et al., 2000). In this context,15

building resilience is a vital activity. One component of building resilience is establishing early warning systems, of which

hydrological forecasts are key elements.

1



Hydrological forecasts suffer from inherent uncertainties, which can be from diverse sources, including: the model structure,

the observation errors, the initial conditions (e.g. snow cover, soil moisture, reservoir storages, etc) and the meteorological

forecasts of precipitation and temperature (Verkade and Werner, 2011; He et al., 2009). The latter variables are fundamental

drivers of hydrological forecasts and are therefore major sources of uncertainty. In order to capture some of this uncertainty,

there has been a gradual adoption of probabilistic forecasting approaches, with the aim to provide forecasters and forecast users5

with additional information not contained in the deterministic forecasting approach. Whereas “a deterministic forecast specifies

a point estimate of the predictand (the variate being forecasted)”, “a probabilistic forecast specifies a probability distribution

function of the predictand.” (Krzysztofowicz, 2001). For operational forecasting, this is usually achieved by using different

scenarios of meteorological forecasts following the ensemble prediction approach (Buizza, 2008; Cloke and Pappenberger,

2009).10

Many authors have shown that probabilistic forecasts provide an added (economic) value compared to deterministic fore-

casts (Buizza, 2008; Verkade and Werner, 2011; Pappenberger et al., 2015). This is due, for example, to the quantification

of uncertainty by probabilistic forecasting systems, their ability to better predict the probability of occurrence of an extreme

event and the fact that they issue more consistent successive forecasts (Dale et al., 2012; Cloke and Pappenberger, 2009).

This probability of occurrence makes the probabilistic forecasts useful in the sense that they provide information applicable to15

different decision thresholds, essential since not all forecast users have the same risk tolerance (Michaels, 2015; Buizza, 2008;

Cloke and Pappenberger, 2009). Probabilistic forecasts therefore enable the quantification of the potential risk of impacts (New

et al., 2007) and, as a result, they can lead to more optimal decisions for many hydrological operational applications, with the

potential to realise benefits from better predictions (Verkade and Werner, 2011; Ramos et al., 2013). These applications are, for

example, flood protection (Stephens and Cloke, 2014; Verkade and Werner, 2011), hydroelectric power management (García-20

Morales and Dubus, 2007; Boucher et al., 2012) and navigation (Meissner and Klein, 2013). Moreover, the continuous increase

in probabilistic forecast skill is very encouraging for the end-users of the probabilistic forecasts (Bauer et al., 2015; Magnusson

and Källén, 2013; Simmons and Hollingsworth, 2002; Ferrell, 2009).

However, the communication of uncertainty through probabilistic forecasts and the use of uncertain forecasts in decision-

making are also challenges for their operational use (Cloke and Pappenberger, 2009; Ramos et al., 2010; Michaels, 2015;25

Crochemore et al., 2015). One of the reasons why the transition from deterministic to probabilistic forecasts is not straight-

forward is the difficulty in transforming a probabilistic value into a binary decision (Dale et al., 2012; Demeritt et al., 2007;

Pappenberger et al., 2015). Moreover, decision-makers do not always understand probabilistic forecasts the way forecasters in-

tend them to (Handmer and Proudley, 2007). This is why it is essential to bridge the gap between forecast production and hazard

mitigation, and to foster communication between the forecasters and the end-users of the forecasts (Cloke and Pappenberger,30

2009; Michaels, 2015).

As Michaels (2015) notes, “the extent to which forecasts shape decision making under uncertainty is the true measure of

the worth of a forecast”. The potential added value of the forecast can furthermore only be entirely realised with full buy-in

from the decision-makers. However, how much are users aware of this added value? How much are they ready to pay for a

forecast? These are questions that motivated the work presented in this paper. In order to understand how users perceive the35
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value of probabilistic forecasts in decision-making, we designed a risk-based decision-making game - called “How much are

your prepared to pay for a forecast?” - focusing on the use of forecasts for flood protection. The game was played during

the European Geophysical Union (EGU) General Assembly meeting 2015 (Vienna, Austria), at the Global Flood Partnership

(GFP) workshop 2015 (Boulder, Colorado), as well as at Bristol University (BU) in 2015. Games are increasingly promoted

and used to convey information of scientific relevance. They foster learning, dialogue and action through real-world decisions,5

which allow the study of the complexities hidden behind real-world decision-making in an entertaining and interactive set up

(de Suarez et al., 2012).

This paper presents the details of the game and the results obtained from its different applications. The participants’ perceived

forecast value is analysed by investigating the way participants use the forecasts in their decisions and their willingness-to-pay

(WTP) for a probabilistic forecast. The WTP is the amount an individual is inclined to disburse to acquire a good or a service, or10

to avoid something undesirable (Breidert et al., 2006; Leviäkangas, 2009). It is a widely and very commonly adopted method to

make perceived value assessments and its use has been demonstrated in a meteorological context (Leviäkangas, 2009; Anaman

et al., 1998; Rollins and Shaykewich, 2003; Breidert et al., 2006). Breidert et al. (2006) present a complete overview of the

methods available, organised by data collection types. According to their classification, there exists two main WTP measuring

approaches: the “revealed preference” and the “stated preference”. The former describes price-responses methods (such as15

market data analysis, laboratory-experiments and auctions, amongst others) while the latter refers to surveys in general. This

experiment combines both “revealed preference” and “stated preference” methods. The design of the game is described in

Section 2 and justified in terms of the purpose and contribution of the different components of the game to its main aim. The

results and the discussion promoted by the latter are subsequently presented in Sections 3 and 5, respectively.

2 Set up of the decision-making game20

2.1 Experimental design

This game was inspired by the table game “Paying for Predictions”, designed by the Red Cross/Red Crescent Climate Centre1.

Its focus is however different. Here, our aim is to investigate the use of forecasts for flood protection and mitigation. Also, we

strongly adapted the game to be played during conferences and with large audiences.

The set up of the game (illustrated in Fig. 1(a)) was the following: participants were told that they were competing for25

the position of head of the flood protection team of a company. Their goal was to protect inhabitants of a fictitious town

bordering a fictitious river against flood events, while spending as little money as possible during the game. The participant

with the highest amount of money at the end of the game was chosen as head of the flood protection team. Each participant was

randomly assigned a river (river yellow, river blue or river green) for the entire duration of the game. Each river had distinct

initial river levels and rates of flood occurrences (see Table 1). Participants worked independently and had a worksheet to take30

notes (see Appendix). An initial purse of 20,000 tokens was given to each player to be used throughout the game.

1http://www.climatecentre.org/resources-games/paying-for-predictions
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Based on this storyline, the participants were presented the following sequence of events (illustrated in Fig. 1(b)): after being

given their river’s initial level (ranging between 10 to 60 included), each participant was asked to make use of a probabilistic

forecast (see Fig. 1(b)) of their river level increment after rainfall (ranging between 10 to 80 included) to decide if they wanted

to pay for flood protection or not. The cost of flood protection was 2,000 tokens. They were informed, prior to the start of the

game, that a flood occurred if the sum of the initial river level and the river level increment after rainfall (i.e. the actual river5

level after rainfall) reached a given threshold of 90. The probabilistic forecasts were visualised using boxplot distributions.

They had a spread of about 10 to 20, and indicated the 5th and 95th percentiles as well as the median (i.e. 50th percentile) and

the lower and upper quartiles (i.e. 25th and 75th percentiles respectively) of the predicted river level increment after rainfall.

Forecasts were given to participants case by case (i.e. when playing the first case, they could only see the boxplot distribution

of forecast river increment for case 1). Once the participants had made their decisions using both pieces of information (i.e.10

river level before rainfall and forecast of river level increment), they were given the observed (actual) river level increment

after rainfall for their rivers. If a flood occurred and the participant had not bought flood protection, a damage cost (i.e. price

paid when no protection was bought against a flood that actually happened) of 4,000 tokens had to be paid.

The monetary values (initial purse, price of flood protection and damage cost) were deliberately chosen. The price of a

protection was set to 2,000 tokens such that if a participant decided to buy flood protection every time during the game (i.e.15

two rounds of five cases each, thus ten times) they would have no tokens left in their purse at the end of the game. This was

done in order to discourage such a behaviour. The damage cost was set to twice the flood protection cost as this was estimated

to be a realistic relation between the two prices based on Pappenberger et al. (2015). The latter states that the avoided damages

due to early flood warning amounts to a total of about forty percent. Here, for simplicity, we used a percentage of fifty percent.

Once the context was explained, the participants were then told that they would first play one round of five independent cases,20

which would each be played exactly according to the sequence of events presented, and for which they would have to record

their decisions on the worksheet they were provided (see Appendix). The game had a total of two rounds of five cases each.

This specific number of cases and rounds was chosen because of the time-constraint to play the game during conferences (the

game should last around 20 to 30 minutes only). Table 1 presents the total number of flood events for each round and each river.

The number of flood events was different for every river for each round as river level values were randomly generated for the25

purpose of the game. This allowed the exploration of the influence of different flood frequencies in round 1 on the participants’

WTP for a second forecast set. The number of flood events were however sampled to some extent in order to obtain decreasing

(increasing) numbers of flood events between the two rounds for the blue (yellow) river, or constant throughout the two rounds

for the green river. This was done to investigate the effect of the change (or not) in flood frequency between round 1 and 2 on

the participants’ strategies throughout the game.30

During the first round of the game, the participants had forecasts of river level increments to help their decisions. These

forecasts were however not available for all participants in the second round, but were sold between the two rounds through an

auction. The purpose and set up of each round and the auction are explained in the following paragraphs.
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2.1.1 Round 1

The objective of the first round was to familiarise the participants with the probabilistic forecasts they were given to help them

in their decisions, and to create a diversity amongst the decision-makers in terms of:

– their river behaviour: which is why different rivers, each with different flood frequencies and different initial levels, were

assigned to the participants;5

– the money they would spend during this round and have in hand for the ensuing auction (before round 2);

– the quality of their forecasts in the first round: to this end, different forecast sets were distributed to the players for round

1.

This diversity was triggered in round 1 in order to analyse whether or not the WTP for a second forecast set, measured in

the auction performed before round 2, was dependent on any of the factors inherent to the first round (i.e. river-specific flood10

frequency, money left in purse, or quality of the forecasts).

Before the start of the first round each participant was given a forecast set containing probabilistic forecasts of their river

level increment after rainfall for the five cases of round 1. Participants were however not aware that three different forecast sets

were produced for each of the rivers. One set had only forecasts with a positive bias (forecast sets 1), the second set had only

unbiased forecasts (forecast sets 2) and the third set only forecasts with a negative bias (forecast sets 3). There were therefore15

nine different sets of forecasts which were distributed randomly amongst the audience prior to the start of the game. The three

different forecast types were obtained by varying the position of the observation inside the forecast distribution. The unbiased

forecasts had the observations fall between the lower and the upper quartiles of their distributions, while the biased forecasts

had the observations fall outside of the lower and the upper quartiles of their distributions, leading to over- (positively biased

forecast sets) or under- predictions (negatively biased forecast sets) of the observations.20

The quality of each forecast set can be represented in terms of the number of correct forecast flood events (given a forecast

percentile threshold) with respect to the number of observed flood events. For each forecast set type and each river, the number

of forecast flood events during the first round was calculated by adding the median of the forecast river level increment to the

initial river level for each case. A forecast is referred to as a false alarm if this sum forecasts a flood (i.e. it exceeds the flood

threshold) but the flood is subsequently not observed. It is referred to as a hit if the sum forecasts the flood and the flood is25

subsequently observed. A miss is an observed flood that was not forecast. The numbers of hits, misses and false alarms are

usually gathered in a contingency table as a matrix (e.g. Table 2): hits are placed on top, left; misses on bottom, left, and false

alarms on top, right. The place on bottom, right is usually not considered in the evaluation of forecasts as it represents situations

with low interest to a forecaster (i.e. when floods are nor forecast, nor observed). Table 2 displays the nine contingency tables

we obtain considering each forecast set type and each river. Each participant would find themselves in one of the contingency30

tables represented. We can see the higher number of total misses (false alarms) considering all rivers together in negatively

(positively) biased forecast sets, and the absence of these in the unbiased forecast sets.
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After all the five cases of round 1 were played, participants were asked to rate their performance as a decision-maker and the

quality of their forecast set for round 1 on a scale from ‘very bad’ to ‘very good’ (the option ‘I don’t know’ was also available)

(see Appendix).

2.1.2 Auction

The auction was carried out after round 1 in order to measure the participants’ WTP for a second forecast set and to evaluate5

its dependencies on any of the elements of the game in round 1. The auction was implemented as follows.

At the end of the first round participants were asked to transfer the remaining tokens from round 1 to the second round. They

were then told that the forecasting centre distributing the probabilistic forecasts now wanted the decision-makers to pay for

the forecast sets if they wanted to have access to them for the second round. Furthermore, they were informed that only thirty

percent of them could get a second forecast set for this round. This percentage was chosen in order to restrict the amount of10

participants that could buy a forecast set (and create a competitive auction), while keeping a high enough number of participants

playing with a forecast set in round 2 for the analysis of the results.

Participants were then asked to make a sealed bid, writing down on their worksheets the amount of tokens they were willing

to disburse from their final purse of round 1 to obtain a set of probabilistic forecasts for all the five cases of round 2. After the

bids were made, a forecast set was distributed to the participants within the highest thirty percent of the bids. This was done15

through an auction. It was carried out by asking the participants if any of them wrote down a bid superior or equal to 10,000

tokens. If any participants did, they raised their hands, after which a forecast set - for the same river as the river assigned to

them at the beginning of the game - was given to them. The auction continued by lowering the amount of tokens stated to the

participants until all forecast sets for round 2 were distributed. Each participant having bought a forecast set for round 2 was

then asked to disburse the amount of tokens they paid for this forecast set from their remaining purse from round 1.20

We note that participants were not told that the forecasts for the second round were all unbiased forecasts. Once again, the

quality of the forecasts was kept secret in order for the participants to assign a value to the second forecast set that would

strictly be related to the conditions under which they played the first round.

2.1.3 Round 2

The second round was played in order to measure the added value of an unbiased forecast set, compared to no forecast set at25

all, to the decisions of the participants on protecting or not against floods. Moreover, as the winner of the game was determined

by the amount of tokens left in their purse at the end of the game, this round would give a chance to participants who bought a

second forecast set to make up for the money spent with the auction, during round 2.

The second round developed similarly to the first round, with five independent cases of decision-making, with the exception

that only participants who bought a second forecast set could use it to make their decisions. Participants who did not buy a30

second forecast set did not have any forecasts on which to base their decisions.

After the five cases were played, the participants were asked to once again answer a set of questions (see Appendix). They

were asked to rate their performance as a decision-maker in the second round, on a scale from ‘very bad’ to ‘very good’ (the
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option ‘I don’t know’ was also available). Participants without a second forecast set were invited to provide a justification for

not purchasing a set of forecasts for this round. Participants who had bought a second forecast set were also asked to rate the

quality of their forecast set for round 2 (on a scale from ‘very bad’ to ‘very good’, the option ‘I don’t know’ was also available)

and if those were worth the price they had paid for them. If not, they were asked to provide a new price that they would have

rather paid.5

The winner was finally determined by finding the player with the largest amount of tokens in their purse at the end of the

game.

2.2 Objectives and evaluation strategy

The main aim of this paper is to investigate the participants’ WTP for a probabilistic forecast set in the context of flood

protection, following the game-experiment designed as presented in the previous paragraphs. It unfolds into two objectives that10

were pursued in the analysis of the results:

1. to analyse how participants used the information they were provided (probabilistic forecast sets) in this risk-based

decision-making context, and

2. to characterise the participants’ WTP for a probabilistic forecast set for flood protection.

We assess these objectives through six questions, which are presented below, together with the evaluation strategy imple-15

mented.

2.2.1 Did the participants use their forecasts and, in this case, follow the 50th percentile of their forecast during the

decision-making process?

This first question was investigated using the results of the first round. We first wanted to know if the players were actually using

their forecasts to make their decisions. Moreover, we searched for clues indicating that the participants were following the 50th20

percentile (i.e. the median) of the probabilistic forecasts. This was done in order to see if the 50th percentile was considered by

the players as the optimal value to use for the decision-making process under this specific flood risk experiment. Additionally,

this question relates to an intrinsic characteristic of the use of probabilistic forecasts for decision-making, which is the difficulty

to transform the probabilistic values into a binary decision (Dale et al., 2012; Demeritt et al., 2007; Pappenberger et al., 2015).

The way in which probabilistic flood forecasts are used depends on attitudes of decision-makers towards risk, the uncertainty25

and the error in the information provided to them (Demeritt et al., 2007; Ramos et al., 2013), and decisions can vary from a

participant to the next provided the same information (Crochemore et al., 2015).

Question one was explored by looking at the worksheets collected in order to infer from the decisions taken by the partici-

pants whether or not they most probably used the median of their forecasts to consider if the river level would be above, at or

under the flood threshold. In cases where the decisions did not coincide with what the median forecast indicated, other factors30

that could also influence the decisions were considered, such as: a) the flood frequency of each river and their initial river
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levels, b) the forecast set type each participant had (i.e. biased - positively or negatively - or unbiased) and c) the familiarity of

the participants with probabilistic forecasts and decision-making (given their occupation and years of experience).

2.2.2 Was there a correspondence between the way participants perceived the quality of their forecasts in round 1

and their ‘true’ quality?

A well-known effect, called the “cry wolf”, was studied for weather-related decision-making by LeClerc and Joslyn (2015).5

It describes the reluctance of users to comply with future alarms when confronted in the past with false alarms. This leads to

the second question which was explored in this paper: was there a correspondence between the way participants perceived the

quality of their forecasts in round 1 and their ‘true’ quality? Our aim here is to investigate whether the participants were more

sensitive to false alarms or misses. The participants’ answers to the question on their forecast set quality for the first round (see

Appendix) were analysed against their ‘true’ quality. The latter was measured in terms of forecast bias, calculated from the10

hits, false alarms and misses presented in Table 2. A bias value was computed for each forecast set type of each river (i.e. each

contingency table; there were therefore nine different bias values in total) with the following equation:

Bias=
hits + false alarms

hits + misses
(1)

A bias value equal to one is a perfect value (which corresponds to unbiased forecasts), and a value less than (superior to)

one indicates under- (over-) prediction.15

2.2.3 Did the participants’ perceptions of their own performance coincide with their ‘true’ performance?

We also looked at the perception the participants had of their own performance. The answers to the question “How was your

performance as a decision-maker” (see Appendix) was assessed against the participants’ ‘true’ performances (in rounds 1 and

2), which were calculated in terms of the money participants spent as a consequence of their decisions. The following general

formula (n being the round number) was used:20

Performance=
Money spent round n

Optimal
(2)

The performance is expressed relatively to an optimal performance, which is the minimum amount a participant could have

spent, given the river they were assigned, defined as:

Optimal = Protection cost×Number of floods in round n (3)

A performance value of one indicates an optimal performance. Performance values greater than one indicate that participants25

spent more money than the minimum amount necessary to protect the city from the observed floods. The greater the value, the

higher the amount of money unnecessarily spent.
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2.2.4 What was the participants’ willingness-to-pay for a probabilistic forecast set?

The auction was incorporated into the experiment in order to explore the WTP of participants for a probabilistic forecast set,

considering the risk-based decision-making problem proposed by the game. To characterise this WTP, the bids were analysed

and their relationship with several other aspects of the game were explored to explain the differences (if any) in the bids. These

aspects were:5

– the way participants used the forecasts. Here we try to learn about the effectiveness of the information on the user,

which is an attribute of the value of information (Leviäkangas, 2009). It is assumed that a participant is not expected

to be willing to disburse any money for an information they are not using. The answers to question one (i.e. “Did the

participants use their forecasts and, in this case, follow the 50th percentile of their forecast during the decision-making

process?”) are used here.10

– the money available to participants after round 1 to make their bids. As participants were informed at the beginning of

the game that the winner would be the player with the highest amount of tokens in purse at the end of the game, the

tokens they had in hand for the auction (after round 1) may have restricted them in their bids. The bids are thus also

explored relative to the amount of tokens in hand at the time of the auction.

– the forecast set type. The bias of the forecasts during round 1 could also have been a potential determinant of participants’15

WTP for a forecast set in round 2.

– the river flood frequency. This was different for all the rivers in the first round and could be an element of the relevance

of the information, another attribute of the value of information (Leviäkangas, 2009). Indeed, one could ask: “If my river

never floods, why should I pay for forecasts?”.

– the years of experience and occupation. This might influence the familiarity participants may have with the use of20

probabilistic forecasts for decision-making.

2.2.5 Did participants with a forecast set perform better than those without?

Round 2 was led by a central question: did participants with a forecast set perform better than those without? It was investigated

by looking at the performance of participants in round 2, calculated from Eq. (2). While we expect players with more (unbiased)

information to make better decisions, other factors could have influenced the trust participants had in the information during25

round 2, such as, for instance, the quality of the forecasts experienced by participants in round 1 or the flood events observed

in the river in round 2, compared to the experience participants had previously had in round 1.

2.2.6 What were the winning and the losing strategies (if any)?

Finally, from the final results of the game, a question arose: what were the winning and the losing strategies (if any)? This

question was explored by looking at the characteristics (e.g. river assigned, forecast set type in round 1, performances in both30

9



rounds, purchase of a second forecast set) and decisions of the participants during the game, in order to distinguish common

attributes for the winning and the losing strategies.

Furthermore, an ‘avoided cost’ was calculated for each river based on the difference between the tokens spent by participants

without a second forecast set and the tokens spent by participants with a second forecast set, during round 2. It represents the

average amount of tokens participants without a second forecast set lost by protecting when a flood did not occur or by not5

protecting when a flood did occur, compared to participants with a second forecast set. This ‘avoided cost’ was measured

and compared to the average bid of participants for each river in order to evaluate participants’ estimation of the value of the

forecasts compared to their ‘true’ value in terms of the money they enabled the participants with a second forecast set to save

in the second round. An average ‘new bid’ was also calculated by replacing the bids of participants who had said that their

forecast set in the second round was not worth the price they had paid initially, by the new bids they would have rather paid (see10

Appendix). This average ‘new bid’ was compared to the ‘avoided cost’ and the actual average bid obtained from the auction.

3 Results

The results are based on the analysis of 129 worksheets, from the 145 worksheets collected. The remaining 16 worksheets

were either incomplete or incorrectly completed and were thus not used. Table 3 shows the distribution of the 129 worksheets,

among the three forecast set types and the three rivers.15

The game was played at the different events mentioned in the introduction. The participants present at those events displayed

a diversity in terms of their occupation and years of experience. This was surveyed at the beginning of the game and is presented

in Fig. 2, for all the participants as well as for each river and forecast set type separately. Participants were mainly academics

(postdoctoral researchers, PhDs, research scientists, lecturers, professors and students), followed by professionals (forecasters,

operational hydrologists, scientists, engineers and consultants). The majority had less than five years of experience.20

3.1 Participants were using the forecasts, but consistent patterns of use are difficult to detect

Figure 3 presents, on the one hand, the final purses of all the participants at the end of round 1, according to their river and

forecast set type (columns and rows respectively), and, on the other hand, the final purses that participants would have had if

they had made their decisions according to the median of their forecasts. Participants in charge of the yellow river (first column)

ended the first round with, on average, more tokens than the others. Participants playing with the blue river (last column) are25

those who ended round 1 with less money in purse, on average. This is due to the higher number of flood events for the blue

river in round 1 (see Table 1). There are also differences in terms of final purses for the participants assigned the same river but

given a different forecast set type. Overall, participants who had unbiased forecasts (middle row) ended the first round with on

average more money than the other players. These results are an indication that the participants were using their forecasts to

make their decisions.30

In order to see if the participants were using the median values of the forecasts, a forecast final purse was computed consid-

ering the case where the participants followed the median of their forecasts for all the cases of the first round (red vertical lines
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shown on Fig. 3). If the participants had followed the median values of the forecasts during the entire first round, their final

purses would have been equal to this value. Although this is almost the case for participants with unbiased forecast sets (for

all rivers), for participants with the yellow river and positively biased forecast sets and the green river and negatively biased

forecast sets, it is not an overall general observed behaviour.

Could some participants have discovered the bias in their forecasts and adjusted them for their decisions? Although it is hard5

to answer this question from the worksheets only, some of the decisions taken seem to support this idea. Figure 4 presents in

more detail the results for the blue river in the first round. The forecast final levels are shown as boxplots for each forecast

set type and for each of the five cases of round 1. These are the levels the river would reach if the initial level is added to

the percentiles of the forecasts for each case. The bars at the bottom of the figure show the percentages of participants whose

decisions differed from what the median of their forecast final level indicated [i.e. participants who bought (or did not buy)10

protection while no flood (or a flood) was predicted by the median of their forecast].

When comparing cases 1 and 4, for which the initial river levels and the observed and forecast final river levels were the

same, we would not expect any changes in the way participants were using their forecasts. This is however not true. Figure

4 shows that the percentages of participants not following their forecast median differs between the two cases. For instance,

about eighty percent of the participants with negatively biased forecast sets (under-predicting the increment of the river level)15

did not follow the median forecast in case 1, and did not protect against the predicted flood by their median forecast, while this

percentage drops to about twenty percent in case 4. The fact that they were not consistently acting the same way may be an

indication that they found out the bias in the forecasts and tried to compensate for it throughout round 1. We can also see that,

in general, the lowest percentages of participants not following the median forecast are for the unbiased forecast set. This is

especially observed in the cases where the forecast final levels given by the median forecast are well above or below the flood20

threshold (cases 1, 2, 4 and 5). The fact that from case 1 to case 4, for unbiased forecast sets, we moved from about ten percent

of participants not following the median forecast to zero percent, may also indicate that they built confidence in their forecasts

(at least in the median value) along round 1, by perceiving that the median forecast could be a good indication of possible

flooding or not in their river.

Figure 4 also shows that some participants with unbiased forecasts did not always follow the median of their forecasts (for25

instance, cases 1, 3 and 5). Additional factors may therefore have influenced the way participants used their forecasts. A number

of worksheets indicated that the distance of the initial river level to the flood threshold could have been influential. In a few

cases where the median forecast clearly indicated a flood, while the initial river level was low, some players did not purchase

any flood protection. This can be observed on Fig. 4 for case 1, for example, for participants with positively biased or unbiased

forecast sets. The inverse situation (i.e. the initial river level was high, but the river level forecast by the median was low, below30

the flood threshold) was also observed and is illustrated on Fig. 4 for case 2 and negatively biased forecast sets. Hence, in some

cases, the initial river level seemed to also play a role in the decisions taken.

There are indications that the participants could also have used other percentiles of the forecast to make their decisions,

especially in cases where the median of the forecast was marginally above or below the flood threshold. For example in case

4, the entire unbiased forecast lies above the flood threshold and all the participants chose the same and correct action. In35
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cases where the 5th or the 95th percentiles of the forecast fell above or below the flood threshold, the participants showed less

consistent decisions (e.g. case 3 for unbiased forecast sets).

Other possible influencing factors, such as occupation and years of experience, were also investigated (not shown). No strong

indication that these factors could have played a role in the participants’ decision-making were however found.

3.2 Participants were overall less tolerant to misses than to false alarms in round 15

Figure 5 displays the cumulative percentages of participants having answered that the quality of their forecast set in round 1

(see Appendix) was ‘very bad’ to ‘very good’, as a function of the ‘true’ quality of the corresponding forecasts, measured by

the forecast set bias (Eq. (1)). While participants with forecast sets for which the bias equalled one (perfect value) mostly rated

their forecasts ‘quite good’ or ‘very good’, the percentage of negative perceptions of the quality of the forecasts increases with

increasing or decreasing forecast bias.10

It is interesting to note that participants with forecasts biased towards over-prediction, never rated their forecasts as ‘very

bad’. Also noteworthy is the very good rating given by participants with the most negatively biased forecasts (bias of 0). These

participants belonged to the yellow river and had negatively biased forecasts in round 1. There was only one flood event for

river yellow in the first round, which occurred at the end of the round and which was missed by the negatively biased forecasts.

During the analysis of the results, it was observed that only about twenty-five percent of the yellow river participants given the15

negatively biased forecasts did not protect for this flood. An explanation for this low percentage could be that participants had

time to learn about their forecasts’ quality until the occurrence of the flood at the end of the first round. This low number of

participants who actually suffered from their negative bias and the presence of only one miss out of the five cases of round 1

could therefore justify the good rating of their forecasts by those participants.

Overall, forecasts exhibiting under-prediction seem to be less appreciated by the participants. This could be an indication20

that participants were less tolerant to misses, while they accepted better forecasts leading to false alarms (over-predictions).

This is contrary to the “cry wolf” effect, and could be explained by the particular game set up, for which the damage cost

(4,000 tokens) was twice the protection cost (2,000 tokens).

3.3 Participants had a good perception of their good (or bad) performance during the game and related it to the

quality of their forecasts25

Figure 6(a) illustrates the answers to the question “How was your performance as a decision-maker in round 1?” as a function

of the participants’ ‘true’ performance (calculated from Eq. (2); i.e. the ratio to an optimal performance). The figure shows

the distribution of participants across all perceived-actual performance combinations, for all rivers and forecast set types com-

bined. The perceived decision-maker performance is presented on a scale from ‘very bad’ to ‘very good’. An overall positive

relationship between the participants’ perceived performance and their ‘true’ performance is observed: the best performances30

(i.e. performance values of one or close to one) are indeed associated with a very good perception of the performance by the

decision-makers, and vice-versa. The same analysis carried out for the answers concerning round 2 (not displayed) showed

similar results: the ratings participants gave to their performance were similarly close to their ‘true’ performance.
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Figure 6(b) looks at the relationship between the perceived decision-maker performance and the rating the decision-makers

gave to their forecast set quality in round 1. A positive relationship can also be seen: the majority rated their performance

and the quality of their forecast set as ‘quite good’ and ‘very good’, while those who rated their performance ‘very bad’, also

considered their forecast set ‘very bad’. The rating participants gave to their performance was therefore closely connected

to the rating they gave to their forecast set quality. This also contributes to the evidence that participants were using their5

probabilistic forecast sets to make their decisions. It is furthermore an indication that participants linked good forecast quality

to good performance in their decision-making, and vice-versa.

3.4 Several factors may influence the WTP for a forecast, including forecast quality and economic situation

Given the evidence that most participants were using their forecasts to make their decisions in round 1 (see Section 3.1), we

now investigate their willingness-to-pay (WTP) for a new forecast set to be used in round 2.10

Figure 7 shows the bids participants wrote on their worksheets prior to the auction, for a second forecast set, as a function

of the amount of tokens they had in their purses at the end of round 1. All bids are plotted and those from participants who

succeeded in buying a second forecast set are displayed as red triangles on the figure. On average, participants were willing to

pay 4,566 tokens, which corresponds to thirty-two percent of the average amount of tokens left in their purses. The minimum

bid was zero tokens (i.e. no interest in buying forecasts for round 2), which was made by ten percent of the players. Half of15

these players were participants who were assigned the blue river (the river for which players ended the first round with on

average the lowest amount of tokens in purse). The only three participants who never bought flood protection in the first round

(i.e. who could be seen as ‘risk-seeking’ players) made bids of zero, 3,000 and 4,000 tokens. The highest bid made was 14,000

tokens, corresponding to a hundred percent of the tokens left in that participant’s purse. However, this participant did not raise

their hand during the auction to purchase a second forecast set. Nine participants (less than ten percent of the total number20

of players) made a bid of 10,000 tokens or above, corresponding to, on average, seventy-seven percent of the tokens they had

left in their purses. The total cost of protecting all the time for round 2 being 10,000 tokens, as indicated on Fig. 7 by the

dashed black line, bidding 10,000 tokens or more for a second forecast set was clearly pointless. Half of these participants

were players to which the yellow river was assigned (the river that experienced the least number of floods in round 1 and for

which participants thus ended the first round with on average the highest amount of tokens left in their purse) and eight out of25

these nine participants had a forecast set with a bias during the first round. These nine participants, who paid 10,000 tokens or

more for the second forecast set, were removed from the subsequent analyses of the auction results, as their bids suggest that

they have not understood the stakes of the game.

From Fig. 7, there is a clear positive relationship between the maximum bids within each value of tokens left in purse and

the tokens left in purse, as the participants did not disburse more tokens than they had left in their purse during the auction.30

When we look at the evolution of the median of the bids with the amount of tokens in purse, in general, the more tokens one

had left in purse, the higher their WTP for a forecast set. Nonetheless, the WTP seems to have a limit. It can be seen that from

a certain amount of tokens left in purse on, the median value of the bids remains almost constant (in our game case, at about a
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bid of 6,000 tokens for participants with 12,000 tokens or more in their purse). The amount of tokens that the participants had

in hand therefore only influenced to a certain extent their WTP for a second probabilistic forecast set.

We also investigated if the way participants perceived the quality of their forecast set in the first round was a plausible

determinant of their WTP for another forecast set to be used in round 2. Figure 8 shows the % bids (i.e. bids expressed as a

percentage of the tokens participants had left in purse at the time of the auction) as a function of the rating participants gave5

to their forecast set quality in round 1 (from ‘very bad’ to ‘very good’; see Appendix). Firstly, it is interesting to observe that

three participants judged their first forecast set to have been of ‘very bad’ quality but were nonetheless willing to disburse

on average fifty percent of the tokens they had left in purse. Those bids were however quite low, 4,000 tokens on average.

Moreover, players who rated their first forecast set from ‘quite good’ to ‘very good’ were on average willing to disburse a

larger percentage of their tokens than candidates who rated their previous forecast set from ‘quite bad’ to ‘neither good nor10

bad’. Therefore, the way participants rated the quality of their first forecast set was to a certain degree influential on their WTP

for a second forecast set.

During the auction following the closed bids, forty-four forecast sets were distributed to the participants who made the

highest bids, in order to be used in round 2. Table 4 shows that participants who purchased these second forecast sets were

quite well distributed among the different forecast set types of round 1, with a slightly higher frequency of buyers among15

participants who had played round 1 with unbiased forecasts. Forty-two percent of all participants with unbiased forecasts

purchased a second forecast set, while thirty percent (thirty-one percent) of participants with positively biased (negatively

biased) forecasts bought a second forecast set. Buyers also pertained more often to the group assigned the river green (forty-

eight percent, or forty-one percent of all green river participants), followed by river yellow (thirty-two percent, or thirty-six

percent of all yellow river participants) and blue (twenty percent, or twenty-three percent of all blue river participants). The20

higher percentage of green river participants buying a second forecast set could have been due to a combination of the river

green flood frequency in round 1 (not as low as for the yellow river, making it more relevant for green river participants to buy

a second forecast set) and of money left in purse (on average, not as low as for the blue river participants). The buyers of the

second forecast sets are displayed as red triangles on Fig. 7. We note that these red triangles are not necessarily the highest

bid values on the figure, since we plot results from several applications of the game (in one unique application, they would25

coincide with the highest bids, unless a participant had a high bid but had not raised their hand during the auction to buy a

second forecast set). Differences in the highest bids among the applications of the game could be an indication that the size

(or type) of the audience might have had an impact on the bids (i.e. the WTP for a probabilistic forecast). Our samples were

however not large enough to analyse this aspect.

Participants who did not purchase a second probabilistic forecast set (eighty-five players in total) stated their reason for doing30

so. The majority of them (sixty-six percent, or fifty-six players) said that the price was too high (which means, in other words,

that the bids made by the other participants were too high, preventing them from purchasing a second forecast set during the

auction). Ten participants (twelve percent) argued that the model did not seem reliable. Most of these participants were among

those who had indeed received a forecast set with a bias in the first round. The rest of the candidates who did not purchase a

second forecast set (twenty-two percent, or nineteen players) wrote down on their worksheet the following reasons:35
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– Low flood frequency in the first round - a participant assigned the yellow river wrote: “Climatology seemed probability

of flood = 0.2”.

– Assessment of the value of the forecasts difficult - a participant wrote: “No information for the initial bidding line” and

another wrote: “Wrong estimation of the costs versus benefits”.

– Preference for taking risks - “Gambling” was a reason given by a player.5

– Enough money left in purse to protect all the time during round 2 - which can be an indication of risk-averse behaviour

coupled with economic wealth and no worries of false alarms.

– Not enough money left in purse to bid successfully - a participant wrote: “The purse is empty due to a lot of floods”.

3.5 Decisions are better when they are made with the help of unbiased forecasts, comparatively to having no forecasts

at all10

The analysis of the results of round 2 allowed us to compare the performance of participants with and without a forecast set.

Overall, participants without a second forecast set had an average ‘true’ performance value of 3.1, computed as shown in Eq. (2)

and over the five cases of round 2. The best performance was equal to the optimal performance (‘true’ performance value equal

to 1) and the worst performance reached a value of 6. Comparatively, participants with a second forecast set had an average

‘true’ performance of 1.2, thus much closer to the optimal performance than the average performance of participants without15

a second forecast set. The best performance in this group also equalled the optimal performance, while the worst performance

value was 2.5, much lower (i.e. thus much closer to the optimal value) than the worst performance value of participants making

their decisions without any forecasts. These numbers clearly indicate that the possession of a forecast set in the second round

led to higher performances and to a lower spread in performances within the group of players with a second probabilistic

forecast set (comparatively to players without forecasts in round 2).20

Does this conclusion however depend on the participants’ performances in round 1? Do you need to be a good decision-

maker to benefit from the forecasts in hand? Our results suggest otherwise. All the participants with a bad performance in the

first round and a forecast set in round 2 had a good performance in the second round. This hints that even if those participants

had a bad performance in round 1, they took advantage of the forecasts and had a good performance in round 2. Additionally,

57 out of 59 participants with a good performance in round 1 and no forecasts in round 2 had a bad performance in the second25

round. This therefore indicates that no matter how well the participants performed in round 1, the possession of a forecast set

let to better decisions in round 2.

All the participants without a second forecast set who were assigned the yellow river missed the two first floods in the

second round. Part of these participants protected for all or some of the subsequent cases, while the other part never bought

any protection. It could have been due to the low flood frequency of their river in the first round (see Table 1). This behaviour30

was not observed for the green river participants without a second forecast set, for which a very diverse sequence of decisions

was seen in the second round. As for the blue river participants without any second forecast set, most of them missed the
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first flood event that occurred in round 2 and, subsequently, protected for a few cases where no flood actually occurred. These

decision patterns were not observed for participants with a second forecast set within each river, who took more consistently

right decisions.

The large majority of participants with a second forecast set in round two (forty-one out of forty-four) rated their forecasts

either ‘quite good’ or ‘very good’, which was expected since all the forecasts were unbiased in round two. The three remaining5

participants said that their second forecast set was ‘neither good nor bad’ or ‘quite bad’. These participants all had biased

forecasts in the first round and their behaviour during round 2 suggested that they might have been influenced by the bias in

their forecasts for round 1.

3.6 Overall winning strategies would combine good performance with an accurate assessment of the value of the

forecasts10

The average final purse at the end of round 2 was 3,149 tokens (3,341 tokens for participants without a second forecast set and

2,778 tokens for participants with a second forecast set), remaining from the 20,000 tokens initially given to each participant.

The minimum final purses observed were zero token or less. Twenty-five participants, out of the total 129 players, finished

the game with such amounts of tokens. Out of these twenty-five participants, twenty-two had received a biased forecast set

in the first round. From the analysis of the game worksheets, we could detect three main losing strategies followed by these15

twenty-five participants who finished with zero token or less in purse:

1. Eighteen participants, most of them blue river players, had an ‘acceptable to bad’ performance in round 1 (performances

ranging between 1.3 and 3), did not purchase a second forecast set, and performed badly in round 2 (performances

ranging between 2.3 and 6).

2. Four players, mostly in charge of the yellow river, had a ‘good to bad’ performance in round 1 (performances ranging20

between 1 and 3), purchased a second forecast set for 10,000 tokens or higher, and performed very well in round 2

(performances of 1).

3. Three participants, all green river players, had a ‘good to acceptable’ performance in round 1 (performances ranging

between 1 and 1.5), bought a second forecast set for 6,000 to 8,000 tokens, but performed badly in round 2 (performances

ranging between 2 and 2.5).25

The winners of the game, six players in total, finished round 2 with 8,000 or 12,000 tokens in their purse. Half of these

participants were assigned the green river and the other half the blue river. Apart from one participant, all had received a

biased forecast set in the first round. Most participants had a ‘good to acceptable’ performance in the first round (performances

ranging between 1 and 1.7), did not purchase any forecast set and had a ‘good to bad’ performance in the second round

performances ranging between 1 and 3). Their performance in round 2 did not lead to large money losses, as it did for yellow30

river participants, which can be explained by the fact that they did not have so many flood events in this round (see Table 1).

The average ‘avoided cost’, the average bid for a second forecast set and the average ‘new bid’ are presented in Table 5

for each river. By comparing the ‘avoided cost’ with the average bid for each river, it is noticeable that the average bid was
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larger than the ‘avoided cost’ of each river. On average participants paid 1,000 tokens more for their second forecast set than

the benefit, in terms of tokens spared in the second round, that they made from having this forecast set. This could explain

why none of the winners of the game had a forecast set in the second round. From the average ‘new bid’, it is evident that

participants would have liked to pay less on average than what they originally paid for their second forecast set. For all the

rivers, the average ‘new bid’ is closer to the ‘avoided cost’ than the average bid of participants during the auction.5

4 Discussion

4.1 Experiment results and implications

It was clear during the game that most participants had used the probabilistic forecasts they were given at the beginning of the

game to help them in their decisions. This was an important issue in our game since it was an essential condition to then be

able to evaluate how the participants were using their forecasts and to understand the links between the way they perceived the10

quality of their forecasts and the way they rated their performance at the end of a round. There was evidence that participants

were mostly using the 50th percentile of the forecast distributions; but, interestingly, the median alone could not explain all

the decisions made. Other aspects of the game might have also shaped the participants’ use of the information, such as the

discovery, during the first round, of the forecast set bias (i.e. two out of three forecast sets were purposely biased for round 1).

This was also mentioned by some participants at the end of some applications of the game, who said that the fact of noticing15

the presence of a bias (or suspecting it, since they were not told beforehand that the forecasts were biased) led them to adjust

the way they were using the information. This could suggest that forecasts, even biased, can still be useful for decision-making,

comparatively to no forecasts at all, if users are aware of the bias and know how to consider it before taking a decision.

Interestingly, in the analysis of the worksheets, there was an indication that the players had, however, different tolerances to

the different biases. Indeed, a lower tolerance for under-predictive forecasts than for over-predictive forecasts was identified.20

Biased forecasts were hence problematic for the users and influential of the manner in which the information was used. This

strongly indicates that there is an important need for probabilistic forecasts to be bias-corrected previously to decision-making,

a crucial aspect for applications such as flood forecasting, for instance (Hashino et al., 2007; Pitt, 2007).

There was additionally evidence that, in a few cases, some participants with unbiased forecasts did not use their forecasts

(when considering the 50th percentile as key forecast information). The analysis suggested that the players’ risk perception,25

triggered by the initial river level or the proximity of the forecast median to the flood threshold, might have been a reason

for this. This led to less consistent actions, where participants based their decisions on extremes of the forecast distribution

(other percentiles of the forecast) or on no apparent information contained in the forecast distribution. A similar finding was

reported by Kirchhoff et al. (2013) through a case study in America, where it was found out that the perception of a risk was a

motivational driver of water manager’s use of climate information. There is a constant effort from forecasters to produce and30

provide state-of-the-art probabilistic forecasts to their users. However, it was seen here that even participants with unbiased

forecasts did not always use them. This is an indication that further work needs to be done on fostering communication between

forecasters and users, to promote an enhanced use of the information contained in probabilistic forecasts.
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From the results, it also appeared that the participants had an accurate perception of their decision-maker performance and

related it to the quality of their forecasts. This implies that participants viewed their forecasts as key elements of their decision-

making. This result is very encouraging for forecasters and also bears important implications for the real world. It could indeed

suggest that decision-makers forget that their own interpretation of the forecasts is as important as the information held in

the forecast itself; as there is a myriad of ways to interpret and use probabilistic forecasts for decision-making. The choice5

of the percentile on which the decisions are based is an example of such an interpretation. This could potentially mean that

decision-makers will tend to blame (thank) the forecast providers for their own wrong (good) decisions.

Many papers have shown, through different approaches, the expected benefits of probabilistic forecasts versus determin-

istic forecasts for flood warning (e.g. Buizza (2008); Verkade and Werner (2011); Pappenberger et al. (2015); Ramos et al.

(2013)). However, many challenges still exist in the operational use of probabilistic forecasting systems and the optimisation10

of decision-making. This paper is a contribution to improve our understanding of the way the benefits of probabilistic forecasts

are perceived by the decision-makers. It proposes to investigate it under a different perspective, by allowing, through a game

experiment, decision-makers to bid for a probabilistic forecast set during an auction. The auction was used in this paper as

an attempt to characterise and understand the participants’ WTP for a probabilistic forecast in the specific flood protection

risk-based experiment designed for this purpose. Our results indicate that the WTP displays dependencies on various aspects.15

The bids were to a certain extent influenced by the participants’ economic situation. They were on average positively related

to the money available to participants during the auction. Nonetheless, this was mainly a factor for participants who had little

money left in their purses at the time of the auction. The participants’ perceived forecast quality was also a factor influencing

their WTP for another forecast set. Players who had played the first round with biased forecasts were less prone to disburse

money for another forecast set for the second round. There was moreover an indication that the flood frequency of the river20

might have influenced the WTP for a forecast set. Some players in charge of a river with only one flood event in the first

round (i.e. low flood risk) did not consider beneficial the purchase of a forecast set for the second round. The participants’ risk

perception was therefore an important element of their WTP for a probabilistic forecast. The more risk-averse participants did

not buy a second forecast set as they had enough money to protect all the time; "gambling" was also stated as a reason for

not buying a second forecast set. Seifert et al. (2013) have similarly shown that “the demand for flood insurance is strongly25

positively related to individual risk perceptions”.

These results show that the perceived benefit of probabilistic forecasts as a support of decision-making in a risk-based con-

text is multifaceted, and varies not only with the quality of the information and its understanding, but also with the relevance

and the risk-tolerance of the user. This further demonstrates that more work is needed not solely to provide guidance on the

use of probabilistic information for decision-making, but also to develop efficient ways to communicate the actual relevance30

and evaluate the long-term economic benefits of probabilistic forecasts for improved decisions in various applications of prob-

abilistic forecasting systems within the water sector. This could additionally provide insights into bridging the gap between

the theoretical or expected benefit of probabilistic forecasts in a risk-based decision-making environment and the perceived

benefits by key users.
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4.2 Game limitations and further developments

This paper aimed to depict behaviours in the flood forecasting and protection decision-making context. Although game experi-

ments offer a flexible assessment framework, comparatively to real operational configurations, it is however extremely complex

to search for general explanatory behaviours in such a context. This is partially due to the uniqueness of individuals and the

interrelated factors that might influence decisions, which are both aspects that are difficult to evaluate when playing a game5

with a large audience. A solution to overcome this, as proposed by Crochemore et al. (2015), could be to prolong the game

by incorporating a discussion with the audience or with selected individuals, aiming at understanding the motivations hidden

underneath their decisions during the game. Having more time available to apply the game would also allow playing more

cases in each round, bringing additional information to the analysis and clarifying key aspects of the game, such as the effect

of the bias on the participants’ use of the forecasts and on their WTP for more forecasts. Co-designing such an experiment with10

social anthropologists could bring to light many more insights into participants’ decision-making behaviours.

Being set up as a game, this study also presents some limitations. As mentioned by Breidert et al. (2006), a source of bias in

such studies is their artificial set up. Indeed, under those circumstances, participants are not directly affected by their decisions

as they neither use their own money, nor is the risk a real one. This might lead them to make decisions which they would

normally not make in real life or in operational forecasting contexts.15

Moreover, in our game, the costs given to both flood protection and flood damages were not chosen to represent the real costs

that one encounters in real environments. First, real costs in integrated flood forecasting and protection systems are difficult to

assess, given the complexity of flood protection and its consequences. Secondly, the external imposed conditions for playing

our game (i.e. the fact that we wanted to play it during oral talks in conferences, workshops or teaching classes, with expected

eclectic audiences of variable sizes, having a limited amount of time, and using paper worksheets to be collected at the end of20

the game for the analysis) were not ideal to handle any controversy on the realism (or absence of realism) of the game scenario.

It is however arguable whether the game results could be a reflection of the experiment set up, hence of the parameters of

the game (i.e. the protection and damage costs, the number of flood events, etc). For instance, the higher damage costs might

have influenced the participants’ tolerance to misses and false alarms. Further developments could include testing the influence

of the parameters of this experiment on its results as a means of analysing the sensitivity of flood protection mitigation to a25

specific decision-making setting.

Additionally, the small sample size of this experiment limited the statistical significance of its results. Replicating it could

ascertain some of the key points discussed, leading to more substantial conclusions, and improve our understanding of the

effect of the professional background of the participants on their decisions.

Finally, the experiment’s complex structure was its strength as well as its weakness. When analysing the game results, the30

chicken and egg situation arose. Several factors of the participants’ use of the forecasts and of their WTP for a forecast set

were identified, but it was not possible to measure causalities. It would therefore be interesting to carry out further work in this

direction, together with behavioural psychologists, by, for instance, testing the established factors separately.
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5 Conclusions

This paper presented the results of a risk-based decision-making game, called "How much are you prepared to pay for a

forecast?", played at several workshops and conferences in 2015. It was designed to contribute to the understanding of the

role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers for flood protection

mitigation.5

There were hints that participants’ decisions to protect (or not) against floods were made based on the probabilistic forecasts

and that the forecast median alone did not account for all the decisions made. Where participants were presented with biased

forecasts, they adjusted the manner in which they were using the information, with an overall lower tolerance for misses than

for false alarms. Participants with unbiased forecasts also showed inconsistent decisions, which appeared to be shaped by their

risk perception; the initial river level and the proximity of the forecast median to the flood threshold both led the participants10

to base their decisions on extremes of the forecast distribution or on no apparent information contained in the forecast.

The participants’ willingness-to-pay for a probabilistic forecast, in a second round of the game, was furthermore influenced

by their economic situation, their perception of the forecasts’ quality and the river flood frequency.

Overall, participants had an accurate perception of their decision-making performance, which they related to the quality of

their forecasts. However, there appeared to be difficulties in the estimation of the added value of the probabilistic forecasts15

for decision-making, thus leading the participants who bought a second forecast set to end the game with a lower amount of

money in hand.

The use and perceived benefit of probabilistic forecasts as a support of decision-making in a risk-based context is a complex

topic. The paper has shown the factors that need to be considered when providing guidance on the use of probabilistic infor-

mation for decision-making and developing efficient ways to communicate their actual relevance for improved decisions for20

various applications. Games such as this one are useful tools for better understanding and discussing decision-making among

forecasters and stakeholders, as well as highlighting potential factors that influence decision-makers and that deserve further

research.

Resources25

This version of the game is licensed under CC BY-SA 4.0 (Creative Commons public license). It is part of the activities of

HEPEX (Hydrologic Ensemble Prediction Experiment) and is freely available at www.hepex.org. This game was inspired by

the Red Cross/Red Crescent Climate Centre game “Paying for Predictions”.
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Appendix A: Example of a worksheet distributed to the game participants (here for river blue and the set 1 of

positively biased forecasts: BLUE-1)

BLUE-1

How much are you prepared to PAY for a forecast?

Occupation (student, PhD candidate, scientist, operational hydrologist, forecaster, professor, lecturer, other):

..............................

How many years of experience do you have? � < 5 years � 5 to 10 years � > 10 years

Flood protection = -2,000 tokens; flood without protection = -4,000 tokens

Flood occurs at 90 or above

Round
Case

River level
before rainfall

(10-60)

Flood
protection?

River level
increment
(10-80)

River level
after

increment

Flood?
(≥ 90)

Tokens
spent

Purse
(20,000)

1

1 Yes � No � Yes � No �

2 Yes � No � Yes � No �

3 Yes � No � Yes � No �

4 Yes � No � Yes � No �

5 Yes � No � Yes � No �

• How was your forecast set in Round 1?
� very bad � quite bad � neither good nor bad � quite good � very good � I don’t know

• How was your performance as a decision-maker in Round 1?
� very bad � quite bad � neither good nor bad � quite good � very good � I don’t know

Round 2

22



Do not forget to transfer your final Round 1 purse to Round 2 (in the brackets under ‘Purse’)

Round
Case

River level
before rainfall

(10-60)

Flood
protection?

River level
increment
(10-80)

River level
after

increment

Flood?
(≥ 90)

Tokens
spent

Purse
(...........)

Bid: .............. tokens. Did you buy a probabilistic forecast set? YES / NO

If yes, deduct the money you paid for it here:

2

1 Yes � No � Yes � No �

2 Yes � No � Yes � No �

3 Yes � No � Yes � No �

4 Yes � No � Yes � No �

5 Yes � No � Yes � No �

• How was your performance as a decision-maker in Round 2?
� very bad � quite bad � neither good nor bad � quite good � very good � I don’t know

• For the people who DID NOT buy a forecast set:

– Why didn’t you buy a forecast set?
� The model did not seem reliable
� The price was too high
� Other reason (explain): ..................................................................................................

• For the people who DID buy a forecast set:

– How was your forecast set in Round 2?
� very bad � quite bad � neither good nor bad � quite good � very good � I don’t know

– Were the forecasts worth what you paid for them? � Yes � No

– If not, how many tokens would you now pay for them? ............ tokens

Please return this worksheet into the envelope and give it to one of the assistants before you leave.
Thank you for your participation!

We hope you enjoyed it!
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Table 1. Number of flood events for each round of the game and each river.

Round
River

Yellow Green Blue

1 1 2 3

2 3 2 1

Total 4 4 4
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Table 2. Contingency table for each river and forecast set type for the first round (considering the 50th percentile, i.e. the median forecast).

The numbers for a specific river-forecast set type represent, clockwise from the top left: hits (italics), false alarms (bold), correct negatives

(-) and misses (regular).

Forecast set type
River

Yellow Green Blue

Positively biased
1 1 2 1 3 2

0 - 0 - 0 -

Unbiased
1 0 2 0 3 0

0 - 0 - 0 -

Negatively biased
0 0 2 0 2 0

1 - 0 - 1 -
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Table 3. Distribution of the 129 worksheets collected for the analysis per river (yellow, green and blue) and forecast set type (positively

biased, unbiased and negatively biased).

Forecast set type
River

Total
Yellow Green Blue

Positively biased 15 11 18 44

Unbiased 13 21 9 43

Negatively biased 11 19 12 42

Total 39 51 39 129
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Table 4. Distribution of the forty-four second forecast sets sold during the auction, per river (yellow, green and blue) and forecast set type

(positively biased, unbiased and negatively biased).

Forecast set type
River

Total
Yellow Green Blue

Positively biased 5 2 6 13

Unbiased 6 9 3 18

Negatively biased 3 10 0 13

Total 14 21 9 44
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Table 5. Average values of ‘avoided cost’ for round 2, average bid for a second forecast set and average ‘new bid’ if forecasts were considered

not worth the price originally paid. Values are in tokens and for the three different rivers.

River Average ‘avoided cost’ Average bid Average ‘new bid’

Yellow 7251 7929 7083

Green 5829 7083 6224

Blue 5711 6889 5875
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Figure 1. (a) Experiment set up and (b) flow diagram of the game decision problem for one case.
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Figure 2. Number of participants according to occupation and years of experience. The categories of occupations are: academics (postdoc-

toral researchers, PhDs, research scientists, lecturers, professors and students), professionals (forecasters, operational hydrologists, scientists,

engineers and consultants) and others. Top: overall participants distribution; middle: distribution according to their river; bottom: distribution

according to the forecast quality types (1: positively biased, 2: unbiased and 3: negatively biased).
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Figure 3. Participants’ round 1 final purses for each river (from the leftmost to the rightmost column: the yellow, the green and the blue river)

and for each forecast set type (from the top to the bottom row: positively biased, unbiased and negatively biased). The red lines show the

final purses that the participants of a given river-forecast set type group would have gotten if they had followed the median of their forecasts

for all the five cases of the first round.
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Figure 4. Observed initial and final river levels for the blue river for each case of the first round. The boxplots show the forecast final river

levels by each forecast set type (negatively biased, unbiased and positively biased). The bars display the percentages of participants whose

decisions did not correspond to what their forecast median indicated.
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Figure 5. Cumulative percentages of participants who rated their forecast quality from ‘very bad’ to ‘very good’, as a function of the forecast

set bias (‘true’ forecast quality; Eq. (1)) in round 1. A bias equal to one indicates perfect forecasts, a bias less than (superior to) one indicates

under- (over-) prediction.
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Figure 6. Number of participants having rated their performance as a decision-maker from ‘very bad’ to ‘very good’ in round 1, as a function

of: (a) their ‘true’ performance (calculated from Eq. (2)), and (b) their perceived forecast set quality. A performance value of one denotes

a ‘true’ performance equal to the optimal performance (Eq. (3)). The larger the performance value, the more distant from the optimal the

decisions were during round 1. The size and the colour of the point indicates the number of participants that fall onto a specific perceived-

‘true’ performance combination or perceived performance-forecast set quality combination.
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Figure 7. Bids declared by participants to purchase a forecast set for round 2, as a function of the amount of tokens they had left in their

purse at the end of round 1. The colour of the points indicates the number of participants that fall onto a specific bid-tokens left in purse

combination.
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Figure 8. Participants’ % bids, bids expressed as a percentage of the tokens participants had left in purse at the time of the auction, as a

function of the rating they gave to their forecast set quality in round 1 (from ‘very bad’ to ‘very good’). The colour of the points indicates the

number of participants that fall onto a specific bid-perceived forecast set quality combination.
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