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ABSTRACT 

 

New sunspot data composites, some of which are radically different in the 

character of their long-term variation, are evaluated over the interval 

18452014.  The method commonly used to calibrate historic sunspot data, 

relative to modern-day data, is “daisy-chaining”, whereby calibration is passed 

from one data subset to the neighbouring one, usually using regressions of the 

data subsets for the intervals of their overlap.  Recent studies have illustrated 

serious pitfalls in these regressions and the resulting errors can be compounded 

by their repeated use as the data sequence is extended back in time. Hence the 

recent composite data series by Usoskin et al. (2016), RUEA, is a very important 

advance because it avoids regressions, daisy-chaining and other common, but 

invalid, assumptions: this is achieved by comparing the statistics of “active day” 

fractions to those for a single reference dataset. We study six sunspot data series 

including RUEA and the new “backbone” data series (RBB, recently generated by 

Svalgaard and Schatten, (2016) by employing both regression and daisy-

chaining).  We show that all six can be used with a continuity model to 

reproduce the main features of the open solar flux variation for 18452014, as 

reconstructed from geomagnetic activity data.  However, some differences can 

be identified that are consistent with tests using a basket of other proxies for 

solar magnetic fields. Using data from a variety of sunspot observers, we 

illustrate problems with the method employed in generating RBB which cause it 

to increasingly overestimate sunspot numbers going back in time and we 

recommend using RUEA because it employs more robust procedures that avoid 

such problems.     

Key words:  Sun: magnetic fields – sunspots – Sun: activity – Sun: heliosphere – solar–terrestrial 

relations   
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1. INTRODUCTION 

Sunspot number is a primary index of long-term solar activity (Usoskin, 2013; Hathaway, 

2015) and its reliable definition is of importance for studies of the solar dynamo, solar 

irradiance, coronal physics, space weather, space climate, and solar-terrestrial relations. The 

sunspot number is defined daily by the formula introduced by Wolf (1861): 

R = k  (10NG + NS )     (1) 

where NG is the number of sunspot groups, NS is the number of individual sunspots, and k is a 

calibration factor that varies with location, instrumentation and observer procedures.  Before 

1982, compilation of R used a single primary observer for most days (on some days after 

1877 when no primary observer could make observations, an average from secondary 

observers was used); after 1982 multiple observers on each day were used.  The k factors for 

different observers can differ by a factor as large as three (Clette et al., 2015) and so are 

critical to the accurate quantification of R.  To extend sunspot data to times before when both 

NG and NS were recorded systematically, Hoyt et al. (1994) and Hoyt and Schatten (1998) 

defined the group sunspot number RG to be 

RG =  12.08 < k ′  NG >n   (2) 

where k ′ is the site/observer calibration factor for sunspot groups only and the averaging is 

carried out over the n observers who are available for the day in question.  The factor of 12.08 

makes the means of RG and R (specifically, version 1 of the international sunspot number, 

RISNv1, see below) the same over 18751976. Note that assuming that the k or k ′ factors in 

equations (1) and (2) are constants assumes that the counts from different observers are 

proportional to each other, such that application of the appropriate constant multiplicative 

factor renders them the same. Initially, Wolf considered that the k factors were constant for 

each observer (Wolf, 1861) but he later realised that this was not, in general, valid and that 

observer’s k and k ′ factors depend on the level of solar activity (Wolf 1873) and so they were 

calculated either quarterly or annually (using daily data) at the Zürich observatory (see 

Friedli, 2016).   It is well known that estimates of R and RG diverge as one goes back in time. 

This could be due to real long-term changes in the ratio NS/NG, but otherwise it would reflect 

erroneous long-term drifts in the calibration factors for either R or RG (i.e., k and k ′, 

respectively) or both.  Recently, Friedli (2016) has shown that the ratio NS/NG has a regular 
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solar cycle variation but no long term change and so can be used as a way of calibrating 

different observers.   A series of workshops were held in recent years to try to investigate the 

differences between R and RG (Clette et al., 2015).  This has stimulated the generation of a 

number of new sunspot number and sunspot group number composites. These vary in a 

surprisingly radical way with considerable implications for our understanding of the solar 

dynamo and its variability.  The methods used to make these sunspot number data 

composites, and the centennial-scale variations in the derived data series, are reviewed and 

assessed in this paper.   

Both sunspot numbers and sunspot group numbers are synthetic indices and somewhat 

limited indicators of solar magnetic activity. They give information on the larger magnetic 

features in the photosphere only and they do not vary linearity with many of the key 

parameters of solar and heliospheric activity and structure. Moreover, there is a threshold 

effect whereby a lack of sunspots does not necessarily imply the absence of the cyclic solar 

activity. For recent solar cycles we have other metrics that are more directly relevant and 

measured with less subjectivity: as a result, sunspot numbers are of importance mainly 

because of the longevity of the data sequence. Hence if sunspots numbers are to be useful, it 

is vital check that their long-term variation is as accurately reproduced as it can be. That is the 

aim of the present paper.      

The key problem in generating homogeneous composites of R and RG is the estimation of the 

k and k ′ factors for the historic observers.  Until recently, all composites used “daisy-

chaining” whereby the calibration is passed from the data from one observer to that from the 

previous or next observer (depending on whether the compiler is working, respectively, 

backwards or forwards in time) by comparison of data during an overlap period when both 

made observations. Hence, for example, if proportionality is assumed and intercalibration of 

observer numbers i and (i+1) in the data composite yields  ki/ki+1  =  fi
(i+1)

 then daisy chaining 

means that the first (i = 1) and last (i = n) observer’s k factors are related by k1 = kn
n

i=1(fi
(i+1)

).  

A similar product applies for the k ′ factors for group sunspot numbers. Hence daisy chaining 

means that all sunspot and sunspot group numbers, relative to modern values, are influenced 

by all of the intercalibrations between data subsets at subsequent times.  

Because meteorological conditions vary with location and from day-to-day, and some sunspot 

groups last for only one day (Willis et al., 2016), it is important to compare observers only on 
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a daily basis and only on days when both were able to make observations.  Otherwise, 

significant errors are caused by days when observations were not possible if annual or 

monthly means are compared.  Often comparisons have been made using linear, ordinary 

least squares regression.   Errors caused by inadequate and/or inappropriate regression 

techniques were discussed by Lockwood et al. (2006) in relation to differences between 

reconstructions of the magnetic field in near-Earth interplanetary space from geomagnetic 

activity data.    The seriousness of potential problems has been expressed succinctly by Nau 

(2016): “If any of the assumptions is violated (i.e., if there are nonlinear relationships 

between dependent and independent variables or the errors exhibit correlation, 

heteroscedasticity, or non-normality), then the forecasts, confidence intervals, and scientific 

insights yielded by a regression model may be (at best) inefficient or (at worst) seriously 

biased or misleading.”    Lockwood et al. (2016c) have studied these pitfalls in the context of 

sunspot group numbers, using annual means of observations from the Royal Observatory, 

Greenwich / Royal Greenwich Observatory (hereafter “RGO”) for after 1920, when there are 

no concerns about their calibration.  They compared the RGO sunspot group numbers with 

data synthesised to simulate what a lower-acuity observer (i.e., one who has a higher k ′) 

would have seen. This was done by assuming the lower acuity observer would only detect 

groups above a threshold of total spot area in the group (uncorrected for foreshortening near 

the limb, i.e. as detected by the observer) and studying the effect of this threshold. It was 

shown that there is no single regression procedure that always retrieves the original RGO data 

and tests must be applied to check that the assumptions inherent in the procedure applied are 

not violated. Specifically, it was shown that errors of up to 30% could arise in one regression 

of annual mean data even for two data series with a correlation exceeding 0.98 over two full 

solar cycles. The biggest problems are associated with non-linearity and non-normal 

distributions of data errors which violate the assumptions made by most regression 

techniques: such errors should always be tested for (for example using a quantile-quantile 

(“Q-Q”) plot comparison against a normal distribution) before a correlation is used for any 

scientific inference or prediction (Lockwood et al., 2006, 2016c).   

Lockwood et al. (2016c) confirmed that significant errors were introduced by assuming 

proportionality between the results of two observers and that this is, in both principle and 

practice, incorrect and leads to non-normal error distributions and hence errors in regressions.  

In fact, sets of sunspot data often do not have a linear relationship.  Using the ratio of sunspot 

numbers (or sunspot group numbers) from two different observers also implicitly assumes 



5 
 

proportionality and generates asymmetric errors that vary hyperbolically with the 

denominator, such that both the ratio and its uncertainty tend to infinity as the denominator 

tends to zero. This has been dealt with in two ways in the past: (1) neglecting values where 

the denominator falls below an arbitrarily-chosen threshold; and (2) taking averages over an 

extended period (greater than a solar cycle) so the denominator does not become small.   

Neither of these is satisfactory:  on top of generating asymmetric error distributions, method 

(1) preferentially removes solar minimum values and method (2) matches the mean values but 

loses information about the solar cycle amplitudes because sunspot numbers and sunspot 

group numbers do not fall to zero in all minima. It is not necessary to assume proportionality 

(or even linearity), nor to make use of ratios, nor to ignore the effect of missing observation 

days.  Hence adherence to good practice can avoid all of the associated pitfalls.  

Unfortunately, some reconstructions make use of one of more of these unreliable practices 

and it is easy, but not satisfactory, to dismiss without proof the effects of this as being small.       

These issues are particularly important in daisy-chaining of calibrations to generate a long-

interval data composite because errors compound with successive regressions (Lockwood et 

al., 2016b, c).  For these reasons, the recent group sunspot number reconstruction by Usoskin 

et al. (2016) is a very important development because it avoids using either regression or  

daisy-chaining and does not even need to assume that the k ′ factors (for a given level of solar 

activity) remained constant for any one observer (although, for simplicity, this assumption 

was made in the initial paper). In addition, the method assumes neither proportionality nor 

linearity between the results of different observers and evaluates each observer on a daily 

basis and not using monthly or annual means.  This rigour was achieved by comparing all 

data to a standard dataset covering a reference period (the RGO data between 1900 and 1976 

were used, and this standard is evaluated in section 2.3).  This means that, for example, 

isolated fragments of data, disconnected from the data sequence by a data gap, can be 

employed without having to use questionable data, or an assumption, to bridge that gap – 

something that cannot be done for any form of daisy-chaining.  Furthermore, should any 

segment of data be incorrect or badly calibrated, the error does not corrupt any other data 

segments, whereas for daisy-chaining the error propagates from that segment to all others 

calibrated from it:  thus every error infects all prior data (if the calibrations are passed back in 

time, starting from modern data) and if they arise from the systematic application of 

unreliable procedures, these errors will compound.    
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In the Usoskin et al. (2016) procedure, the comparisons with the reference dataset are made 

by, effectively, considering the relationship between an observer’s sunspot group count and 

the statistics of the fraction of all observation days that were “active” (i.e., on which sunspots 

were observed). Hence the only requirement is that the observer had distinguished between 

days on which he/she could see the solar disk but detected no sunspots (i.e. non-active days) 

from days on which the solar disk could not be observed (i.e., missing data, for example due 

to cloud cover).  The method uses the probability distribution functions (pdfs) of different 

group numbers and makes no assumptions of proportionality or linearity of the relationship 

between the data from different observers.   

Another example of the use of a non-parametric, daisy-chain-free calibration of observers is 

the recent work by Friedli (2016) who re-calibrated observers using the statistics of NS, NG 

and the ratio NS/NG. At the time of writing, this work has yet to be published so we do not 

include it here as one of the data composites tested: however, the data sequence derived by 

Friedli (2016) is similar to RUEA which is tested.  

2. SUNSPOT DATA COMPOSITES 

We here study six different sunspot number and sunspot group number data composites, 

introduced in the following six sub-sections. These are plotted in the six panels of figure 1 

and, to enable comparisons, each is compared to the same black line which is the median Rmed 

of all available sequences for each year (which number three in 1650, rising to six by the 

present day).  To compute Rmed, all group numbers have been multiplied by the 12.08 

normalisation factor adopted by Hoyt and Schatten (1998) for RG (see equation 2).     

2.1 The International Sunspot Number Version 1, RISNv1 

This is a composite of sunspot numbers, as defined by equation (1), initially generated by 

Wolf and continued at the Zürich observatory until 1980 and subsequently compiled by SIDC 

(the World Data Center for the production, preservation and dissemination of the international 

sunspot number and the Solar Physics Research department of the Royal Observatory of 

Belgium) until July 2015 when it was replaced by version 2 (see section 2.2).  Like all the 

series, except that by Usoskin et al. (2016) (see section 2.4), the calibration is by daisy-

chaining.  The annual means are shown by the brown line in figure 1(f-i), while figure 1(f-ii) 
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shows the difference between RISNv1 and Rmed.  RISNv1 covers the interval 18182014.  The 

primary station, assumed to have k = 1, was Zürich until 1980 after which the Specola Solare 

Observatory in Locarno was used as the standard.   

2.2 The International Sunspot Number Version 2, RISNv2 

In July 2015, SIDC changed its primary data product to RISNv2, in which many data were re-

calibrated to make a number of corrections to RISNv1 (Clette et al., 2015).   It should be noted 

that this series must be scaled down by a factor 0.6 to be compared to RISNv1 because it was 

decided to dispense with a factor that had been applied in the generation of RISNv1 for 

historical reasons.   The most recent correction is to allow for a drift in the Locarno reference 

station k value.  This drift was found by research aimed at explaining why the relationship 

between the F10.7 solar radio flux and RISNv1 broke down dramatically just after the long and 

low activity minimum between solar cycles 23 and 24 (Johnson, 2011).  The Locarno k-

values were re-assessed using the average of sixteen other stations (out of a total of about 

eighty) that provided near-continuous data over the 32-year interval studied. The results 

showed that the Locarno k-factors had varied between 1.15 in 1987 and 0.85 in 2009 (i.e. by 

15%).  The best evidence for this correction is the large number of sunspot observers that 

vary in the same way with respect to the Locarno data, but we also note that it is also 

supported by tests against ionospheric data (Lockwood et al., 2016a). 

A second major correction is for what has become termed the “Waldmeier discontinuity”.   

(Svalgaard, 2011; Aparicio et al., 2012, Cliver et al., 2013).  This is thought to have been 

caused by the introduction of a weighting scheme for sunspot counts according to their size 

and a change in the procedure used to define a group (including the so-called “evolutionary” 

classification that considers how groups evolve from one day to the next); both changes that 

may have been introduced by the then director of the Zürich observatory, Max Waldmeier, 

(Hockey, 2014) after he took over responsibility for the production of the Wolf sunspot 

number in 1945.  Note that these changes affect the sunspot numbers and the sunspot group 

numbers used to derive them in Zürich, but not necessarily by the same amount.  Note also 

that this discontinuity affects only Zürich data (and datasets calibrated to it) but is not relevant 

to independent data such the data generated at RGO. However, as discussed by Friedli (2016), 

some of these changes might have been made gradually since the group number weighting 
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was partly used by other observers (e.g., Wolfer, Brunner) before Waldmeier took charge of 

the Zürich observatory in 1945.  

The changes made by Waldmeier improved the sunspot number as a metric of solar magnetic 

activity and gave an algorithm that was improved, fixed and better defined.  However, 

Waldmeier would have been unable to apply his new algorithm to much of the prior data 

retrospectively and so it was inevitable that his improvements led to a discontinuity, of some 

magnitude, in the composite series.  Note that the only options open to Waldmeier were either 

to improve the metric or to knowingly continue to use less-than-optimal existing procedures 

to remain fully compatible with prior data.  From a modern perspective, it is easy to think that 

Waldmeier made the wrong choice as we now have other, more specific and less subjective 

solar metrics and observations and we use sunspots mainly to understand long-term 

variations.  However, in 1945 priorities were different because relationships between sunspots 

and factors such as ionospheric plasma concentrations were being discovered and explored 

and hence the requirement was to make sunspot numbers as accurate and representative of 

solar activity as they could be.  Hence Waldmeier made a decision that was appropriate to the 

science of his day.  

By comparison with other long time-series of solar and solar-terrestrial indices, Svalgaard 

(2011) makes a compelling case that this discontinuity is indeed present in the Zürich data 

series at about 1945.   However, there is debate as to how large the correction should be, 

debate that is discussed in section 3 of the present paper.  There is also debate as to whether 

or not the correction is a simple multiplicative factor (i.e. the corrected data should be 

proportional to the uncorrected data and the discontinuity is just a sensitivity change, making 

the corrected sunspot number R = fRR) or if there is also effectively a zero level offset (R = 

fRR + ) or indeed is it non-linear, such that the effect at high and low solar activity is 

different (R = fRR
n
 + ).  The RISNv2 series assumes proportionality and employs a 

multiplicative factor of  fR = 1.18, i.e. values before the discontinuity need increasing by 18% 

to become consistent with modern values (Clette and Lefèvre, 2016). 

There are other calibration debates inherent in RISNv1.  For example, Leussu (2013) studied the 

difference between the data of Schwabe and of Wolf and concluded that RISNv1 should be 

reduced by 20% before 1848. This conclusion is contested by Clette et al (2015).  As this only 

influences the first 3 years of the interval studied here, this issue is not considered further in 
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the current paper.  Another debated inter-calibration is between the data generated by 

Schwabe (which ends in 1867) and by Wolfer (which commences a whole solar cycle later in 

1878). This is addressed in section 5 of the present paper. 

The variation of RISNv2 is shown in mauve in Figure 1(e-i) and its deviation from the median 

Rmed in figure 1(e-ii). 

2.3 The Group Sunspot Number of Hoyt and Schatten, RG 

The group sunspot number, as defined by equation (2), was introduced by Hoyt et al. (1994) 

and Hoyt and Schatten (1998) who generated an intercalibrated series that begins in 1610 and 

has been much used.  For 18751976, RG uses the RGO photo-heliographic sunspot group 

data (Willis et al., 2013a, 2013b).  This has been updated to the present day using the group 

sunspot data generated by the SOON network as the RGO observations ceased in 1976.   The 

version shown in green in Figure 1(d-i) uses the calibration of RGO and SOON data, derived 

by two different statistical techniques by Lockwood et al., (2014a). It also employs some 

corrections to the 17
th

 century data by Vaquero et al. (2011): its deviation from the median 

Rmed is shown in figure 1(d-ii).  With the SOON data added, RG extends from 1610 to the 

present day. 

The RGO data, and hence RG, are fully independent of RISNv1 (using different observations, 

scaling practices and personnel) and are not influenced in any way by the Waldmeier 

discontinuity.  Indeed, for 1918-1976 RG provides a valuable standard for comparisons  

because, uniquely, it can be reproduced because the original RGO photographic plates have 

survived. These raw data can be re-analysed to check the stability of the k ′ factors in the work 

of the RGO observers who made the sunspot group counts.  The plates have been digitized by 

the Mullard Space Science Laboratory in the UK and analysed with an automated scaling 

algorithm which can derive sunspot group areas and numbers (Çakmak, 2014).  This 

automated scaling of  the RGO images reproduces the manually scaled daily sunspot-group 

numbers well, with a correlation of monthly values of over 0.93; however, there are 

differences, as discussed below and demonstrated  by the annual means shown in figure 2 

(from Tlatov and Ershov, 2014).   
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Lockwood et al. (2016c) compared RGO data with deliberately-degraded RGO data to 

demonstrate that the relationship between observers of different visual acuities is, in general, 

non-linear.  Figure 2 demonstrates the good agreement between the RGO dataset and other 

data, once this non-linearity is accounted for.  Parts (a) and (b) of this figure compare annual-

mean group number data from the standard RGO dataset ([NG]RGO, in black) with that from 

Mount Wilson Observatory ([NG]MWO, in blue),  from the Solar Observatory of the National 

Astronomical Observatory of Japan ([NG]NAOJ, in green), and the auto-scaled data from the 

RGO photoheliographic plates ([NG]RGO2, in red).  The MWO data are often given as the 

number of independent groups in 10 month intervals and have been re-calculated here to be 

annual means of daily NG, as for the other data.  In figure 2(a) the data have been scaled 

linearly over the interval 1920-1945. It can be seen that agreement over this interval is very 

good but that this linear scaling leads to a peak of [NG]MWO in solar cycle 19 (around 1958) 

that is larger than the peak in [NG]RGO and much larger in the auto-scaled RGO data, 

[NG]RGO2.  This non-linearity is investigated in parts (c), (d) and (e) of figure 2. Figure 2(c) is 

a scatter plot [NG]NAOJ as a function of  [NG]RGO.  A linear fit of the RGO and NAOJ data over 

the full period of their overlap gives an overall  k  value of 1.050, if the RGO data are taken 

to define k  = 1. For these data, the plot is close to linear and the best fit regression line shown 

passes through the origin.  Hence in this case, the RGO and NAOJ data are similar enough 

that proportionality does apply.  For the MWO data, the corresponding k  value is 0.916, and 

the relationship has become slightly nonlinear. The line is the best-fit 2
nd

-order polynomial. 

Note that the regression no longer passes through the origin but MWO is detecting spots at 

some of the times when RGO is not; i.e., [NG]MWO > 0 when [NG]RGO = 0, consistent with 

MWO being a higher-acuity observer than RGO (see Lockwood et al., 2016c).  This is even 

more apparent for the rescaled RGO data which finds more groups than the original scaling of 

the RGO data (k  = 0.882) because it uses a less conservative definition of what constitutes a 

sunspot group.  Both the non-linearity and the non-zero intercept are even more pronounced 

in this case.  Taking the 2
nd

 -order polynomial scaling gives the variations shown in figure 

2(b).  It can be seen that allowing for the non-linearity makes the variations of all these 

datasets very similar to the original RGO data.  This highlights the importance of allowing for 

the non-linearity of the relationship of data from different acuity observers.  For weaker solar 

cycles, linearity is a good approximation, but figure 2 shows that, for example, the peak of 

cycle 19 is, relatively, much greater for high-acuity observers than for lower-acuity ones 

because of the non-linear effect. 
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However, it has been suggested that the RGO data suffer from a data-quality problem before 

1885 (Clette et al., 2014; Cliver and Ling, 2016): this cannot be verified or disproved in the 

same manner because the photographic RGO plates before 1918 have been lost (thought to 

have been destroyed during World War I).  Because calibrations were daisy-chained by Hoyt 

and Schatten (1998), such an error would influence all earlier values of RG. 

2.4 The Group Sunspot Number of Usoskin et al., RUEA 

As discussed above, this reconstruction is the only one to avoid using both daisy-chaining and 

regressions.  Because the standard used to calibrate all data is the RGO data for 19001976, 

and because the SOON data are added to the RGO data using the intercalibration of 

Lockwood et al. (2014),  RUEA is the same as RG after 1900. Note that RUEA, like RG, has no 

correction for the Waldmeier discontinuity, nor should it as it is not influenced by any of the 

factors that gave rise to that putative discontinuity.  The variation of RUEA is shown in orange 

in Figure 1(c-i) and its deviation from the median Rmed in figure 1(c-ii). 

2.5 The “Backbone” Group Sunspot Number, RBB 

Another new group number reconstruction has recently published by Svalgaard and Schatten 

(2016) and covers the interval from 1610 to the present day. This is termed the “backbone” 

reconstruction RBB because the method used is to combine data from various observers into a 

“backbone” segment and then relate the backbones by regression of annual means. Ostensibly 

this reduces the number of regressions but, in fact, because regressions (and/or ratios) are 

often used to extend each backbone and give overlap with the next, this is not actually the 

case.  The authors claim to have avoided daisy-chaining but because there is no method 

presented to relate early and modern data without relating both to data taken in the interim, 

this is patently not the case.  In constructing RBB, the quality of data was assessed by its 

correlation to the key data sequence on which each backbone is based: however correlation is 

an inappropriate metric in this context as high correlation can persist even if there are 

relatively large calibration drifts.   Lockwood et al. (2016a) find there is a discontinuity in 

RBB at the Waldmeier  discontinuity implying that the Zürich data, or Zürich procedures (or 

an over-correction for them), have somehow entered into the construction of RBB.  A 

particular concern about the regressions used in constructing RBB is that not only is linearity 

assumed of the various group number estimates assumed, but also proportionality is assumed.  
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Lockwood et al. (2016c) point out that there is no advantage to these assumptions, and that 

they give unreliable regressions (mainly because of non-normal error distributions).    The 

variation of RBB is shown in red in Figure 1(b-i) and its deviation from the median Rmed in 

figure 1(b-ii). 

2.6 The “Corrected” Sunspot Number, RC 

Lockwood et al. (2014a) generated a simple “corrected” version of RISNv1 by using a 

correction for the Waldmeier discontinuity of 11.6% which they derived from two 

independent statistical techniques using the RGO data.  Clette and Lefèvre (2016) present 

reasons why this correction factor may be too low and this is discussed further in section 3 of 

the present paper.  Lockwood et al. (2014a) also adopted the Leussu (2013) correction to the 

Wolf data and extended the series back to before 1818 using a daisy-chained regression and 

appending 1.3RG for 1610-1818, the factor 1.3 being derived by a regression for 1818-1847.  

The variation of RC is shown in blue in Figure 1(a-i) and its deviation from the median Rmed in 

figure 1(a-ii).  

2.7 Comparison of Composites 

Figure 1 allows comparison of these data series. (Note that group numbers RBB and RUEA have 

been multiplied by 12.08, as used to generate RG).  The RC variation in figure 1(a) is close to 

median Rmed and so the comparisons with Rmed in the other panels happen to be roughly the 

same as comparisons with RC.   

RBB (figure 1b) is the most radically different of all the composites, giving consistently larger 

values before 1947 and consistently smaller ones after it. The fractional differences to Rmed 

generally increase as one goes back in time.  The changes combine to make previous maxima 

in RBB much more similar to the recent ones so that, whereas all other composites show a 

fluctuating rise from the Maunder minimum to the recent grand maximum, RBB shows three 

roughly equal such grand maxima since the Maunder minimum. Furthermore, the variation in 

RBB has a bistable appearance and so has implications for dynamo models as it suggests that 

solar activity predominantly exists in either the grand maximum state or the grand minimum 

state, rather than varying continuously between the two.  Lockwood et al. (2016b) show RBB 

becomes increasingly larger than other solar-terrestrial indicators as one goes back in time; 
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for example, compared with the observed occurrence of terrestrial aurora at lower magnetic 

latitudes. This is true at both sunspot minimum and sunspot maximum.  Physics-based 

comparisons with cosmogenic isotopes 
14

C, 
10

Be and 
44

Ti also all show that RBB becomes 

increasingly too large as one goes back in time (Asvestari et al., 2016). Of these tests, that 

against 
44

Ti abundances is particularly telling because this isotope is measured in meteorites 

and accumulates slowly as the meteorite is processed on its journey to Earth through the solar 

system. As a result, the observed 
44

Ti is an indicator of the time-integral of solar modulation 

of the cosmic rays that generate it and so is a sensitive indicator of the long-term changes in 

solar activity.     

The RUEA variation (figure 1c) shows some differences, in both senses, to Rmed. The original 

group number RG variation (figure 1d) is consistently lower than Rmed and is the lowest of all 

the values in the earlier years.   RISNv1 and RISNv2 are both similar to Rmed, the major difference 

being the effect of allowance (or lack of it) for the Waldmeier discontinuity, with RISNv1 

consistently above Rmed after 1947 (figure 1f) whereas RISNv2 is consistently smaller than Rmed 

in this interval (figure 1e).   

3. THE WALDMEIER DISCONTINUITY 

As discussed above, there is now considerable agreement that the Waldmeier discontinuity is 

real feature of RISNv1 and that it requires correction in that data series.  However there has 

been debate about how big that correction should be.  The smallest correction was derived by 

Friedli (2016) who finds a correction of just 5%, which applies only to data from 1946-1980.  

The largest proposed correction was by Svalgaard (2011) who argued that before 1945 

sunspot numbers need to be increased by a correction factor of 20%, but it is not clear how 

this value was arrived at beyond visually inspecting a plot of the temporal variation of the 

ratio RG/R (neglecting low values of R below an arbitrarily-chosen threshold), where RG are 

the RGO group numbers which were not influenced by Waldmeier’s changes to procedures at 

the Zürich observatory.  This assumes that the correction required is purely multiplicative, 

such that before the discontinuity the corrected value R  = fRR (and Svalgaard’s estimate is fR 

= 1.2) is required to make the pre-discontinuity values consistent with modern ones (i.e., 

proportionality is assumed). Because the use of ratios causes an asymmetric distribution of 

errors and omits sunspot minimum values according to an arbitrarily-chose threshold, 

Lockwood et al. (2014a) devised two different methods to quantify the discontinuity which 



14 
 

give answers that agree very closely, but uncertainties are smaller for the second (so it 

provides the more stringent test). The first method studies the effect of varying an imposed 

discontinuity correction factor fR on the correlation between the sunspot data series tested R 

and a number of corresponding test sequences (including the RGO NG values).  The second, 

more stringent, test used fit residuals when R is fitted to the same test data sequences: 

Lockwood et al. (2014a) then studied the differences between the mean fit residuals before 

and after the putative Waldmeier discontinuity and quantified the probability of any one 

correction factor fR with statistical tests.  Because both the sample sizes and the variances are 

not the same for the two data subsets (before and after the putative discontinuity), these 

authors used Welch’s t-test to evaluate the probability p-values of the difference between the 

mean fit residuals for before and after the putative discontinuity. This two-sample t-test is a 

parametric test that compares two independent data samples (Welch, 1947). It was not 

assumed that the two data samples are from populations with equal variances, so the test 

statistic under the null hypothesis has an approximate Student’s t-distribution with a number 

of degrees of freedom given by Satterthwaite’s approximation (Satterthwaite, 1946). The 

distributions of residuals were shown to be close to Gaussian and so, as expected, application 

of non-parametric tests (specifically, the Mann–Whitney U (Wilcoxon) test of the medians 

and the Kolmogorov–Smirnov test of the overall distributions) gave very similar results. 

From this quantitative comparison with the RGO RG data, and assuming proportionality, 

Lockwood et al. (2014a) derived an 11.6% correction for RISNv1 with an uncertainty range 

8.1–14.8% at the 2σ level.  The probability of the correction needed being as large as 20%, as 

advocated by Svalgaard (2011), was found to be 1.6×10
5

.   

Clette and Lefèvre (2016) make the valid point that there are other factors which may have 

influenced the correction factor derived by Lockwood et al (2014a).  The first factor is a 

putative drift in RGO NG values before 1885 (Cliver and Ling, 2016) which is discussed 

further in section 5.1 of this paper. This is a relevant factor for the Lockwood et al. (2014a) 

paper as they used all the RGO data (from 1875), but not for Lockwood et al. (2016a) as they 

only used data for after 1932.  The second potential factor is the precise date of the 

discontinuity, which is not known because Waldmeier’s documentation is not clear when the 

changes were actually implemented.  As discussed by Friedli (2016), the weighting of sunspot 

groups according to their size might have been implemented (at least partly) by Wolfer and 

his successors in the beginning of the 20th century. Accordingly, some of the change might 

be gradual and intermittent. Clette and Lefèvre (2016) make use of means of the ratio R/RG to 
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define the date of the discontinuity, something that was avoided by Lockwood et al. (2014a) 

because the error in this ratio tends to infinity when RG tends to zero and RG has a minimum in 

19441945, close to the putative discontinuity and any changes would naturally become more 

apparent as sunspots began to rise in the next cycle.  From the R/RG ratio, Clette and Lefèvre 

(2016) place the discontinuity in 1946, although they agree that there is some documentary 

evidence that at least some of the new procedures that are thought to be the cause of the 

discontinuity were in use earlier than this date.   Clette and Lefèvre (2016) analyse the effects 

of both the start date of the comparison and the date of the discontinuity assumed for the 

RISNv1 correction derived by the Lockwood et al (2014a). They reproduced the Lockwood et 

al. (2014a) values when using the same start and discontinuity dates;  however, they found 

that the correction could be as large as 15.8% for other values of these dates, which is closer 

to the 18% actually employed in generating RISNv2.  Clette and Lefèvre (2016) also report on a 

study of the inflation caused in a repeat analysis of modern data by adopting Waldmeier’s 

procedures, compared to the results for prior procedures.  However, application of such 

factors assumes knowledge about precisely what procedure was in use and when, and 

assumes there are no other factors. Also this analysis cannot be used outside the range of the 

test data as the effect was found to vary non-linearly with the level of solar activity.  Hence 

calibration against other simultaneous data remains the most satisfactory way to evaluate the 

discontinuity.   

Lockwood et al. (2016a) removed any possibility of that early RGO data were having an 

effect by repeating the study using only data from 1932 onwards (a date chosen to match 

available ionospheric data) and found a correction factor for RISNv1 of 13.6% using RGO data 

(and a well-defined value of 12.1% using the ionospheric data).  However, this analysis did 

not take into account the potential effect of the date of the discontinuity. 

At this point it should be noted that the analysis of Clette and Lefèvre (2016) applies to 

sunspot numbers and, as pointed out by Lockwood et al. (2016a), the correction needed for 

the group numbers generated by Zürich (as part of their derivation of sunspot numbers) will 

not be the same as that needed for sunspot numbers and that no correction is needed for RGO, 

or other non-Zürich group numbers.  Note that over the 20
th

 century there has been a drift in 

the lifetimes of spot groups, giving an increase in the number of recurrent groups (groups that 

are sufficiently long-lived to be seen for two or more traversals of the solar disc as seen from 
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Earth) (Henwood et al., 2010). This has the potential to have influenced group numbers 

derived using different classification schemes in different ways.   

Lockwood et al. (2016d) have refined the fit residual comparison procedure yet further.  They 

initially take all available data between 1920 and 1976 (thereby avoiding any effects of both 

the putative RGO calibration drift and the Locarno error) but omit all data between 1943 and 

1949, a six-year interval centred on the optimum date for the discontinuity found by Clette 

and Lefèvre (2016).  Assuming the bulk of the discontinuity lies within this six-year interval, 

its precise date is no longer a factor.  As also pointed out by Clette and Lefèvre (2016), the 

longer the intervals used in the test, the greater is the chance that other errors and 

discontinuities in either the test or the tested data become a factor.  On the other hand, if the 

intervals used are too short, then the uncertainties inherent in the method (indeed in all such 

comparison methods) get larger because of the geophysical noise variability in the data series.  

To find the optimum interval, Lockwood et al. (2016d) used a basket of test data series and 

varied the duration of the “before” and “after” intervals until the net uncertainty was 

minimised.  They also used 2
nd

-order polynomial fits so that assumptions of both 

proportionality and linearity were avoided.  The analysis was repeated with 3
nd

-order 

polynomial fits but some of the fit-residual Q-Q plots began to show non-Gaussian 

distribution tails and so these fits were not used further.   To reduce the number of variables 

in this parametric study, Lockwood et al. (2016d) required the “before” interval and the 

“after” intervals be of the same duration. Minimum uncertainty (i.e. optimum agreement 

between the results for the various test data) was obtained using “before” and “after” intervals 

that were 11 years in duration and hence the “before” data were from 19321943 and the 

“after” date from 19491960.   In addition, Lockwood et al. (2016d)  did not assume that the 

correction needed is just a multiplicative factor or even linear but allowed for both a zero-

level offset  and non-linearity in R, as well as a sensitivity change (hence they evaluate the 

corrected series R = fR R
n 
+  for “before” interval that is consistent with the “after” interval).     

Lockwood et al. (2016d) used a wide variety of test data in addition to the RGO group 

number [NG]RGO, namely:  total sunspot area AG from the RGO dataset; the CaK index from 

the Mount Wilson spectroheliograms in Ca II K ion line; the sunspot group number from the 

Mount Wilson sunspot drawings, [NG]MWO; and the ionospheric F2 region critical frequencies 

measured by the Slough ionosonde, foF2.   They tested all six of the sunspot series discussed 

in the introduction using these five test series.  By multiplying the probability distribution 
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functions for the five tests together, Lockwood et al. (2016d) obtain the optimum correction 

for each sunspot data series for around the Waldmeier discontinuity, a procedure that has the 

advantage of weighting the overall estimate according to how well-constrained each 

individual value is.  Note that for all tested series, the narrowest pdf (and hence the most well-

defined value, thereby automatically gaining most weighting) was the RGO group numbers.   

Lockwood et al. (2016d) estimate the correction factors needed for the six composites 

discussed here.  

For RISNv2 and RUEA (which equals RG/12.08 over the interval studied) it was found that the 

exponent n was near unity and the offset  was very small. Thus the corrections required were 

approximately linear.  However, this was not found to be true for RISNv1, RBB and RC. To 

quantify the magnitude of the discontinuity in each tested data sequence, Lockwood et al. 

(2016d) evaluated the percentage change over the before interval  19321943 (approximately 

solar cycle 17). Note however, in the case of RISNv1, RBB and RC,  the non-linearity of the 

correction required means that this percentage change cannot simply be applied to all the 

prior solar cycles. 

For (RG/12.08) and RUEA, Lockwood et al. (2016d) found the net correction required to the 

“before” interval is +0.005%  0.05%.  This is no more than a test of the procedure as both 

(RG/12.08) and RUEA are the RGO group number data for both the before and after intervals, 

which is the dominant test series and hence the correction factor should indeed be zero.  The 

uncertainty arises from the effect of the other test datasets used, in addition to RGO group 

numbers, and the low value of this uncertainty stresses the level of agreement between the 

test datasets.   

For RISNv1, Lockwood et al. (2016d) found the net correction required to the “before” interval 

is +12.3%  3.4%. This is larger than the 11.9% used by Lockwood et al. (2014a) but smaller 

than the 15.8% derived by Clette and Lefèvre (2016); however, it almost agrees with both to 

within the 2 uncertainties. The study also finds that the changes introduce by Waldmeier had 

a somewhat non-linear effect as the optimum exponent n is 1.088. 

The above correction to RISNv1 is significantly smaller than the 18% used in the derivation of 

RISNv2. This is consistent with the correction for RISNv2 in the “before” interval found by 

Lockwood et al. (2016d) which is 3.8%  2.9%. This is not quite zero, to within the derived 
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2 uncertainties.  Hence the best estimate from this study is that RISNv2 is based on a slight 

over-correction for the Waldmeier discontinuity.   Note however, that the non-linearity of the 

discontinuity in RISNv1 (i.e. the fact that different group number levels are affected differently, 

making n different from unity) has been successfully removed in RISNv2 as the optimum n in 

this case was found to be 0.997.  

For RC, the correction for the “before” interval is +0.4%  3.0%.  Note, however, that the 

non-linearity inherent in RISNv1 was found to persist (n = 1.095) and the simple corrections 

used in RC means that it carries forward other errors in RISNv1, such as the Locarno calibration 

drift. Hence, although it matches cycle 17 slightly better than does RISNv2, in several ways it is 

a less satisfactory correction.   

For RBB, Lockwood et al. (2016d) found the net correction required to the “before” interval is 

5.7%  2.2%, i.e. there is, effectively, an over-correction for the Waldmeier discontinuity 

and by more than that for RISNv2.  Furthermore, the non-linear behaviour has not been 

removed (n = 1.093).   

4. COMPARISON WITH OPEN SOLAR FLUX RECONSTRUCTIONS 

Observations of geomagnetic activity were first made in 1722 by George Graham in London. 

In 1798 Alexander von Humboldt made observations from a number of locations, work that 

sparked the interest of his friend, Carl Friedrich Gauss, who developed the first reliable and 

stable magnetometer and so established the first magnetic observatory in Göttingen in 1832. 

Although we have fragments of  data from before1845, Lockwood et al. (2013a; b; 2014c; d) 

considered that only after this date can we compile (for the time being at least) homogeneous 

and well-calibrated geomagnetic data sequences.  This is true for both hourly means of the 

field components and for “range” indices, based on the range of variation of components 

within 3-hour intervals.  

The big advantage of geomagnetic observations is that they are instrumental measurements 

that, unlike sunspot numbers and sunspot group numbers, involve no subjective decisions by 

the observer. Because they are closely related to sunspot numbers they offer a potential way 

to evaluate and check sunspot number records (e.g., Svalgaard and Cliver, 2007).  The 

method first used by Wolf was to look at the quiet day diurnal variation in geomagnetic 
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activity, now understood to be due to thermally driven thermospheric winds but varying 

mainly with the ionospheric conductivity, and hence the ionising EUV flux from the Sun 

(Brekke et al., 1970).  As the EUV flux has a close correlation with sunspot numbers, this 

could provide a means of calibration of sunspot numbers. However, the driving 

thermospheric winds also vary with sunspot numbers, but with a different dependence to the 

conductivities (e.g., Aruliah et al., 1996) and also show long-term trends that are not of solar 

origin (Bremer et al., 1997).  In addition, the secular variation in the geomagnetic field 

influences ionospheric conductivities and hence the quiet-day magnetic variations (Cnossen 

and Richmond, 2013; de Haro Barbas, 2013). These factors give variability in the relationship 

between sunspots and the quiet-day geomagnetic variation that is unknown, which, although 

small, is still sufficient to make this calibration unreliable. For example, Svalgaard and Cliver 

(2007) find that sunspot numbers and the quiet day geomagnetic variation have a correlation 

coefficient of r = 0.985 with the international sunspot number RISNv1 which leaves a 3% 

variation that is unexplained (r
2
 = 0.97) –in addition RISNv1 is now known to contain errors.  

Tests show that even this very high r could disguise a drift in RISNv1 of up to 0.1 yr
-1

 which 

would amount to 50% of the mean value over the interval between 1750 and the present.  

Hence correlation is not an appropriate metric for assessing the potential of a proxy dataset to 

provide calibration.     

An alternative opportunity to use geomagnetic data in this context arises from the facts that 

the hourly mean data depend primarily on the near-Earth interplanetary magnetic field (IMF) 

and the range indices depend on both the IMF and the solar wind speed (see discussion and 

explanation in Lockwood, 2013).  This allows reconstruction of the “open solar flux” (OSF, 

also called the “heliospheric source flux”: here we used the signed OSF, denoted by FS) from 

combinations of hourly mean and range geomagnetic data (Lockwood et al., 2014d).  OSF 

provides a good test for sunspot numbers because it is, like sunspot number, a global indicator 

of solar magnetism, rather than a local heliospheric parameter such as the near-Earth solar 

wind speed and IMF (although, as discussed by Owens et al. (2016), there is still a close 

relationship between sunspot number and near-Earth interplanetary magnetic field ).  In 

addition, the variation of FS is determined by a continuity equation in which the source term 

has been expressed in terms of sunspot numbers by Solanki et al. (2000) who used it to model 

the FS variation reconstructed from the aa geomagnetic index by Lockwood et al. (1999).  

The model has evolved subsequently for various applications with refinements to both the 

production and loss rate formulations used (Lockwood, 2003; Owens and Crooker, 2006, 
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2007; Vieira and Solanki, 2010; Schwadron et al., 2010; Owens and Lockwood, 2012; 

Goelzer et al., 2013; Lockwood and Owens, 2014). A development used here are cycle-

dependent OSF loss rates:  from theory and observations of coronal inflows (Sheeley et al., 

2001), loss rates that depend on the tilt of the heliospheric current sheet were predicted by 

Owens et al. (2011).  Owens and Lockwood (2012) showed that the implied variation of the 

OSF loss rate with the phase of the solar cycle arose naturally for the suggested dependence 

of the OSF source on sunspot numbers and the reconstructions of OSF from geomagnetic 

activity data. 

In parallel to this modelling development, reconstructions of OSF from geomagnetic activity 

indices have been refined (see review by Lockwood, 2013). The most sophisticated and 

robust is that by Lockwood et al. (2014d) who used four pairings of geomagnetic indices and 

Monte Carlo techniques to estimate all uncertainties and combine the results from the four 

pairings. Recent work reveals the great extent to which this gives robustness against possible 

calibration errors in any one geomagnetic data series (Lockwood et al., 2016e). This OSF 

reconstruction allows for the effect of the solar wind speed on the Parker spiral garden hose 

angle, and for the effect of “folded flux” that threads the heliocentric sphere of radius 1AU 

more than once, thereby making the flux through that surface greater than the OSF by an 

amount termed the “excess flux” (Lockwood and Owens, 2009).   

The OSF reconstruction from geomagnetic activity data is also completely independent of the 

sunspot data. There is one solar cycle for which this statement needs some clarification. 

Lockwood et al (2013a) used the early Helsinki geomagnetic data to extend the 

reconstructions back to 1845 and Svalgaard (2014) used sunspot numbers to identify a 

problem with the calibration of the Helsinki data in the years 1866–1874.5 (much of solar 

cycle 13). Lockwood et al. (2014c) re-evaluated the Helsinki data using simultaneous data 

from the nearby St-Petersburg magnetometer and a study of the modern-day data from the 

nearby Nurmijarvi station. The results confirm the conclusion of Svalgaard (2014) but it is 

important to stress that the correction of the Helsinki data for solar cycle 11 made by 

Lockwood et al (2014c), and subsequently used by Lockwood et al (2014d), was based 

entirely on magnetometer data and did not use sunspot numbers, thereby maintaining the 

independence of the two datasets.  The geomagnetic OSF reconstruction provides a better test 

of sunspot numbers than the quiet day geomagnetic variation because the uncertainties in the 

long-term drift in the relationship between the two are understood and have been quantified.   
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The formulation of the OSF model used here was a follows.  As used by Owens and Crooker 

(2006), the OSF source term, S, is assumed to follow the CME rate, on average.  The best fit 

between observed CME rate (e.g., Yashiro et al., 2004) and R gives S =  (0.234 R 
0.540

  

0.00153) Wb per Carrington rotation, where  = 10
12

 Wb is the average closed flux carried by 

a CME (Lynch et al., 2005; Owens, 2008). For each sunspot record, the loss term, L, is 

computed by subtracting S from the rate of change of geomagnetic OSF estimates over 1845-

present. For all sunspot records, the fractional L shows a strong solar cycle variation, but 

remarkably little cycle-to-cycle variation (Owens and Lockwood, 2012), in close agreement 

with the heliospheric current sheet (HCS) tilt variation, as expected from theory (Sheeley et 

al., 2001; Owens et al., 2011). From the L time series, we calculate the average fractional L as 

a function of solar cycle phase, which is used with S to compute sunspot-based estimates of 

OSF. The scatter between the sunspot- and geomagnetic-based estimates of OSF over 1845-

present are used to quantify the uncertainty in R-based estimate (i.e., the geomagnetic OSF 

estimate is assumed to represent the ground truth). 

Figure 3 shows the OSF model results for the sunspot number and sunspot group number 

sequences shown in figure 1, using the same colours.  In each panel, the black line is the 

geomagnetic reconstruction of Lockwood et al. (2014a) with the 1 uncertainty band shown 

in grey. The coloured line is the best fit for the sunspot number/sunspot group number used 

and the lightly coloured area is the 1 uncertainty for that fit.  The darker coloured region is 

where the two uncertainty bands overlap. It can be seen that the model captures the main 

features (the decadal-scale solar cycle variations and centennial-scale drifts) very well for all 

of the input sunspot data sequences. This shows that the model is not relying on a feature of 

any one of the sunspot number sequences.  The one exception to these statements is solar 

cycle 20, for which all of the sunspot sequences fail to reproduce the flat-topped appearance 

of the OSF variation. It is tempting to ascribe this to an error in the geomagnetic OSF 

reconstruction, however, this is not the case as solar cycle 20 is covered by in-situ 

interplanetary observations and these match the geomagnetic reconstruction very well 

(Lockwood et al., 2014a).  A possible explanation may lie in the effect of the sunspot tilt 

angle which quantifies the difference in latitude of the two footpoints of the associated 

bipolar magnetic region field loops. This influences the speed with which they separate under 

differential rotation and hence the upward evolution of the loop through the corona (MacKay 

et al., 2002, MacKay and Lockwood, 2002). Using a flux transport model with solar-cycle 
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averages of observed sunspot tilt angles, Cameron et al. (2010) are able to reproduce the OSF 

in cycle 20 very well and average tilt angles are considerably lower during the exceptionally 

strong preceding cycle (number 19) than for all other cycles. Because sunspot tilt angle data 

are only available continuously after 1918, their potential effects on the source rate S are not 

allowed for in the model used here. 

Table 1 gives the fit parameters in each case: r is the correlation coefficient, Sr the 

significance of r (allowing for the persistence in the data and comparing against the AR1 

noise model),  is the r.m.s. difference between the reconstructed and fitted OSF values, P is 

the r.m.s. difference between the reconstructed and fitted OSF values for three year intervals 

around the solar-cycle maxima in OSF (peaks), T is the r.m.s. difference between the 

reconstructed and fitted OSF values for three year intervals around the solar-cycle minima in 

OSF (troughs). There are no statistically significant differences between these fits.  The best 

fit, according to several metrics, is for RISNv2 which shows an improvement over the fit for 

RISNv1 in all metrics. The group numbers do not fare quite as well, which is to be expected as 

sunspot group number is unlikely to be as good a proxy of total solar magnetic flux 

emergence through the photosphere and coronal source surface as sunspot numbers. Of these, 

the fits for RUEA and RBB are very slightly better than that RG.  However none of these 

differences are significant at even the 1 level.  Looking closely at figure 3, some qualitative 

differences between the fits do become apparent.  

Figure 3(a) shows the results for RC (in blue). The modelled and reconstructed OSF sequences 

are very similar except for cycle 9 (the first one in the sequence) when the value derived from 

RC is too low.  As discussed below, this occurs for several of the sunspot data sequences. A 

major success is that in addition to the long-term variation, this fit matches the solar cycle 

amplitudes, reaching down to the minima and up to the maxima. The is no change detected 

across Waldmeier discontinuity which one might expect to see if the correction used was 

grossly in error.  

Figure 3(b) shows the results for RBB (in red). Again, this yields a larger OSF in cycle 9 but 

elsewhere the fits are not as close as for RC in that RBB shows a tendency to underestimate 

solar cycle amplitudes and there is a strong suggestion of over-correction for the Waldmeier 

discontinuity with peak values being subsequently too low.  
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Figure 3(c) shows the results for RUEA (in orange).  Unlike RC and RBB, this reproduces the 

OSF variation in solar cycle 9 well, however it does underestimate them in cycles 10 and 11 

and the amplitudes of cycles 14, 15 and 16 are very slightly overestimated.  Figure 2(d) 

shows the results for RG (in green), which are very similar to those for RUEA. 

Figure 3(e) shows the results for RISNv2 (in mauve).  There may be a slight tendency to 

underestimate peak values and solar cycle amplitudes after the Waldmeier discontinuity, but 

it is not as marked as for RBB.    

Figure 3(f) shows the results for RISNv1 (in brown).  There is a marked tendency to 

overestimate cycle peaks after 1947, consistent with the Waldmeier discontinuity. Note that 

the tendency for over-estimation of modern cycles using RISNv1 is as great as the tendency for 

under-estimation in the same cycles for RBB.   

5. OBSERVER SCALING FACTORS INHERENT IN RECONSTRUCTIONS 

The k factors at a given level of solar activity used in generating a group numbers are usually 

assigned to an observer and assumed to stay constant over the duration of his/her observing 

lifetime.  However, a number of factors may vary on a range of timescales for a given 

observer: these include atmospheric conditions, local site conditions (for example via stray 

light), equipment used, the algorithms, metrics and procedures that the observer adopted to 

help make the subjective decision as to what constitutes a sunspot group and even his/her 

eyesight.  These factors can introduce long-term drift as well as year-to-year variability in the 

data from each observer.  We can assess the drifts and variability for each observer that are 

required by each of the reconstructed group number composites.  We do this by studying the 

variations of annual observer k  factors, ka = Rg/<NG>,  inherent in a generic sunspot group 

number reconstruction Rg and where <NG> is the annual mean of the raw sunspot group 

number count by the observer in question.  In this section we consider the implications of 

both RBB and RUEA for observers active in the second half of the 20
th

 century.   

Figure 4 plots annual means of the group numbers RG/12.08 (in green – note the normalising 

factor in equation (2) has been cancelled), RBB (in red), and RUEA (in orange).  The black line 

is the “Schwabe backbone”, RBBS, generated by Svalgaard and Schatten (2016) which they 

multiply by 1.48 to obtain RBB, that being the factor that they derive from linear regression 
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(assuming proportionality) between their Schwabe and Wolfer backbones over 18611883.   

It can be seen that there is a significant difference between RBB and RUEA before 1885 and that 

this is mainly explained by this calibration of the two backbones because RBBS = RBB/1.48 (in 

black) is very similar indeed to RUEA (in orange).  An additional factor is a putative drift in the 

RGO group number data calibration which has been proposed by Cliver and Ling (2016) to 

be present. The factors combine to make RBB considerably larger than both RUEA and 

RG/12.08 and they are investigated in this section.  

5.1 The drift in early RGO data 

The top panels of figure 5 show the annual ka factors for various observers that are inherent 

in (a) RBB and (b) RUEA.   Ideally, each observer would not vary in data quality and give ka 

points that lie along horizontal lines (i.e. ka is a constant, k , at all times). Noise (interannual 

variability)  can be averaged out by taking a mean for that observer over several years (i.e. k  

= <ka>), but trends in ka mean that either the observer’s data quality changed over time or 

that the reconstructed group number used to compute ka is in error. This is significant 

because if several observers’ ka values show the same trend, the common denominator is the 

reconstructed group number which would then be inferred to be in error.   Figure 5 shows that 

both RBB and RUEA give observers’ ka values that reveal, in general, both year-to-year 

variability and longer-term drifts.  

At sunspot minima (the joins between grey and white vertical bands in figure 5), large values 

of ka are often seen. This means that the reconstructed composite is not reaching down to as 

low minimum values as the observations and is a consequence of the asymmetric 

uncertainties in taking ratios which become large at sunspot minimum.  This occurs for RUEA 

around 1890 (the minimum between solar cycles 12 and 13) and for both RBB and RUEA 

around 1879 (the minimum between solar cycles 11 and 12).  This does not mean the 

reconstructions are incorrect at these minima, but a low acuity observer could be observing 

proportionally fewer spot groups at sunspot minimum, as discussed by Lockwood et al. 

(2016c).  Indeed the realisation by Wolf (1873) that k and k  factors depend on the level of 

solar activity tell us that we should, in general, expect this behaviour. 
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Looking at the averages of ka for either reconstruction, it is clear that the reconstruction csll 

for different observers have different k  factors. We here normalise the ka values by dividing 

by the mean for a reference period. To avoid the effect of the large asymmetric errors at 

sunspot minimum where here use the interval 18831888 for that reference period, which 

spans the approximate date of 1885 for the putative discontinuity in the RGO data, as defined 

by Cliver and Ling (2016). The black dots show the results for all data excepting the RGO 

data, the yellow dots show the RGO data.  The red histogram gives the mean for all the black 

dots (i.e., excluding the RGO data).  Using RBB, the calibration drift noted by Cliver and Ling 

(2016) is seen as the increasing difference between the red histogram and the yellow dots as 

one goes back in time. Both the red histogram and the yellow dots show greater variability for 

RUEA than for RBB, but no great importance should be placed on this as it relates to very small 

differences at sunspot minimum. However, it is significant that the RGO data and the mean of 

the other data have very similar variations after about 1885, except that in both the lower 

panels of figure 5 we seen that the RGO data are a bit lower than the mean of the observers 

data for 18921895 (inclusive).  Cliver and Ling (2016) state that the onset of the 

discontinuity in the RGO data (as we go back in time) is about 1885 but figure 5 shows that 

RGO values remain close to the mean of the available observers for 1882-1885 and only are 

too small for 18751881. Even then, the 1881 value is not significantly low (it is within the 

spread of other observers) and the 1879 and 1880 values are at sunspot minimum and so are 

exaggerated by taking ratios.  Hence we agree with Cliver and Ling’s (2016) conclusion that 

the earliest RGO data are too low; however, the problem is largely confined to the first three 

years of the data series (18751877, inclusive) in the declining phase of solar cycle 11.  We 

also note that a second period, not mentioned by Cliver and Ling, when the RGO values are 

systematically too low compared to other observers exists in the years 18921895.  Looking 

at the mean values given by the red histograms, for RBB they increase slightly but 

systematically with decreasing time from unity in 1882 to 1.1 in 1874.  Thus although the 

drift in RGO calibration appears to be real, it is exaggerated in comparisons with RBB by a 

10% drift in RBB, relative to the mean of the basket of available observers. Looking in the 

green, red and blue points in the top panel of figure 5(a) at this time we can see that this drift 

is also revealed by comparison with the data from Wolfer, Wolf and Schmidt (respectively) 

but not in the data from Moncalieri and Tacchini (black and light grey dots, respectively, 

which remain at a near constant ka) and the Spörer data (in orange, for which ka actually 

varies in the opposite sense).  In the corresponding figure for RUEA (figure 5b) all these data 
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series remain more constant and the 18751878 values are within the range of variations seen 

in previous years and this is even true for the Spörer data, except for the year 1876. The 

increase in RBB, relative to the average of a basket of observers, in the first few years of the 

RGO data is critical to the RBB data series because of the daisy-chaining method used: before 

1883 is the overlap period used to calibrate the Schwabe and Wolfer backbones, which means 

this drift affects all previous data. Note that no RGO for before 1900 were used in the 

construction of RUEA.  

5.2  Intercalibration of the data of Schwabe and Wolfer 

A key intercalibration for daisy-chained composites (i.e., all but RUEA) within the interval 

studied here is that between the data of Schwabe and Wolfer, as these data form key parts of 

all constructions of a centennial-scale sunspot activity index.  The Schwabe data cover 1826 

to 1867 whereas the Wolfer data cover 1878 to 1928.  In the construction of RBB, the Schwabe 

data are extended to later times, and the Wolfer data extended to earlier times, using data 

from other observers to generate the “Schwabe backbone” and “Wolfer backbone” 

respectively. Note that the same data are used to extend both backbones.  The Schwabe 

backbone is then re-calibrated to the Wolfer backbone using linear regression (also assuming 

proportionality) over the interval 18611883. 

Part (b) of figure 4 shows the interval 18741920 in more detail. This includes the interval 

18741885 for which the RGO data calibration has been questioned (Cliver and Ling, 2016) 

and which, as discussed above, has an effect on the calibration of all data for earlier times if 

daisy-chaining is employed.  Before 1900, the Usoskin et al (2016) reconstruction RUEA does 

not use the RGO data and for the interval over which the RGO calibration has been 

questioned, RUEA includes the data recorded by Wolfer (1876 – 1928), Winkler (1882 – 

1910), Tacchini (1871 – 1900), Leppig (1867 – 1881), Spörer (1861 – 1893), Weber (1859 – 

1883) and Wolf (1848 – 1893).  It is important to remember that all of these data have been 

calibrated, independently of each other, using the active-day fraction method and comparing 

against RGO data for after 1900.  Figure 4(b) shows that despite adding all these data, for 

1874–1900, RG (i.e. the RGO group number data, green line) and RUEA (orange line) remain 

very similar indeed.   
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Figure 6 is in the same format as figure 5, but studies the join between the Schwabe and the 

Wolfer data.  The observers shown are all those used in the construction of RBB that produced 

data that spanned 1872, which is in the centre of the gap between the Schwabe and Wolfer 

datasets.   Hence these are the observations (and the only observations) used to extend to the 

two backbones and hence intercalibrate the Schwabe and Wolfer data in the construction of 

RBB. Those observers were: Spörer (shown in orange); Wolf (using the small telescope, 

shown in red); Schmidt (blue); Tacchini (grey); Leppig (mauve); Weber (pink); Howlet 

(cyan) and Meyer (brown). The Schwabe data are shown in yellow and the Wolfer data in 

green. In order to visually highlight the variation of the ka factors for each observer, a second 

order polynomial was fitted for each observer to help identify trends whilst supressing the 

year-to-year variability. 

Considering RBB, the top panel of figure 6(a) shows that RBB predicts that the ka  factor for  

Wolf’s small telescope data drifted down with time very slightly throughout the interval that 

he took such measurements (red line); this implies he as measurements got slightly more 

accurate over time. This is somewhat surprising as k and k  factors for Wolf have generally 

been thought to increase due to his deteriorating eyesight, which is also found in the study by 

Friedli (2016) (see his figure 10).   For Spörer (orange) and Schmidt (blue) the ka factor 

initially fell but then rose again (implying these observers initially grew in acuity but later 

grew less able to detect spot groups):  for the intercalibration interval of 18611883, the ka 

values for Spörer are almost constant whereas they rise consistently with time for Schmidt; 

for Tacchini (grey) the ka are constant but these data only cover the second half of the 

calibration interval; for Leppig (mauve) ka fell rapidly with time but these data only cover the 

middle of the calibration interval; for Weber (pink) it was initially constant but then rose 

rapidly; for Howlet (cyan) ka initially fell very rapidly but then levelled off ; and for Meyer 

(brown), ka  fell rapidly but these data only cover the first half calibration interval.  Thus the 

results of intercalibration of Wolfer and Schwabe will depend critically on the observer used 

to pass on the calibration.   The data of Spörer and Schmidt argue that the inter-calibration of 

data of Schwabe (up to 1867) is correctly joined to that of Wolfer (after 1878) in RBB, 

whereas the data of Wolf argue that in RBB the Schwabe data have been inflated somewhat 

and the data of Leppig,  Howlet, and Meyer argue that it is inflated by a large factor. On the 

other hand, the data of Weber argues that it has not been inflated enough.  
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To take an average of these results, the bottom panel of figure 6(a) shows the average 

variation as a red histogram, generated  in the same way as for the bottom panels of figure 5.  

The reference period used to normalise the ka values is 1868 1876 which avoids sunspot 

minimum years for the reasons described above.   

The same procedure was applied to RUEA, and the results are shown in figure 6(b).  The ka 

values are all smaller and so RUEA is calling for less adjustment of the observers’ raw data 

than does RBB. The pattern of drifts is similar (because RUEA and RBB are so highly correlated). 

We here highlight not so much the average result but the diversity of the results depending on 

what weight one gives to the different observers.  The main point we are making is that daisy-

chaining by regression is an inherently unsatisfactory approach and is greatly influenced by a 

number of subjective decisions about which data to use and over which intervals.  This 

confirms the concerns listed in the introduction.  We also note that this calibration interval is 

actually relatively well populated with data compared to earlier ones. 

That having been said, figure 6(a) does provide some evidence that RBB has been inflated 

going backward in time across this join, as Lockwood et al. (2016c) predicted it would be by 

the use of non-robust regression procedures and, in particular the assumption that the data 

series are proportional. The bottom panel of figure 6(a) shows that the mean of the basket of 

available observations (the red histogram) displays a rise across the calibration interval. (The 

horizontal blue line is unity).  On the other hand, although RUEA does show the large 

deviations that are to be expected at solar minimum, it gives normalised ka values that return 

to unity, showing no drift across the inter-calibration interval.  To illustrate the effects of this, 

the Schwabe and Wolfer data have been matched to the ka  for RBB by normalising such that 

the means are the same over their period of overlap with the red histogram.  The results are 

shown by the yellow and green dots in the bottom panel of figure 6(a). It can be see a clear 

jump is introduced by the intercalibration and that this is of order 20%. This would argue that 

the factor of 1.48 used by Svalgaard and Schatten (2016) in constructing RBB is 20% too large 

and should be nearer 1.2:  however, this value is only indicative and we do not advocate its 

use because the individual observers give widely differing values: the more important point is 

that this value can be altered by any one several subjective decisions about which data to use 

and how to carry out the intercalibration, making the intercalibration unreliable.    
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6. DISCUSSION & CONCLUSIONS 

We find that proportionality of annual means of the results of different sunspot observers is 

generally invalid and that assuming it causes considerable errors in the long-term variations 

of sunspot data composites.  This is a particular problem when daisy chaining of calibrations 

is used as errors accumulate over the interval. 

Our analysis of the join between the Schwabe and Wolfer data sunspot series shows the 

uncertainties in daisy-chaining calibrations are large and demonstrates how much the answer 

depends upon which data are used to make such a join.  This example, which is well-

populated with data compared to earlier backbone joins in RBB, demonstrates just how 

unreliable daisy-chaining of calibrations is.  The concern highlighted here relates to the 

quality and variability of the data used to pass the calibration from one data series to the next.  

In addition to this, the analysis of Lockwood et al (2016c) shows that great care needs to be 

taken to ensure that linear regressions are not giving misleading results because the data are 

violating the assumptions of the techniques used. Lastly, Lockwood et al (2016c) and Usoskin 

et al. (2016) also show that the practice of assuming proportionality, and sometimes even 

linearity, between data series (and hence using ratios of sunspot numbers) is also a cause of 

serious error. 

Opportunities for quality control of sunspot composites are very limited because if data are 

good enough to form a test, the scarcity of reliable data means that we always would want to 

include them in the composite. Thus we have to use quality assurance which means we 

always rigorously stick to best practice and expunge all broad-brush dismissals as “small” of 

the effect of any one assumption or approximation.  Errors in any intercalibration (whether 

they are inside a data “backbone” or between them) will compound over time if daisy 

chaining is used.  For this reason we strongly recommend both daisy-chaining and regression 

procedures are avoided and that the long-term variations in any data composite compiled 

using either technique, or worse still both, should not be trusted. The only published 

composite that uses neither daisy-chaining nor regression, nor does it assume proportionality 

(or even linearity) between the results of different observers, is RUEA by Usoskin et al. (2016).  

However, we note that the result of another daisy-chain-free method by Friedli (2016), which 

is yet to be published, agrees very well with RUEA.  This is not to say that the  RUEA 

reconstruction has been refined to its optimum possible form. For example RUEA, like other 
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composites, currently assumes that observers maintained a constant k  factor (at a given R) 

over the period for which they made observations.  This assumption has to be made for daisy-

chaining but does not have to be made when every data segment is calibrated by reference to 

a single standard dataset and interval, as is the case for RUEA. However, if the observers’ data 

are sub-divided into too many short segments, the calibration of each will became poorer 

because the statistics are poorer. We recommend that, as in the analysis of Lockwood et al. 

(2016d), the duration of the intervals used could be iterated until the optimum compromise is 

achieved. 

Lastly, we need to dispel some misconceptions about any relationship of all the sunspot 

number reconstructions discussed here to terrestrial climate change.  This stems from a press 

release issued by the International Astronomical Union (IAU) when the backbone group 

sunspot number was first published (IAU, 2015).  This suggested that the lack of gradual 

change in solar activity in the backbone reconstruction argued against long-term solar change 

as a major cause of terrestrial climate change: a somewhat bizarre conclusion because there 

are many, and very much more compelling, scientific arguments behind the scientific 

consensus that only a minor part of current climate change can be attributed to solar change 

(IPCC, 2013). We stress that our concerns about the backbone reconstruction are because it 

uses unsound procedures and assumptions in its construction, that it fails to match other solar 

data series or terrestrial indicators of solar activity, that it requires unlikely drifts in the 

average of the calibration k  factors for historic observers and that it does not agree with the 

statistics of observers’ active day fractions.   The evidence is that the issues discussed in the 

present paper do not impinge in any way upon humankind’s understanding of terrestrial 

climate change.  We refer the reader to reviews of the effects of solar activity on global and 

regional climates by Gray et al. (2010) and Lockwood (2012) and the contribution of 

Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change (IPCC, 2013).  There is growing evidence for, and understanding of, some solar-

induced regional climate changes (which almost completely cancel on a global scale), 

induced by jet stream modulation in winter by changes to stratospheric heating gradients 

(Lockwood, 2012;  Ineson et al., 2015; Maycock et al., 2015), but many studies have found 

solar effects on global mean temperature are found to be very small (e.g. Jones et al., 2012) 

and in this context, the difference between the backbone and any other sunspot reconstruction 

is minimal and of little consequence (Kopp et al., 2016).  
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Table 1. Comparison of metrics for the fits shown in figure 3.   

 RC RBB RUEA RG RISNv2 RISNv1 

r 0.9091 0.9086 0.8959 0.8785 0.9116 0.9034 

Sr (%) 99.9986 99.9995 99.9991 99.9933 99.9995 99.9979 

 (10
15

 Wb) 0.0350 0.0310 0.0315 0.0399 0.0308 0.0364 

P (10
15

 Wb) 0.0483 0.0351 0.0547 0.0541 0.0356 0.0472 

T (10
15

 Wb) 0.0547 0.0508 0.0569 0.0559 0.0556 0.0610 
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Figure 1.  The various sunspot number sequences studied in this paper. Each is here 

compared to the median of all available sequences in that year (which vary in number from 3 

in 1650 to 6 in 2015), Rmed, shown in black in each panel.  Grey and white vertical bands 

define, respectively, odd- and even-numbered sunspot cycles (from minimum to minimum) 

and the cyan band is the Maunder minimum.   (a-i) The corrected sunspot number, RC (in 

blue), proposed by Lockwood et al. (2014).  (b-i) The “backbone” group number 

reconstruction, RBB (in red), of Svalgaard and Schatten (2016).  (c-i) The group number 

derived by Usoskin et al. (2016), RUEA (in orange). (d-i) The Hoyt and Schatten (1998) group 

number, RG which has been extended to 2015 using the SOON dataset, as calibrated against 

RG by Lockwood et al. (2015).  (e-i) Version 2 of the international sunspot number, RISNv2, 

introduced by SIDC (see text) in July 2015 (in purple) (Clette et al., 2014). (f-i) Version 1 of 

the international sunspot number, RISNv1 that was issued by SIDC until July 2015 (in brown). 

To help identify the differences, the lower panels in each pair show the difference between 

each and Rmed (so a-ii shows RC  Rmed, etc.). 
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Figure 2. Comparison of sunspot group number data from various observers. The time series 

in (a) have been scaled to the standard RGO dataset ([NG]RGO, in black) over 1920-1945 using 

linear regression: from Mount Wilson Observatory ([NG]MWO, in blue),  from the Solar 

Observatory of the National Astronomical Observatory of Japan ([NG]NAOJ, in green), and 

from the auto-scaled  RGO photographic plates ([NG]RGO2, in red).   (b) The same data series 

as in (a), scaled using a 2
nd

 -order polynomial fit to [NG]RGO over 19201976.  (c)(e) scatter 

plots and 2
nd

-order polynomial fits for the interval 19201976 as a function of [NG]RGO for:  

(c) [NG]NAOJ ; (d) [NG]MWO ; and (e) [NG]RGO2.   
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Figure 3.  Comparisons of the reconstruction by Lockwood et al. (2014b) of the signed open 

solar flux,  FS, from 4 different pairings of geomagnetic activity indices (in black with its 1 

uncertainty band shown in grey) and the modelled open solar flux using the model of Owens 

and Lockwood (2012) using the sunspot number sequences shown in figure 1 to quantify the 

emergence of open solar flux:-  (a) for RC (in blue); (b) RBB (in red); (c) RUEA (in orange); (d) 

RG (in green);  (e) RISNv2 (in purple) and (f) RISNv1 (in brown). The 1 uncertainty band in 

each modelled FS variation is shown in a lighter shade of the line colour in each case and the 

darker shade shows the overlap of the uncertainty bands of the modelled and reconstructed 

FS.  
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Figure 4. Variations in annual means in and between the intervals covered by the Schwabe 

and Wolfer data. The green lines show the Hoyt and Schatten (1998) group number, RG; the 

red line is the “backbone” reconstruction of Svalgaard and Schatten (2016), RBB; the orange 

line is the group number reconstruction of  Usoskin et al. (2016), RUEA; the black line is the 

“Schwabe backbone” generated by Svalgaard and Schatten (2016), RBBS, which they multiply 

by 1.48 to obtain RBB, that being the factor that they derived from linear regression (assuming 

proportionality) of the Schwabe and Wolfer backbones over 18611883.  Grey and white 

vertical bands define, respectively, odd- and even-numbered sunspot cycles. (a) covers the 

interval 18001920 and (b) shows 18741920 in greater detail.  
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Figure 5.  Analysis of the variations of annual group number observer factors, ka, for various 

observers making observations in the interval covered by the 20
th

 century RGO data: (a) for 

RBB (i.e., ka  = RBB /<NG>, where <NG> is the annual mean of the sunspot group counts 

recorded by each observer); (b) for RUEA (i.e., ka = RUEA /<NG>).  Observers are: (orange) 

Spörer; (red) Wolf (using the small telescope); (blue) Schmidt; (grey) Tacchini; (pink) 

Weber; (green) Wolfer; (mauve) Rico; (black) Moncalieri ; (brown) Merino; (olive) Konkoly; 

(white) Dawson; (yellow) RGO; and (cyan) Winkler .  The lower panels show the ka  values 

normalised by dividing by their average values over a reference period of 18831888: the 

yellow dots are for the RGO data and the red histogram shows the mean of all normalised 

values, excluding the RGO data. The vertical dashed line is 1885 when Cliver and Ling 

(2016) infer a discontinuity in the RGO data.  
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Figure 6.  Same as figure 5 for all observations used to join the Schwabe and Wolfer 

backbones: (a) for RBB (i.e., ka  = RBB /<NG>, where <NG> is the annual mean of the sunspot 

group counts recorded by each observer); (b) for RUEA (i.e., ka  = RUEA /<NG>). Observers are: 

(orange) Spörer; (red) Wolf (using the small telescope); (blue) Schmidt; (grey) Tacchini; 

(mauve) Leppig; (pink) Weber; (cyan) Howlet;  (brown) Meyer; (yellow) Schwabe; and 

(green) Wolfer.  In addition to the annual ka  values, the upper panels here show second-order 

polynomial fits to the points for each observer to demonstrate the variations.  The vertical 

dashed lines delineate the interval over which the Schwabe and Wolfer backbone were 

correlated in the daisy-chaining used to generate RBB.  The lower panels show the ka  values 

normalised by dividing by their average values over a reference period of 18681876. The 

red histogram shows the mean of all normalised values.  In the lower panel of (a), the yellow 

and green dots are the data of Schwabe and Wolfer, intercalibrated using the red histogram.  

Note that the data shown here were used to intercalibrate the data of Schwabe and Wolfer in 

the construction of RBB but were not used for that intercalibration in the generation of RUEA. 


