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Abstract

Generation of dynamic contact angle in the course of wetting is a fundamental

phenomenon of nature. Dynamic wetting processes have a direct impact on flows at

nano-scale, and therefore their understanding is exceptionally important to emerging

technologies. Here, we reveal the microscopic mechanism of dynamic contact angle

generation. It has been demonstrated using large-scale molecular dynamics simulations

of bead-spring model fluids that the main cause of local contact angle variations is the

distribution of microscopic force acting at the contact line region. We were able to

retrieve this elusive force with high accuracy. It has been directly established that

the force distribution can be solely predicted on the basis of a general friction law

for liquid flow at solid surfaces by Thompson & Troian. The relationship with the

friction law provides both an explanation of the phenomenon of dynamic contact angle

and a methodology for future predictions. The mechanism is intrinsically microscopic,

universal and irreducible, and is applicable to a wide range of problems associated with

wetting phenomena.

Keywords: wetting, nano-scale, dynamic contact angle, non-linear friction, molecular dy-

namics simulations.
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Modelling capillary flows is a general problem in science and industry.1–4 It requires the

knowledge of the dynamic contact angle, which is the boundary condition for flows with

moving contact lines.5,6 At the moment, simulation of capillary flows and interpretation of

dynamic contact angle measurements are based on several, quite different phenomenological

models and various numerical techniques involving different assumptions about the physical

mechanisms and the length scales of the effect.1,4–28 Macroscopic models appeal to hydro-

dynamic mechanisms to explain the observed dynamic contact angles, such as free surface

viscous bending, hydrodynamic stresses developed in the proximity of the contact line or

non-equilibrium surface tensions .1,5,6,8,16,22,27 In particular, Cox-Voinov model,5,8 which is

basically an asymptotic solution to the Navier-Stokes equations, attributes observed, ap-

parent dynamic contact angles to the free surface bending accompanied by variations of

the true, microscopic contact angle with the velocity of the contact line. The formulation

is equivalent to modelling the Navier-Stokes equations with a slip condition on the solid

boundary and with the true contact angle set as the boundary condition to determine the

free surface shape. Experiments have confirmed that the asymptotic solution can accurately

reproduce the interface shape in dynamic conditions provided that the microscopic contact

angle or/and another material parameter of the model are velocity dependent.12 From an-

other perspective, in the interface formation theory,16 the actual dynamic contact angle is

part of the entire hydrodynamic solution through the Young-Dupré equation and the vari-

able surface tensions acting on the contact line. The formulation utilizes a modified, different

from Cox-Voinov model, set of boundary conditions, which include surface tension gradients

as macroscopic hydrodynamic variables. Microscopic molecular-kinetic theory (MKT), on

the other hand, postulates concentrated an out-of-balance force of non-hydrodynamic ori-

gin, which acts on the three-phase contact line and generates out-of-equilibrium molecular

displacements, which are interpreted in terms of the contact line velocity.7,15,19–21

At the moment, it is difficult to pick up any particular model of dynamic wetting for ap-

plications using only macroscopic observations of dynamic contact angles. All models found
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reasonable agreement with macroscopic experiments.15–17,21 Moreover, even high-resolution

measurements at nano-scale28 have proven difficult to single out any particular theoretical

model and to establish the fundamental mechanism of the effect. The best overall perfor-

mance in matching experimental data has been demonstrated by a combined model, where

the microscopic contact angle was set according to the MKT and the interfacial shape was

calculated from Cox-Voinov model.14,15 This was an indication that the microscopic events

in the immediate vicinity of the contact line and macroscopic effects due to hydrodynamic

stresses do co-exist, can be separated and regarded as complementary. The microscopic

contact angle variations with the velocity have been clearly observed in molecular dynamics

simulations (MDS) and in the experiments at nano-scale.15,19–21,26,28 In the same study,28 it

has been implied that there is an additional, unusual convex interface bending, as opposed

to the concave bending predicted by Cox-Voinov model, in the region of tens of nanometres

at the contact line. Whether or not this additional bending exists and can be accommo-

dated within the framework of the standard hydrodynamic theory is to be seen and verified

independently. Apparently, irrespective of that, the main factor of uncertainty now is the

generation mechanism of the microscopic dynamic contact angle, which has not been estab-

lished. What is really happening at the contact line and in what length scale? Is this all due

to non-equilibrium surface tensions or the concentrated friction force postulated in the MKT

or both or may be something else? Clearly, once the contact line region is fully understood,

one can properly address the macroscopic events.

The lack of understanding the fundamental processes involved in the formation of dy-

namic contact angle makes any new predictions practically very difficult and calls for the

use of microscopic modelling. Here we examine the three-phase contact line region in non-

equilibrium with MDS where the contact line zone can be clearly resolved and separated from

the bulk flow. In our simulations a large cylindrical liquid droplet consisting of 60000−90000

particles of mass mf is forced to move with constant velocity between two identical solid

substrates, Fig. 1. Each substrate (see Methods for details) consists of three [0, 0, 1] face-
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centered cubic (fcc) lattice layers of particles of mass mw = 10mf . Both substrate and liquid

particles interact via the Lennard-Jones (LJ) potentials Φij
LJ(r) = 4εij

((σij
r

)12 −
(σij
r

)6
)

with the cut-off distance 2.5σij. Here r is the distance between the particles, εij and σij are

characteristic energy and length scales.

The geometry of our nano-scale simulations (see Methods for details) is periodic in the

x-direction with reflective boundary conditions at the simulation box ends in the z-direction,

Fig. 1. The layer thickness in the periodic x-direction (droplet depth) was set at ∆x ' 18σff

for the simulations with short chain molecules Nb ≤ 5 and at ∆x ' 28σff for those ones

involving longer chains. The solid wall particles were moving with velocity U in the z-

direction ([1,0,0] crystallographic direction) where the reflective wall acted as a piston to

mimic forced wetting regime. After initial equilibration during ∆teq = 10000 τ0 with the

time integration step ∆ts = 0.01 τ0 (τ0 = σff

√
mf
εff

), which was used in the study, we reached

a steady state and measured dynamic contact angle and interfacial parameters.

The contact angle in our study has been inferred from the free-surface profiles defined as

the locus of equimolar points and averaged during 5000 τ0. The profiles were developed by

means of a three-parameter (R, y0, z0) circular fit (y− y0)2 + (z− z0)2 = R2. The circular fit

has been applied to a part of the free-surface profile of length ≈ 20σff excluding 4σff layer

adjacent to the substrate corresponding to the liquid-solid interface, Fig. 2. One may notice

that the interface shape is very well described by the fit, Fig. 1.

Results and Discussion

The dynamic contact angle collective set of data in the range of Reynolds numbers 0.005 <

Re < 6 (Re = ρbUH
2µ

was based on half the distance between the substrates H/2, the bulk

particle density ρb and the zero shear rate viscosity µ, Table 1) for fluids with different chain

length NB obtained at different temperatures T , liquid-solid interactions εwf and substrate

densities ΠS is shown in Fig. 1 with the parameters summarized in Table 1. The data are

represented in terms of the out-of-balance surface tension force F = γGS − γLS − γLV cos θ
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using the static values of surface tensions γLV , γLS and γGS, Table 1, and normalized using

parameters (F ∗, U∗) of a two-parameter fit Fc = F ∗ U/U∗

(1+(U/U∗)2)0.45
, Fig. 1. Here, θ is non-

equilibrium dynamic contact angle, γLV , γLS and γGS are equilibrium liquid-gas, liquid-solid

of the liquid and gas-solid of the gas (in the approximation of undeformable solid substrate)

surface tensions respectively (see Methods for details). We note that the characteristic

values of the dynamic contact angle found in our simulations are in accord with the previous

observations of dynamic contact angle in droplet relaxation MDS experiments in.20

As is seen in Fig. 1, after normalization the data nicely collapse on a single master curve

indicating that there is a universal mechanism operating in all those cases. The velocity

dependence of the out-off-balance force demonstrates the standard trend routinely observed

in experiments on dynamic contact angle - monotonic increase with velocity increases.12,15,17

Given that surface tension relaxation time in simple interfaces of our LJ liquids is practically

zero,29 all surface tensions of the liquid are expected to be at equilibrium values. This

implies that the out-of-balance surface tension force F can only be balanced by a friction

force from the substrate. Using the steady state conditions achieved in our simulations and

averaging over five independent runs, it was possible to accurately measure distribution of

the friction force acting on the first liquid mono-layer adjacent to the substrate, as is shown

in Fig. 2. Typical profile of the friction force tangential to the substrate component δF and

corresponding distributions of surface density and tangential surface velocity (quantities

averaged over the observation layer ∆y = 1.1σff ) are shown in Fig. 2.

One can observe that the friction force distribution has a characteristic maximum at z ≈

3σff , counting from the surface density equimolar point. Further away from the equimolar

point, after zc ≈ 12σff , the friction force drops to a constant value f∞ in the bulk where, at

the same time, both surface density and surface velocity distributions attain constant values

ρ∞ and v∞. One can assume that this point zc defines the boundary and the characteristic

size of the contact line region in non-equilibrium. Indeed, to account for the observed

dynamic contact angle θ according to the modified Young-Dupré equation γLV cos θ = −γLS+
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Table 1: Parameters of the simulations in the moving droplet problem at H = 60σff , Fig. 1.
Fluid temperature T , number of monomers per chain NB, the bulk fluid monomer density
ρb, bulk shear viscosity µ, wall-fluid interaction energy εwf , wall density Πs, liquid-vapour,
liquid-solid and solid-vapour surface tensions γLV , γLS and γGS (in the approximation of un-
deformable solid substrate), static contact angle θ0 (calculated via the Young-Dupré equation

and measured geometrically), and parameters F ? and U? of the fit Fc = F ∗ U/U∗

(1+(U/U∗)2)0.45
.

Here, velocity U? was normalized by u0 =
√
εff /mf , densities ρb and Πs by ρ0 = σ−3

ff , vis-
cosity µ by µ0 =

√
εffmf /σ

2
ff , surface tensions and F ?, which is the force per unit length,

by γ0 = εff /σ
2
ff . † The shear viscosity was obtained as in ref37 under bulk conditions in the

limit of zero shear rates. ††The static contact angle θ0 here is inferred from the Young-Dupré
equation γLV cos θ0 = −γLS + γGS. ‡The static contact angle θ0 here is obtained from the
free-surface profiles of cylindrical drops.

Run T kB
εff

NB ρb µ† εwf /εff Πs γLV γLS γGS θ††0 θ‡0 F ? U?

(a) 0.8 5 0.91 10.5 0.9 4 0.92± 0.04 −0.66± 0.03 0 44± 4◦ 39± 3◦ 1.14± 0.02 0.02± 0.001
(b) 0.8 5 0.91 10.5 0.65 4 0.92± 0.04 −0.02± 0.05 0 89± 3◦ 92± 4◦ 0.67± 0.02 0.034± 0.003
(c) 0.8 5 0.91 10.5 0.5 1.4 0.92± 0.04 0.25± 0.04 0 106± 4◦ 108± 5◦ 0.59± 0.04 0.07± 0.02
(d) 0.8 5 0.91 10.5 1.2 1.4 0.92± 0.04 −2.3± 0.07 0 0◦ 0◦ 2.29± 0.02 0.009± 0.001
(e) 0.8 1 0.73 1.2 0.65 4 0.36± 0.02 −0.22± 0.02 −0.08± 0.01 67± 4◦ 64± 3◦ 0.43± 0.01 0.11± 0.01
(f) 0.8 15 0.93 30 0.9 4 1.05± 0.04 −0.63± 0.05 0 53± 4◦ 49± 5◦ 1.08± 0.05 0.007± 0.001
(g) 1 15 0.88 18 0.8 4 0.83± 0.04 −0.21± 0.04 0 75± 3◦ 75± 3◦ 0.74± 0.02 0.027± 0.002
(h) 1 30 0.89 34 0.8 4 0.89± 0.04 −0.19± 0.04 0 78± 3◦ 79± 4◦ 0.73± 0.02 0.014± 0.002

γGS − F , it is sufficient to integrate the friction force distribution δF (z) within this zone to

obtain the necessary total force F . For example, in case (a) from Table 1 at U = 0.1u0,

u0 =
√
εff /mf , the dynamic contact angle is θ = 136◦, Table 2, the total force per unit

length F = 1.32 γ0 and the distribution should be integrated F =
∫ zc
−∞ δF dz to zc = 7.5σff .

In general, the size of the contact line region defined through the integration interval −∞ <

z ≤ zc varied between the cases in the range 6.5σff ≤ zc ≤ 14.3σff , see Table 2.

Consider now distributions of surface density and surface velocity, as they play a crucial

role in the behaviour of the friction force and the effect of the dynamic contact angle.

The surface density distribution is found to have one characteristic length scale ∆ρ and

can be accurately approximated by a hyperbolic tangent two parameter fit, see Fig. 2(d),

ρs(z) = ρ∞ ρ̄s(z) = ρ∞ ψ0(z,∆ρ, z0), ψ0(z) = 1
2

(
1 + tanh

(
z−z0
∆ρ

))
, where z0 is the equimolar

point, which is taken as the reference point in this study, that is z0 = 0. The length scale

∆ρ is relatively short in comparison with the contact line zone defined by zc, Table 2, and

is basically the apparent (widened by capillary waves30) width of the liquid-gas interface.
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Table 2: Parameters of the simulations in the moving droplet. The droplet width H, sub-
strate velocity U , dynamic contact angle θ, parameters of the friction force-velocity distri-
bution (1), f ? and v?, the length scale of surface density distribution ∆ρ, parameters of
surface velocity vs distribution z1, z2 and ∆v2 obtained at ∆v1 = ∆ρ, the integration lengths
to calculate the total force F from the force distribution zc in the MDS simulations and
z∞c in macroscopic limit, slip lengths Ls0 and LsU in the linear regime (vs < v?) and at
vs = U obtained from the friction law through Ls(vs) = µvs

fs
, and the ratio of self-diffusion

approximation coefficients B? = ρ∞B1/B0. Here, all the length scales were normalized by
σff , velocities by u0, u0 =

√
εff /mf , and parameter f ?, which is the force per unit area, by

f0 = εff /σ
3
ff .

Run H U θ f ? v? · 102 ∆ρ z1 z2 ∆v2 zc z∞c Ls0 LsU B?

(a) 45 0.1 135± 5◦ 0.31± 0.01 1.2± 0.1 1.4± 0.01 −0.8± 0.1 −1± 0.1 3.9± 0.1 6.8 8.5 0.4 1.4 −0.94± 0.01
(a) 60 0.1 136± 5◦ 0.31± 0.01 1.2± 0.1 1.5± 0.01 −0.9± 0.1 −1± 0.1 4.1± 0.1 7.5 8.5 0.4 1.4 −0.94± 0.01
(a) 100 0.1 145± 5◦ 0.31± 0.01 1.2± 0.1 1.9± 0.01 −1.3± 0.1 −0.7± 0.1 3.8± 0.1 9.2 9.8 0.4 1.4 −0.94± 0.01
(a) 60 0.05 124± 5◦ 0.31± 0.01 1.2± 0.1 1.3± 0.01 −0.1± 0.04 −0.5± 0.1 4.2± 0.1 11.6 9.5 0.4 0.95 −0.94± 0.01
(a) 60 0.03 113± 4◦ 0.31± 0.01 1.2± 0.1 1.2± 0.01 −0.01± 0.03 −1.1± 0.1 5.5± 0.2 13.2 10.5 0.4 0.73 −0.94± 0.01
(b) 60 0.1 138± 5◦ 0.3± 0.01 4.6± 0.3 1.6± 0.01 −1.1± 0.04 −1.8± 0.2 5.0± 0.2 6.5 8 1.6 2.6 −0.89± 0.01
(d) 60 0.06 123± 5◦ 0.28± 0.02 0.3± 0.05 1.3± 0.01 0.6± 0.05 −0.3± 0.2 4.3± 0.2 14.3 9 0.1 0.66 −0.95± 0.03
(g) 60 0.09 141± 5◦ 0.37± 0.01 5± 0.4 1.8± 0.02 −1.4± 0.1 −1.3± 0.1 4.3± 0.1 7.6 8.5 2.7 7.3 −0.89± 0.01

Some variations of ∆ρ observed between the cases were likely due to different contact angles.

Corrected quantity ∆
′
ρ = ∆ρ cos(θ−π/2), taking into account the effect of inclination angle,

showed no such variations 1σff ≤ ∆
′
ρ ≤ 1.1σff , and was close to our direct measurements of

liquid-gas interface width ∆
′
ρ = 0.82σff at T = 0.8 and ∆

′
ρ = 1.1σff at T = 1.

The surface velocity distribution has two characteristic length scales ∆v1 and ∆v2, and

can be approximated by a five parameter fitting function, Fig 2(e), vs(z) = v∞fv(z), fv(z) =

ψ0(z,∆v1, z1)ψ0(z,∆v2, z2). The first length scale ∆v1 was found to be very close to ∆ρ and

was apparently driven by the density variations. Therefore, it was possible to set ∆v1 = ∆ρ

and reduce the number of fitting parameters. The second length scale ∆v2 was of the order

of the contact line zone defined by zc. Remarkably, it showed no dramatic variations between

the cases, Table 2. We note, that variations of the tangential surface velocity component

were accompanied by variations of the normal surface velocity component vn (normal vector

pointing into the surface layer), Fig. 2(d). That is there was strong mass exchange in the

contact line region, with the mass conservation ρsvn = ρs∆y
∂vs
∂z

, ∆y = 1.1σff , being perfectly

observed in our MDS, insert in Fig. 2(e).

Away from the contact line region, the flow is rectilinear Hagen-Poiseuille flow where both
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velocity v∞ and the friction force f∞ are defined by the shear rate in the bulk. Changing

the distance between the substrates H, one can vary the shear rate and the force value f∞,

Fig. 2(a). We note that the maximum value of the friction force fM is also affected by the

value of the bulk shear rate but to a much lesser extent. Using the inverse distance H−1 as

a parameter, one can extrapolate the values of f∞ and fM in the macroscopic limit H →∞.

Functions fM(H−1) and f∞(H−1) were found to be linear, fM = 0.14 f0 + 4.1H−1f0σff and

f∞ = 5 × 10−4 f0 + 7.3H−1f0σff , f0 = εff /σ
3
ff . So that in the macroscopic limit (H → ∞

at a fixed substrate velocity U) the bulk value goes to zero lim
H→∞

f∞ ≈ 0, as expected, while

the force maximum remains finite lim
H→∞

fM = 0.14 f0. This is a clear indication that in the

macroscopic limit the friction force will be finite and strictly localized in the small region

at the contact line. At the same time, it is also obvious that in nano-flows, in contrast

to macroscopic systems, there is no very clear separation between the bulk region and the

contact line zone. Therefore in nano-systems the dynamic contact angle may be influenced

by entire flow conditions. To understand the behaviour of the friction force quantitatively,

we will apply friction laws revealed in MDS studies of the slip phenomena using uniform

rectilinear flows.31–35

For LJ liquids the non-linear friction force-velocity dependence can be described in a

range of velocities by a two-parameter relationship

fs = f ?
vs/v

∗

(1 + (vs/v∗)2)λ
(1)

with parameter λ found to be λ ≈ 0.35.31–35 Here fs is the solid to liquid tangential to

the substrate friction force per unit area, vs is the slip velocity with respect to a stationary

substrate, f ∗ is a coefficient of sliding friction and v∗ is a characteristic velocity. Measure-

ments of the friction force on our substrates in the velocity range relevant to our dynamic

angle simulations have revealed similar dependence with λ ≈ 0.3, Fig. 4, with parameters

listed in Table 2. Outside that range, at higher velocities (larger external force) the friction
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force quickly reaches its maximum, and the system gets into a runaway regime. MD simula-

tions were performed in a steady flow passing in between two substrates (lateral dimensions

20 × 20σff ) in plane geometry with liquid layer thickness ≈ 16σff with periodic boundary

conditions. The pressure in the liquid without the applied external force was set to a small

level p = 0.01 εff /σ
3
ff to mimic atmospheric pressure, as it would be in most experiments

with open chambers.

To apply this friction law to our problem, one needs to identify the factors influenced

by the distribution of density. In previous studies, the coefficient of sliding friction f ? was

found to depend on several parameters, such as contact density in the first fluid mono-layer

ρc, in-line structure factor Sq‖ probed by the first reciprocal lattice vector q‖ = 2πσff /σww of

the wall in the direction of shear and the collective self-diffusion coefficient Dq‖ deduced from

Sq‖ , that is f ? ∝
ρcSq‖
Dq‖

.32–35 Note, the collective diffusion coefficient for long-chain molecules

reflects internal rearrangements of the chains and not the centre of mass of the molecule.32

It is not straightforward to transfer the results obtained in homogeneous flows to our

situation given the size of the contact line zone of a few particle diameters where the density

and velocity exhibited rapid changes. So, in the current model we will only include major

trends. It was assumed that the friction force should be directly proportional to the surface

density ρs(z), as the linear dependence of f ? on ρc suggests, and inversely proportional to

a linearised self-diffusion coefficient Dq‖ ∝ B0 + B1ρs. The later approximation takes into

account a substantial increase in the particle mobility in the low density contact line region.

At the same time, due to the presence of surface potentials no divergence is expected as

ρs → 0, as it would be usually the case in the bulk conditions, where the self-diffusion

coefficient D diverges with the bulk density ρ→ 0 as D ∝ ρ−1.36

Taking this friction law, equation (1), as a model, one can form an analytical expression

to calculate the friction force distribution in the coordinate system moving with the contact
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line

δFm(z) = f ?
ρ̄s(z)

D̄(z)

U − vs(z)

v∗(
1 +

(
U − vs(z)

v?

)2
)0.3 . (2)

Here, δFm is the solid to liquid tangential to the substrate friction force per unit area,

U − vs(z) is the slip velocity with respect to the moving substrate, and f ? and v? are

parameters of the friction law (1) away from the contact line region. Distributions of density

and the self-diffusion coefficient were introduced to account for the variations of the coefficient

of sliding friction f ? in the contact line region. The distributions were normalized in such

a way, ρ̄s(z) = ρs(z)/ρ∞ and D̄(z) = 1+B?ρ̄s
1+B?

, B? = ρ∞B1/B0, that in the bulk ρ̄s = 1 and

D̄ = 1.

Comparison Between the Model and MDS. To compare our model force distribu-

tion, equation (2), with simulations, we fix parameters of the friction law f ? and v? and

the substrate velocity U , parameters of the surface density and surface velocity distribu-

tions z1, z2,∆ρ,∆v2 and v∞ (though allowing parameter z2 to vary within the length of the

measurement interval ∆z ≈ 0.7σff ) leaving only one unknown fitting parameter B?, Table

2. The result is shown in Fig. 3(a)-(c) with the obtained values of B? listed in Table 2.

Corresponding distributions of density ρs(z) and velocity vs(z), approximated in the model

by ψ0(z) and fv(z), are shown in Fig. 3(d,e). One can see, that the model distribution δFm

correctly identifies the position of the maximum, the shape of the distribution in general and

the value in the bulk f∞. Several representative cases with the parameters listed in Table

2 were processed. It was found that the model accurately reproduces the trends observed

with variations of shear rates in the bulk (different H, Fig. 3(a)), variations of the surface

potential εwf (Fig. 3(c)) and liquid viscosity µ, and with variations of the substrate velocity

U , Fig. 3(a,b).

Macroscopic Limit of the Model. One can now turn to a more practical question of

the macroscopic limit in the model, when the system size is large H � 1 while velocity is
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still at the level of normal hydrodynamic velocities. In this limit, the shear rates and the slip

velocity are relatively small, that is v∞ ≈ U . Accordingly, one can now set v∞ = U in the

distribution of velocity approximated by fv, vs(z) = Ufv(z), to calculate distribution of the

friction force δFm using equation (2). To demonstrate the friction force distribution in the

macroscopic limit, we will take all parameters of the case (a) from Table 1 at H = 100 σff

and U = 0.1 u0 (u0 =
√
εff /mff ) with parameter B? set to the value providing the best fit

shown in Fig. 3(a). The result is shown in Fig. 3(a) for comparison, the shaded area. It is

seen that the force is now strictly located within the finite region inside the contact line zone

defined by zc. The point where the force value is at 10% of the maximum value fM , z∞c , can

now be used as the definition of the contact line zone in macroscopic limit. Values of z∞c are

listed in Table 2. Remarkably, they show little variations between the cases. We also note

that the maximum value of the friction force given by equation (2), max(δFm) ≈ 0.16 f0, is

close to the value found by the linear extrapolation fM ≈ 0.14 f0.

Mechanism of Dynamic Contact Angle Generation. The obtained distribution

of the localized friction force by means of the relationship (2) and in MDS is the main

result of our paper. It provides insights into the fundamental mechanisms of the dynamic

wetting phenomena and a methodology for theoretical predictions of the dynamic contact

angle effect. Our analysis demonstrates in detail, from the first microscopic principles, how

the localized contact line force is generated. In macroscopic modeling this force distribution

should be regarded as a ”delta” force acting on the contact line. That is, integral of δF ,

F =
∫
δFdz directly contributes into the Young-Dupré equation γLV cos θ = −γLS+γGS−F .

The revealed mechanism is inherently microscopic. It suggests that the contact line force

distribution can be accurately determined solely from the knowledge of non-linear friction

law, and the distributions of density and velocity in the contact line region. Non-linear

friction law can be obtained from experiments or from MDS of simple bead spring models

such as those studied here or even atomistic models using simple geometries with no contact

lines involved, for example.31 Distribution of density and its length scale ∆ρ can be also
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inferred from experiments and MDS only involving liquid-gas interfaces. Mobility of the

particles only affects the friction force distribution in the relatively small part of the contact

line zone of the order of ∆ρ and can be approximated without substantial loss of accuracy.

The most intricate part in the methodology is determination of velocity distribution and its

characteristic length scale ∆v2, which in turn defines the contact line zone. We argue that this

parameter is directly related to the length scale of the interaction potentials. This explains

its weak variations between the cases analyzed in this study and lack of any correlations

with linear (vs � v?) and non-linear (vs ∼ v?) slip lengths Ls0 and LsU , Table 2. One can, of

course, determine ∆v2 directly from MDS and then use it for macroscopic predictions, but

how does this length scale appear exactly and how can we approximate it without engaging

MDS? Consider distribution of the total tangential force acting on the first liquid mono-layer

adjacent to the substrate, that is the friction force δF and the force from the rest of the liquid

fLL, Fig. 3(f). One can see that apart from a region of the order of ∆ρ around the equimolar

point z = 0 corresponding to the liquid-gas interface, the total force acting on the particles

in the layer is practically zero, δF + fLL ≈ 0. This is always the case at equilibrium, when

according to the Young-Dupré equation γLV cos θ0 = −γLS + γGS the surface tension forces

are balanced. At non-equilibrium, this implies that in a steady state, when the contact line

is already moving with constant velocity, unbalanced molecular forces created as a result of

dynamic contact angle, different from the static angle, will be balanced by the friction force.

That is the velocity distribution is tuned according to fs(vs(z)) + fLL(z) = 0. This interplay

between the molecular and surface friction forces defines the length scale of the contact line

zone and its invariance, if the nature and the length scale of the molecular forces are the

same.

Once the friction force distribution δFm(z) is determined, it can be directly used to

predict dynamic contact angle via the Young-Dupré equation γLV cos θ = −γLS + γGS − F ,

where F =
∫∞
−∞ δFmdz. Since δFm is strictly localized, the integral of δFm quickly converges

and can be conveniently taken from −∞ to ∞. That is, assuming that friction law has a

12



form similar to equation (1) with some power λ,

F = f ?∆v2Ū

∫ ∞
−∞

ρ̄s(z̄)

D̄(z̄)

Ω(z̄)(
1 + Ū2Ω2(z)

)λ dz̄ (3)

where Ω(z̄) = (1− fv(z̄)) with the new variable z̄ = z/∆v2 defined according to the contact

line length scale and Ū = U/v?. Ū defines the non-linear behavior of the contact line force

F with the contact line velocity. At low velocities, Ū � 1 or small capillary numbers

Ca � 1 (Ca = µU/γLV ) the dependence becomes linear F ∝ f ?∆v2Ū , cos θ − cos θ0 ∝ Ca,

the trend which is commonly observed in experiments.4,17,20 An extrapolated dependence

of the dynamic contact angle θ on the capillary number in the macroscopic limit H � 1

using relationship (3) is illustrated in Fig. 5 at λ = 0.3. The data in the plot have been

extrapolated by variations of the substrate velocity U from two particular cases at a given

velocity U = 0.1u0, but different values of H (H = 100σff and H = 60σff ) presented in Fig.

3(a). The obtained dependencies, while generally consistent, demonstrate that the behaviour

of the dynamic contact angle is sensitive to the details of microscopic distributions. The key

parameter here turns out to be ∆v2. Indeed, if the value of ∆v2 is set in both cases to

∆v2 = 3.8σff , while keeping the other parameters as they were in Table 2, the dependencies

become almost identical.

What are the implications of our findings for the developed theories? Apparently, the mi-

croscopic contact angle, which may be calculated using (3), provides the necessary boundary

condition for macroscopic modelling, either in the form of numerical simulations or asymp-

totic solutions, such as Cox-Voinov model. The length scales of the friction force distribution

and its characteristic amplitudes suggest that other macroscopic effects at the contact line

either do not exist or may only serve as corrections to the main effect. In particularly, hydro-

dynamic stresses were seen to give negligible contribution into the force acting on the contact

line in the macroscopic limit. They become only important when the system size tends to

nano-scale. One can also rule out contributions from non-equilibrium surface tensions, in

13



particular considering very short relaxation times of the surface phase.29 At the same time,

the MKT hypothesis about concentrated force of microscopic origin acting on the contact

line is fully consistent with our results.7,15,19–21

Comparison with the MKT. At its core, the MKT is based on the Eyring’s phe-

nomenological theory of rate processes38 applied on average to some region at the contact

line. The out-of-balance surface tension force γLV (cos θ0 − cos θ) is related with the un-

balanced rate of molecular jumps in the region. The molecular jumps are described by a

frequency κ0 and a displacement Λ0 of the order of the atomic distance. The two parameters

define a characteristic velocity Vc = 2Λ0κ0 and a characteristic friction force per unit length

of the contact line χ0 = 2kBT
Λ2
0

. The net macroscopic result is a quite distinctive contact line

force-velocity dependence,

FMKT = χ0 ln(U/Vc +
√

1 + (U/Vc)2). (4)

While the friction force law (4) looks different from the friction force functional forms (1)

providing the best fits in our simulations and in the previous works,31,32,35 it is possible to

conjoin them by variation of parameters χ0 and Vc. Application of fit (4) to the normalized

friction force-velocity dependence data obtained in homogeneous conditions of the thin film

flows is illustrated in Fig. 4, the dashed line. However, the same fit (4) does not match the

contact line force-velocity dependence data, the dashed line in Fig. 1. This might be actually

expected, given the expression for the total contact line force (3). Apparently, the same

functional form seemed very unlikely to simultaneously provide the best description to the

friction force-velocity dependence in homogeneous conditions, (1), and to the convolution of

the force with velocity and density distributions in inhomogeneous conditions at the contact

line, (3).

Here lies the principle difference between the MKT approach and our methodology. The

MKT provides a phenomenological treatment, an approximation to the integrated friction
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force (3), using the supposition of homogeneity of the contact line zone, while our analysis

suggests that particular distributions of surface density and velocity should matter.

From the fit, shown in Fig. 4, one can compare parametric dependencies of χ0 and Vc

with our MDS in homogeneous conditions of the thin film flows. According to the MKT,20

the two parameters scale as χ0 = 2kBT
Λ2
0

and Vc = 2Λ0kBT
CLµ

exp
(

Λ2
0

kBT
(γLS − γLV )

)
, where µ

is the zero shear viscosity, CL = NB
ρb

is the molecular volume of the liquid and ρb is the

bulk particle density, Table 1. It has been also established that for the LJ liquids Λ0 is

approximately constant and is equal to Λ0 ≈ 1.2σff .20 At the same time, from the fit shown

in Fig. 4, χ0 = f ?χ̃∆c (χ̃ = 0.8) and Vc = v?Ṽ (Ṽ = 0.9) , where ∆c is some effective length

scale of the contact line zone. The size of the contact line zone is not specified in the MKT,

so for comparison one can use half the integration distance z∞c , Table 2, that is ∆c ≈ 4.5σff .

The first parametric dependence of χ0 is consistent with our observations of f ?, Table

2. The value of f ? linearly increases with temperature T , otherwise being constant, giving

approximately Λ0 ≈ 1.2σff . The second parametric dependence of Vc allows to compare

variations of v?. For example, consider the cases (a), (b), (d) and (g), Table 1 and Table

2. Using the expression for Vc, its relationship with v? and parameters from Tables 1 and

2, one can obtain v?a ≈ 2 × 10−3 f0, v?b ≈ 7 × 10−3 f0, v?d ≈ 10−4 f0 and v?g ≈ 2 × 10−3 f0, as

it follows from the MKT scaling, f0 = εff /σ
3
ff . One can see that the calculated values are

about one order of magnitude off the values measured in the MDS, Table 2. The cause of the

discrepancy is not clear at the moment. This could be due to the limitations of the Eyring’s

phenomenological approach, especially its approximate character for long-chain molecules.

The theory is best applied when spherically symmetric molecules spend sufficiently long time

in the potential wells formed by the substrate atoms, so that their motion indeed consists of

a series of jumps, rather than of continuous trajectories.38 This may not be the case here.

At the same time, one can not rule out the effects of shear thinning.32 Apparently, more

studies of the friction force laws are required.
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Conclusions

To conclude, it has been shown that the main contribution to the effect of dynamic wetting

at nano-scale is due to the local variations of microscopic contact angle. The variations of

the microscopic contact angle have been directly observed in experiments at nano-scale.28

Though no substantial effects of nano-bending reported there were found in our MDS. The

interface was of a circular shape and the only unusual ’interfacial’ distortions were observed

within a few atomic distances from the solid substrate, that is in a range of ≈ 1 nm, which

is within the interfacial layer itself. One needs to note though that the bending observed

in28 was convex and was detected within the length scales of tens of nanometres. It may

be ’hidden’, if it does exists, in the circular, convex free surface profiles observed in our

MDS given the effective system size of the same order - tens of nanometres. Secondly, it

has been directly established that the main mechanism of these contact angle variations is

non-linear friction force distribution acting on the first monolayer at the solid substrate on

the length scale induced by the interaction potential of constituent molecules. The observed

length scale defines the size of the contact line zone. The combined effect of the friction

force distribution is the integrated total force F , (3), which manifests itself in macroscopic

descriptions as a singular point force acting directly on the contact line and leading to a

modified Young-Dupré equation γLV cos θ = −γLS + γGS − F .

Methods

Molecular Dynamics Simulations. We distinguish between liquid (index i, j = f) and

solid wall (index i, j = w) particles. The liquid particles interacting via LJ potentials are

connected into linear chains of NB = 5 to 30 beads by the finitely extensible non-linear

elastic (FENE) springs, and the strength of the springs is adjusted so that the chains cannot

cross each other, ΦFENE(x) = −k
2
R2

0 ln

(
1−

(
x
R0

)2
)

. Here x is the distance between the

beads, R0 = 1.5σff is the spring maximum extension and k = 30 εff σ
−2
ff is the spring constant
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- parameters of the Kremer-Grest model.39

The solid wall particles are attached to anchor points forming fcc lattice layers via har-

monic potential Φa = ξx2, with the strength ξ = 800
εff
σ2
ff

chosen such that the root-mean-

square displacement of the wall atoms was small enough to satisfy the Lindemann criterion

for melting
√
< δr2 > < 0.15σww. The strength of the harmonic potential was sufficient to

guarantee rigidity of the solid wall, so that elasto-capillarity effects can be neglected, that is

(γLV /ξ)
1/2 � 1 (γLV is equilibrium liquid-gas surface tension).40 The anchor points in the

layer of the solid wall facing the liquid molecules have been slightly randomized in the verti-

cal y direction, with the amplitude
√
< δy2 > = 0.3σff . This small roughness allowed us to

avoid undesirably large slip lengths observed in MDS32 and any bias towards ideal substrates

in this study. The state of the liquid, its temperature 0.8 εff /kB ≤ T ≤ 1 εff /kB (kB is the

Boltzmann constant) was controlled by means of a DPD thermostat with the cut-off distance

of 2.5σff and friction ςdpd = 0.5τ−1
0 , τ0 = σff

√
mf
εff

, to have minimal side effects on particle

dynamics. The substrate density ΠS was controlled by the minimal distance between the

solid wall particles σww , ΠS = 4.1σ−3
ff (σww = 0.7σff ) and ΠS = 1.41σ−3

ff (σww = σff ). The

liquid-solid interaction length scale was set to the minimal distance between solid particles

σwf = σww .

Calculation of the Surface Tensions of the Liquid and Verification of the

Young-Dupré Equation in Static Conditions. Before conducting simulations with a

moving contact line, a set of measurements in static conditions were done to obtain equilib-

rium parameters and compare them with the Young-Dupré equation γLV cos θ0 = −γLS+γGS

by placing a cylindrical drop (40000 particles) on the substrate. Here θ0 is the static contact

angle and γLV , γLS and γGS are equilibrium liquid-gas, liquid-solid and gas-solid (in the

approximation of undeformable solid substrate) surface tensions respectively. The Young-

Dupré equation then was probed by evaluating independently surface tensions γLV , γLS and

γGS from microscopic stress tensor disregarding solid-to-solid interactions29 and by directly

measuring θ0 from equilibrium free-surface profiles.
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Surface tensions were evaluated using different geometrical set-ups with the duration of

the averaging varied from 1000 τ0 to 5000 τ0 depending on the signal-to-noise ratio. Liquid-

solid surface tension of the liquid γLS was calculated using a plane film of thickness ranging

from 16σff to 25σff set on the substrate with lateral dimensions 20 × 20σff . We used

periodic boundary conditions in the tangential to the substrate directions and averaging

over five statistically independent observations with randomly generated surface roughness.

Liquid-gas surface tension γLV was obtained in levitating, radius ≈ 30σff , spherical drops.41

At the same time, gas-solid surface tension of the gas γGS was evaluated directly in the

static simulations of droplets on the bandwidth of ∆z = 10σff of the substrate away from

the contact line using five independent measurements. One needs to note that the gas

phase was practically absent, and the surface tension γGS was zero in all cases but one with

monatomic particles, run (e), Table 1. The difference between two static contact angles

(measured geometrically and calculated via the Young-Dupré equation) was found not to

exceed the accuracy of the contact angle evaluations, Table 1.
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Figure 1: Snapshot of the moving cylindrical droplet (periodic in the x-direction) simulation
set-up, developed free surface profile with dynamic contact angle θ = 134◦ (at the parameters
of run (a), Table 1, at H = 60σff and U = 0.07u0, u0 =

√
εff /mf ) and a cumulative set of

data, Table 1, represented as normalized contact line force F/F ∗ as a function of normalized
substrate velocity U/U∗. The error bar shows the maximum deviation. The solid line is the fit

Fc/F
∗ = U/U∗

(1+(U/U∗)2)0.45
. The dashed line is the best fit Fc/F

? = χ̃ ln

(
v/Ṽ +

√
1 + (v/Ṽ )2

)
,

v = U/U?, χ̃ = 0.25, Ṽ = 0.1. The total number of liquid particles in the simulations
was varied between 60, 000 to 90, 000. The solid wall was moving along the z-direction in
the set-up aligned in the [1,0,0] crystallographic direction of the face-centred cubic lattice
comprising the solid substrate. The free surface profiles were obtained using time averaging

over 5, 000 τ0 following an equilibration period of 10, 000 τ0 (τ0 = σff

√
mf
εff

) to reach a steady

state.
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Figure 2: Distribution of the density at the contact line region of a moving droplet, Fig. 1,
averaged over the droplet depth ∆x ≈ 18σff and a time period ∆t = 5, 000 τ0 at parameters
of run (a) in Table 1, at H = 60σff and U = 0.1u0, u0 =

√
εff /mf . Distance z is measured

along the substrate from the equimolar point of the surface density distribution ρs(z), Fig.
3(d), and distance y is measured in the perpendicular to the substrate direction from the
equimolar point of the substrate particle distribution. The dark region corresponds to the
liquid phase. The dashed lines designate cut-off of the liquid-solid interface at y = 4σff (red
line) and the observation region of the friction force, surface density and surface velocity
distributions at y = 1.1σff (blue line).
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Figure 3: Distribution of the tangential friction force δF , surface density ρS, tangential and
normal components of surface velocity, vs and vn, and the total force acting on the boundary
layer ∆y = 1.1 adjacent to the substrate δF + fLL as functions of the distance z from the
equimolar point at the parameters from Table 1. All distributions were obtained after initial
equilibration for 10, 000 τ0 and averaging over five independent simulations each for 10, 000 τ0

(τ0 = σff

√
mf
εff

). (a) δF (z), run (a) at different droplet widths H = 100, 60 and 45σff , and

U = 0.1u0, u0 =
√
εff /mf . Symbols are direct MD simulations and the solid lines are the

distributions δFm(z) calculated by means of equation (2). The shaded area is the distribution
δFm in macroscopic limit v∞ = U at U = 0.1u0, H = 100σff and B? = −0.94. (b) δF (z),
run (a) at H = 60 σff , but at lower velocities U = 0.05u0 and U = 0.03u0. Symbols
are direct MD simulations and the solid lines are the distributions δFm(z) calculated by
means of equation (2). (c) δF (z), run (d) at H = 60σff and U = 0.06u0. Symbols are
direct MD simulations and the solid line is the distribution δFm(z) calculated by means of
equation (2). (d) ρS(z), run (a) at H = 60 σff and U = 0.1u0. Symbols are for direct MD
simulations and the dashed line is the fit ρ∞ψ(z). (e) vs(z) and vn(z), run (a) at H = 60σff

and U = 0.1u0. Symbols are direct MD simulations and the dashed line through the vs
profile is v∞fv(z). Inset illustrates conservation of mass in the the boundary layer ∆y = 1.1,
ρsvn = ρs∆y

∂vs
∂z

, that is normal flux ρsvn shown by symbols and ρs∆y
∂vs
∂z

shown by the solid
line. (f) δF (z) + fLL(z), run (a) at H = 60σff and U = 0.1u0.
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Figure 4: Surface friction force per unit area fs as a function of surface velocity vs. The
data (symbols) were obtained in rectilinear Hagen-Poiseuille flow driven by external force
applied to each liquid particle for the parameters listed in Table 1 after initial equilibration

for 5, 000 τ0 and averaging over 5, 000 τ0 (τ0 = σff

√
mf
εff

) in two different intervals of the width

∆z = 10σff . The flow direction to the solid wall lattice was the same as in the droplets

simulations, Fig. 1. The solid line is the function fs = f ? vs/v∗

(1+(vs/v∗)2)0.3
. The dashed line is

the function f/f ? = χ̃ ln(v/Ṽ +
√

1 + (v/Ṽ )2), v = vs/v
?, χ̃ = 0.8, Ṽ = 0.9.
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Figure 5: Dynamic contact angle θ as a function of capillary number Ca = µU/γLV in the
macroscopic limit H � 1, v∞ = U calculated from the modified Young-Dupré equation
γLV cos θ = −γLS + γGS − F by means of relationship (3) at λ = 0.3. There were used
parameters of run (a) from Table 2 giving the best fit to the distribution of the force in Fig.
3(a) at H = 100σff and H = 60σff , and U = 0.1u0. Symbols are the calculated values
of the contact angle θ and the solid lines are the fit θ = θ0 + ACa + B Ca2 + C Ca3 at
A ≈ 78, B ≈ −35, C ≈ 9 for H = 100σff and A ≈ 91, B ≈ −42, C ≈ 11 for H = 60σff . The
dashed line is the guide for eyes in the case H = 60σff , but with ∆v2 = 3.8σff .
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