University of
< Reading

Observation and integrated Earth-system
science: a roadmap for 2016-2025

Article
Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Simmons, A., Fellous, J.-L., Ramaswamy, V., Trenberth, K.,
Asrar, G., Balmaseda, M., Burrows, J. P., Ciais, P., Drinkwater,
M., Friedlingstein, P., Gobron, N., Guilyardi, E. ORCID:
https://orcid.org/0000-0002-2255-8625, Halpern, D., Heimann,
M., Johannessen, J., Levelt, P. F., Lopez-Baeza, E., Penner, J.,
Scholes, R. and Shepherd, T. ORCID: https://orcid.org/0000-
0002-6631-9968 (2016) Observation and integrated Earth-
system science: a roadmap for 2016—-2025. Advances in
Space Research, 57 (10). pp. 2037-2103. ISSN 0273-1177
doi: 10.1016/j.asr.2016.03.008 Available at
https://centaur.reading.ac.uk/65846/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1016/j.asr.2016.03.008

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.



http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence

University of
< Reading

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online


http://www.reading.ac.uk/centaur

Observation and Integrated Earth-system Science: A Roadmap for 2016-2025

Observation and Integrated Earth-system Science:

A roadmap for 2016-2025

Adrian Simmons?

European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, UK

Jean-Louis Fellous

Committee on Space Research, c/o CNES, 2 place Maurice Quentin, 75039 Paris Cedex 01, France

Venkatachalam Ramaswamy

Geophysical Fluid Dynamics Laboratory/NOAA, Princeton, NJ 08540-6649, USA

Kevin Trenberth

National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA

and fellow contributors from a Study Team of the Committee on Space Research: Ghassem Asrar
(Univ. of Maryland), Magdalena Balmaseda (ECMWF), John P. Burrows (Univ. of Bremen), Philippe
Ciais (IPSL/LSCE), Mark Drinkwater (ESA/ESTEC), Pierre Friedlingstein (Univ. of Exeter), Nadine
Gobron (EC/JRC), Eric Guilyardi (IPSL/LOCEAN), David Halpern (NASA/JPL), Martin Heimann (MPI for
Biogeochemistry), Johnny Johannessen (NERSC), Pieternel F. Levelt (KNMI and Univ. of Technology
Delft), Ernesto Lopez-Baeza (Univ. of Valencia), Joyce Penner (Univ. of Michigan), Robert Scholes
(Univ. of the Witwatersrand) and Ted Shepherd (Univ. of Reading).

Abstract

This report is the response to a request by the Committee on Space Research of the International
Council for Science to prepare a roadmap on observation and integrated Earth-system science for
the coming ten years. Its focus is on the combined use of observations and modelling to address the
functioning, predictability and projected evolution of interacting components of the Earth system on
timescales out to a century or so. It discusses how observations support integrated Earth-system
science and its applications, and identifies planned enhancements to the contributing observing
systems and other requirements for observations and their processing. All types of observation are
considered, but emphasis is placed on those made from space.

The origins and development of the integrated view of the Earth system are outlined, noting the
interactions between the main components that lead to requirements for integrated science and
modelling, and for the observations that guide and support them. What constitutes an Earth-system
model is discussed. Summaries are given of key cycles within the Earth system.
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The nature of Earth observation and the arrangements for international coordination essential
for effective operation of global observing systems are introduced. Instances are given of present
types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be
faced. Observations that are organized on a systematic basis and observations that are made for
process understanding and model development, or other research or demonstration purposes, are
covered. Specific accounts are given for many of the variables of the Earth system.

The current status and prospects for Earth-system modelling are summarized. The evolution
towards applying Earth-system models for environmental monitoring and prediction as well as for
climate simulation and projection is outlined. General aspects of the improvement of models,
whether through refining the representations of processes that are already incorporated or through
adding new processes or components, are discussed. Some important elements of Earth-system
models are considered more fully.

Data assimilation is discussed not only because it uses observations and models to generate
datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular
through reanalysis, but also because of the feedback it provides on the quality of both the
observations and the models employed. Inverse methods for surface-flux or model-parameter
estimation are also covered. Reviews are given of the way observations and the processed datasets
based on them are used for evaluating models, and of the combined use of observations and models
for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting
its future.

A set of concluding discussions covers general developmental needs, requirements for continuity
of space-based observing systems, further long-term requirements for observations and other data,
technological advances and data challenges, and the importance of enhanced international co-
operation.
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1 Introduction

The needs for observation, modelling and understanding of the integrated Earth system are
introduced. The origin and purpose of this roadmap report are described, and an outline of the

structure of the report is given.

The natural variability of the Earth’s atmosphere, oceans and land and ice surfaces has shaped
the evolution of life in general and human systems in particular. The impact of that variability
continues today. In turn, human activities continue to change the environment in many ways, while
that environment has to support the lives of an increasing population. Much of the land surface is no
longer in its natural state, and the chemical composition of the atmosphere and ocean is being
changed in ways that change climate and affect life. Present activities may leave their mark on the
state of the environment for millennia into the future. It has become imperative to monitor,
understand and where possible predict many aspects of environmental variability and change.

This requires that observations of sufficient quality, quantity and regularity be made of the key
variables of what has come to be called the Earth system. It also requires a capability to model with
sufficient realism how these key Earth-system variables are likely to change in the future, whether it
be tomorrow’s weather or air quality, the prospects for agriculture for the season ahead or
projected longer-term changes in climate and their impacts. The development of both observing
systems and models in turn requires scientific understanding of the physical and biogeochemical
processes at play in the atmospheric, oceanic and terrestrial components of the Earth system,
including their interactions with each other and how they influence or are influenced by human
activities. Understanding is also needed to evaluate and interpret the results of monitoring,
forecasting and the projections that are based on prescribed scenarios for uncertain factors causing
environmental change, notably future anthropogenic emissions of key gases and aerosols, and
future land use. This in turn provides the basis for sound formulation and communication of
essential messages to policymakers, service providers and the general public.

A variety of national and international institutional arrangements are in place to help ensure that
the needs for observation, modelling and understanding are met. Among them, the international
Group on Earth Observations (GEO) was set up a little over ten years ago to foster new projects and
coordinated activities across the full range of Earth observation and to provide the framework for a
Global Earth Observation System of Systems (GEOSS) that supplements the arrangements under
which its contributing and largely pre-existing observing systems operate. As a contribution to the
forward look that the GEO was taking for the second decade of the GEOSS, the Committee on Space
Research (COSPAR) of the International Council of Science made a well-received offer to develop a
roadmap for observation and the associated modelling of the integrated Earth system, focussed on
the coming ten years.

Accordingly, a study team was set up in 2013. The charge by COSPAR to the team was to produce
a roadmap report that would:

e foster interdisciplinary scientific research making combined use of modelling and the diverse
observations provided by the various systems that contribute to the GEOSS;

e address the functioning, predictability and long-term evolution of the Earth system;
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e discuss how the GEOSS supports integrated Earth-system science and its applications; and

e identify the enhancements to observing systems needed to improve prediction of variability
on up to decadal timescales, and the modelling of longer-term change.

Such a report was considered timely because of scientific developments that include the
substantial expansion during the 1990s and 2000s of capabilities for observing, modelling and
analysing components of the Earth system, the increasing use of Earth-system models for climate
prediction and projection, and the prospective use of Earth-system modelling and data assimilation
for weather and other environmental forecasting and monitoring. It was seen also as timely for
institutional reasons beyond that of GEOSS planning. It would contribute to the assessment activities
to be undertaken by the Global Climate Observing System (GCOS) programme in the period 2014-
2016. It would also review current status and needs in the contexts of emerging climate and
environmental services, including the intergovernmental Global Framework for Climate Services and
Europe’s Copernicus programme, and research initiatives such as Future Earth. The timing of the
report would also enable it to draw on the conclusions and address some of the scientific
uncertainties expressed in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on
Climate Change (IPCC).

The roadmap report that is presented here is concerned with observations and their use with
integrated (or coupled) modelling of the physical and biogeochemical processes operating in the
atmosphere, oceans and land, including ice and snow interfaces, on timescales out to a century or
so. The aim of the study team was to cover the principal types of observation that are made today or
planned for the future, with a view to 2025 and beyond, and to identify gaps and risks in data
provision that threaten the quality of services and the integrity and utility of long-term climate
records. It was recognized as important also to keep the past in view, since as good a historical
description as possible of the state of the Earth system, including its natural variability and past
anthropogenic changes, is needed as a baseline for monitoring the system and assessing the
capability of models.

The report discusses how a particular observation of a variable may serve many purposes and
how there is much in common to be faced in the modelling needed for different applications. No
simple set of priorities emerges from the report, although it acknowledges that balances have to be
struck between long-term measurement programmes and occasional more ground-breaking
investigative missions, and between investments in improving existing components of models and in
incorporating additional processes. It also recognizes that both improved observations and improved
extraction of information from existing observations have parts to play. It discusses needs for
remote sensing from space, for in situ measurement and for land-, sea- and air-based remote
sensing, but gives more emphasis to observation from space in view of the particular role of
COSPAR. It is not intended to be a comprehensively referenced review, but reference is given to
some influential past scientific papers and reports, to recent reviews and to many other papers and
reports chosen for illustrative purposes.

The report is structured as follows. The next section outlines the origin and development of the
integrated view of the Earth system, placing emphasis on the interactions between the main
components that lead to requirements for integrated science and modelling and for the
observations that guide and support them. The scope of the present study is defined. Key cycles
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within the Earth system are discussed. Section 3 gives a summary of the nature of Earth observation
and of some of the arrangements for international coordination essential for its effective operation.
Instances are given of present types of observation and what is already on the roadmap for 2016-
2025. Observations that are organized on a systematic basis and observations that are made for
process understanding and model development, or other research or demonstration purposes, are
covered. Aspects of observations specific to particular components of the Earth system are
discussed.

The current status and prospects for Earth-system modelling are summarized in section 4. The
evolution towards applying Earth-system models for environmental monitoring and prediction as
well as for climate simulation and projection is outlined, and general issues related to the
improvement of models, whether through refining the representations of processes that are already
incorporated or through adding new processes or components, are discussed.

Section 5 discusses the integrated use of observations and modelling in the process of data
assimilation, not only because it generates datasets for monitoring the Earth system and for
initiating and validating predictions, but also because of the feedback it provides on the quality of
both the models and the observations used in the process. Related inverse methods for surface-flux
or model-parameter estimation are also discussed. The use of observations, either directly or
through processed datasets, is discussed in section 6 in the context of applying and improving Earth-
system models. Topics covered are monitoring and interpretation, the evaluation of models, and
prediction and scenario-based projection.

Section 7 presents a summary of the principal observational needs discussed in preceding
sections, and provides further and concluding discussion.

2 The Earth system

The origins and development of the integrated view of the Earth system are outlined, noting the
interactions between the main components that lead to requirements for integrated science and
modelling, and for the observations that guide and support them. The scope of the present study is

defined. Key cycles within the Earth system are discussed.

2.1 Development of the Earth-system view

The 1970s was a landmark decade for sustained observation from space and for progress towards
a capability for integrated modelling of the Earth system. 1972 in particular saw the launch of the
first of what is now known as the Landsat? series of Earth-imaging satellites, of which the latest is the
currently operational Landsat 8. It also saw the launch of NOAA-2, the first of an unbroken series of
operational satellites carrying instruments that provide soundings of atmospheric temperature and
humidity. A constellation of geostationary meteorological satellites and the associated international
coordination (section 3.2) were also established in this decade and have been sustained ever since.
Global observations and models, and their combined use in data assimilation, were the focus of the
Global Atmospheric Research Programme (GARP) during the decade, which also saw global systems
for numerical weather prediction become operational in the United States of America and Europe. A

2 Satellite names and acronyms are listed in an Appendix
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report of the US Committee for GARP (NRC, 1975) offered a view of the climate system and
processes responsible for change; the amended form presented by Gates (1979) to the first World
Climate Conference (Figure 1) falls not far short of what would today qualify as an Earth-system
model (section 2.4, Figure 2). The first atmospheric circulation modelling of the impact of increased
carbon dioxide was published by Manabe and Wetherald in 1975. The same year also saw the first
publications of results from coupled atmosphere-ocean models (Bryan et al., 1975; Manabe et al.,
1975). A report by Kellogg (1977) on the effects of human activities on global climate identified
needs for research that continue today: on modelling, quantification of the sources and sinks of
carbon dioxide, the response of sea ice and ice sheets to warming, regional changes in temperature
and precipitation, and the effects of anthropogenic aerosols and of changes in land use and
stratospheric composition.

Changes in
Solar Inputs

SPACE H
v ATMOSPHERE

Terrestrial

H,0, N,, 0,, CO,, Oy, etc.

Air-biomass-land
Coupling

Aerosols

Precipitation,
Air-ice Coupling Evaporation

Changes of
Atmospheric Composition

A

OCEAN

Changes of Land Features,
Orography, Vegetation,
Albedo, etc.

Changes in
Ocean Circulation

Figure 1 Schematic illustration of the Earth’s climatic system, with some examples of the processes
responsible for climate and its change. Source: Gates (1979), adapted from NRC (1975).

The Earth-system view took shape in the 1980s. An important step towards it was a 1982 US
National Aeronautics and Space Administration (NASA) report entitled “Global Change: Impacts on
Habitability”. Prepared under the chairmanship of Richard Goody, it proposed “a major NASA
research initiative to document, to understand, and if possible, to predict long-term (5-50 years)
global changes that can affect the habitability of the Earth.” The envisaged programme would
involve studies of the atmosphere, oceans and land, including the cryosphere and biosphere,
recognising that on “decadal time scales, these regimes and the cycles of physical and chemical
entities through them are coupled into a single interlocking system.”

A broader view, of the Earth as an interacting system of components including solid-Earth
processes, requiring observations and modelling to disentangle interactions and establish causal
relationships, was espoused in a 1986 report. Entitled “Earth System Science Overview: A Program
for Global Change”, it was produced by the NASA Advisory Council’s Earth System Sciences
Committee, which itself had been set up in 1983 and was led at the time by Francis Bretherton. The
report separated the Earth system into the components of the solid Earth, including its core, and the
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components of the fluid and biological Earth. It advocated a division of study by timescale rather
than discipline. For study and prediction of global change on a timescale of decades to centuries it
was the fluid and biological components that had to be modelled as an interactive system, and for
which enhanced observations were required. An observation programme for fundamental solid-
Earth characteristics was also recommended, but was not the main thrust of the report: the
prediction of change over the next decade to century was identified as the challenge to Earth-system
science. The NASA Earth Observing System (EOS) programme evolved from this visionary report.

In Europe, the scientific strategy for Earth observation from space developed from the European
Space Agency (ESA) “Looking down, looking forward” report (ESA SP-1073, 1985), which offered “a
perspective for Earth sciences and applications”, leading to the “Living Planet” programme (ESA SP-
12273, 1998 and SP-1234, 1999). The programme includes science-oriented Earth Explorer missions
and an Earth Watch element facilitating delivery of Earth-observation data for use in operational
services. The mandate of the complementary European Organization for the Exploitation of
Meteorological satellites (EUMETSAT), established in 1986 to run operational meteorological
satellite systems, was broadened in 2001 to include contribution to the operational monitoring of
climate and detection of global climatic change.

A key component of Europe’s current response to a broad range of environmental concerns
stems from 1998, when a meeting of national and European space agencies and the European
Commission issued a manifesto affirming the importance of observation from space and calling for
common European action on global environmental monitoring. By 2001 the main orientation of a
Global Monitoring for Environment and Security programme was established. Under the name
Copernicus, it is today implementing Earth observation on an operational basis (section 3.4), related
atmospheric, land and marine services, and cross-cutting services including one on climate change.

Japan, through its Meteorological Agency (JMA), has contributed with Europe and the USA to the
coordinated constellation of geostationary meteorological satellites since the 1970s. Through its
Aerospace Exploration Agency (JAXA) and predecessor organizations, Japan has recognized the
importance of observation of the wider Earth system and developed a number of important
missions, both alone and in collaboration with Europe and the USA. Other nations are playing
increasingly important roles. Further discussion is given in section 3.

In parallel to these observational initiatives, the initial modelling focus on the physical
components of the Earth system has been extended to include atmospheric chemistry and the
broader biogeochemistry of the land and oceans. Beyond this, the Future Earth initiative (section
3.2) has introduced a broader view of the Earth system that includes interacting human activities
within the overall system rather than regarding them as something external that affects or depends
on the Earth system.

3 This seminal document devoted to the Earth Science and research element of the Living Planet
programme, included a preface by Professor Roger-Maurice Bonnet, then ESA Director of Science, and former
President of COSPAR, who initiated the adoption of this programme, which explicitly referred to Earth system
models.
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2.2 Scope of this study

Although there has been considerable progress over the thirty or so years that have elapsed since
the “Bretherton report” was published, the observation and integrated modelling and prediction of
the Earth system on timescales out to a century or so remains the challenge to Earth-system science
that is discussed here. As modelling is becoming more seamless across these timescales (section
4.1), prediction of the Earth system on time ranges from days upward is considered.
Notwithstanding the importance of climate and other environmental change, much of the challenge
remains to model well the natural state of the Earth system, to provide a firmer basis for the
modelling of change. Observation needs to support the improvement of basic modelling and the
initialization of short-term forecasts, as well as detect and contribute to the understanding and
prediction of longer-term change.

Although focus is accordingly placed on the observation and modelling of the fluid and biological
components of the Earth system, some observation of solid-Earth processes is also relevant on this
timescale. This includes monitoring the potential for volcanic eruptions and the vertical movement
of land that is a factor in vulnerability to sea-level rise. Little discussion of the modelling of the
interacting human component is given as the topic is covered in Future Earth planning reports and
integration of substantial human-activity modules in comprehensive Earth-system models is not
expected to become commonplace within the ten-year timeframe of this roadmap. Attention also
does not extend to the magnetosphere and outer atmosphere, notwithstanding the increasing
interest being paid to the monitoring and prediction of “space weather”; this is the subject of a
separate COSPAR roadmap study (Schrijver et al., 2015).

2.3 The climate system

The glossary of the IPCC’s AR5 notes both narrow and wide definitions of climate. Climate in the
narrow sense refers to the average weather, or more rigorously a statistical description in terms of
the means and variability of weather parameters over a period of interest. The classical averaging
period is 30 years, as defined by the World Meteorological Organisation (WMO). The parameters are
most often surface variables such as temperature, precipitation and wind. Climate in a wider sense is
the state, including statistical properties, of the “climate system”.

In turn, the IPCC glossary defines the “climate system” to be “the highly complex system
consisting of five major components: the atmosphere, the hydrosphere, the cryosphere, the
lithosphere and the biosphere, and the interactions between them. The climate system evolves in
time under the influence of its own internal dynamics and because of external forcings such as
volcanic eruptions, solar variations and anthropogenic forcings such as the changing composition of
the atmosphere and land use change.”

In this report the word “climate” is used in the broader sense. The Earth system as considered for
the most part here is indistinguishable from the climate system as defined by the IPCC. The report
nevertheless addresses the analysis and prediction of the instantaneous state of the system,
weather in its most general sense, in addition to being concerned with the statistical characteristics
of the system on climate timescales out to century or so.
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2.4 Integrated Earth-system modelling

Although the IPCC does not offer an AR5 definition of the Earth system separate to that of the
climate system, a specific definition of an “Earth System Model” is provided. The term is used to
describe a “coupled atmosphere-ocean general circulation model in which a representation of the
carbon cycle is included, allowing for interactive calculation of atmospheric CO, or compatible
emissions. Additional components (e.g., atmospheric chemistry, ice sheets, dynamic vegetation,
nitrogen cycle, but also urban or crop models) may be included.” In opening the AR5 chapter on the
evaluation of climate models, Flato et al. (2013) note that these models “have continued to be
developed and improved since the [Fourth Assessment Report], and many models have been
extended into Earth System models by including the representation of biogeochemical cycles
important to climate change.” The complexity and completeness of the representation of the carbon
cycle varies among these models, however, particularly in respect of their treatments of land surface
processes and ocean biogeochemistry.

In the above view it is the inclusion of the biogeochemical carbon cycle that distinguishes an
Earth-system model from the physical climate model provided by coupling models of the
atmosphere, ocean, land and ice, in which concentrations of carbon dioxide and other greenhouse
gases have to be prescribed in order to study past or projected future climate change. A more
general definition is adopted here. The view is taken that for short-term prediction it is the inclusion
of faster-acting biogeochemical processes, such as related to air quality and stratospheric ozone
depletion, rather than the carbon cycle that distinguishes an Earth-system model from a model of
the physical climate system. Furthermore, the faster-acting biogeochemical processes also play roles
in the longer-term evolution of the Earth system, through interactions between air quality and
climate for example, while modelling the short-term behaviour of long-lived greenhouse gases is
important for estimating and understanding the temporal variability and geographical distribution of
their sources and sinks. What matters is not some narrow distinction between what is or is not fit to
be termed an Earth-system model, but rather that the set of processes included in modelling the
Earth system for a particular purpose is appropriate for what is being predicted or simulated,
whatever the timescale.

A contemporary illustration of the variables and processes that may be taken into account in
Earth-system models is presented as Figure 2. Much of what is depicted was indeed identified when
Figure 1 was drawn up some forty years ago, and includes many of the processes fundamental to the
working of the natural climate system that need to be represented well in a free-running model, or
constrained well by data assimilation in a model used for reanalysis or short-term forecasting. This is
necessary for correct functioning of additional processes included within models and correct
representation of what are treated as external drivers and impacts. Figure 2 differs from Figure 1
through its addition of ocean biogeochemistry, ecosystems (although Figure 1 has biomass) and the
human activities and constructs that are affected by weather and climate, and that contribute to
climate and other environmental change.

Earth-system models are needed not only to simulate and understand the Earth system, and to
predict its future evolution, but also to help develop an integrated observational picture of the
system. Measurements of Earth-system quantities are in many cases indirect, and often have to be
pieced together from different sources, with different coverage and accuracies, to construct a
global, long-term representation. Models can play a key role in this. Integrated use of observations
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and modelling also provides feedback on the quality of both, and guides the design of observing
systems and the development of models. Further discussion is given in several later sections.

Figure 2 Schematic view of much of what needs to be considered in an Earth System Model. Atmospheric
circulation, weather systems, the trace gases important for air quality and secondary aerosol formation, and
ocean surface waves also have to be taken into account. Source: www.gfdl.noaa.gov; adapted from Trenberth
etal. (1995)

2.5 Energy, circulation and constituent cycles within the Earth system

Elements of the functioning of the Earth system may be studied from the viewpoints of the
budgets of quantities such as energy or sea-level, the evolution of particular variables or indices of
climate change, or the behaviour of a particular domain such as the cryosphere. Studies may also be
framed in terms of the cycling of water or chemical elements through the Earth system. Specific
attention is paid in this report to the hydrological and carbon cycles, in view of the fundamental
importance of water to life and the central and interactive role the cycling of water plays within the
Earth system, and in view of the widespread consequences of rising levels of carbon dioxide and
methane in the atmosphere.

2.5.1 Energy and circulation

The Earth system is driven by the energy received from the Sun. Observations from satellites and
at the Earth’s surface of incoming and outgoing radiation, observations of the variables related to
heat content and estimates from reanalysis are each used to quantify the energy flows and storage
within the system. Depictions of the global energy budget of the atmosphere include those by
Trenberth et al. (2009), Berrisford et al. (2011) and Wild et al. (2013).

The latest measurements indicate that the incoming solar radiative flux of energy at the top of
the atmosphere is 340-341 Wm™ when averaged over the surface of the Earth. Of this some 100
Wm are reflected back to space by clouds and the Earth’s surface. The net solar input is almost
balanced by thermal emission to space, but a small residual build-up of energy at a rate of 0.5-1 Wm~
Zjs inferred from the way the system is changing. AR5 concluded with high confidence that more
than 90% of the energy accumulated by the climate system over the period 1971-2010 has warmed
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the oceans, with much of the rest accounted for by warmer land and melted ice rather than the rise
in temperature and moisture content of the atmosphere (Rhein et al., 2013). The atmosphere is
nevertheless a significant actor in the system despite its low thermal capacity. It plays a predominant
role in the poleward transfer of heat and holds the increasing concentrations of greenhouse gases
widely accepted to be the principal cause of the residual warming of the system as a whole.

The atmosphere absorbs solar energy at a rate of about 80 Wm™ and the net solar radiative flux
into the Earth’s surface is about 160 Wm™. A little more than half of the latter is counterbalanced by
the surface latent heat flux associated with evaporation, which exceeds the surface sensible heat
flux by a factor of four or more. Net thermal emission from the surface accounts for almost all the
remainder. Subsequent transfer of latent heat within the atmosphere, the net warming from release
of this latent heat by condensation, especially in tropical convective systems, and the influence of
water vapour and cloud on both solar and thermal radiative fluxes link the atmospheric component
of the hydrological cycle intimately with the energy balance of the atmosphere.

Geographical variations in heating and cooling can persist only if there are associated circulation
systems. Most basic are the mid-latitude westerly jets that are linked with the predominance of
solar-induced atmospheric heating in the tropics and sub-tropics, and of radiative cooling at higher
latitudes. The synoptic mid-latitude weather systems that develop through the dynamical instability
of the westerly flows bring about not only essential thermally balancing poleward transfers of heat
but also poleward transfers of momentum that balance frictional losses associated with surface
winds that tend to be westerly in middle latitudes and easterly in the tropics. Poleward energy fluxes
in the atmosphere are estimated robustly from reanalyses to peak at some 5 PW in the annual
average at around 40° latitude in both hemispheres (Trenberth and Caron, 2001; Fasullo and
Trenberth, 2008; Berrisford et al., 2011). Net oceanic poleward transport is much smaller than
atmospheric transport at sub-tropical and higher latitudes, but attains comparable magnitude in the
tropics, peaking at 1-2 PW at latitudes poleward of 10°.

Considerable complexity underlies the basic picture. The heating of the tropical and sub-tropical
atmosphere is far from uniform, geographically or seasonally. The associated Hadley, Walker and
monsoonal circulations owe their existence to differential heating, yet influence that heating
through their effects on moisture transport and the formation of cloud and rainfall. Evaporation
from the warm ocean surface and subsequent latent-heat release are fundamental to the nature of
tropical cyclones. Mid-latitude weather systems are modified by latent heat release and organized in
storm tracks. The low frequency variability of the atmosphere is influenced by fluctuations in the
rate at which energy absorbed by the oceans is released into the atmosphere, which in turn are
influenced by the atmospheric forcing of oceanic circulations. Bony et al. (2015) discuss the resulting
challenge to research posed by deficient understanding and modelling of the interacting processes
involved.

2.5.2 The hydrological cycle

The hydrological cycle and its changes over time are of vital societal importance because of the
vulnerability of life to shortages, excesses and poor quality of water. Extreme challenges for the
sustainable management of fresh-water resources will have to be faced during the 21 century, as
will the threats of continuing rises in sea level and of increasingly severe weather events. Changes in
the hydrological cycle influence the terrestrial carbon cycle, in which water-use efficiency (the ratio
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of photosynthesis to evapotranspiration) in general rises as the carbon dioxide content of the
atmosphere grows, but in which also the behaviour of vegetation changes as rainfall changes.
Important short-term forecasting applications include those related to river and reservoir control,
availability of power from hydroelectric sources and management of the risks associated with floods
and droughts. How such aspects of the hydrological cycle might change in future decades is a
fundamental question being addressed by integrated Earth-system science.

Water-related variables include precipitation, soil moisture, streamflow, lake and reservoir levels,
snow cover, glaciers and ice, evaporation and transpiration, groundwater, water quality and water
use. Improving integrated water resource management requires the bringing together of
observations, analyses, models and predictions for these variables within decision-support systems.
Better linkages to other relevant weather, climate and socio-economic data are also required.
Networks for in situ measurement and the automation of data collection are being consolidated, and
the capacity to collect and use hydrological observations is being expanded to places where it is
lacking. Much more remains to be done, however. This includes continuing efforts to improve the
international exchange of in situ data, which is far from adequate for many of the key variables. The
increasing role played by space-based observation, which itself brings requirements for in situ data
for calibration and validation, is discussed in several places later in this report.

Understanding and the related capability to model the spatial patterns and temporal
characteristics of precipitation, including its diurnal variation, frequency and intensity as well as
overall amount, are far from perfect. There are greater than 20% differences among the global-mean
precipitation amounts in the archive of results from the coordinated running of climate models in
the fifth phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012), and the
inter-model spread in regional amounts of precipitation is much greater still. Objective verification of
precipitation forecasts from global weather-prediction systems (e.g. Haiden et al., 2012) shows
variations in skill between systems that are generally larger than those for temperature and wind
forecasts. Performance is typically much poorer in the tropics than in the extratropics, and poorer in
summer than winter in the extratropics, pointing to the particular challenges of modelling
convection. Modelling the hydrological cycle in general places demands on both the resolution of
models and their physical parameterizations, and there are related difficulties to be faced in
assimilating observational information.

The GEOSS Water Strategy gives priority to the use of water-related Earth observations in six
critical theme areas, namely enhancing the global security of domestic and useable water supplies,
adapting water resource systems to the impacts of climate change, meeting the water-related health
and welfare needs of the poor, protecting from hydrometeorological extremes such as floods and
droughts, ensuring access to water for ecosystems and biological systems, and addressing the more
general water-food-energy security nexus that results from growing populations, growing
consumption as countries develop, and climate change (World Economic Forum, 2011). The latter
theme requires development of integrated datasets, analyses and management tools for agriculture
and the generation and use of energy. Increasing food costs driven by extreme events and increasing
demands for feedstock by the biofuel industry lead to increased demands for both water and
energy. Food production relies on both water and energy inputs, especially in areas with widespread
irrigation. Energy production has its own water requirements, as water is both a component of the
production process and a means for removing heat and waste products from various energy
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production systems. Given the anticipated growth of water use in the food and energy sectors, new
ways to increase its efficiency are needed (Lawford, 2014).

2.5.3 The carbon cycle

The global carbon cycle as considered here describes the cycling of carbon through the
atmosphere, ocean and terrestrial biosphere. Only on timescales longer than 10,000 years do carbon
exchanges with the lithosphere through volcanism and erosion of rock also have to be taken into
account. Emissions of carbon dioxide caused by humans have led to a 40% increase in its
atmospheric concentration since pre-industrial times, more than half of which has been since 1975.
It is noted in AR5 (Ciais et al., 2013) that emissions from the burning of fossil fuels increased more
rapidly during the last decade than during the previous one; Le Quéré et al. (2014) estimate that
emissions in 2012 were 9.7 + 0.5 PgC yr?, around 60% larger than in 1990. This large increase is in
stark contrast to the ambition of the Kyoto Protocol, where a number of industrialized countries
agreed to maintain their emissions at close to the 1990 level for the period 2008-2012.

Emissions from land-use change are the second human cause of the observed increase in carbon
dioxide. These emissions rose steadily from 1850 until the mid-1990s, after which they appear to
have first decreased and then remained stable. Deforestation is mainly occurring in a few tropical
countries with large forest areas. The global magnitude of land-use-change emissions was only 10%
of that of fossil-fuel emissions in 2012 (at 1 + 0.5 PgC yr!), but was comparable in magnitude to
fossil-fuel emissions during the first half of the 20t century.

Most of the increase in fossil-fuel emissions of carbon dioxide over the last decade has taken
place in emerging economies, where uncertainties of emission inventories are larger than in
countries that have been industrialized for much longer. Consequently, the uncertainty of global
fossil-fuel emissions has increased faster than the emissions themselves, and is now as large in
absolute value as that of half of the emissions from land-use change. This is a concern, because if the
dominant human perturbation of the global carbon cycle has an uncertainty that increases with
time, the ocean and land sink uncertainty deduced from emissions will inevitably increase.

The global budget of anthropogenic carbon, obtained by taking the difference between the sum
of fossil-fuel and land-use-change emissions and the accurately observed yearly increase of carbon
dioxide in the atmosphere, reveals that since 1958, when the Mauna Loa record of atmospheric
concentration began, on average about half the carbon dioxide emitted into the atmosphere has
been absorbed each year by natural oceanic and terrestrial carbon reservoirs. The current estimate
of the ocean sink given by Le Quéré et al. (2014) is 2.9 + 0.5 PgC yrl, and the corresponding land sink
is 2.7 + 0.9 PgC yr. In the global budget of anthropogenic carbon, the land sink is deduced from the
emissions, the observed atmospheric increase and the ocean sink. The latter is obtained from ocean
models constrained by ocean observations. The terrestrial sink (the increase of carbon through time
in the terrestrial reservoir) cannot be measured directly and is not strongly constrained by
observations, although measurements from forest inventories, for which there are many samples
from the northern extratropics but very few from the Tropics, do enable a net increase of carbon in
forest biomass worldwide to be inferred (Pan et al. 2011). Changes in soil carbon storage can be
measured locally, but their assessment on regional scales requires the use of models. The terrestrial
sink, unlike the ocean sink, is highly variable from year to year, and most of its variability can be
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explained by the forcing from El Nifio/La Nifia variability and cooling following large volcanic
eruptions.

Methane is a potent greenhouse gas whose increase accounts for a significant fraction of the

radiative forcing of climate change, despite having a much lower atmospheric concentration than

carbon dioxide. Its lifetime is controlled by removal through chemical reactions with hydroxyl

radicals, and at around a decade is very much less than the lifetime of carbon dioxide. Emissions of

methane are significant not only because of the direct radiative effect of the gas itself, but also

because changes in methane lead, through oxidation, to changes in ozone and stratospheric water
vapour, and their radiative effects. AR5 (Figure TS.7 of Stocker et al., 2013; reproduced here as
Figure 3) indicates that the net radiative forcing of change due to methane emissions may exceed

half that due to emissions of carbon dioxide. AR5 also records that the concentration of methane

has increased by a factor of 2.5 since preindustrial times, with very high confidence that the increase

has been caused by mankind, mostly through the growth of emissions from livestock farming, rice-

paddy agriculture, fossil fuel extraction and use, and landfills and waste. The causes of the

pronounced variability in methane growth that has been observed in recent decades are a matter
for continuing debate (Ciais et al., 2013; Kirschke et al., 2013).
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Figure 3 Radiative forcing (Wm™) of tropospheric climate change during the industrial era partitioned
according to emitted compounds. The two sets of tabulated values in the right-hand columns differ due to
differing extents to which conditions are held fixed in making the calculations of the changes in net radiative
fluxes that result from changes in emissions over the era. Source: Stocker et al. (2013; Fig. TS.7), where further

details may be found.
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Changes in biogeochemical systems in general pose a particular challenge for global observation.
The sources and sinks of key species may be inferred from observations of atmospheric
concentrations using inverse methods, as discussed later in this report, but may alternatively be
estimated using diagnostic surface modelling together with observations of variables such as above-
ground biomass, the greenness of vegetation, ocean colour and wetland extent. Furthermore, the
limited basic knowledge of some of the important longer term biogeochemical processes (associated
with permafrost degradation, vegetation dieback and nutrient limitation effects, for example)
requires that the observing system be able to detect “surprises”: it must be robust enough to allow
the timely identification of developments that are not represented in current diagnostic surface
models. Complication also arises, primarily for terrestrial ecosystems, from the multitude of human
management activities (related to forestry, irrigation, harvesting and so on), which fundamentally
modify ecosystem behaviour. Addressing this challenge requires an observation strategy that
integrates space-based and in situ observations together with statistical socio-economic information
in a comprehensive modelling framework.

2.5.4 Other constituent cycles and the link between air quality and climate

Figure 3 illustrates the degree to which quantification of the anthropogenic radiative drivers of
change in the climate system, and of associated uncertainties, has to take into consideration not
only carbon dioxide and methane, but also both other well-mixed (and long-lived) gases, particularly
nitrous oxide and the halocarbons, and shorter-lived species including aerosols and ozone®. The AR5
chapter by Myhre et al. (2013) provides comprehensive discussion. There is a direct link between
climate and air quality through the shorter-lived atmospheric constituents involved. Physically
consistent modelling that is aligned with observed behaviour is required for the key constituents,
from emissions to transport and transformation to sinks. Monitoring and forecasting air quality as
well as the estimation of climate forcing requires measurements not only of the constituents that
are directly damaging to health or the environment, or that change radiative forcing, but also of the
precursors that through chemical reactions influence the concentrations of the harmful species.
Data are needed on constituents that include aerosols, tropospheric ozone, nitrogen and sulphur
dioxide, ammonia, formaldehyde and other volatile organic compounds, methane and carbon
monoxide. Continuity of measurement and timely provision of associated socio-economic data are
important for sustaining operational air-quality forecasting and for ensuring that emission databases
are up to date. The need to monitor species and conditions related to stratospheric ozone depletion
brings additional observational requirements.

The link between air quality and climate forcing means that legislative policy for control of air
quality should not be considered independently of policy for limiting anthropogenic climate change.
It has become of pressing importance to improve scientific understanding of the interactions
involved, as a basis for taking the most appropriate measures. This is one of the aims of the Climate
and Clean Air Coalition (www.ccacoalition.org/), a partnership of a number of countries,
intergovernmental organizations and other bodies established with the overall objective of reducing
short-lived climate pollutants.

4 Methane is variously described as well mixed, short lived or long lived; each description can be found in
the IPCC’s Fifth Assessment Report.
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Cycles of nutrients are vitally important for the functioning of the Earth system, although their
inclusion as variables in Earth-system models is not widespread. This is discussed briefly in section
4.8.1 in the case of nitrogen. AR5 expressed high confidence that low nitrogen availability will limit
carbon storage on land (Ciais et al., 2013). The role of phosphorus in limiting terrestrial carbon
uptake was considered more uncertain, but could become more important than that of nitrogen on

centennial time scales.

3 Earth-system observation

A summary is given of the nature of Earth observation and of some of the arrangements for
international coordination essential for continuing effective operation of sustainable global
observing systems. Instances are given of present types of observation and what is already on the
roadmap for 2016-2025. Observations that are organized on a systematic basis and observations
that are made for process understanding and model development, or other research or
demonstration purposes, are covered. Aspects of observation specific to particular components of
the Earth system are discussed.

3.1 The nature of Earth observation

Observation of the Earth system relies on a complementary mix of remote sensing and in situ
measurement. There are needs for both types of observation, and each has its strengths and
weaknesses. Much of the remote sensing is from space, mostly involving downward-looking (nadir)
observation, but including measurements from viewing the Earth’s limb. It comprises passive sensing
of the electromagnetic radiation emitted or reflected by the Earth system in the spectral range from
the ultraviolet to the microwave, active sensing of the reflection by the Earth system of radiation
emitted from satellites, sensing of the occultation of solar and stellar radiation and of signals from
Global Navigation Satellite Systems (GNSSs), and sensing of local variations in mass of the Earth
system from variations in the gravity field experienced by satellites.

In addition to in situ measurement of the state of the physical, chemical and biological
environment, there is an increasing need also for socio-economic data for estimating and developing
the modelling of anthropogenic impacts on the environment, and of the impacts of environmental
variability and change on human and other life. This includes the data on population, economic
development, energy production and other factors used to estimate past, present and possible
future anthropogenic emissions of the greenhouse gases, reactive gases and aerosols that influence
climate and air quality.

Satellites provide the global or near-global coverage that is needed to describe the Earth system,
but are limited in what they can sense. For the atmosphere this includes limits to the extent to which
fine-scale vertical structure can be resolved and to which information can be provided on wind and
below clouds. For ocean and land, the information provided from space is largely restricted to the
near-surface layer, although important inferences can be drawn on bulk properties from altimetry
and gravimetry. In situ data are an essential complement, sampling depths and variables that are
beyond the view from space and providing detailed vertical structures and temporal resolution, and
longer historical records. They also serve as anchor points that support the calibration and validation
of satellite observations and derived data products. In situ data generally have far from uniform
geographical coverage, however. Moreover, a multiplicity of national institutional arrangements for
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making the required types of measurement poses serious challenges for overall observing-system
management, long-term funding and open international data availability.

Instrumental observations in general are subject to changes over time in coverage, in spatial and
temporal resolution, and in biases and other characteristics of error. These changes make
monitoring and understanding multi-decadal variability and change a challenge. They lead to
activities directed towards reprocessing of datasets to inter-calibrate the data from different
instruments or to improve the homogeneity of data in other ways, and to benefit from improved
knowledge of instrument characteristics and better methods of retrieval of geophysical data
products. They also lead to model-assisted integration of data of various types, using the data
assimilation approach established for initialising weather forecasts, in the process known as
reanalysis that is discussed in section 5.3. Observational campaigns set up for the calibration and
validation of data from satellite missions, and reference sites making long-term measurements of
especially high quality, such as the GCOS Reference Upper-Air Network (GRUAN; Seidel et al., 2009;
Bodeker et al., 2015) have crucial roles to play in this regard. The GCOS programme also defines
baseline networks important both for basic monitoring of the variables concerned and for improving
the use of data from comprehensive networks and satellite systems.

Also important is the continued collection of the proxy data that provide the record of how
climate has changed over the vast period prior to the era of instrumental observation. This type of
data includes many natural proxies such as trees, corals and ice cores, and stretches back as far as
tens of millions of years ago in the case of estimates of carbon-dioxide concentrations based on
geological evidence. It also includes written histories for the more recent past. Acquiring and
modelling such palaeoclimatological data are essential for documenting and interpreting changes in
climate through time, for placing the instrumental data record for several variables in a longer-term
context, and for comparing the performance of models in their simulations of conditions that differ
substantially from those experienced over the past century or so. Plentiful examples are given in AR5
by Masson-Delmotte et al. (2013) and others. Further discussion is, however, beyond the scope of
the present study, which places emphasis on the space-based component of Earth observation, in
recognition of COSPAR’s primary interest.

3.2 International coordination of Earth observation

No single nation or region of the world has the capabilities and resources to develop and operate
a full Earth observing system, not least because in situ observations are required over national
territories, including airspace and coastal ocean zones. This has been recognized by the
establishment of various arrangements for the international coordination that is essential for
effective provision of the observations needed to support integrated Earth-system science and its
applications.

Formal international coordination of weather observation can be dated back to the First
International Meteorological Conference in 1853 and the establishment twenty years later of the
International Meteorological Organization. Since 1950 it has been undertaken under the auspices of
WMO, a specialized agency of the United Nations whose interests today extend to include water,
climate and related environmental matters. Coordination of ocean observation falls under the
Intergovernmental Oceanographic Commission (I0C) of the United Nations Educational, Scientific
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and Cultural Organization (UNESCO), founded in 1960, which works together with WMO on areas of
joint interest.

COSPAR itself was established by the International Council of Scientific Unions (ICSU, now the
International Council for Science) in 1958 to promote scientific co-operation in space at a time when
the first artificial Earth-orbiting satellites had been launched by the Soviet Union and the USA, and in
the light of the successful programme of internationally coordinated observations being undertaken
during the International Geophysical Year. Since then, the changing political environment and
emergence of additional providers of observations from space has led to new mechanisms for the
coordination of activities among the national and intergovernmental agencies that operate space
programmes. Arrangements have evolved also for the coordinated expression of the requirements
for Earth observation.

The Coordination Group for Meteorological Satellites (CGMS, formerly the Coordinating Group
for Geostationary Satellites) came into being in September 1972, when representatives of Europe,
Japan and the USA, and observers from WMO and GARP, met to discuss questions of compatibility
among geostationary meteorological satellites. The CGMS promotes coordinated operation and use
of data and products from its members’ satellite systems, in support of operational weather
monitoring and forecasting and related aspects of climate monitoring.

The Committee on Earth Observation Satellites (CEOS) was established in 1984 with the broader
remit of coordinating international efforts for Earth observation as a whole. Its original focus was on
interoperability, common data formats, the intercalibration of instruments and common validation
and intercomparison of products. CEOS now also provides an established means of communicating
with external organizations to respond to requirements for Earth observations. Important in the
present context are collaborative activities with CGMS in developing, together with the WMO Space
Programme, a strategy for climate monitoring from space (Dowell et al., 2013) and in establishing a
joint working group on climate.

The programme for GCOS (Houghton et al., 2012) has been co-sponsored by WMO, I0C, ICSU and
the UN Environment Programme (UNEP) since 1992 to provide a coordinating role for climate
observation across the atmospheric, oceanic and terrestrial domains. The programme identifies the
inadequacies of climate observation and the actions required to address them. Those actions related
to space-based observation have been responded to by CEOS; in this regard both GCOS and CEOS
have reported under the UN Framework Convention on Climate Change (UNFCCC). Requirements
are formulated largely for a set of Essential Climate Variables (ECVs; Bojinski et al., 2014). Those for
datasets on ECVs founded on observation from satellites (GCOS, 2011) have provided the basis for
the ESA Climate Change Initiative (CCl; Hollmann et al., 2013).

The World Climate Research Programme (WCRP) also plays a significant role in Earth observation
in addition to its fundamental promotion of research into the functioning, modelling and prediction
of climate. Following on from GARP in 1980, and under the co-sponsorship of WMO, 10C and ICSU, it
has been associated with significant observational programmes. A notable example is the
establishment of measurements from an array of moorings in the tropical Pacific Ocean under the
1985-1994 Tropical Ocean Global Atmosphere programme. This now-named TAO/TRITON array
continues to this day to provide essential data for the prediction and monitoring of El Nifio/La Nifia
events, notwithstanding recent difficulties (GCOS/GOOS/WCRP, 2014). Another example is its WOCE
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(World Ocean Circulation Experiment) programme, which triggered the establishment of the space-
based component of the Global Ocean Observing System (GOQS), inaugurated in the early 1990s by
the European ERS-1 and the US-French Topex/Poseidon missions.

WCRP works with GCOS in several ways, including through a set of expert panels on climate
observation, and within its own component projects has important initiatives on assessment of
observational datasets and their use in evaluating models. It has also worked with partners such as
the ICSU-sponsored International Geosphere-Biosphere Programme (IGBP) through their joint
membership of the Earth System Science Partnership. This is being superseded by arrangements
with Future Earth, an initiative launched in 2012 by a multi-partner alliance including ICSU, UNEP,
UNESCO and WMO. It is not currently envisaged that Future Earth will establish major new
infrastructure for Earth observation or gathering socio-economic data, but rather that it will work
with existing observing systems and coordinating bodies, communicating new data needs as it
identifies them. It nevertheless is inheriting responsibility for projects from pre-existing Earth-system
science programmes such as IGBP that include important observational components. Future Earth
also has an ambitious vision for 2025 (www.futureearth.org/our-vision) to deliver inter alia a “new
generation of integrated Earth system models to deepen our understanding of complex Earth
systems and human dynamics across different disciplines”.

Established in 2003 with the broadest remit concerning observations, the Group on Earth
Observations (GEQ) is an ad hoc intergovernmental group of approaching 100 countries and the
European Commission that works with around 90 participating international organizations to foster
new projects and coordinated activities across the full range of Earth observation. GEO is building
the Global Earth Observation System of Systems (GEOSS) to provide a framework for integrated
global Earth observation that supplements the arrangements under which contributing pre-existing
systems operate. Its activities over its initial ten years of operation were organized into nine societal
benefit areas (SBAs) and cross-cutting initiatives. These SBAs included some, among them weather
and climate, for which observation and modelling plays a central role, and others such as disasters
and health that benefit from observational products. Cross-cutting initiatives include an important
emphasis on data sharing. GEO has recently developed a new strategic plan for implementing the
GEOSS, to run from 2016 to 2025.

The Global Geodetic Observing System (GGOS; Boucher et al., 2015) was established about the
same time as GEO, and is one of GEQ’s participating organisations. As a component of the
International Association of Geodesy, GGOS works to provide the geodetic infrastructure necessary
for monitoring the Earth system and for global change research. Its support for altimetric and
gravimetric missions is of particular importance in the context of this report.

The GEOSS Carbon (Ciais et al., 2010) and Water (Lawford, 2014) Strategy reports have been
drawn on in preparing this roadmap, along with the assessment, strategy and planning documents of
the other bodies cited in this section, most particularly the implementation plan and supplemental
report detailing requirements from satellites published by GCOS (2010, 2011). Extensive use has also
been made of material from several cited chapters of the IPCC’s AR5. This roadmap has been
prepared in parallel with GCOS (2015), a status report on the global observation of climate, and
shares a few sections of text with that report. The GCOS report provides much more detail on in situ
observation than this report, and although the focus of the GCOS report is on climate, much of it

Page 22 29 February 2016



Observation and Integrated Earth-system Science: A Roadmap for 2016-2025

applies also to observation of shorter term variations of those components of the Earth system that
are included within the scope of this COSPAR report.

3.3 Sustained satellite observing systems for weather and climate

Routine sustained delivery of data from operational polar-orbiting and geostationary satellite
systems is fundamental to the provision of services for weather, climate and other aspects of the
Earth system. Today China, the European member states of EUMETSAT, India, Japan, South Korea,
Russia and the USA each operate multi-instrumented meteorological satellites addressing a
spectrum of needs. Several international agreements cover deployments and data exchange, as
illustrated below. These satellites deliver data in near-real time that are suitable for use in numerical
weather prediction. Much of the data also make important contributions to the climate data record,
and typically benefit from reprocessing activities to recalibrate them, in particular as carried out
under the Global Space-based Inter-Calibration System (GSICS) initiated by CGMS and WMO.

Longstanding co-operation has already been noted for geostationary systems. This includes
instances of the deployment of a backup geostationary satellite of one operator over the region
normally covered by another operator, when needed to avoid gaps. More recently, the USA and
Europe have formalized the Joint Polar System (JPS) concept in which responsibilities for the “mid-
morning” and “afternoon” sun-synchronous polar orbits are divided and shared. Figure 4 shows the
US view of its resulting polar-satellite programme, comprising coverage of the “early-morning” orbit
by satellites of the US Defense Meteorological Satellite Program (DMSP) as well as the
complementary JPS coverage of the mid-morning orbit by first and second-generation European
satellites (Metop and Metop-SG), and of the afternoon orbit by US NOAA satellites.

NOAA & Partner Polar Satellite Programs
=4 Continuity of Weather Observations
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Figure 4 NOAA, EUMETSAT and US Department of Defense (DoD) polar operational satellite programmes as
of April 2015 Source: www.nesdis.noaa.gov/flyout_schedules.html|
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A further important contributor to the roadmap to 2025 is the series of Chinese FY-3 polar-
orbiting meteorological satellites. Here CGMS has played a key role through discussion and
presentation of the case for complementary coverage of the early-morning orbit by changing the
planned deployment of two FY-3 satellites (Eyre and Weston, 2014). FY-3 also provides resilience for
other orbits. A bilateral co-operation agreement between EUMETSAT and the China Meteorological
Administration includes data and product exchange. The European Centre for Medium-Range
Weather Forecasts (ECMWF) started operational assimilation of data from the microwave humidity
sounder on the FY-3B satellite in September 2014.

Generation of operational sea-surface-temperature (SST) products makes use of a variety of
satellite data, some from the operational polar-orbiting and geostationary meteorological satellites
and some from missions that are nominally for research and development (section 3.5). Here too
there are collaborative arrangements made both through international coordination mechanisms,
for example the International Group On High Resolution SST (GHRSST) and the CEOS “virtual
constellation” for SST, and through bi-lateral arrangements, such as that between Japan and the USA
for use of all-weather C-band passive microwave data from the AMSR-2 instrument on JAXA’s
GCOM-W1 satellite, the first in two series of satellites planned to make observations related to the
water and carbon cycles.

Operational altimeter data are presently delivered by the Ocean Surface Topography
Mission/Jason-2 mission, a joint venture between Europe and the USA, providing continuity beyond
Topex/Poseidon and Jason-1. The partnership continues with Jason-3, launched in January 2016. A
follow-on Jason Continuity of Service mission (Jason-CS) is planned. Chinese altimeters are now
becoming part of the CEOS Virtual Constellation for Ocean Surface Topography.

3.4 The Copernicus programme

Copernicus is a major European programme for operational Earth observation and associated
service delivery that complements and substantially extends the Earth observation programmes
established in support of weather forecasting and related climate monitoring. The launch in April
2014 of Sentinel-1A saw the first spacecraft in orbit out of a series of six so-called Sentinel families
(Figure 5) that should all be operational well within the timeframe of this roadmap. Sentinel-2A was
launched in June 2015 and Sentinel-3A in February 2016. ESA is responsible for developing the
Sentinels on behalf of the European Union; operation is being shared with EUMETSAT. Delegated
bodies provide products and services. Each Sentinel family is associated with a series of satellites,
each replenished as age or health dictates. Copernicus data and products are free and open to
access and use. Berger et al. (2012) discuss their potential for addressing some of the challenges
associated with advancing Earth-system science.

Sentinel-1 will in due course comprise a pair of C-band SAR satellites (1A and 1B) for operational
monitoring, for example of sea ice, land-motion risks, floods and oil spills, and disaster response.
Sentinel-2A is a complementary optical imaging satellite that will likewise be subsequently joined in
orbit by Sentinel-2B. Sentinels 3 to 5 have different goals, and will use optical imaging sensors,
radiometers and spectrometers to measure a wide range of variables. The two Sentinel-3 satellites
have the main objective of providing data on sea-surface topography, sea- and land-surface
temperature and ocean- and land-surface colour, although they will also provide valuable
information on other variables, for the atmosphere also. The Sentinel-4 and -5 instruments will be
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deployed not on dedicated satellites but respectively on the operational meteorological
geostationary (Meteosat Third Generation) and polar-orbiting (Metop-SG) platforms, where they will
complement other instruments, together providing a rich set of data for monitoring climate and air
quality. A dedicated Sentinel-5 precursor satellite flying the TROPOMI instrument, referred to below
as Sentinel-5p, will be launched in 2016 to minimise the shortfall in key atmospheric composition
data resulting from the loss of Envisat in April 2012, and to complement and extend the observations
provided by the OMI instrument on the EOS-Aura satellite. Sentinel-6 is the Jason-CS mission, and
secures operational continuity to the Jason altimetry series of missions within the Copernicus space
component through a European-US partnership.
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Figure 5 Overview of the satellites of the Copernicus system. Source: M. Drinkwater, adapted from Butler
(2014)

3.5 Missions for research and development, and the challenges of continuity

Beyond the sustained observations provided by operational programmes such as discussed in the
preceding two sections, many space agencies operate time-limited “research” missions for short-
term measurement of quantities not covered by the operational programmes, for understanding
processes and enhancing their modelling, or for development and demonstration of new
capabilities. Such missions may be developed after being identified by comprehensive assessments
of need, such as those of the US National Research Council's decadal surveys (NRC, 2007), or as a
result of individual calls for proposals from the scientific community, such as those for “core” and
“opportunity” missions issued by ESA’s Earth Explorer programme (Drinkwater et al., 2012). Missions
are increasingly carried out through the cooperative efforts of more than one agency. They
sometimes involve either repeated deployment of a particular type of instrument or the deployment
of an instrument similar in type to an earlier one, and may be followed by implementation of this
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type of measurement within operational programmes such as those discussed earlier. They may thus
provide part of a much longer time series of critical measurements, and as such may provide data
that are used in operational prediction or monitoring systems, with recalibration as needed.
Examples are the use of data on ocean surface vector wind provided by scatterometers on the ERS-
1, ERS-2, QuikSCAT, Metop-A, Oceansat-2, Metop-B and other satellites, on aerosol optical depth
provided by the MODIS instruments on the Terra and Aqua EOS satellites and the VIIRS instrument
on the Suomi NPP satellite, and on ocean surface-wave height from the radar altimeters on ERS-1,
ERS-2, Envisat, Jason-2, CryoSat and SARAL, to be followed by the data from Sentinel-3. For reactive
trace gases such as NO,, SO; and ozone, continuation and refinement of the types of nadir
measurement provided by a mix of research and operational missions flying BUV, SBUV, TOMS,
GOME-1, SCIAMACHY, GOME-2, OMI and OMPS instruments will largely come from the operational
NOAA (JPSS), Copernicus (Sentinels 4, 5p and 5) and Chinese (FY-3) missions.

Recent, current and future groups of related missions include those measuring soil moisture
and/or ocean surface salinity (SMOS, Aquarius/SAC-D and SMAP), sea-ice thickness (CryoSat and the
forthcoming ICESat-2), and clouds, aerosols and radiation (the A-train set comprising CALIPSO,
Cloudsat and PARASOL, and the forthcoming EarthCARE). The 3MI instrument to be flown on Metop-
SG will build on heritage from the POLDER instrument on PARASOL. Carbon dioxide provides a
further example, with column measurements from the SCIAMACHY instrument on Envisat followed
by those from the dedicated GOSAT and OCO-2 missions, with continuation provided by at least
0OCO0-3 and GOSAT-2, supplemented by upper tropospheric measurements from high spectral
resolution infrared sounders beginning with AIRS on EOS/Aqua and continued by instruments such
as IASI and CrlS on operational meteorological platforms. An organizational framework for space
agencies to coordinate their related activities for several individual variables or classes of variable is
provided by the CEOS virtual constellations.

Several types of challenge have to be faced in seeking to ensure appropriate levels of continuity
and innovation for key measurements, given the overall constraints on funding. Although the
transfer of some types of observation from a research to an operational basis is generally to be
welcomed, there remains a need for intermittent investigative missions for demanding variables. No
simple rule exists as to when such missions might be justified, or when transition to routine
operation should occur, as this will depend on the extent to which data from earlier investigative
missions have been exploited to improve models or data analyses, and on the availability and costs
of new technologies that could be deployed to measure the variables concerned. A particular case in
point is that of active vertical profiling measurements of cloud and aerosol properties, for which
arrangements beyond EarthCARE are uncertain.

The existence of a substantial gap in the provision of a certain type of observation is a particular
issue when the use of such data is of demonstrated value for monitoring or forecasting, either as
input or as routinely used diagnostic data. A prime example of this is the forthcoming gap in the
limb-sounding of upper atmospheric composition and temperature that has been identified for
several years as needing to be filled or minimized. This is discussed further in section 3.6.1 below.
Gaps are more justifiable if they are related to new types of observation for which time may be
needed to establish the value of the data provided or the robustness of the measurement
technology. Examples are the measurements of ocean-surface salinity noted above and the wind
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measurements expected from ADM-Aeolus. In such cases mission planning needs to be agile so as to
minimize gaps for types of observation that have been demonstrated to yield cost-effective benefits.

More generally, CEOS maintains an on-line “Mission, Instruments and Measurements” data base
(MIMD; database.eohandbook.com), which provides information gathered from its members on
their current and future space-based systems, with the future missions categorized as approved,
planned, or considered. Other useful sources of such information include the WMO OSCAR database
(www.wmo-sat.info/oscar/satellites) and the Earth Observation Portal provided by ESA
(eoportal.org/web/eoportal/satellite-missions). Consulting such databases provides a good overall
picture, although (as found when preparing this report) cross-checking and internet searches are
needed on matters of detail relating to particular instruments, as these are prone to changes or
errors that take time to be registered or corrected in the databases. The databases reveal that the
prime meteorological variables and some others are indeed well covered, while others are less well
catered for, to various degrees.

There are issues of continuity to be addressed even for the operational meteorological and
Sentinel satellite systems discussed in sections 3.3 and 3.4. These include recognized needs to pay
more attention now to factors important for climate (such as calibration, instrument and platform
characterization, orbital control and stability) than for previous generations of weather satellites,
and needs to address questions related to new launches or mission-lifetime extensions in the light of
the varying degrees of health of the multiple instruments that are carried by many of these
satellites. Change inevitably occurs from one generation of satellite-borne instrument to the next,
but balances have to be struck between reproducing the capabilities of a preceding generation of
instrument, so as most closely to preserve long climate records, and improving the capabilities of the
new generation of instrument, so as to improve forecasting capability for example. Users have to
adapt to these changes, in addition to dealing with the differences in instrumentation from one
operator to another. This has become a demanding task, even for well-resourced centres, as the
number of operators and instruments flown by each of them have both been increasing. The
situation is ameliorated by collaborative institutional arrangements providing inter-calibrated, multi-
instrument data records and products, common software and exchange of information on data
quality and use.

Alongside issues related to the continuity of the space-based observations are issues concerning
continuity of complementary in situ observations. Partly realized threats to reduce ground-station
and shipboard measurements of atmospheric composition are one such. Observations from land-
based meteorological networks have increased in number, but coverage is still far from uniform, and
even generally welcome improvements such as increases since around the year 2000 in the number
of available radiosonde observations may cause problems in integration with space-based
observations unless care is taken to reconcile the biases of the different types of measurement
(Simmons et al., 2014). Assessments of the changes over time in analyses of ocean temperatures
and the accuracy with which they can be forecasted by seasonal prediction systems has to be carried
out with care because of substantial observing system improvements such as the build-up of the
TAO/TRITON array and introduction of altimetry in the 1990s, and deployment of Argo floats in the
2000s (Stockdale et al., 2011; Xue et al., 2012).
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3.6 Observation of specific components of the Earth system

Any one observation may serve many purposes: verifying the forecasts made days, months or
seasons previously, initialising the forecast for days, months and seasons ahead, supporting the
development or quality assurance of improved models over future years, calibrating the forecasts
produced by these models, and characterising climate through repeated use over decades or more
ahead as methods of reprocessing and reanalysis are improved. Moreover, any one observed
variable may be of importance for more than one physical domain, for more than one of the physical
and biogeochemical cycles of the Earth system, or for more than one area of societal benefit. In turn,
any one measurement from space may contribute to the provision of information on more than one
variable.

Accordingly, there are multiple ways of presenting the status and requirements for specific
elements of Earth observation, each with their own advantages, disadvantages and applications. The
discussion in this section is split by the atmospheric, oceanic and terrestrial domains, but with
separate discussions of observations and other data for the cryosphere and for the carbon cycle. It
touches on many important topics, but is not intended to be exhaustive. A more comprehensive
variable-by-variable account, including many illustrations of data coverage, is provided for the ECVs
by GCOS (2015).

3.6.1 Atmosphere

3.6.1.1 Temperature and wind

Temperature and wind are fundamental meteorological variables that affect many aspects of the
working of the Earth system. Their observation is essential to making weather forecasts and
monitoring the climate system, and as such they are relatively well provided for by operational in
situ networks and the satellite observing systems discussed in section 3.3. Wind observation from
space is more challenging than temperature observation, but data assimilation systems infer
information on the wind from the more plentiful observations of temperature through the balance
constraints that are effective in the extratropics, and wind information may also be extracted from
observations of variables that act as tracers in some parts of the atmosphere.

Aside from continuation and refinement of the valuable provision of information on temperature
(and other variables) from passive microwave and infrared sounding, required enhancements of
routine space-based observation include establishing a full operational constellation of receivers for
inferring vertical profiles of temperature (and humidity) from the occultation of GNSS signals, where
current arrangements and short-term plans are for receivers on the operational Metop, Metop-SG
and FY-3 platforms, with further, plentiful coverage from the Taiwanese/US constellations of
COSMIC and COSMIC-2 receivers and additional coverage from receivers on individual satellites such
as GRACE and its planned follow-on. There are opportunities to improve coverage by using GNSS
constellations other than the GPS used hitherto (Liao et al., 2015). Establishment of fully operational
arrangements are important not only because of the direct value of this type of observation for
weather forecasting and climate monitoring, but also because the stability of these measurements
and of measurements from operational high spectral resolution infrared sounders, allied with
reference measurements from the GRUAN, provides a baseline for calibration of data from other
components of the observing system (WMO, 2014). Valuable temperature information in the upper
stratosphere and mesosphere is also provided by the limb-emission measurements that provide
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much information on atmospheric composition. The future of this type of measurement is a concern
that is identified in several place in this report.

A further required enhancement is for flight of scatterometers in the afternoon sun-synchronous
polar orbit to complement the data on surface winds over sea currently provided or planned from
instruments flown in morning orbits. Different and welcome in the roadmap for coming years is the
ADM-Aeolus mission, aimed at demonstrating the value of applying challenging Doppler lidar
technology to determine wind profiles from space.

Gaps in spatial coverage by in situ measurement are a longstanding concern, especially close to
the surface, and the future balance between radiosonde, aircraft and space-based upper-air
observation merits reconsideration in the light of recent and imminent developments. The relatively
long history of observations of temperature, wind and related meteorological variables, notably
surface pressure, brings with it particular requirements and opportunities for data recovery,
reprocessing and reanalysis to improve monitoring and understanding of climate variability and
trends. This includes reprocessing satellite data to benefit from improvements over time in
extracting wind information from successive images, as undertaken originally using data from
geostationary orbit but now established also for polar regions, with emerging products for other
regions derived from pairs of satellites in similar polar orbits (Borde et al., 2016).

3.6.1.2 Water vapour and cloud

Measurements of water vapour and cloud are important because of the role these variables play
in radiative transfer, the formation of precipitation and latent heat release, and thereby in the
forcing of atmospheric motion and the feedback effects that amplify or otherwise interact with
climate-change signals. They also play an important role in atmospheric chemistry.

Sounding from space in both the infrared and microwave is the primary source of observational
data on middle and upper tropospheric humidity. Microwave imaging provides data on the net
water-vapour content of the lower troposphere over sea. In situ measurement remains the primary
source of information for the boundary layer and lower troposphere over land, although information
on the integrated water-vapour content comes from the delays in receipt of GNSS signals by ground-
based receivers. Future provision of operational observation from space is closely tied with that for
temperature, and largely subject to only the same minor concerns. Detail can be found for example
by examining WMOQ’s OSCAR database (www.wmo-sat.info/oscar/observingmissions). Routine in situ
humidity measurement from commercial aircraft, supplementing current temperature and wind
measurements, is beginning to be established.

Near-tropopause and lower stratospheric water vapour is difficult to measure because of its very
low values, yet it matters in terms of its direct radiative effects and source of moisture for cirrus
clouds. Here there is a need for expanded high-quality in situ measurement, such as envisaged to be
provided by the GRUAN, as well as aircraft observation and limb-sounding from space. Lack of future
provision for the latter is a major concern, as discussed below for other trace constituents.

Biases in both observations and models have been particularly prevalent for water vapour over
the years, from the boundary-layer upwards. This has caused issues in particular for data
assimilation, as evident in problematic humidity and precipitation products from reanalysis. Links
between near-surface tropical temperature change and temperature and humidity change in the
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tropical upper troposphere have been difficult to reconcile between observation and modelling, but
several recent studies (Lott et al. 2013; Mitchell et al., 2013; Simmons et al., 2014) point to a much
improved situation.

Data are needed on the horizontal and vertical distributions of clouds, and on cloud
microphysical properties. Satellites have long provided information on the horizontal distributions of
cloud, with the work of the International Satellite Cloud Climatology Project (ISCCP) over more than
thirty years deserving particular mention. The vertical distributions of clouds and in-cloud droplet
distributions needed to improve process parameterizations in models are now becoming available,
drawing on data from CloudSat, CALIPSO and CERES, and should be improved with data from
EarthCARE. In addition, assimilation of cloud- and rain-affected radiance data from operational
sounders and imagers has become a focus of research and development for numerical weather
prediction, and WCRP has established a grand-challenge research focus on clouds, circulation and
climate sensitivity (Bony et al., 2015). There are thus reasons to be optimistic that significant
progress will be achieved over the coming ten years.

3.6.1.3 Precipitation

Precipitation is a primary input for the surface hydrological cycle. Measurements of
characteristics such as the amount, frequency, intensity and type of precipitation are crucial for
understanding and predicting the Earth’s climate, weather, streamflow, soil moisture and water
availability. Gauges generally give quite accurate point measurements of rainfall, although prone to
undercatch. The spatial and temporal variability of precipitation leads to considerable uncertainty in
precipitation maps for areas without data from dense gauge networks, especially where terrain is
complex, and data from such networks are often not made freely or promptly available. High-
frequency observations are needed to assess rates of precipitation. Surface-based radar
observations offer denser spatial coverage and provide instantaneous rates, but accumulated
amounts are less certain than those from most gauge arrays. Integrated measurements, derived
from combinations of space- and ground-based data, give more reliable areal estimates where dense
coverage is lacking on the ground.

Estimates of precipitation from space are made predominantly from passive remote sensing in
the spectral range from the visible to the microwave. The precipitation radar on the TRMM satellite
provided an invaluable record of tropical precipitation following launch in 1997 until its operation
ceased in April 2015. The Indian-French Megha-Tropiques, launched in 2011, provided more
frequent observations within the tropics from a lower inclination orbit using microwave
radiometers. The NASA/JAXA Core Observatory satellite of the Global Precipitation Measurement
(GPM) mission is currently making radar and microwave measurements with much broader orbital
coverage to 65° latitude and greater sensitivity to light rain and snowfall, providing a basis for
unifying the microwave measurements of precipitation from a constellation of satellites operated by
several partners (Skofronick-Jackson et al., 2013).

The most comprehensive precipitation estimates come from hybrid products that combine in situ
and space-based measurements. Perhaps the most widely used is that provided by GPCP, the Global
Precipitation Climatology Project. Over land, GPCP makes extensive use of the gauge-based analyses
of the GPCC, the Global Precipitation Climatology Centre (Becker et al., 2013). Known shortcomings
of the GPCP estimates over sea, which utilizes both passive microwave and infrared measurements,
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have recently been corrected using data from the Cloudsat cloud profiling radar combined with data
from either the TRMM precipitation radar or AMSR-E (Behrangi et al., 2014).

Notwithstanding the improvements brought by GPM, a significant shortcoming remains at high
latitudes, particularly over the gauge-free regions of the Arctic and Southern Oceans. The suite of
satellite sensors presently available are largely unable to differentiate between cold or icy surfaces
and frozen precipitation. Although useful precipitation climatologies can be assembled from
missions like CloudSat and the future EarthCARE, such missions do not carry sensors designed for the
purpose. Future sensing capability complementary to what is provided by missions such as GPM is
needed to constrain knowledge of solid and liquid precipitation in polar regions.

3.6.1.4 Aerosols

Aerosols influence the heat balance of the atmosphere directly by scattering and absorbing
radiation, and indirectly through influencing cloud reflectivity, cover and lifetime. Tropospheric
aerosols include dust, sea salt, secondary organic aerosols, primary biomass burning aerosols
including black carbon as well as secondary anthropogenic organic and inorganic aerosols related to
industry, transport and agriculture. Aerosols near the surface of the Earth damage health and
disrupt transportation. Long-range movement of dust redistributes mineral nutrients. In addition,
the aerosol distribution also needs to be taken into account in retrieving information on other
variables from space-based measurements. This includes trace-gas concentrations and some land
and ocean properties, ocean colour for example.

Understanding and monitoring the role of stratospheric aerosol in climate is important not only
because of the significant warming of the stratosphere and cooling of the troposphere by sulphate
aerosol that results from major volcanic eruptions, but also because artificial enhancement of
stratospheric aerosol has been proposed as one of the geoengineering approaches to offsetting
tropospheric warming due to increased greenhouse gases.

Data on aerosols will continue to be provided by a number of the long-term satellite missions,
including from the satellites in the afternoon orbit of the JPS, from Sentinels 3, 4, 5p and 5, from
GCOM-C and from 3MI on Metop-SG, and by research missions such as EarthCARE. Occultation and
limb scattering data, for which continuity of long-term provision is less certain, have also proved
important for estimating stratospheric aerosol of volcanic origin (Vernier et al., 2011; von Savigny et
al., 2015). There are, in addition, important needs for data from in situ networks and airborne
programmes.

Highly calibrated ground-based measurements are needed to support the retrieval of aerosol
optical depths and other aerosol properties from space-based measurements. The AERONET
network of sun photometers (aeronet.gsfc.nasa.gov) has provided the “gold standard” for
determining values of aerosol optical depth, and its data have been used in particular for the
validation and bias correction of MODIS and MISR retrievals and model-based products.

Lidar-based ground networks provide vertical distributions of aerosols, and need to be sustained.
In situ measurements from dedicated aircraft campaigns are also needed, to define more highly
resolved aerosol properties. These include understanding the composition and size distribution of
aerosols at altitude as well as their ice nucleation and cloud condensation nuclei properties.
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Development of the IAGOS (In-Service Aircraft for a Global Observing System) programme offers the
prospect of long-term measurement from instrumented commercial aircraft.

Surface-based networks are also needed for aerosol composition and size distribution. In the USA
the IMPROVE network has proved invaluable. Many regional networks have been folded into the
WMO-sponsored GAW network. Measurements of particulate matter from air-quality networks
have also been utilized to verify outputs from global analysis and forecasting systems. Several
international initiatives should help develop the better links required between environmental
agencies and weather services to ensure progress in data exchange and service provision in general
over the next decade and more. These include WMO’s GAW Urban Research Meteorology and
Environment project and Sand and Dust Storm Warning Advisory and Assessment System, a number
of activities of the Copernicus Atmosphere Monitoring Service, AirNow International and the work of
the community of practice for air quality under the Health SBA of the GEOSS. Many of these
considerations apply also to ozone and other traces gases implicated in poor air quality.

3.6.1.5 Ozone

Ozone is a variable of particular importance because of the various significant roles it plays: in the
stratosphere where it shields life below from the harmful effects of ultraviolet radiation and is linked
through radiative forcing with temperature and circulation changes, in the troposphere as a
greenhouse gas and at the surface as a gas affecting human health and a cause of reduced crop yield
and forest growth. Controls on the anthropogenic substances that deplete ozone in the
stratosphere, the strong global-warming potential of the substances that replace them, measures to
improve surface air quality and changes in ozone concentrations due to climate change in general,
confound the picture in the long term and add to the need for measurements and modelling.

Nadir-viewed measurement from space of ozone and other trace gases discussed in the following
section is firmly established on the roadmap for the coming ten years, with a number of approved or
planned missions identified in the CEOS database, including contributions from both operational
meteorological systems and members of the Sentinel series. Novel observation from geostationary
orbit will be provided not only by Sentinel-4 but also by the US TEMPO and Korean GEMS missions.
Use of a highly elliptic Molniya orbit to focus on the Arctic is a Canadian mission that is under
consideration.

A serious concern is the lack of future provision of the limb-sounded data that provide much
better vertical resolution of the upper troposphere and stratosphere for ozone and several
important species, including water vapour and ozone-depleting substances. Microwave limb
sounding is currently provided from NASA’s EOS-Aura satellite and the Odin satellite of a Swedish-led
international mission. Both satellites are operating well beyond their nominal lifetime. This type of
sounding is referred to next in the CEOS timeline only in the Global Atmospheric Chemistry Mission
under consideration by NASA for launch in 2030, though as a proposal that survives from the US
Decadal Survey published in 2007 it is likely to be reviewed in the successor survey currently taking
place. Limb backscatter measurement of ozone is provided on NOAA’s Suomi NPP satellite, and is
scheduled for JPSS-2, but not JPSS-1, indicating that a gap in data provision is likely (Figure 4),
although measurements expected to be made by FY-3E from 2017 and then FY-3G offer an
alternative source of such data. Also, SAGE-IIl on the International Space Station should provide data
based on solar occultation from 2016.
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A further concern is decline of the baseline in situ networks for total and profile ozone
measurements provided respectively by Dobson and Brewer spectrophotometers and by
ozonesondes.

3.6.1.6 Other fast-reacting trace gases

Gases such as nitrogen dioxide, sulphur dioxide, formaldehyde and glyoxal have to be measured
because of their intrinsic importance for air quality and also because of their role as precursors for
the formation of secondary aerosols and ozone in the troposphere. Other gases such as carbon
monoxide are important because of the related chemical reactions in which they are involved. It has
already been noted that methane also plays a role here, in addition to that of a greenhouse gas.
Although measurement from space is more challenging for some of these gases than for ozone, the
situation in summary is much the same for them as for ozone, with the absence of limb sounding the
major concern.

As in the case for aerosols, the need remains for ground-based remote sensing and in situ
measurement of near-surface and tropospheric profiles or column values for the fast-reacting trace
gases, including measurements from the IAGOS programme. For many reactive gases a ground-
based system is either not in place or provides only sparse coverage. Moreover, threats to the
continuity of some long-term measurements from ground stations are becoming increasingly
apparent. This in turn poses a serious threat to the observing system as a whole, as the ground-
based data provide a crucial reference for effective product generation and integrated use of data
from multiple satellite missions.

3.6.1.7 Radiation budget

The primary observations related to the Earth’s radiation budget are of solar irradiance, the
external driver of the Earth system, and of the reflected solar and emitted longwave radiation that
leaves the atmosphere. The observations are made from space, and continuity and stability of
measurement are essential for detecting fluctuations and change. The inferred imbalance between
incoming and outgoing fluxes is smaller than the uncertainty of several Wm in the measurements
of outgoing radiation, although as uncertainty stems mostly from biases, changes over time can be
tracked. Measuring the variability of fluxes in space and time over the globe thus provides insight
into the overall behaviour of the climate system, and provides vital data for the evaluation and
improvement of climate models.

Broadband measurements of outgoing radiation have been made since the 1970s. In particular,
the CERES instrument on NASA’s Terra satellite has provided data for more than fifteen years, with
instruments also now flying on the Aqua and Suomi-NPP platforms, and a final one scheduled for
flight on JPSS-1. Measurements will be continued with a new instrument on JPSS-2 and from
instruments on FY-3 satellites. The Geostationary Earth Radiation Budget instrument on the current
Meteosat series of geostationary satellites provide complementary broadband measurements with
good temporal sampling of the diurnal cycle but partial spatial coverage.

Total solar irradiance has also been measured since the 1970s. There is considerable variation in
the absolute values that have been given by different instruments; lower values are provided
consistently by the latest, and best-calibrated, instruments to fly, including from the long-lived
SORCE mission.
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Radiation at the Earth’s surface is a fundamental component of the surface energy budget that is
crucial to many aspects of the working of the Earth system, including its energy and hydrological
cycles. Systematic ground-based observations are needed for monitoring climate variability and
change, and for evaluating products based on satellite data and from reanalyses and model runs.
The Baseline Surface Radiation Network is of particular importance in this regard. Data are also
needed for the siting and operation of solar power-generation systems, and for agriculture, health
protection and tourism.

Generation of data products from the space-based observations makes use of radiative transfer
modelling and ancillary data on several of the atmospheric and surface variables discussed in other
sub-sections, bringing further requirements for their observation and analysis. This is especially the
case for the derivation of fluxes at the Earth’s surface.

3.6.2 Ocean

Improved understanding and quantification of the state of the ocean is needed at multiple spatial
and temporal scales, in particular with regard to:

e mesoscale and sub-mesoscale processes and dynamics and their interactive role and impact
on energy transport, marine ecosystems and biogeochemical cycles;

e physical and biogeochemical air/sea interaction processes and the subsequent transfer of
heat, gases and nutrients within the oceans by turbulence, mixing, convective motion and
biological pumping;

e regional and global sea level;

e forecasting oceanic and interacting Earth-system conditions over all time scales.

Oceanic circulations are largely driven by fluxes of heat, momentum and fresh water at the ocean
surface. Modelling and data assimilation for the ocean thus have a predominant need for good-
guality atmospheric data and data on the input of fresh water from rivers. Linked to these inputs is
the need for data on ocean-surface variables such as SST, sea-surface salinity (SSS), surface current
and sea state (ocean-surface-wave conditions). This has to be complemented by data on the sub-
surface state of the ocean from both in situ and remote-sensed observations, in particular to
constrain models used in estimating the ocean state.

A number of aspects of observation of the ocean are discussed below in this section, 3.6.2, and
also in subsequent sections on the cryosphere and biogeochemistry. Important ocean observations
not covered further here include those of ocean transports across sections, often derived (such as
RAPID or WOCE), but also directly measured by cable (Florida Strait transport). Mention should also
be made of the potential of a synergetic integrated approach to consistently fuse available and
planned satellite data (high-resolution SST, sun glitter reflectance, ocean colour and radar images,
and lower resolution sea surface topography and scatterometry observations) with in situ
measurements and fine-resolution numerical-process models to advance understanding of
behaviour of the upper ocean on horizontal scales of 20 to 100 km.
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3.6.2.1 Sea-surface temperature

In addition to their importance for ocean-state estimation, datasets on SST are combined with
analyses of surface air temperature over land to form the global surface temperature records that
provide basic metrics used to quantify global warming. They are important also for numerical
weather prediction, marine services and atmospheric reanalysis.

Infrared instruments on polar satellites provide information with global coverage and good
horizontal resolution and accuracy, except in areas that are persistently cloud-covered, where data
from passive microwave instruments have been shown to be complementary. Observing the diurnal
cycle is becoming increasingly important, for which geostationary satellites offer capabilities.
Arrangements for future space-based observations as summarized in section 3.3 are generally
regarded as adequate, but with some concern over the extent of the provision of passive microwave
measurements. Ships and buoys provide SST observations of good temporal frequency and accuracy.
Coverage has been marginal or absent over some areas of the Earth, but recent improvements in the
in situ network have enhanced coverage considerably.

3.6.2.2 Sea-surface salinity

The salinity as well as temperature of the ocean affects density and therefore ocean currents.
There is large uncertainty in the net flux of fresh water into the ocean from precipitation,
evaporation and river discharge, which affects SSS and mixed-layer properties. There is also large
uncertainty in the fresh-water flux between sea-ice and sea-water. The fresh-water flux is probably
the largest source of uncertainty in the estimation of ocean salinity in the upper 100m. Salt exchange
between ocean and sea-ice is believed to influence the large scale thermohaline circulation, thereby
affecting the deep ocean. SSS also plays a significant role in El Niflo events. It is quite widely
measured from moored buoys, but these data are not sufficient to resolve the variability of the
equatorial salinity front, whose horizontal scale is 100-200 km. Near-surface salinity measurements
from Argo floats (see 3.6.2.5) are also important. Data of the type provided by the Aquarius/SAC-D
and SMOS satellites are potentially useful, but provide limited information for cold sea temperatures
and there is little experience to date indicating their general value in data assimilation for seasonal
forecasting or reanalysis. They may support the detection of the SSS variability associated with El
Nifio events and migration of fronts in SSS, and their use with SST data to constrain estimates of the
flux of CO, between atmosphere and ocean is being explored.

3.6.2.3 Surface Current

Satellite altimetry is arguably the most mature technique for mapping ocean surface currents and
has permitted breakthroughs in understanding the dynamics of the ocean circulation on scales
above about 100 km and eddy kinetic energy on a global scale. Altimetric data are regularly
assimilated in ocean models and are highly important for marine service provision. Space-based
estimates of ocean surface current and higher-level derived quantities such as frontal boundaries
can also be derived from SAR data and from passive measurements in the spectral range from the
visible to the microwave.

In situ current measurements from moored buoys, surface drifters, coastal HF-radar installations,
Argo floats, gliders and ship observations complement these satellite measurements. Each of the
satellite and in situ measurement techniques has specific strengths and limitations, related to
resolution, coverage, accuracy, depth-integration, cloud-dependence, empirically based retrieval
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methods and so on. By development and use of systematic data merging and sensor synergy,
combined with advanced processing tools and simulation models, the complementary use of these
sensing techniques can be optimized. Deficiencies are thereby reduced and the final surface current
estimate is more consistent, regular and reliable.

3.6.2.4 Sea state

Coupling of atmospheric and surface-wave models is well established for combined weather and
sea-state forecasting, having been used since 1998 at ECMWF (Janssen, 2004). It has also recently
received attention in the context of the modelling of climate change (Fan et al., 2013, 2014).
Evidence is growing of the importance of surface wave dynamics for the evolution of currents and
temperatures in the upper ocean. Effects include those of wave breaking, generation of turbulence
by Langmuir circulation and refraction of waves by currents. Interactions are two-way, and Earth-
system models with tightly coupled atmosphere, ocean-wave and ocean-circulation components
should emerge over the coming decade.

Space-based data on sea state for assimilation and model evaluation have been provided by the
ERS and Envisat radar altimeters as noted earlier, succeeded now by the Jason-2, CryoSat and Altika
altimeters. SAR data from ERS-2 and Envisat have also been used. Satellites in the Sentinel series
(Figure 5) will ensure long-term provision of these types of data. /n situ data from moored buoys are
important for independent evaluation of analyses and forecasts.

3.6.2.5 Sub-surface temperature, salinity and other variables

Sub-surface in situ data either on temperature alone or on both temperature and salinity are
provided primarily by XBTs (Expendable bathythermographs), CTD (Conductivity, Temperature and
Depth) transects, moored buoys and Argo floats. More recently, data under ice have been provided
by instrumented seals and tethered profilers. Efficient autonomous underwater vehicles, so-called
gliders, also now provide data on temperature, salinity and currents. Arrangements are in place for
supply of various types of data both in near-real-time and from long-term repositories. Version
control of datasets is a requirement as the applied bias corrections and quality-control decisions
evolve over time and are important for estimating long-term changes. Examples are XBT depths
(Wijffels et al., 2008) and data from the Argo pressure and salinity sensors (Willis et al., 2007).

Figure 6 shows time series and spatial distribution of the different in situ observations used in
ECMWF’s recent ORAS4 ocean reanalysis (Balmaseda et al., 2013a). The spatial and temporal
sampling varies substantially between instruments: the XBTs usually follow commercial ship routes,
CTDs are associated with intensive scientific field campaigns and the moored arrays sample the
equatorial oceans at selected positions. Argo is the only observing system that samples the
subsurface of the ocean fairly uniformly, measuring temperature and salinity down to depth of
2000m. Notwithstanding the marked improvements in the global in situ data coverage Argo
provides, the deeper ocean and ice-covered regions remain largely unobserved. The deep ocean is
important for decadal prediction and climate change. It is also important for shorter time-scale data
assimilation, especially for maintaining the stability of the water column when assimilating partial-
depth temperature and salinity profiles, and for imposing observational constraints on the
multivariate relationships used in the assimilation of altimeter data, which can otherwise very easily
contaminate the analysed deep-ocean variability.
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Figure 6 (left) Number of temperature (top) and salinity (bottom) observations within the depth range
400m-600m as a function of time per instrument type. The black curve is the total number of observations. The
orange curve shows the number of assimilated observations. (Right) Observation coverage in June 1980 (top)
and in June 2009 (bottom). Note that the colour coding for the instruments is not the same in the left and right
panels. Data are as used in ORAS4. Source: ECMWEF.

It is unlikely that any in situ observing system could provide sufficient global sampling of the
ocean mesoscale. However, the in situ observing system for subsurface temperature and salinity
should guarantee sustained broad-scale sampling of the whole ocean, including depths below
2000m and ice-covered seas. The frequency, horizontal and vertical resolution of sampling should
vary with depth and with location: more intense sampling is needed in boundary regions and along
the equator, and close to the surface, while coarser and less frequent sampling may suffice for the
deep ocean. Guidance is provided in the recommendations of a recent workshop on the Tropical
Pacific Observing System (GCOS/GOOS/WCRP, 2014). The ongoing development of new Argo floats
that descend much deeper than those presently deployed routinely offers promise for deep-ocean
observation, and it is important that repeat hydrography be undertaken as envisaged under the
international Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP; www.go-
ship.org/). A wider strategy for deep-ocean observing of the range of key variables, including
biological and chemical ones, is under development (Heimbach et al., 2014) under the auspices of
the GOOS, and should guide progress over the coming decade. A strategy for observation under

Antarctic sea ice is reported by Rintoul et al. (2014).

3.6.2.6 Sea level
Sea level integrates changes of several components of the climate system in response to

anthropogenic and natural forcing factors and is an important indicator of climate change. A series
of altimeters has delivered sea-level information continuously since late 1992 (Ablain et al., 2015).
Data are currently provided by Jason-2, CryoSat and Altika; future provision has been referred to in
section 3.3. The relatively high-resolution homogenous global sampling provided by these satellite
data complements what is provided by the Global Sea-level Observing System (GLOSS;
IOC/GO0S/ICOMM, 2012) core in situ network of about 300 tide gauges reporting in near-real time,
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which has other important applications such as tsunami warning and storm-surge monitoring and
modelling. Also needed are geodetic measurements, as account must be taken of land movement, in
particular due to glacial isostatic adjustment and human influences such as subsidence in coastal
regions due to urbanization, water and mineral extraction and river management. This is needed in
general to determine vulnerability of populations to inundation and to develop adaptive responses,
and specifically at tide-gauge locations so that data can be used for study of long-term change. Here
satellite systems play a role through use of GNSS signals and laser ranging from ground stations, and
through data from orbit such as provided by the DORIS instruments carried on several satellites.

Along-track altimeter-derived sea-level anomalies (SLAs) are widely used in ocean data
assimilation. Ground processing is consistently carried out to remove tides, apply the inverse
barometer correction, make orbital corrections and cross-calibrate data from different instruments.
Challenges are discussed by Fu and Haines (2013). The mean dynamic topography that is needed to
utilize the SLA data may be taken either from a free run of the assimilating model, from a reanalysis
or from direct use of other observational data, including from satellite gravity missions.

Global sea-level variations from altimetry may also be used to constrain the global fresh-water
and ocean heat-content budgets.

Gravity missions such as GRACE (Tapley et al., 2004) and GOCE (Rummel et al., 2011) have
provided original and highly important new information on the geoid. This opens, for example, the
possibility of using of altimeter-derived sea-surface height as opposed to SLAs in ocean data
assimilation systems, bypassing issues in determining the mean dynamic topography. Gravity
missions also provide information on bottom pressure, which can be used globally to constrain the
non-steric part of sea-level variations. Gravity-derived variations of the global mass field are also
useful for verification of ocean reanalyses.

3.6.2.7 Ocean colour

Information on the concentration of the pigment chlorophyll-a in phytoplankton, and thereby on
the biomass of phytoplankton, is provided by measurements of ocean colour. These are of vital
importance because phytoplankton lie at the base of the ocean food chain and play a role in the
carbon cycle through the photosynthetic production of organic matter from dissolved inorganic
carbon and nutrients. Ocean-colour data also provide information on dissolved organic matter and
on suspended particles in coastal waters. Space-based passive instruments sense only an upper layer
of the ocean (ranging from 40- 60m deep in the open ocean to less than 1m deep in turbid coastal
waters), and need to be coupled with in situ sampling of ocean colour and ecosystem variables, and
models, to provide a complete picture.

Established data records on ocean colour from the SeaWiFS, MERIS and Aqua-MODIS instruments
are being combined into a record from 1997 onwards under the ESA CCl and the Copernicus Marine
Environment Monitoring Service, with similar activity under NASA’s MeASUREs project. Continuity of
measurement is being provided by OCM on Oceansat-2 and VIIRS, with future provision also from
OLClI on Sentinel 3 and SGLI on GCOM-C. Novelty is provided by Korea’s GOCIl instrument, which
provides data for a limited region around the Korean peninsula from geostationary orbit, raising the
possibility of a future constellation monitoring key coastal waters.
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3.6.2.8 Bathymetry

Data on the bathymetry of the oceans has come primarily from shipboard sounding,
supplemented by estimates derived from ocean surface elevation measurements using space-based
radar altimetry. New measurements from the altimeters on CryoSat and Jason-1 have provided the
source for a recent more-accurate bathymetry (Sandwell et al., 2014). There is also a potential for
the time-varying bathymetry of shallow coastal seas to be derived by combining optical and SAR
data (Pleskachevsky et al., 2011).

3.6.3 Land

A wide variety of data is needed concerning the land. Discussion in this section covers the
required observations related to the basic characteristics of its surface and sub-surface, its
vegetation, the water it holds and releases, and the related occurrence of fire.

3.6.3.1 Surface and sub-surface characteristics

Earth-system models require data on the physical characteristics of the surface and sub-surface
of the land. Elevation of the surface is needed to specify both the model’s resolved surface height
and fields related to parameterizations, such as surface roughness and slope-related fields used to
estimate generation of unresolved gravity waves, partition rainfall into interception, infiltration and
run-off, and so on. This requires access to datasets with resolutions of order tens of metres, much
higher than those of the models themselves. Use may be made of space-based digital elevation
models (DEMs) based on either radar or optical measurements, such as from the SRTM and ASTER
instruments respectively. Requirements for resolution and accuracy will become more stringent as
model resolution increases and parameterizations are refined; needs over the coming ten years may
be met by new datasets such as from the TerraSAR-X and TanDEM-X satellites.

Data on the type of land cover is a further requirement, including historic data on changes in land
use. Models utilize information down to sub-grid-scale resolution on the presence of bare soils,
vegetation of various types, water, snow and ice, and urban or other built-up areas. Data on soil
morphology are also required, particularly as it affects drainage and retention of water. Current and
near-future requirements for data from space appear to be catered for, in quantity at least, in view
of the number of land-cover missions identified in the CEOS database.

Surface albedo is both a forcing variable affecting the climate and a sensitive indicator of surface
environmental change. In Earth-system models it is typically in part prescribed from observations,
and in part modelled in terms of variables that change dynamically, especially snow and sea-ice
cover. Space-based data come from multi-spectral imager radiances from instruments such as
MODIS and MERIS. ECMWEF, for example, uses monthly mean fields of snow-free direct and diffuse
albedo in UV-visible and near-infrared bands built from 16-day MODIS data accumulated over the
years 2000-2003 (Schaaf et al., 2002). Multi-angular viewing, by instruments such as MISR and
POLDER, adds the capability for providing near-instantaneous values. Generation of a multi-decadal
record from a constellation of geostationary satellites is reported by Lattanzio et al. (2013).

3.6.3.2 Vegetation

Observations of the type and condition of vegetation are of direct importance for monitoring
agriculture and the extent and health of forests and other biomes. They are also needed for use in
Earth-system models, either to prescribe the characteristics of vegetation in models used for short-
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term prediction and some climate applications, or for initialization and validation of climate models
that include a representation of the dynamic evolution of vegetation. Both are areas that are
expected to develop in the next ten years, as forecasting and reanalysis models move from
climatological prescriptions to use inter-annually varying values determined by data assimilation,
and as climate models continue to be refined. The importance of the observation of vegetation has
resulted in the establishment of two substantial GEO initiatives in recent years: for Global
Agriculture Monitoring (www.earthobservations.org/geoglam.php) and the Global Forests
Observation Initiative (www.gfoi.org).

Much of the space-based data that are required comes from instruments that have already been
mentioned in other contexts. High spatial resolution measurements in the visible and near infrared
such as from the Landsat and Sentinel-2 imagers provide detailed maps for monitoring changes in
coverage and type of vegetation, for use in high-resolution modelling and for comparison with in situ
data. Moderate-resolution imagers such as MODIS, MISR and MERIS, and successor instruments
such as flown on both operational meteorological and Sentinel platforms, provide data for deriving
products such as Leaf Area Index (LAl) and Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR). LAl data are used in the specification of vegetation in models (e.g. Boussetta et
al., 2013a) and together with FAPAR (Gobron and Verstraete, 2009) to estimate the gross primary
production of biomass by photosynthesis, an important component of the carbon cycle. A new
capability for providing more-direct data for the latter from remote sensing of solar-induced
chlorophyll fluorescence has been demonstrated using data from the GOSAT greenhouse-gas
mission (Frankenberg et al., 2011; Joiner et al., 2011), and is expected to be enhanced by the
availability of data from OCO-2 and GOSAT-2. Measurement of above-ground forest biomass is the
objective of the 7th ESA Earth Explorer mission Biomass, whilst observation of field-scale vegetation
fluorescence emission is the objective of the 8th Earth Explorer mission FLEX. These missions are
scheduled for launch around 2021 and 2022, respectively.

Knowledge of the structures of vegetation canopies is also needed for better process
parameterizations of plant functional types. Ground-based survey data and space-based multi-
angular instruments or radar data have started providing such information, but this is still in
research mode.

Other in situ measurements are discussed in the context of the carbon cycle in section 3.6.5.

3.6.3.3 Land temperatures

Earth-system models typically include the temperature of several soil layers and one or more
overlying layers of snow. Observational data are required for evaluating these models, even if
acquisition of direct data to initialize predictions has not been a priority, notwithstanding the
importance of soil temperature to agriculture. Data on the sub-surface temperature of the land is of
particular importance where freezing occurs, especially in high-latitude and high-altitude regions
where changes in permafrost may affect the stability and erosion of terrain, the release of
greenhouse gases, sediment transport, the characteristics of vegetation and the amount of surface
and sub-surface water.

Soil temperature is quite widely measured in situ for agricultural purposes but not exchanged
internationally on a routine basis. Sites making borehole measurements of permafrost temperatures
and sites monitoring the active layer above permafrost that is subject to thawing and refreezing as
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the year progresses form the Global Terrestrial Network for Permafrost; recent reports are provided
by Noetzli et al. (2014) and Romanovsky et al. (2014).

Space-based data play a limited role in this case. Land surface temperature measurements from
satellite are of a radiative skin temperature that is influenced by a number of variables, including
vegetation and soil moisture, and are not readily related to soil temperatures, although the data
have a range of related applications: to frost occurrence, urban heat, drought early warning and
more. Concerning permafrost, satellite data can identify changes in lake area and numbers in regions
where this may be due to changes in permafrost and seasonally-frozen ground regions, and passive
microwave data can be used to map areas of frozen and thawed soil. SMMR and SSM/I data have
been used to detect change in the near-surface soil freeze-thaw cycle (Kim et al., 2012), and the
sequence of AMSR instruments provides an ongoing data record.

3.6.3.4 Terrestrial water variables and fluxes

Soil Moisture is an important variable for weather prediction and climate modelling. Both
observational and forecast data are needed for agricultural and water-resource management, and
many other applications. Indeed, a cross-SBA analysis by GEO (2010) ranked soil moisture second
behind precipitation among the variables that were critical priorities for Earth observation from a
direct user perspective.

Both active and passive space-based microwave measurements are used to estimate soil
moisture. Mention has already been made of the dedicated SMOS (Kerr et al., 2012) and SMAP
(Entekhabi et al., 2014) missions. Information on soil moisture is also provided by the series of AMSR
and scatterometer instruments. ESA-supported projects have generated a first 30-year dataset of
satellite soil moisture based on data from passive and active microwave sensors (Dorigo et al.,
2012).

In situ soil-moisture measurements are needed for validating products derived from satellite
data, for developing new integrated soil-moisture products, and for providing information at depths
below those sensed in the microwave. Some of the national and regional soil-moisture networks set
up for agricultural and other purposes participate in the International Soil Moisture Network (ISMN;
Dorigo et al., 20114, b) for validation of space-based estimates of soil moisture. There is, however, a
general need for improved and more widespread operational hydrological ground networks and
data exchange, especially for soil moisture. Current contributions to the ISMN are listed at
ismn.geo.tuwien.ac.at/networks/Networks. Coverage can be seen to be especially poor over Africa
and South America.

Evaporation and Evapotranspiration (ET) measurements can be used to estimate consumptive
water loss, especially irrigation losses and non-productive evaporative losses. Accurate flux values at
a particular location can be derived from in situ Bowen ratio and eddy covariance measurements
over land, but estimating ET and closing the water balance for the continental and global scales
remains challenging. ET is an important variable for water management. For agricultural areas, ET is
the primary part of consumptive water loss and ET monitoring can be used by water managers to
plan and assess water used in irrigation. ET is generally estimated from satellite data using a range of
models, with inputs from the optical and thermal bands from the MODIS, MERIS, AATSR, Landsat,
and other satellite sensors. Higher-resolution satellite thermal imagery is needed to provide better
estimates for agricultural and other applications.
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In situ measurements of evapotranspiration (ET) include station-based conventional lysimetric
and soil water balance methods, Bowen ratio energy balance, scintillometry and eddy-covariance.
Standards or protocols for ET measurements, databases and metadata, including from FLUXNET and
other tower networks, need to be better developed.

River discharge measurements have essential direct applications for water management and
related services, including flood protection. They are also needed for evaluating the working of the
hydrological cycle in Earth-system models and for use in the development and operation of flood-
modelling components that are driven by or embedded within Earth-system models, or will be in
coming years. While in situ methods are currently a cost-effective and in principle reliable option for
streamflow measurements, the decline of some in situ networks, lack of data sharing or delays in
making data available limit the capability to carry out global discharge monitoring and assessments.
In view of the limited prospects for in situ networks, efforts are being directed at expanding the
capability of satellite remote sensing to contribute to the estimation of river discharge. Candidates
include imaging sensors that document water extent and lidar or radar altimeters that measure river
heights. The imaging radar altimeter developed for the Surface Water and Ocean Topography
(SWOT) mission will be able to combine the measurement of surface water extent with water height,
and also measure the surface slope along the river channel.

Rivers are responsible for the transport of the majority of suspended sediments and their
associated contaminants. River sediment transport strongly influences the quality and biodiversity of
surface waters, riparian environments and the functioning of coastal zones. Sediment data need to
be collected, archived and analysed so that linkages between river and lake processes and water
quality can be fully understood. Rivers are also extensively used in industry especially for cooling and
often result in changes in temperature of the waters as well as addition of pollutants. There is an
increasing need to monitor the temperature as well as the quality of river waters.

Runoff and river discharge can be estimated using the Soil Conservation Service Curve Number
method for determining the approximate direct runoff volume for a given rainfall event in a
particular area. The advantage of the method is its simplicity and widespread inclusion in models
(USDA-NRCS, National Engineering Handbook). SMOS data have recently been used in the method to
define the potential maximum retention values for each grid point (Garcia-Leal et al., 2013; Lopez-
Baeza et al., 2014).

Continental surface water storage pools (lakes, reservoirs, floodplains, wetlands and river
channels) are home to aquatic ecosystems. Changes in the amount of water held in reservoirs have
to be taken into consideration in accounting for sea-level changes (Church et al., 2013). Earth-system
models require at least information on the location and areal extent of lakes and reservoirs, and may
include explicit modelling of these water bodies, which brings a requirement for bathymetric data.
Necessary information on surface temperature, ice cover and water level can be derived from
various types of space-based measurement. Nevertheless, monitoring of standing water bodies in
general remains poor. A diverse set of challenges has to be faced, but the need for data on
terrestrial surface water storage requires that a strategy be developed for monitoring. This will have
to combine in situ and satellite-based observation.

Groundwater is an important source of water in many areas. It is removed by natural processes
(discharge) and pumping, and is replaced, in whole or part, by recharge, which is at a maximum
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during wet periods. Depletion of groundwater by pumping has exceeded impoundment of water in
reservoirs in recent decades, giving a net anthropogenic contribution to sea-level rise from changes
in terrestrial water storage, although estimates of magnitude vary quite substantially (Church et al.,
2013). Natural variability also has to be taken into account. Inventories of groundwater resources
are required, and changes must be monitored and forecast. In situ groundwater measurements are
collected in many countries but few share these data. Groundwater is estimated routinely from low-
resolution estimates of total water storage from space-based measurement of variations in gravity
by the GRACE mission using a land-surface model. Continuation in the short term should be provided
by the US/German GRACE Follow On mission planned for launch in 2017.

3.6.3.5 Fire

Fire is a variable that is important because it is a hazard, it emits greenhouse gases, other
chemical species and aerosols that have to be taken into account in air-quality forecasts and climate
projections, and it changes vegetation. Estimates of emissions for various purposes are based either
on burnt-area, active-fire or fire-radiative-power products that are currently based primarily on data
from the MODIS instruments. Operational continuity is expected to be provided by products from
VIIRS and future imagers on polar meteorological platforms, and from the SLSTR instrument on
Sentinel-3. Such data are supplemented by data from a number of the operational geostationary
meteorological satellites, which provide better resolution of the diurnal cycle. Issues to be addressed
in combining data arise from differences in viewing angle and spatial resolution. Other data required
include those on vegetation and the peat content of soils. Inversion techniques (section 5.5) that use
atmospheric observations of emitted species are likely to play an increasing role in the coming ten
years. Kaiser et al. (2014) provide a recent discussion of issues, in the context of the fire data
assimilation system established for the Copernicus Atmosphere Monitoring Service.

3.6.4 Cryosphere

3.6.4.1 Ice sheets, ice caps and valley glaciers

Most of the Earth’s freshwater is stored in ice sheets, ice caps and valley glaciers. Ice mass is
accumulated by precipitation, and ablated by melting, sublimation, and evaporation. The net
balance between the inflow and outflow components of ice mass reacts sensitively to atmospheric
warming and precipitation changes. Ocean warming is a further factor in the case of the accelerated
movement and melting of the outlet glaciers that discharge directly into sea from the ice sheets of
Greenland and Antarctica. In AR5, Stocker et al. (2013) note that the largest uncertainty in estimated
mass loss from glaciers comes from the Antarctic, and that the observational record of ice-ocean
interactions around both the Antarctic and the Greenland ice sheets remains poor. Overall, the
currently prevailing ice-mass loss contributes about one half of the ongoing rise in global sea level.
AR5 also reported substantial progress in ice-sheet modelling, particularly for Greenland, but
expressed low confidence in the ability of current Antarctic ice-sheet models to capture the
temporal response to changes in external forcing on the decadal to centennial time scale.

Requirements for in situ observations include continuation of process-oriented measurements
needed for improved understanding and model development, maintenance of glacier-observing
sites providing long-term mass-balance measurements and addition of sites in data-sparse regions,
and undertaking of the measurements needed for calibration and validation of satellite data. Aircraft
laser altimetry has a role to play in the latter. Space-based imagery, such as from Landsat, ASTER and
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Sentinel-2, is important for monitoring the areas of glaciers and ice caps, and DEMs as discussed in
the section 3.6.3.1 are required decennially or thereabouts for calculation of volume changes. The
main requirements for ice-sheet data from space are elevation changes from radar and laser
altimetry, mass changes from gravimetric missions and movement from radar interferometry.

3.6.4.2 Seaice

Data on the concentration or coverage of sea ice are required for basic monitoring of the physical
climate system and for linking with monitoring of the impacts that changes in physical climate can
have on vulnerable polar ecosystems. Data are also required for input to forecasting and reanalysis
systems, which in the future can be expected increasingly to model sea-ice changes dynamically, and
for verifying climate models that already include dynamic representations of sea ice. Comprehensive
data on concentrations are primarily built up from passive microwave data, starting from SMMR in
1979. Some analysis is available of earlier data (Meier et al., 2013).

Determination of sea-ice thickness from space is less mature. Estimates based on ice freeboard
are currently provided from high-inclination orbit by the CryoSat radar altimeter, with data from
laser altimetry provided earlier by ICESat-1 and to come from ICESat-2. Use of data from the earlier
ERA and Envisat radar altimeters is under development. Longer-term records can be constructed
using data from optical sensors, starting with AVHRR and including MODIS and VIIRS, in conjunction
with energy-budget modelling. Other space-based data on sea-ice include those on ice motion and
other properties from SARs, on thin-ice thickness from SMOS and on melt ponds from MODIS.

Reliance on in situ data has to be made for sea-ice concentration in the pre-satellite era, where a
need for data recovery and improved charting of sea-ice remains. Direct in situ measurements and
airborne and submarine remote sensing have roles to play in the evaluation of space-based data on
ice thickness. Measurements of snow depth and density are important also, as allowance has to be
made for snow when deriving the thickness of sea-ice from measurements of freeboard.

3.6.4.3 Snow

Data on the coverage, depth, snow water equivalent and other properties of fallen snow are
important for a number of reasons. Release by melting of water stored in the form of snow has
implications for ecosystems, hydrology, naturally watered agriculture and a range of direct uses of
water by humans. Snow cover, melt and runoff are also important elements in the working of the
Earth system. Data on snow are accordingly important for initialization or evaluation on all time
scales over which Earth-system models are applied: for weather forecasting (where the presence of
lying snow must be well represented to avoid near-surface air temperature errors), sub-seasonal and
seasonal prediction (where initial conditions on snow depth are important, and melting has impacts
on soil moisture and the surface energy balance) and long-term climate simulations and projections
(where snow/albedo feedbacks must be well represented and changes in snow climatology and the
associated hydrology reliably identified).

Space-based observations are used to derive products on snow cover such as the NOAA multi-
sensor product for the northern hemisphere, as used in some snow data assimilation systems for
numerical weather prediction. The AMSR instrument provides data on snow-water equivalent,
though with limited accuracy over difficult terrain and for deep-snow conditions. A critical
requirement remains for in situ measurements of snow depth such as exchanged internationally
from the WMO synoptic network and used also in near-real-time data assimilation. Here there is
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scope both for improved reporting standards and greater exchange of data from national networks.
The need for datasets to support modelling and reanalysis brings additional requirements for
recovery and exchange of historic in situ data. The development since 2011 of the WMO Global
Cryosphere Watch provides a framework for improvement over the coming years.

3.6.5 Carbon cycle

Observation-based estimates of the spatial-temporal distribution of ocean-atmosphere CO, fluxes
rely mainly on measurements of the difference in partial pressure of CO, between the atmosphere
and the sea-surface (ApCO,; Wanninkhof et al., 2009, 2013). Measurements of carbon and related
variables in the interior of oceans can also be used with models to constrain the uptake of
anthropogenic CO; in each ocean region. The fluxes in key regions, like the Southern Ocean, are
poorly constrained as ApCO, measurements are very sparse, and uncertainties in gas exchange
kinetics affect estimates of fluxes. Uptake of CO, causes the ocean to acidify, which together with
associated carbonate changes has consequences for marine organisms and ecosystems that AR5
notes are just beginning to be understood (Rhein et al., 2013). Oceanic measurement of key
biogeochemical variables, which include plankton and nutrients, in general requires ship-based
sampling, but good progress is being made on the development of autonomous sensors suitable for
deployments on floats, gliders and moorings.

Present observations of the spatial distribution of land-atmosphere CO; fluxes include the forest
inventories made in a number of countries. This method estimates forest above-ground biomass
change, and thus cumulative fluxes in the biomass carbon reservoir between two repeated
inventories — usually one decade apart from each other. Direct measurements of below-ground
biomass are made to support allometric modelling of the relationship between above- and below-
ground values needed for completing budgets. Another globally distributed type of land-atmosphere
CO; flux observation is from eddy-covariance flux towers. There are roughly 600 flux towers in the
worldwide FLUXNET, but coverage is very uneven and cannot presently be exploited to quantify the
spatial distribution of regional net CO, fluxes (due to sampling bias and non-measured disturbance
emissions; e.g. Jung et al. 2010). Global time-space resolved estimates of gross primary productivity
have been produced by extrapolating flux tower data (Beer et al. 2010). Increasingly, eddy-
covariance flux towers are also being equipped with sensors to measure the local CH, fluxes,
especially over wetland ecosystems and freshwater.

Small spatio-temporal atmospheric concentration variations of CO; and CH,4 reflect the source-
sink patterns of these gases. An accurate measurement of their concentrations thus allows the
guantification of the net large-scale surface-atmosphere CO, and CH, fluxes using inverse models of
atmospheric transport (section 5.5). However, the density of stations providing suitable in situ data
is sparse and does not constrain tropical continental areas, Siberia, the Arctic and under-sampled
oceanic regions such as the Southern Ocean.

Several projects for space-based measurements of column CO; to be used in flux inversions have
been developed since the early 2000s, to follow on from the pioneering measurements made by
SCIAMACHY from 2002 to 2012. At face value, the largest atmospheric gradients of CO; related to
surface fluxes are observed in the boundary layer, imposing the need for satellite-borne instruments
to have a weighting function that can probe the lowermost troposphere (Bréon and Ciais, 2010). For
this reason, measurements in the short-wave infrared have been preferred. GOSAT (launched in
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2009) and OCO-2 (launched in 2014) are two spectrometers with high spectral resolution in bands
that allow retrieval of column CO; with an individual precision of 3-4 ppm for GOSAT and about 1
ppm for OCO-2. GOSAT also makes measurements in a thermal infrared band, which supports its
provision of data for estimating fluxes of methane. Further discussion of flux estimation is given in
section 5.5. Passive optical systems are, however, limited by low solar elevation in what can be
provided at high latitudes, particularly in relation to understanding the relationship between
permafrost degradation and carbon fluxes.

Complementary to the stations making in situ measurements and the satellite-borne sensors are
networks for probing vertical structure, comprising the Total Carbon Column Observing Network
(TCCON) of ground-based Fourier Transform Spectrometers that record direct solar spectra in the
near-infrared, and the use of commercial aircraft to measure routinely the atmospheric
concentration of greenhouse gases, for example by the Comprehensive Observation Network for
Trace gases by Airliner (CONTRAIL) and by the aforementioned IAGOS programme. These networks
substantially expand the in situ station network and are crucial for the validation of data from
present and future satellite systems.

4 Earth-system modelling

The current status and prospects for Earth-system modelling are summarized, as a prelude to
subsequent discussion of how models help the analysis of observations and how observations help
the evaluation of models. The evolution towards applying Earth-system models for environmental
monitoring and prediction as well as for climate simulation and projection is outlined. General
issues related to the improvement of models, whether through refining the representations of
processes that are already incorporated or through adding new processes or components, are

discussed. Some important elements of Earth-system models receive further attention.

4.1 “Seamless” modelling and prediction

It is expected that the coming ten years will see predictions and scenario-based projections of the
Earth system that are increasingly based on fully coupled atmosphere-ocean-land-cryosphere-
biosphere models at a spatial scale that for the atmosphere will move towards 50 km for general
climate applications and reach around 5 km for prediction for days and weeks ahead. Progress will
require not only attention to developing better representations of the individual resolved and
parameterized processes at play in the atmospheric, oceanic, terrestrial, biospheric and cryospheric
components of models, but also attention to the interactions between the processes and
components. Ensuring that an Earth-system model works well across the range of applications and
time scales for which performance can be validated is vital for establishing confidence in the realism
of the model and trust in its projections for the future.

The term Earth-system model is often applied to the more comprehensive of the models used to
simulate past climate and project future changes, as indicated in section 2.4. However, the models
used for global monitoring and for prediction for time ranges of days and upward have also become
more comprehensive, and will soon, if not already, also merit being named Earth-system models.
ECMWEF provides a case in point. It now uses a coupled atmosphere-ocean model for its ensemble
weather forecasting throughout the forecast range, and has firm plans to extend this to its high-
resolution forecasting system, which will soon reach a horizontal resolution of about 10km. Inclusion
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of a dynamic sea-ice model for predictions at all time-ranges is also under development, having been
employed already for ocean reanalysis (Tietsche et al., 2015). Extension of reanalysis to employ
coupled data assimilation for atmosphere, ocean and sea-ice has been pioneered in the NOAA/NCEP
Climate Forecast System Reanalysis (Saha et al., 2010), and is a major thrust of development at
ECMWEF (Dee et al., 2014), as discussed further in section 5.4. Furthermore, in developing monitoring
and prediction of atmospheric composition as a Copernicus Service, ECMWF has worked with
partners to extend its atmospheric model and associated data assimilation to include greenhouse
gases and the reactive gases and aerosols that affect air quality and short-term forcing of climate
(Hollingsworth et al., 2008). Such activities bring with them the need for more-comprehensive
treatments of land-surface processes and representation of ocean biogeochemistry.

Moreover, application models for predicting user-relevant quantities such as energy demand,
health impacts or crop yields may increasingly be run by forecasting centres rather than by users,
enabling efficient use of the full temporal and spatial resolution of large ensembles of forecasts by
taking the application to the data rather than the data to the application. This may be seen as part of
an evolution towards the inclusion of such processes within the models themselves, and then
inclusion of the feedbacks needed to treat more fully the influences of and impacts on human
systems in the models used for environmental prediction and long-term projection.

There is in parallel an increasing level of activity on the part of climate modelling centres to
exercise their climate and Earth-system models for experimental predictions. CMIP5 had in its
protocol basket a suite of decadal simulations with models initialized at specific times in a hindcast
sense. AR5 was the first of the IPCC’s reports to assess such simulations performed as an initial-value
problem with specified variations in external forcing (Kirtman et al., 2013). The North American
Multi-Model Ensemble (NMME) project, initiated in 2011, has focused on seasonal (90-day)
predictions, with both operational weather forecasting and climate centres (NCEP, NCAR, NASA-
GEQS, GFDL and CMC) contributing forecasts every month. These are provided as data to NOAA, and
are archived and available to the public. Results that have been analysed include the North American
summer of 2012 and winter of 2013-14, and Asian monsoon rainfall. In the USA, the Study of Arctic
Environmental Change project has been engaged in forecasting Arctic sea-ice extent, and verifying
and documenting the results from a variety of modelling centres and other institutions. Prediction is
discussed more fully in section 6.

These efforts on the part of weather forecasting and climate modelling centres are a realization
of the concept of “seamless” prediction and projection basic to the strategy of the WCRP over the
period 2005 to 2015, as discussed for example by Palmer et al. (2008), Hurrell et al. (2009) and
Hoskins (2013), and illustrated in Figure 7. However, although monitoring, prediction and scenario-
based projection over many time ranges will increasingly use what can be regarded as Earth-system
models, the various applications will in practice place different emphases on the various model
components, generally adopting higher resolution for shorter ranges of prediction and more
complex and comprehensive representations of ecosystems for long-term climate projection, for
example. Nevertheless, the increased and more diverse use of Earth-system models should be of
general benefit, as lessons learnt from performance of models in one type of application may be
carried over to the similar models used for other applications.
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Figure 7 Schematic illustrating some of the interactions between various time and space scales in the
climate system. Space scales and possible forecasts are indicated. Source: Hurrell et al. (2009).

4.2 Limitations of models

As both scientific and public attention shift from the detection and attribution of climate change
at the global scale to prediction of its impacts, the limitations of climate models at the regional scale
are becoming increasingly exposed. The IPCC AR5 Working Group | (WG 1) report illustrates that
models often exhibit severe biases at the regional scale, and disagree on the regional response to
changing climate forcing, especially for precipitation and for circulation-related features such as the
monsoons. Some of this is because of an inherent lack of predictability of internal natural variability
that is magnified at the regional scale, but climate models are also generally quite deficient in their
simulation of variability, from sub-seasonal out to multi-decadal timescales. This limits the quality of
the information that can be provided for adaptation planning and climate services. It also limits the
capability of models to be used to attribute extreme events to climate change in a statistical manner.
In general, there has been only modest improvement in models in these respects between AR4 and
AR5. Many of these model discrepancies are known to result from deficiencies in the representation
of atmospheric processes, and there is in general large sensitivity of model simulations to the
parameterizations of unresolved processes such as clouds, convection and boundary-layer and
gravity-wave drag. Similar sensitivities are seen in weather prediction models, suggesting that short-
term forecasts (for which there is a good statistical basis for evaluation) may provide a route to
better understanding of systematic errors in climate models.

These problems in the atmospheric component of Earth-system models have knock-on effects on
other components. A number of land-surface processes and variables are highly affected by errors in
precipitation in particular. Although increasingly complex models have many potential benefits -
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from increased self-consistency (complete budgets, for example) and information on couplings -
attention must be paid to the quality of the atmospheric fields that drive so many of the couplings if
benefits are to be realized. Work on better understanding and modelling therefore must have one
focus directed towards improving core atmospheric elements. Although there is a continuing need
for local observations to enhance understanding of the processes that have to be parameterized,
extensive data are already available to provide the basis for improved schemes. They include
measurements from long-term sites such as those of the Atmospheric Radiation Measurement
programme (ARM; Ackerman and Stokes, 2003), from a large number and variety of field studies and
from satellite missions such as those on clouds and aerosols flown in the A-train suite noted in
section 3.5. Jakob (2010, 2014) discusses the challenges and opportunities.

Even at the global scale, both transient and equilibrium climate sensitivity (defined in terms of
how global-mean surface temperature responds to a doubling of CO,) remains uncertain to
something like a factor of two or more (Stocker et al., 2013), mainly due to uncertainties in the cloud
feedback. This has not changed fundamentally in the more than three decades that have passed
since estimates were published in the so-called “Charney Report” (NRC, 1979). Climate-model
projections are increasingly scaled by global-mean surface temperature, so uncertainty in the global-
mean surface temperature response has an immediate impact on projections of climate change. The
renewed attack being organized by the scientific community on the question of climate sensitivity
recognizes that the feedback on circulation is crucial to understanding errors in convective
parameterizations (Bony et al., 2013; 2015), and thus is taking more of a global than a local
approach. This puts a premium on global observations that can be directly related to atmospheric
processes. These may be fairly direct in some cases, such as relating to cloud micro/macro structure
or gravity-wave fluxes, while in other cases uncertainties in processes may be most readily
detectable in short-term tendencies of other quantities, such as upper-air winds in the case of errors
in gravity-wave drag.

Changing dynamics as a result of changing climate forcing remains a significant issue that also
needs further study informed by observations. A better ability of models to simulate changes in
large-scale circulation patterns should result. Improvement of Earth-system model dynamics is
hampered by a number of uncertainties that arise from a combination of uncertain observed trends
and a lack of agreement between models on projections for the future. Examples are provided by
ARS (Stocker et al., 2013): “There is low® confidence in near-term projections of a northward shift of
NH storm track and westerlies. There is generally low confidence in basin-scale projections of sig-
nificant trends in tropical cyclone frequency and intensity in the 21st century. There is low
confidence in projections of many aspects of climate phenomena that influence regional climate
change, including changes in amplitude and spatial pattern of modes of climate variability.”

4.3 Improvement of models

Much of the development in modelling has been towards incorporation of additional physical,
chemical or biological processes, notwithstanding the challenges of increased complexity noted
above. This in turn brings requirements for observations to guide and evaluate progress. Such
development includes adding carbon cycles to coupled atmosphere-ocean general circulation
models, qualifying them as Earth-system models in the IPCC view discussed in section 2.4. It also

5> As corrected in 2015 (www.climatechange2013.org/images/report/WG1AR5_Errata_17042015.pdf)
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includes a more interactive representation of aerosols and adding atmospheric chemistry, as shown
in Table 9.1 of Flato et al. (2013) for the models participating in CMIP5 that were evaluated in AR5.
Improvements in the sea-ice components included in these models may be inferred from robust
evidence that the downward trend in Arctic summer sea-ice extent is better simulated than at the
time of the AR4. Also in AR5, Church et al. (2013) note substantial progress in ice-sheet modelling,
particularly for Greenland. Few Earth-system models include coupled ice-sheet modules, however,
and this emerging capability was not used in CMIP5 (Flato et al., 2013). Melting and iceberg calving
where ice shelves and outlet glaciers interact with the oceans challenge both observation and
modelling.

The other strand of model development has been to improve existing components. Not least is
the move towards increased horizontal and vertical resolution, discussed further in the following
section. This includes extending atmospheric components upwards into the mesosphere so that
models can properly represent the stratosphere, including wave-driven influences on its circulation,
the photochemistry of ozone and other trace species, and related radiative effects. It also includes
introduction and refinement of multi-layered approaches to modelling ice and lying snow, and
downward extension and finer layering in soil models.

Despite progress, the typical horizontal resolutions of current climate models remain insufficient
to simulate many of the extremes of interest. Finer resolutions are used in weather prediction, but
model topography and parameterizations of convection, clouds and precipitation remain insufficient
for accurate simulation and timing of many events. Global models are beginning to be run with sub-
10km atmospheric grids that resolve mesoscale weather including the most extreme tropical storms,
and the coupling of such atmospheric components to fine-resolution oceanic and terrestrial
components could revolutionize our ability to correct long-standing model biases, reduce the need
for downscaling and provide predictions of regional impacts and changes in extremes from months
to decades ahead. However, many errors are not improved solely by increasing resolution and
computational costs will limit the extent to which resolution can be beneficially increased on a
routine basis within the timeframe of this roadmap and beyond. There will thus remain a need for
parameterizations of unresolved and partially resolved processes, and a need to continue to invest
in their improvement.

Progress on parameterization is being made and, in particular, the piecemeal approach of the
past is being replaced by a more integrated view, such as one that treats the boundary layer,
convection and microphysics as essential interactive components rather than treating them
separately. This needs to progress a lot further. However, there are measurable improvements in
both weather forecasts and simulations of recent climate that can be attributed to parameterization
developments:

e improved representation of the boundary layer, clouds and convection, including their
diurnal cycles, in models robust across all scales of resolution, including grid lengths of less
than 10 km;

e improved understanding of how the representation of land and atmospheric sub-grid scale
processes affect the prediction of climate change by these models;
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e improved understanding of the role of clouds, including their micro- and macrophysics, their
effects on optical depth and cloud brightness and radiation, and their feedbacks in climate
change;

e improved understanding of how clouds and precipitation react to and affect large-scale
circulation features of the atmosphere, especially tropical sub-seasonal variability, such as
the Madden-Julian Oscillation.

Synergies arise from the increasing use of Earth-system models across all time ranges of
prediction and projection discussed in section 4.1. This is notwithstanding the differences in
emphasis on resolution and breadth of included processes depending on time range. Use of climate
models in initial value problems to make short-term forecasts is exceedingly valuable in revealing
problems, and at the same time is essential for seamless forecasts out to decades for various
applications. A new focus that has captured the interests of both extended-range weather modellers
and climate modellers is the weather-climate interface, from the sub-monthly forecast range
upward. This provides the opportunity to confront both weather prediction and climate models with
new observational products in innovative analyses and with new diagnostics and metrics of
performance. Further discussion of this is given in section 6. Another development is the extension
of reanalyses to the century scale. This requires that much more attention be paid to representing
long-term variations in climate forcing in the assimilating models used for reanalysis (Hersbach et al.,
2015), which typically come from weather forecasting systems. This should also benefit reanalyses
that focus on recent decades, which may underestimate forced changes if the forcings are not
represented in the assimilating model, even though the changes are represented to a degree
through the observations assimilated.

Various means are being employed to downscale the results of Earth-system models through use
of regional models or variable grids. Regional precipitation predictions and projections remain a
challenge at all timescales from seasonal forecasting out to centennial climate change. Hall (2014)
discusses the issues. There are nevertheless some regions with forecast skill on seasonal timescales,
associated mainly with the El Nifio Southern Oscillation (ENSO) phenomenon. Emphasis is also being
paid to the problem of bias elimination in downscaling techniques. Improving the skill and reliability,
and quantifying the uncertainty, of predictions and projections of precipitation at regional scales
requires better understanding and model simulation of the teleconnections and drivers of regional
climate, such as the changes in the oceans and cryosphere that are relevant to regional
precipitation.

There are conceptual and practical challenges in evaluating model results against observations or
products derived from them, such as reanalyses. This is a critical topic for models, as the assessment
of their performance provides an important basis for their formulations to be enhanced, tested,
refined and verified. This is discussed in section 6.2.

4.4 Spatial resolution

Improved spatial resolution is still needed for most if not all components of Earth-system models.
Discussion often focuses on horizontal resolution, which is a major factor in the computational cost
of running a model and for which the benefits of increased resolution in terms of how well a model
can represent features of interest is most evident. The paragraphs below are no exception, but it is
important to recognize that models also need to represent sharp changes in the vertical, associated
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with thermoclines, the top of the atmospheric boundary layer, cloud tops, the tropopause, sloping
fronts and so on. Over the past 35 or so years, the vertical resolution in the free troposphere of
ECMWEF's highest resolution operational global numerical weather prediction model has increased
by a factor of around six, a little under half the factor by which horizontal resolution has been
increased. The climate models assessed in AR5 have lower vertical and horizontal resolution than
current operational global weather prediction models, but the differences in resolution between the
climate and weather-prediction models are generally larger for horizontal than for vertical
resolution.

The increasingly fine horizontal resolutions used for global weather prediction now approach or
reach around 10km, and have been one factor in the general improvement of forecasts over time, as
seen for example in measures of the skill of circulation-pattern and precipitation forecasts (Dee et
al., 2014, Rodwell et al., 2010). These resolutions nevertheless remain inadequate for capturing
strong orographically-influenced winds and severe hydrological events such as flash floods. Climate
models are generally operated at lower resolutions, these being mostly around 100km or coarser for
the models assessed in AR5. Such resolutions do not depict well a much wider range of phenomena
and extremes, including tropical storms and floods, and the areas worst affected by drought, which
are typically of order a few hundred kilometres or less in extent.

It is not only extremes that are affected by limited resolution, however. On land, the barrier
effects of mountains can be underestimated by smoothing, allowing air to flow across where this
cannot occur in reality. Changes in orographic rainfall can be profound. In the ocean, limited
representation of bathymetry can cause some deep trenches to be filled in, atolls and islands not to
be depicted with fidelity and ridges not to be properly represented. Because tides and wind move
waters across and around these features, mixing within the ocean can be compromised.
Heterogeneity of land-surface types has to be taken into account for realistic modelling of land
conditions and the fluxes of heat, momentum, moisture and other constituents to and from the
atmosphere, with tiling and nesting approaches developed to account for contributions from the
various types of surface process that can occur within a model grid cell, including urban effects.
Representation is needed also of interactions between land and ocean along coasts and estuaries,
which affect marine biogeochemical and ecological systems in particular, but also the physical
climate.

Although simulation of a number of features of the atmospheric circulation, including tropical
precipitation and circulation, blocking and extratropical cyclones, improves as model horizontal
resolution is improved, much of the improvement in the case of the ECMWF model was found by
Jung et al. (2012) to come from increasing resolution to 40km, with relatively small changes for
smaller grid lengths. Delworth et al. (2012) show marked improvements in both atmosphere and
ocean from a new coupled atmosphere-ocean model with significantly increased resolution.

Ocean modelling in general places particular demands on resolution. This is in part because of
specific narrow circulation features such as western boundary currents, which can have distinct
downstream effects on atmospheric circulation (e.g. Keeley et al., 2012), and the equatorial Pacific
cold tongue, which was singled out by Flato et al. (2013) as an oceanic feature for which models
showed particular improvement from AR4 to AR5 (see also section 6.2.6). Fine resolution is also
desirable in ocean models because of the important and widespread role played by mesoscale eddy
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motions (with diameters ranging from a few tens to more than 100 km), which contain almost 90%
of the total kinetic energy of the ocean and are the major driver of heat transport and interactions
with biogeochemistry. Sub-mesoscale processes also need to be taken into account, as they are
considered to explain more than 50% of the vertical velocity field in the upper 500 m and as such are
also important for biological systems and the biogeochemical cycles. The Earth-system and other
climate models assessed in AR5 generally have resolutions that do not even resolve the mesoscale,
however, and have to rely on parameterizations of the important unresolved dynamics. A finer
horizontal resolution of (1/12)° is currently used in the ocean analysis and short-range forecasting
system of the operational Copernicus Marine Environment Monitoring Service
(marine.copernicus.eu).

4.5 Clouds and aerosols

As noted above, clouds play a major role in radiative forcing and in the uncertainty associated
with climate sensitivity, and models have difficulty in getting the clouds in the right place with the
right amount and optical thickness (e.g. Kay et al., 2015). Frequently cloud parameters are tuned in
order to achieve an acceptable energy balance at the top of the atmosphere, which may involve
brightening clouds to offset deficiencies in amount. The distribution of clouds relates very strongly
to the atmospheric circulation, precipitation and convection, while cloud characteristics depend
strongly on microphysics that are parameterized. Clouds form because air becomes supersaturated,
and supersaturation of air occurs because air rises, or cools for other reasons. There is a strong role
of radiation, humidity and atmospheric circulation in controlling cloud processes. As an example, Kay
et al. (2015) show that an observationally motivated modification to the shallow convection
detrainment increases supercooled cloud liquid, brightens low-level clouds and substantially reduces
the chronic bias in Southern Ocean absorbed solar radiation in the NCAR model, with significant
impacts on the atmospheric and ocean circulations. Moreover, there is a good possibility of these
factors changing in a future climate system in ways that influence cloudiness. The sophistication and
complexity of the sub-grid scale parameterizations is increasing over time, and precipitation may
become a prognostic variable (e.g. Gettelman et al. 2015).

The representation of the microphysics of mixed phase clouds and the phase partitioning
between ice and water clouds in the mixed-phase regime is still not consistent among models nor is
the representation of liquid water at mixed-phase temperatures in general consistent with
observations (Komurcu et al., 2014). It accordingly remains a subject of model development (e.g.
Gettelman et al., 2015). The ability of Earth-system models to predict cloud microphysical properties
is limited not only by difficulties in predicting clouds and macrophysical characteristics (Lin et al.,
2012) but also by difficulties in determining aerosol characteristics (size and chemical characteristics;
Penner et al., 2006) and in simulating aerosol-cloud interactions (Golaz et al., 2013). Prediction of
cloud macrophysical characteristics and their response to climate change remains a significant
challenge (Sherwood et al., 2014) likely requiring higher-resolution simulations. The treatment of ice
nucleation at cirrus temperatures also needs improvement and can lead to large differences in
predicted climate forcing (Zhou and Penner, 2014).

Aerosols are increasingly included in models, and are important for their direct effect on solar
radiation as well as their interactions with clouds. Aerosol particles deposited on Arctic snow and ice
affect albedo and thereby the surface energy budget and timing of seasonal snow-melt (Doherty et
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al., 2010; Dumont et al., 2014). Aerosols also have a number of direct effects on people, including
impacts on health and transportation. Dust aerosols are also a source of fertilization of the oceans
and distant lands. Aerosols of anthropogenic origin include primary aerosols such as smoke and soot
from combustion, secondary inorganic aerosols such as ammonium nitrate and sulphate, and
secondary organic aerosols. The processes concerned, including uplift, chemical formation, aging,
mixing, transport and deposition, are challenging to model, but important both for short-term
forecasting of air quality and for long-term simulation and projection of the state of the Earth
system.

The representation of multiphase reactions leading to the formation of secondary organic
aerosols is still at an early stage (Lin et al., 2014) but is of primary interest because of coupling to the
biosphere and biospheric emissions of volatile organic compounds, which not only vary seasonally,
but also as part of climate change (Tawfik et al., 2012; Mao et al., 2013). This also requires that soil
moisture and temperature changes be accurately simulated. Understanding of the importance of
formation of CCN-sized particles and aerosol nucleation is still under development (Kulmala et al.,
2004; Kurtén et al, 2008; Smith et al., 2010; Yu, 2010).

The indirect effect of aerosols on clouds is now being incorporated through more complete
microphysics. However, the processes involved are incompletely represented, and indeed
incompletely known or understood. Models need to be brought into closer agreement with
observations such as those from Cloudsat (Suzuki et al., 2013). Considering for example, the so-
called Twomey effect (of brightening when added aerosols increase the number of cloud droplets,
thereby redistributing the cloud liquid water over more droplets), models do a relatively good job at
simulating drop number at least over the ocean (Quaas et al., 2009) but the relationship between
cloud optical depth and liquid water path is too strong. At NCAR, the new microphysics with
prognostic precipitation increases the ratio of accretion over autoconversion and appears to
significantly reduce aerosol—cloud interactions and indirect radiative effects of anthropogenic
aerosols by up to 33% between simulations with preindustrial (1850) and present-day (2000) aerosol
emissions (Gettelman et al., 2015). Better quantification of natural background aerosols is
particularly important (Carlslaw et al., 2013).

The CMIP5 forcing from stratospheric sulphate aerosol originating from volcanic eruptions in the
pre-satellite era has idealized distributions in space and time. Also, the omission of the cumulative
effects of the sequence of relatively small eruptions since the major one of Mt. Pinatubo in 1991 is a
minor factor in the failure of models to capture a slowdown in tropospheric warming over recent
years (Santer et al., 2014). This brings a need for improved reconstructions for historic eruptions,
continued observations for the coming period and appropriate modelling of radiative effects of
stratospheric aerosol.

4.6 Hydrological cycle

The importance and continuing challenges of modelling the hydrological cycle were introduced in
section 2.5.2. Several problems in the modelling of precipitation in particular were mentioned both
there and in discussing model resolution in section 4.4. The difficulty that current climate models
have in simulating the water cycle in turn affects the representation of the carbon cycle, especially
through the modelled health and growth of vegetation. In addition, effective incorporation of fully
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integrated atmospheric chemistry depends on realistic modelling of cloud and precipitation
processes, as briefly discussed in the following section.

Improving the representation of precipitation in models depends greatly on the atmospheric
circulation and processes discussed in section 4.5, and in part on the representation of the local
processes involved in its formation and fall. The representation of precipitation characteristics in
several models was described as “dreary” by Stephens et al. (2010) based on comparison with
observations over the oceans from CloudSat. Convection is often triggered prematurely in models,
too early in the diurnal cycle (Trenberth et al., 2003). Bechtold et al. (2014) show how the scheme
used at ECMWF benefits from introducing a new convective closure that improves the predicted
spatial distribution and local intensity of convection as well as its diurnal cycle. The paper serves also
as an example of some of the other sources of data that may be used to evaluate precipitation from
global models: from active (radar) and passive microwave instruments, from infrared imagers in
geostationary orbit and microwave sounders in polar orbit, from ground-based radar and rain-gauge
data, and from a cloud-resolving model run over a regional domain.

The representation of circulation features on a range of scales is determined by a number of
processes, among them the latent heating (and cooling) that is associated with the formation (and
evaporation) of precipitation itself. Features such as the intertropical convergence zones, monsoons,
tropical and extratropical cyclones, jet streams and associated storm tracks, and more, must be
represented well. Accompanying distributions of water vapour, dependent also on the
representations of evaporation and transpiration, must also be free from significant error. This is
more challenging for longer time ranges of prediction and for climate simulation and projection, as
assimilation of observational data provides a control on circulation and water vapour in integrated
analyses and the short-range forecasts initialized from them. Flato et al. (2013) document the status
of climate modelling in these regards, identifying a number of substantial shortfalls in performance
where progress in recent years has been slow.

Global-mean precipitation is influenced also by the ability of the atmosphere to disperse the
latent energy released when precipitation forms. Heat generally is moved around and ultimately
radiated to space. The long-wave radiation involved is also modified by the increase in atmospheric
water vapour that is well established as accompanying warming of the ocean-surface and
troposphere, with the exception of the near-surface over land. The radiation change limits the
fractional rate of increase of precipitation to be less than that of water vapour (Stephens and Hu,
2010), and evaporation has to change similarly in the global mean on annual and longer time scales
(Trenberth, 2011). Modelling the quantitative precipitation response to increasing CO; evidently
poses difficulty. Pendergrass and Hartmann (2014) show that the CMIP5 models are robust in having
a much smaller rate of increase in precipitation than water vapour, but that they differ by a factor of
two in their precipitation increases, a finding attributed to their different changes in clear-sky
radiative cooling.

There are also needs and opportunities for better modelling of the land-surface component of
the hydrological cycle. As with integrated Earth-system modelling at large, this partly involves
improving the representation of processes already included, such as those related to soil moisture,
snow cover and melt, surface and deep water storage, and run-off. It also involves adding processes
new to most models, such as irrigation, water management, land management and land-use change.

Page 55 29 February 2016



Observation and Integrated Earth-system Science: A Roadmap for 2016-2025

More-refined precipitation downscaling would benefit a number of application models linked to
Earth-system models, including river-routing models used in short-term flood forecasting and in
assessing changes in river flow within a changing climate. It may also become beneficial for Earth-
system models to be run with land-surface components that operate at finer horizontal resolution
than their atmospheric components (Balsamo et al., 2014). Freshwater and nutrient flow into the
oceans from rivers and stomatal changes and reduced transpiration due to increased CO, are
examples of interactions with other components of the Earth system that need to be modelled.

4.7 Atmospheric chemistry

Incorporation of atmospheric chemistry in Earth-system models is important for short-term air-
quality forecasting, for assessing the regulation of emissions, proposed or actual, and for modelling
climate forcing and the impacts of climate change on air quality. Although relatively simple and
computationally undemanding approaches have proved useful in modelling stratospheric ozone and
methane (e.g. Cariolle and Déqué, 1986; Monge-Sanz et al., 2013), and are currently used, for
example, by ECMWF in operational weather forecasting and reanalysis, comprehensive schemes are
required to represent tropospheric chemistry or for better treatment of the stratosphere. Chemical
transport models in which meteorological variables are prescribed are commonly used for short-
term air-quality forecasting and for understanding longer-term changes, but the direct inclusion of
comprehensive chemistry within Earth-system models has a number of advantages. Eleven of the
CMIP5 models whose results were considered in AR5 (Table 9.1, Flato et al., 2013) were categorized
as including atmospheric chemistry, either directly as part of their atmospheric component or as a
separate coupled component. Four of these models also included ocean and land biogeochemistry.

The advantages of fully integrating chemistry within the atmospheric component of a model
include use of (i) the model’s parameterizations of convection and diffusion to redistribute species,
(ii) the convection scheme also to parameterize nitric oxide generation by lightning, (iii) model cloud
and aerosol distributions in calculating photodissociation and heterogeneous reactions, (iv) the
model’s precipitation parameterization in the calculation of wet deposition and (v) the model’s land-
surface parameters in the calculation of dry deposition and biogenic emissions. An integrated
scheme is used, for example, in the version of the ECMWF model enhanced to provide the
operational global Copernicus services for atmospheric composition (Flemming et al., 2015).

Chemical schemes vary in terms of the number of species and reactions included, and the
associated computational costs. The latter are generally high, however, and incorporating
comprehensive chemistry may increase the net cost of a model by an order of magnitude unless
offset by running the model (or at least its chemistry) at around half the horizontal resolution than
would otherwise be possible. Use of such models in data assimilation and short-range forecasting
offers an opportunity for comparing, choosing and improving schemes on the basis of direct
comparison with observations of chemical species at a time when other components of the model
are generally at their most realistic. The performance of sixteen models with a wide range of
resolutions, chemical schemes and reactions with clouds and radiation has been compared for long-
term simulations in the Atmospheric Chemistry and Climate Model Intercomparison Project
(Lamarque et al., 2013). Both approaches are needed; this is an area where the synergies discussed
in section 4.3 of using and evaluating models for a range of applications may be of particular benefit.
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4.8 Land biogeochemistry

If anthropogenic release of CO; into the atmosphere were to cease, natural biogeochemical
processes would remove most of the CO, of prior anthropogenic origin from the atmosphere on a
multi-millennial time scale. Natural removal processes are, however, less powerful on the decadal
scale most immediately relevant to climate policy. A newly developed metric appropriate for this
time scale, the transient climate response to cumulative carbon emissions (TCRE), is highly policy
relevant as it directly links net anthropogenic CO, emissions to the change in global-mean surface
temperature (Allen et al., 2009; Gillett et al., 2013). TCRE is one of the few really new conceptual
developments from AR4 to AR5, but the usefulness of the concept is hindered by a large quantitative
uncertainty, to which the carbon cycle response to environmental changes is a key contributor.

Through several CMIP phases there has been systematic and demonstrable progress in physical
climate simulation at both whole-system and process level. Climatologies, modes of variability and
historical trends are now better modelled and better understood than before, notwithstanding
continuing needs for improvement and slow progress in some areas. Earth-system models are at a
crucial stage where systematic and coordinated evaluation and development of the biogeochemical
components and their physical counterparts must be kept in pace for climate applications.

Several specific processes are highlighted in the following sub-sections. Whilst there are many
important processes and ways of prioritising, the focus here is on those of importance at a global
climate scale, and on decadal-to-century timescales. Table 6.10 from the AR5 contribution of Ciais et
al. (2013) shows clearly how different processes and sensitivities dominate at different timescales,
highlighting the importance of careful application of evaluation on a range of timescales.

4.8.1 Nitrogen cycle

Interactions between the carbon and nitrogen cycles attenuate the carbon cycle response to both
CO; and the state of the climate system in general (Zaehle and Dalmonech, 2011). Anthropogenic
reactive nitrogen deposition also has important consequences for the climate system through
feedbacks on atmospheric CO, and N,O (Zaehle et al., 2011). Hence the terrestrial nitrogen cycle acts
as both a key forcing and a feedback for the terrestrial carbon cycle. Only one of the land-surface
schemes used in the CMIP5 models, adopted in two of the Earth-system models, included an
interactive nitrogen cycle.

AR5 concluded with high confidence that low nitrogen availability will limit carbon storage on
land (Fig. 6.35, Ciais et al., 2013), even when considering anthropogenic nitrogen deposition. It was
estimated that omission of the process in most CMIP5 models led to an overestimation of as much
as 100-200 PgC of terrestrial carbon uptake by 2100 across all scenarios. Inclusion of the nitrogen
cycle should then lead to a higher TCRE than the AR5 estimate. But the magnitude is uncertain
because the net effect of nitrogen is a fine balance between several processes, which makes its
evaluation crucial.

4.8.2 Permafrost, wetlands and methane

Although it was concluded in AR5 (Collins et al., 2013) that a retreat of permafrost extent with
rising global temperature is virtually certain, Ciais et al. (2013) assessed with only low confidence the
range of future methane emission to the atmosphere from thawing permafrost (50 to 250 PgC
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released under RCP8.5). This lack of confidence in the quantification of permafrost carbon release is
in large part due to the very large difference among models in their present-day permafrost extent
(Koven et al., 2013). Improving modelling and evaluation of permafrost physics is a crucial step to
improving Earth-system models.

Emissions from existing wetlands also have the potential to increase terrestrial emissions of
methane to the atmosphere, and again the processes concerned are highlighted by AR5 as having
high uncertainty and low confidence. There is currently a model consensus that future wetland
emissions are likely to increase due to the direct effect of CO; fertilization, but there is a large
uncertainty in the response of wetland CH, emissions to climate as well as in the mechanisms driving
future changes. Again, physical simulation of wetland extent is a crucial factor. Ciais et al. (2013)
note that uncertainty in modelled wetland emissions exists in particular because there are limited
observational data sets available for model calibration and evaluation.

4.8.3 Fire

Climate simulations using fire models indicate spatially variable responses in fire activity to future
climate change depending on changes in moisture and fuel availability, as well as on anthropogenic
activities. It may be expected that fire frequency will increase in boreal forests, Mediterranean and
other dry regions, while changes in the tropics are less certain (Ciais et al., 2013). About half of the
Earth-systems models that participated in CMIP5 included fire modules, but detailed evaluation of
these modules and analysis of the fire projections has yet to be undertaken. Development and
evaluation of fire components in climate applications is clearly a high priority as fires have impacts
on vegetation dynamics, the carbon cycle and atmospheric composition. Fire modelling also needs to
be developed further for application in fire data assimilation and air-quality forecasting systems.

4.8.4 Land use, land management and land cover change

The terrestrial carbon cycle is heavily perturbed by direct human disturbances through
deforestation, agriculture and a multitude of management practices, in the areas of forestry, fire
management and irrigation, for example. Almost 40% of ice-free land areas are already used for
agriculture and pasture (Foley et al., 2011), and less than a quarter of the world’s forests can still be
considered near-natural. Land use and land cover change (LULCC) exerted dominant control on the
land carbon storage in the 19th and 20th centuries, and will be important into the future. For the
first time, CMIP5 scenarios and models included LULCC as an external forcing affecting both the
physical system (e.g. albedo) and the carbon cycle (CO; emissions). This had been missing in the
earlier CMIP3 simulations that contributed to AR4. However, the CMIP5 experiments have been of
limited value to date, due to large differences among models in implementation of LULCC processes,
an absence of common terminology and the lack of model evaluation. Similarly, LULCC could not be
included in ECMWF's first century-scale reanalysis because of significant local differences for recent
decades between the CMIP5 fields and those established for use in the ECMWF model, and because
change information was not provided for some of the model variables (Hersbach et al., 2015).
Furthermore, a representation of the various land management practices is completely lacking in
current Earth-system models.

Modelling the dynamics of unmanaged vegetation systems is one requirement for
comprehensive study of long-term climate variability and change. Interactions with other modelled
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components also come into play. For example, canopy radiation schemes are important for
estimating surface carbon, energy and water fluxes: Loew et al. (2014) showed that there are
considerable systematic differences between the simplified radiative schemes in current use, and
demonstrated a physical inconsistency when separated approaches are used for simulating absorbed
and reflected fluxes. Implementing a consistent approach should also allow a better assimilation of
space-based data products.

4.9 Ocean biogeochemistry

Including ocean biogeochemistry in an Earth-system model is important for much more than
ensuring that the oceanic uptake of carbon dioxide from the atmosphere is represented well enough
for the future amount of carbon dioxide in the atmosphere and associated climate change to be
estimated reliably for a given scenario concerning emissions. Changes in the chemical properties of
the ocean have a large impact on ocean health and productivity: the upwelling zones of the oceans
provide nutrients that support some of the most biologically productive zones of the planet, and
there is growing evidence that physical and chemical changes in the ocean strongly control ocean
ecosystems. For instance, changes in ocean stratification can influence the availability of nutrients in
the photic zone, and also influence the occurrence of de-oxygenated, or ‘dead’, zones. Ocean
acidification also has the potential to have far reaching effects on the health of ocean ecosystems.
Warmer waters can cause coral bleaching. Modelling changes in the biogeochemical system and in
marine ecosystems, supported by observation, is critical to projecting their future states, as well as
the oceans’ capacity to provide food.

Half the Earth-system models participating in CMIP5 and evaluated by Flato et al. (2013) in AR5
were reported to include ocean biogeochemistry. This is two fewer than were reported to include
terrestrial carbon processes. Flato et al. note that around half of the models that did include ocean
biogeochemistry used schemes that partitioned marine ecosystems into nutrients, phytoplankton,
zooplankton and detritus, while others used more simple schemes. Newer models also included
parameterizations of the production of calcium carbonate. Some models included a sediment layer.
A recent evaluation of six of the CMIP5 models with more advanced ocean biogeochemical
representations is reported by Nevison et al. (2015). Each of the evaluated models took into
consideration the availability of the nutrient elements nitrogen, phosphorus, silicon and iron. Four
represented at least two classes of phytoplankton size, and three explicitly modelled nitrogen-fixing
diazotrophic plankton. The evaluation involved directly comparing the Earth-system model outputs
with ocean-colour data from satelllites, and comparing in situ atmospheric constituent
measurements with atmospheric transport models driven by the oxygen, nitrogen and carbon
dioxide air-sea fluxes from the Earth-system models. Three of the Earth-system models emerged
from the latter test as leading to reasonable agreement with the atmospheric data, within the
uncertainty of the atmospheric transport modelling.
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5 Earth-system data assimilation

Data assimilation is discussed not only because it utilizes observations to generate datasets for
monitoring the Earth system and for initiating and evaluating predictions, in particular through
reanalysis, but also because of the feedback it provides on the quality of both the models and the
observations used in the process. Inverse methods for surface-flux or model-parameter estimation
are also discussed.

5.1 Introduction

Data assimilation offers a fundamental approach for estimating successive instantaneous states
of the Earth system or of its components. A forecast carries information from past observations
forward in time to provide a background estimate of the state. The latest observations are then used
to refine the estimate. This is used in turn to initiate the next background forecast in the data-
assimilation sequence, and forecasts for longer time ranges when needed. In addition to carrying
forward information from past observations, the background forecast spreads this information in
space and from one variable to another. Observations of one atmospheric chemical variable may, for
example, influence the value of an unobserved variable through the modelled chemical interactions
between the variables in the background forecast. The background also incorporates the knowledge
of the Earth system that is built into the model used to make the background forecast. Knowledge of
the uncertainties in observations and forecasts is incorporated in the observational and background
error variances and covariances that influence the weight given to prior and current information.
This too can spread information in space and from one variable to another. For example, an
observation of atmospheric temperature will typically change the analysis not only of temperature
but also of wind, to keep the atmospheric state close to thermal-wind balance.

Data assimilation is particularly suited to integrating the information from a mix of observing
systems of different accuracies and coverage. Some space-based observations may be used
particularly effectively by assimilating them in a form closely related to the original measurement,
radiances for example, as the background and other assimilated data aid the extraction of the
information on the geophysical state that these observations contain. Joint assimilation of multiple
types of observation also provides a basis for estimating biases in the data from particular
instruments (Dee, 2005; section 5.5), providing an alternative or complement to the calibration
activities of space agencies, such as undertaken for GSICS. The assimilation process also provides
feedback on other aspects of the quality of observations, as the background may agree better with
data from one type of measurement than another, and on the quality of the assimilating model, as
when background fits to several types of observations vary similarly over time, a modelling problem
may be the cause. Simmons et al. (2014) and Simmons and Poli (2015) provide recent discussion and
examples from atmospheric reanalysis.

Data assimilation may also contribute to assessment of background-model components that are
not directly constrained by observations. It enables the performance of such model components to
be assessed against independent observations with limited influence of error from those interacting
model components that are constrained by assimilated observations. This is in contrast with
evaluation of free runs of a model in climate simulation, when error in one component of the model
may be responsible for error in another component, however well the latter is formulated.
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5.2 Data assimilation for specific components of the Earth system

Assimilation of data for the atmosphere is very well established for operational numerical
weather prediction, where improvements in methods allied with better modelling, both enabled by
increases in computing capacity, have contributed predominantly to the improvement of forecasts
since the observing system was improved very substantially in the late 1970s (Simmons and
Hollingsworth, 2002; Dee et al., 2014). In particular, the introduction of variational methods in the
1990s was key to realising much of the potential of radiance measurements from space.
Complementary or alternative ensemble approaches have become important for characterising
uncertainty in analyses and background forecasts, thereby enabling better use of observations in
general. Further algorithmic improvement in this area and increased utilization of satellite data
influenced by cloud, precipitation and the underlying surface are likely to be significant topics of
development for the next decade. The impacts of the various types of atmospheric observation are
quite well understood for weather prediction (WMO, 2012). Overall design of the atmospheric
observing system nevertheless has to take other applications into account, not least those related to
the longer timescales involved in climate variability and change.

Use of data assimilation is also established for atmospheric models that include trace gases and
aerosols, for example for forecasting air quality or monitoring the long-range transport of pollutants.
This may be achieved using transport models in which the meteorological fields are prescribed from
either reanalysis or operational numerical weather prediction, but the global system developed
under the Copernicus initiative couples the meteorological and constituent data assimilation (section
5.4). This system provides boundary values for regional models, and enables both forecasting and
retrospective assessment of air quality for the European domain. This has been developed from the
system described by Hollingsworth et al. (2008) and uses an ensemble of regional transport models,
all of which now include assimilation of data on trace-gas and aerosol species. The global system is
also applied to produce analyses of carbon dioxide (Agusti-Panareda et al., 2014) and methane
(Massart et al., 2014).

Data assimilation is also used routinely for ocean forecasting and reanalysis. Its integration of
different streams of observations (discussed in section 3.6.2) to provide values for both those model
variables that are directly observed and those that are not is particularly important for the ocean,
where sub-surface observations are sparse, aside from Argo temperature and salinity data above
2000m for the past decade (Figure 6), and satellites sense only the surface and some bulk properties.
Observations such as those of sea-level anomalies from altimetry have to be used to correct both
temperature and salinity in such a way as to maintain dynamical balance. Atmospheric observations
play a key role also, usually through being used in atmospheric data assimilation, which commonly
provides the surface fluxes used to drive assimilating ocean models. In this regard, the important
momentum fluxes are regarded as a relative strength of atmospheric analyses; corresponding fresh
water and solar radiative fluxes are of poorer quality. Overall, there is evidence that current data
assimilation systems are not exploiting the full potential of the observations; challenging areas are
the western boundary currents and equatorial regions, where the information provided by
observations is quickly lost in ensuing forecasts. Use of the information on the geoid and bottom
pressure from gravity missions needs to be developed further.

Much of the use of SST data in assimilation systems is via gridded analysis products, although use
may be made of SST retrievals along orbital swaths (so-called level-2 products) along with in situ SST
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data. The use of gridded products has some known problems, notably in ensuring consistency with
sea-ice concentration in marginal zones. There are also issues of consistency between near-real-time
products such as provided by the GHRSST project (www.ghrsst.org) and long historical SST
reconstructions. This is an issue to be addressed for consistent initialization of seasonal and decadal
forecasts, and for near-real-time extensions of reanalyses. The SST data used in ocean assimilation
may also be inconsistent with that used in the atmospheric reanalysis or numerical weather
prediction (NWP) system that provides the surface forcing. Such issues provide motivation for direct
assimilation of SST and sea-ice observations in coupled systems.

Quantification and reduction of the uncertainty of ocean analyses is difficult due to the sparsity
of observations. Independent data on ocean currents from moorings have proved useful for
identifying and correcting observational bias (Bell et al., 2004; Balmaseda et al., 2007) and for
developing constraints to ensure balance of current and density increments in data assimilation
(Burgers et al., 2002). Sea-level measurements from tide gauges also provide valuable independent
information, with the added benefit that some span long periods of time, and thus are particularly
important for evaluating the quality of ocean reanalyses prior to the satellite era (Chepurin et al.,
2014).

Altimeter data as detailed in section 3.6.2.4 have been assimilated operationally at ECMWF for
more than twenty years to determine the sea state, or more specifically a discretized representation
of the direction and spectrum of the height of ocean surface waves. The method used from the
outset has been optimal interpolation (Lionello et al., 1992; updated as described in system
documentation available from www.ecmwf.int). Again, analysis quality is also influenced by the
atmospheric data assimilation system that provides the driving of the wave model.

Assimilation of ocean colour data products is being developed to enhance understanding and
monitoring of marine biogeochemistry. Examples include assimilation into global (Ford et al., 2012),
regional (Fontana et al., 2013) and shelf (Ciavatta et al., 2014) models that couple ocean physics and
biogeochemistry. Coordinated efforts include those undertaken as part of the development of the
Copernicus Marine Environment Monitoring Service and within the ESA CCl, and with a data record
that goes back to 1997 and is set to be sustained into the future (section 3.6.2.7) there is good
reason to expect progress to be continued.

Data assimilation is used routinely in global weather prediction and reanalysis systems for a
number of land variables that are coupled with atmospheric variables in these systems. Screen-level
observations of temperature and humidity have been used for some time, and with some success, to
constrain soil temperature and humidity (e.g. Albergel et al., 2012; 2015) while more recently
surface soil moisture data derived from the ASCAT scatterometer have also been assimilated, using a
nudging scheme (Dharssi et al., 2011) or an ensemble Kalman filter (de Rosnay et al., 2013). Further
developments in soil-moisture analysis include the direct assimilation of passive microwave
radiances from SMOS (Munoz-Sabater, 2015) and assimilation of downscaled SMOS retrievals in a
catchment model (Ridler et al., 2014). Comparative evaluation of SMOS and AMSR-E soil moisture
information in a data assimilation context is reported by Al-Yaari et al. (2014). In situ snow-depth
measurements augmented by snow cover estimated from satellite data are assimilated to produce
snow-depth analyses (e.g. de Rosnay et al., 2014). A fire assimilation system using radiative power
observations from space is also run routinely in the Copernicus system (Kaiser et al., 2012).
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Development work at ECMWF includes study of the assimilation of data on surface albedo and leaf
area index from space-based measurement (Boussetta et al., 2015).

In carbon cycle data assimilation systems (CCDASs; e.g. Kaminski et al., 2013), the parameters of
a mechanistic surface flux model are optimized. The model is then used to calculate the fluxes and
their uncertainties. This approach provides the opportunity to use additional observational data
streams consistently to constrain the model (e.g. FAPAR and terrestrial or ocean local exchange flux
measurements (Rodenbeck et al., 2014)). The development of CCDAS systems of varying complexity
from simple diagnostic flux schemes to complete land and ocean surface modules of Earth-system
models currently constitutes an area of very active research. For surface-flux estimation it provides
an alternative approach to the use of inversion methods discussed below in section 5.5.

Other examples of data assimilation include the use of soil-moisture data by Brocca et al. (2010)
and streamflow data by McMillan et al. (2013) in catchment-scale models of river flow. Ecological
applications related to outbreaks of infectious diseases and the assessment and prediction of fish
stocks are discussed by Niu et al. (2014). Ines et al. (2013) and Jiang et al. (2014) report studies in
which leaf area index data are assimilated directly into crop and general vegetation models.

5.3 Reanalysis

Reanalysis applies data assimilation to time series of past observations to estimate the long-term
state of the modelled system. It is particularly well established, with many users, for the
atmosphere, for which the latest to be completed using multiple types of observation are JRA-55,
produced by the Japan Meteorological Agency for the period from 1958 (Kobayashi et al., 2015), and
NASA’s MERRA-2, from 1979 onwards. This class of reanalysis typically utilizes all types of upper-air
and surface data that can readily be assimilated, and extends back either to the time radiosonde
data became widely established in the northern hemisphere or globally, or satellite data likewise
became comprehensively established. Atmospheric reanalyses extending back over a century or
more that assimilate only surface atmospheric observations have been pioneered by Compo et al.
(2011). Other observations are used implicitly in such reanalyses, through specified sea-surface
temperatures, sea-ice cover and temporal distributions of radiatively active atmospheric
constituents, and may be extended to include changing surface characteristics. Insights into the
performance of the data assimilation and the prescribed forcings may be gained from corresponding
simulations that omit the assimilation of surface atmospheric observations. Hersbach et al. (2015)
provide a recent example. Such simulations also form the “AMIP” component of CMIP5, evolving
from the original Atmospheric Model Intercomparison Project (Gates, 1992).

Reanalysis has become important also for the oceans, for purposes such as monitoring, forecast
calibration and understanding the role of the ocean in the Earth system, addressing for example the
key issue for climate variability and change of the extent to which heating of the oceans is
distributed between upper and deeper layers (Balmaseda et al., 2013b). Improved land-surface
products based on the MERRA (Rienecker et al., 2011) and ERA-Interim (Dee et al., 2011) reanalyses
have been derived respectively by Reichle et al. (2011) and Balsamo et al. (2015), through running
updated land-surface model components driven by reanalysed meteorological fields, with
precipitation rescaled to match independent monthly analyses of rain-gauge and other observed
data. Significant developments are likely in this area during the roadmap period, as such approaches
readily lend themselves to running the land-surface model at higher resolution, including carbon-
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cycle components and implementing dedicated data assimilation for an increasing range of land and
near-surface atmospheric variables (Balsamo et al., 2014).

Changes over time in the types, coverage and biases of observations pose the key data-
assimilation challenge for reanalysis, especially in the presence of background-model error. When
such changes in the observing system coincide with real changes in climate variability, true and
spurious signals in reanalyses can be difficult to disentangle. This is the case for the intensification of
tropical Pacific winds after the 1998-1999 La Nifia event that is thought to have led to an increase in
the heat absorption by the ocean, and the slowdown in global surface warming. Studies of this have
made substantial use of data from reanalyses, but these reanalyses are prone to various degrees to
exhibit spurious shifts in some of their products in the late 1990s associated with the introduction of
the AMSU-A microwave sounding instrument on the series of operational meteorological polar-
orbiting satellites. Establishing whether changes identified from reanalysis products are robust is
vital for the understanding of climate. Boisséson et al. (2014) provide a recent example,
demonstrating reliability of ERA products for tropical Pacific winds in the 1990s and 2000s.

Observing-system changes have been a particular problem for hydrological variables in past
atmospheric reanalyses, which have exhibited a number of large spurious changes over time. It is
seen most directly in examination of the hydrological budget itself, as shown for example by
Trenberth et al. (2011), but associated changes in latent heating and the circulation it drives can
result in degraded fits to temperature observations, remotely as well as locally (Simmons et al.,
2014). Nevertheless, the newer reanalyses generally perform better in their treatment of key
aspects of the hydrological cycle (Bosilovich et al., 2011; Trenberth and Fasullo, 2013; Kobayashi et
al., 2015). Although these and other studies show that problems remain, there are reasons to expect
continued progress over the next decade, through recovery and reprocessing of past observations,
through the new data provided by the GPM constellation of satellites, and through continued
attention to modelling and data-assimilation issues.

5.4 Coupled data assimilation

Coupled data assimilation for the atmosphere, land and sea state is established for weather
prediction and reanalysis, in the sense that although analyses themselves are generally performed
separately for the three domains, the background-forecast model couples the domains, enabling
observations of one domain to influence the subsequent analysis of other domains. In addition,
differences between screen-level atmospheric observations and background estimates from the
atmospheric model may serve as an input to the land-surface analysis (de Rosnay et al., 2013).

Coupled assimilation approaches for atmosphere and ocean and for chemical composition within
the atmospheric component have been topics of recent development. Together with a broadening
of the range of analysed terrestrial variables and development of assimilation of ocean-colour data
into ocean models that include biogeochemistry (section 5.2), the elements for coupled Earth-
system data assimilation for forecasting and reanalysis applications are being put in place, and
substantial further progress is expected over the roadmap period. Tighter forms of coupling are also
expected, even though systems are likely to make only limited use within the analysis steps of
multivariate relationships that span the domains.
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A particular focus has been on the coupling of atmospheric and oceanic systems, with a view to
improving all time ranges of forecasting and reanalysis. Examples include:

e Development of a coupled Ensemble Kalman Filter system at GFDL by Zhang et al. (2007). The
system generates realizations of initial states (and state estimates) of the coupled system
that are consistent with observations. This was tested with promising results in a perfect-
model setting, using realistic simulated oceanic observations, but monthly-mean analysed
data for the atmosphere. It is currently used with a new higher resolution atmosphere/land
model in the Forecast-oriented Low-Ocean Resolution system (Jia et al., 2014; Vecchi et al.,
2014) that contributes to the NMME, although initial atmosphere/land conditions are to date
determined only from an AMIP-style simulation rather than from assimilation of atmospheric
observations.

e Demonstration by Fujii et al., (2009) of a better spatial distribution and variability of tropical
precipitation in a coupled system in which ocean data alone were assimilated than in an
AMIP-style simulation using the atmospheric model and separately analysed SST. Negative
feedback between SST and atmospheric convective activity, not properly represented in the
AMIP run, was shown to improve the representation of the atmospheric circulation as well as
precipitation in the coupled assimilation.

e Use of a coupled system in the NOAA/NCEP Climate Forecast System Reanalysis (Saha et al.,
2010). Separate atmospheric and ocean analyses were carried out, with atmosphere and
ocean coupled in the model used for the background forecast. SST was prescribed for the
atmospheric model, using a separately produced analysis, and the upper level of the ocean
model was relaxed to this SST as part of the ocean analysis.

e Ascheme at ECMWEF that introduces a degree of coupling within the analysis itself (Laloyaux
et al., 2015), building on the incremental four-dimensional variational (4D-Var) approach
established for the atmosphere (Courtier et al. 1994). The analysis is produced iteratively
using successive linearizations of the model and operators that map model variables to the
guantity that is measured. Each iteration begins with an integration of the coupled model
forward in time, over the length of the analysis window. The variational problem is linearized
about this reference trajectory and then solved separately for the atmospheric and oceanic
components of the system. From the updated state the coupled model is again integrated to
generate a new reference trajectory, which is then used for the next iteration of the scheme.
Observations of SST are not assimilated; instead the temperature of the uppermost ocean is
relaxed towards an external SST analysis, as in the NOAA/NCEP system. Land-surface and sea-
state analyses are produced in separate steps and feed into the next background forecast,
although they too are candidates for tighter coupling. The focus at ECMWEF is initially on the
application to reanalysis (Dee at al., 2014), but development for medium- and longer-range
prediction is within ECMWF’s four-year planning horizon.

An envisaged future development is to determine the SST in such coupled data assimilation
systems directly by assimilation of space-based and in situ observations, rather than through use of a
separately derived product. A desirable further development is the formulation of error covariances
between the variables involved in the air-sea interaction. The required balance relationships
between variations in the ocean mixed layer and in the atmospheric boundary layer can be obtained
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from model integrations, but verifying data are needed. Collocated oceanic and atmospheric
observations from the tropical moored buoys are expected to be an important source of information
in this regard.

Coupling of meteorology and chemistry within the system developed by ECMWF and its
Copernicus partners (Hollingsworth et al., 2008) utilizes the iterative 4D-Var scheme in a way similar
to that for coupled atmosphere/ocean assimilation discussed above, with separate analyses for
several gaseous and aerosol species coupled at the level of the reference trajectory. The system has
been used for two reanalyses covering periods from 2003 during which plentiful data from the EOS
and Envisat missions were available. Inness et al. (2013) report on the evaluation of the reactive-gas
component of the more recent of these reanalyses, while Bellouin et al. (2013) discuss its use for
estimating aerosol radiative forcing. However, although observations of constituents carry implicit
information on the winds that advect the constituents and on the temperature and cloud that
influence them through reaction rates, it remains a challenge to extract this information, and to date
the adjustment of meteorological variables due to observations of chemical species has been
suppressed, as discussed by Dee at al. (2014). Relaxation of this constraint, fuller interaction within
the model of aerosols, fast-reacting gases and long-lived greenhouse gases, building on the recent
in-lining of chemistry (Flemming et al., 2015), and coupling with the carbon component developed
for the land-surface model (Boussetta et al., 2013b) should occur over the roadmap period.

5.5 Parameter estimation and flux inversion

Data assimilation methods are also used to estimate parameters or variables other than, or as
well as, the state variables used for initialising forecasts or monitoring variability and change.
Although most of the examples discussed below use models of limited complexity or domain, these
models may be driven by data from more comprehensive models, and many of the resulting
estimates are relevant to the operation, validation or interpretation of the results of integrated
Earth-system models.

Biases of the assimilated observations may be estimated concurrently with the estimation of
prognostic model variables. Developed initially by Derber and Wu (1998) for adjusting the bias of
satellite radiance measurements for use in numerical weather prediction, it entails establishing a
linear predictor model for the bias and adding parameters of this model to the set of model variables
that are determined by the minimization process at the heart of the variational scheme. Application
to radiance bias adjustment in reanalysis is discussed by Dee and Uppala (2009) and Simmons et al.
(2014) in the context of the representation of low-frequency variability and trends in temperature
and moisture in ERA-Interim and other atmospheric reanalyses that span the lifetimes of many sets
of radiance measurements. The variational method is increasingly also being applied to adjust other
types of observation that are subject to significant bias.

Parameters of a model may be refined by adjusting them variationally to obtain a better fit to
observations. For example, Kuppel et al. (2012) optimized 21 parameters of a vegetation model to
improve model fits to data on fluxes of carbon dioxide and water from 12 tower sites in deciduous
broadleaf forests, using local meteorological data from the towers to force the model. Running the
model globally with meteorological forcing from ERA-Interim showed that use of the optimized
parameters improved the fit to independent vegetation index data from MODIS.
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Estimation of net sources and sinks of carbon dioxide through inversion utilizing surface
measurements of gas concentrations dates back to the 1980s. The Carbon Tracker website
(www.esrl.noaa.gov/gmd/ccgg/carbontracker; Peters et al., 2007) provides the results from one
particular inversion system, together with substantial supporting information. Peylin et al. (2013)
compared fluxes from two versions of Carbon Tracker and nine other systems, several of which
covered periods of more than twenty years. Chevallier et al. (2011) showed encouraging comparison
with flux estimates from a much smaller number of TCCON stations making total-column
measurements. Basu et al. (2013) and Maksyutov et al. (2013) present first estimates of surface
fluxes derived from total-column retrievals of data from GOSAT. Used alone in inversions the GOSAT
data give results consistent with but not superior to those from the surface networks, but they have
significant impact on flux estimates for the tropics and southern extratropics when used together
with the surface data. Using the resulting fluxes in model runs improves the fit to TCCON data in the
northern extratropics, but the presence of biases in the GOSAT retrievals remains an issue. Reuter et
al. (2014) discuss a stronger than expected biospheric sink for CO; in Europe using data from
SCIAMACHY and GOSAT.

Use of satellite data to estimate fluxes of methane is longer established than for carbon dioxide.
Estimates of about ten-year duration using retrievals from SCIAMACHY together with in situ surface
measurements are reported by Bergamaschi et al. (2013) and Houweling et al. (2014). Comparisons
with inversions based on early retrievals from GOSAT (Monteil et al., 2013; Alexe et al., 2015) show
good agreement with bias-adjusted values from SCIAMACHY, the GOSAT data being more precise
and less biased, but sparser. An estimate for the emission of methane from fracking has been made
using SCIAMACHY data and information on boundary-layer winds from reanalysis (Schneising et al.,
2014).

Surface flux estimates for both carbon dioxide and methane are currently updated on a routine
basis and made available as a Copernicus service at atmosphere.copernicus.eu. More generally,
significant progress is expected over the roadmap period as new instruments are deployed in space,
as experience is gained and as inversion systems, including their transport models, are improved.
The case for a complementary expansion of in situ observation is advanced by Ciais et al. (2014).

Inversion may also be used to estimate the emission and deposition of a range of other
atmospheric constituents. Examples are the estimates of:

e varying global carbon monoxide emissions over a ten-year period using a chemical transport
model with constraining observations from the MOPITT instrument on EOS/Terra (Fortems-
Cheiney et al., 2011);

e emissions and the chemical state for an 18-day ozone-pollution episode using a regional air-
guality model with constraining in situ surface observations of nitrogen oxides (NOx), sulphur
dioxide and ozone (Elbern et al., 2007);

e emissions of NOx at 25 km resolution using a Kalman filter approach and a regional air-quality
model with constraining satellite data retrievals from GOME-2 and OMI measurements
(Mijling and van der A, 2012);

e the global production of NOx by lightning, using a chemical transport model with constraining
data from multiple (MLS, MOPITT, OMI, TES) satellite instruments (Miyazaki et al., 2014);

Page 67 29 February 2016



Observation and Integrated Earth-system Science: A Roadmap for 2016-2025

e emissions of SO, and several primary aerosol species, using a global model of intermediate
complexity with constraining total and fine-mode aerosol optical depth data from MODIS
(Huneeus et al., 2013);

e heights and rates of volcanic ash injection using Lagrangian particle dispersion models with
constraining data from the SEVIRI instrument on Meteosat (Kristiansen et al., 2012);

e the caesium-137 source for an accidental release from a nuclear power plant, using a
mesoscale transport model with constraining atmospheric concentration and deposition
observations (Winiarek et al., 2014).

6 Use of observations in integrated Earth-system modelling and its applications

The use of observations, either directly or through processed datasets, is discussed in the
context of applying and improving Earth-system models. Topics covered are monitoring and
interpretation, including the attribution of effects to causes, the evaluation of models, and
prediction and projection.

6.1 Monitoring and interpretation

Monitoring the changing state of the Earth system takes place on spatial scales that vary from the
local to the global. Impacts on lives are experienced locally and local environmental parameters such
as those related to heat stress and air quality have to be checked and exceedances acted upon.
Regional monitoring is needed for transboundary transport of air pollution and river flow. Globally,
assessment of the net capacity for food production and the setting of bounding targets for
greenhouse-gas concentrations or temperature rise bring with them needs to watch the approach of
the system towards critical limits. The monitoring itself may involve data that relate to a single
variable or group of closely related variables, but an integrated approach is often needed to
understand the reasons behind the variability and trends of particular variables, whether local,
regional or global, and to formulate effective programmes of mitigation and adaptation, which in
turn may have local, regional and global elements.

It is beyond the scope of this study to discuss the many uses of observations for monitoring
individual components of the Earth system, although several are referred to in the variable-by-
variable discussion of Earth-system observation given in section 3. A key need is for homogenization
of the time series of data from individual types of in situ observation, whether it be to take into
account changes in bias in measurements from instruments such as radiosondes or changes in the
siting or exposure of observing stations making near-surface measurements. Likewise, account has
to be taken of drifts or inter-platform changes in measurement bias from satellite-borne
instruments. These are requirements that apply whether the observations are used directly, built
into a single-variable data product or combined with other types of observation in a more
comprehensive reanalysis. Allowance also has to be made for inadequacies and changes in spatial
and temporal sampling. This can be due to variations in completeness of in situ observational
coverage, a source of uncertainty in estimates of global-mean surface temperature, for example. It
can also be an issue in satellite data products, for example when data relate only to cloud-free
conditions or sampling of the diurnal cycle changes due to orbital drift. Sampling is a specific issue
for monitoring changes in the frequency or intensity of rare but severe events, for which the length
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of the period of good observational record may be a fundamental limitation, affecting also the use of
observations for assessing the performance of models in this respect. Sampling is more generally an
issue for monitoring intermittent events such as rainfall.

A role for reanalysis in monitoring has been alluded to in section 5.3, and the particular
contribution it can make to observational bias estimation and adjustment has been noted in section
5.5. A number of caveats have nevertheless to be heeded. It is important, for instance, to assess the
reliability of the way reanalysis fills in gaps where datasets based on direct gridding of observations
lack coverage. Critical in this regard are the quality of the assimilating model and the extent to which
the infilling is constrained by observations of related variables, for example by observations of sea-
ice cover in the case of high-latitude marine surface air temperature, which depends sensitively in
winter on whether the underlying surface is ice-covered or open sea. In addition, bias in the
assimilating model becomes an issue for monitoring change where observational coverage changes
over time, as changes in coverage change the extent to which model bias is countered by assimilated
observational information.

Generally important in this context are the use where possible of independent observations to
evaluate data products, and the comparison of the results from different producers and from
different methods of production. Consistency of results for related sets of variables can provide a
further source of confidence. This may involve, for example, comparing anomaly patterns and
strengths at different levels in the atmosphere where different types of observation provide the
principal sources of information. It may alternatively involve evaluating the consistency of a set of
estimates, of which a prime example is provided by the recent balancing of the observationally-
based budget of mean sea-level rise in terms of the contributions from thermal expansion of the
oceans, melting of glaciers and ice sheets, and changes in water storage on land. This was identified
by Church et al. (2013) as a significant advance from AR4 to AR5 in physical understanding. Closure
of the overall water-cycle budget of the atmosphere using observational products remains a
challenge nevertheless.

The ability to forecast future events or simulate past ones using comprehensive models enables
controlled modelling to be used to explore factors that may or may not be important for the events.
This includes, for example, determining the importance of particular observations for enabling
successful weather predictions (WMO, 2012), or the importance of particular forcing factors for
accurately modelling temperature change over the past century or more (IPCC, 2013). Constraining a
model with wind and temperature information from reanalysis has been used to reconcile halogen-
induced loss of stratospheric ozone with the observed record of total-column ozone (Shepherd et
al., 2014) and to understand variations over time in stratospheric water vapour (Hegglin et al.,
2014). A number of fields are prescribed in models, which may include surface roughness, soil type,
land cover, aerosol and trace-gas concentrations or emissions, depending on the complexity of the
model. Models accordingly benefit from better data on these fields, and such data may be assessed
through their impact on the performance of the models that employ them, in reanalysis, forecasting
and simulation.

Attribution of events to causes has a high profile in the context of possible impacts of climate
change. It is needed for effective working of the international mechanism for loss and damage
established by the Parties to the UNFCCC, which recognizes the need to enhance knowledge and
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understanding, including through collection, sharing, management and use of data, and is concerned
with both extreme weather events and slow-onset events associated with adverse effects of climate
change. More generally, there is a requirement from commercial and governmental sectors, and
from the general public, for assessments of the extent to which weather-related risks can be
discerned as having changed due to human influences on climate or due to changing vulnerabilities
to natural variations in climate. Attribution may also be important in other challenging types of
situation, for example air-pollution events that involve both cross-boundary transport of pollutants
and local emissions, or cases of low or high cross-boundary river flow.

6.2 Model evaluation

6.2.1 Basic aspects

Systematic evaluation of models through comparisons with observations is a prerequisite for the
models to be used with confidence and needed for identifying what has to be improved. When a
new version of a model becomes available, it too has to be evaluated thoroughly to ensure it
performs as expected. No single evaluation technique or performance measure is adequate for
determining the fitness of models for the range of purposes for which they are applied. Instead, a
variety of techniques and measures must be used to provide a comprehensive overview of model
performance. Common metrics have to be adopted to ensure that the models developed by
different institutions can be compared. A move towards adopting metrology standards for
comparing models with a reference is envisaged (e.g., Widlowski et. al., 2013).

Assessment of the forecasts and simulations provided by models may utilize either direct
comparisons with observations or comparisons with processed observationally-based datasets. This
brings additional requirements, including for accessibility of datasets and assessments of their
quality. The Obs4MIPs and Ana4MIPs initiatives (www.earthsystemcog.org) are being developed to
facilitate the use of data products specifically to support the evaluation and intercomparison of
climate models, complementing the general availability of model results through the CMIP and other
intercomparison projects. General information and guidance on observationally-based datasets are
available from websites such as climatedataguide.ucar.edu and reanalyses.org. Data portals include
NOAA’s www.gosic.org and GEQ’s www.geoportal.org, while CEOS and CGMS provide dataset
information at ecv-inventory.com. The operational Copernicus services are also expected to play a
substantial role in this regard. These activities have mostly been established quite recently, and
refinement and rationalization are likely over the coming ten years.

The evaluation of models using past observations is most reliable for those variables and
phenomena for which direct observations exist, although reanalysis may be useful for other
variables if they are constrained indirectly by assimilated observations of related quantities.
Nevertheless, in many cases the lack or insufficient quality of long-term observations, whether of a
specific variable, an important process or a particular region, remains an impediment.

6.2.2 Regime and process separation

A number of techniques have been developed to isolate particular regimes or processes within
Earth-system models for the purpose of assessment. One involves the so-called “regime-oriented”
approach for evaluating processes. Instead of the more typical averaging of model results in time or
space and comparison with corresponding averages of observationally based products, results may
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be averaged within categories that describe distinct dynamical or physical regimes of the system,
and performance accordingly assessed regime by regime. This enables regimes to be identified
where more or less reliability can be placed in a forecast or a climate projection, and helps in the
setting of priorities for model development. In the case of the atmosphere, for example, it may
involve compositing different instances of a particular type of synoptic event, such as mid-latitude
blocking or African easterly waves, but may more simply involve focussing on selected time averages
for persistent local or regional phenomena such as the stratus cloud decks over the western coasts
of continental areas, which are often associated with warm biases in coupled ocean models.
Process-based metrics for the ENSO are another example; these are being developed as a communal
activity organised within CLIVAR (www.clivar.org/research-foci/enso).

Another approach supporting model development involves isolating model components or
parameterizations in off-line simulations, such as from a single-column version of the atmospheric
component. Results of such simulations may be compared with measurements from dedicated field
studies or with results from more detailed models specific to the processes being considered. Use
may be made, for example, of spectral radiation measurements at the top of the atmosphere and
the surface to test, refine and verify columnar physics effects in global models such as related to
water vapour, lapse rate and cloud feedbacks. Boundary-layer or cloud processes may be studied by
comparing with results from so-called “large eddy simulation” or “cloud resolving” models
respectively. Collaborative international programmes such as the Radiative Transfer Model
Intercomparison Project (Collins et al., 2006), the Radiation Transfer Model Intercomparison) for the
Intercomparison of land-surface Parameterization Schemes (Widlowski, et. al., 2011) and the Cloud
Feedback Model Intercomparison Project (CFMIP; cfmip.metoffice.com) often provide an important
organizational framework for such studies.

6.2.3 Instrument simulators

Satellites provide important data for model evaluation. The conventional approach has been to
convert the measured radiance data into data on “model-equivalent” geophysical variables, the
process known as retrieval. Limitations in what can actually be sensed from space poses a challenge,
however, as various assumptions have to be made in order to carry out the retrieval. An alternative
approach is to derive “observation-equivalent” data from models using radiative transfer
calculations to simulate what the satellite would provide if it were sensing the model rather than the
real state. This approach is usually referred to as an “instrument simulator” when used to evaluate a
climate model. An observation simulator package is, for example, provided under CFMIP.

The same approach of mapping model fields to what is observed from space is well established in
data assimilation, where model fields are adjusted so that the implied radiances match what the
satellites measure to a degree consistent with other observational and model constraints. In this
case the simulator is usually referred to as a fast forward radiative transfer model; the adjoint of the
forward model is also required in variational assimilation to derive the adjustment needed to the
model fields. The extent to which a good match to radiance and other observational data is already
provided by the background forecast, is achieved by the analysis and is maintained into subsequent
longer forecasts provides valuable diagnostic information, although interpretation of results may
require care. Benefits for climate modelling should ensue from a more widespread use of initial-
value techniques in their evaluation, discussed further in section 6.2.6 below.

Page 71 29 February 2016



Observation and Integrated Earth-system Science: A Roadmap for 2016-2025

6.2.4 Evaluation at component and integrated levels

Individual model components (the atmosphere, the ocean and so on) are first typically evaluated
in isolation as part of the model development process. For instance, the atmospheric component
can be evaluated by prescribing sea-surface conditions or the ocean and land components by
prescribing atmospheric conditions. Subsequently, the various components are assembled into a
comprehensive model, which then undergoes a systematic evaluation. At this stage, a small subset
of model parameters typically remains to be adjusted so that the model adheres to large-scale
observational constraints. As this final parameter adjustment procedure, usually referred to as
tuning, aims to match the observed behaviour of the climate or Earth system, it entails judgment as
to what constitutes a skilful representation of the system. For instance, maintaining the top-of-the-
atmosphere energy balance in a simulation of pre-industrial climate is essential to prevent the
climate system from drifting to an unrealistic state. Current models almost universally contain
adjustments to parameters in their treatment of clouds to fulfil this important constraint.

Model tuning directly influences the evaluation of climate models, as the quantities that are
tuned should not be used in model evaluation. Quantities closely related to those tuned provide only
weak tests of model performance. The use of data is integral to the model development process,
and this complicates the construction of critical tests. Nonetheless, by focusing on those quantities
not generally involved in model tuning while discounting metrics clearly related to tuned features, it
is possible to gain insight into model skill. The concurrent use of many model quantities, evaluation
techniques, and performance metrics that together cover a wide range of emergent (or un-tuned)
model behaviour, ensures a stringent test of model quality.

6.2.5 Metrics

The application of common metrics based on standards enables the performance of different
forecasting systems or climate models to be compared. Coordinated activity dates back to the early
1980s in the case of numerical weather prediction, initially under a research programme (Lange and
Hellsten, 1984), and continues today on an operational basis under the auspices of the WMO
Commission for Basic Systems. The current operational system entails a monthly exchange of various
agreed metrics of forecast performance computed by each forecasting centre. Forecasting centres
also exchange a subset of their forecast fields, enabling an individual centre to compute its own
metrics to compare its forecasts with those of others. For example, Simmons and Hollingsworth
(2002) used such metrics in their documentation and interpretation of some twenty years of
improvement in forecasts from global systems. Both observational data and the NWP analyses
derived from them are used in calculating metrics; the distinction becomes important for regions
more poorly constrained by observations or where model performance is relatively poor. In this case
cross-validating the forecasts of one centre against the analyses of another can be instructive.
Metrics may be chosen by institutions to set strategic targets or for year-on-year tracking of
progress. Examples are the headline scores published at www.ecmwf.int and the UK and Global
NWP Indices reported at www.metoffice.gov.uk. Haiden et al. (2014) provide an example of how
ECMWEF reports annually on metrics of forecast performance and system upgrades.

A corresponding effort for climate models has been much longer coming. Reasons have been
discussed by Gleckler et al. (2008), who proposed a set of metrics for atmospheric variables and
demonstrated a number of ways of presenting results for a large group of models. The AR5 WG |
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chapter on the evaluation of climate models (Flato et al., 2013) presents numerous more-recent
examples of metric-based performance comparisons. The chapter also serves to indicate the
observationally-based datasets available for use in such evaluations. Eyring et al. (2015) report the
development and illustrate the application of a communal software tool that facilitates evaluation of
a set of Earth-system models using a common set of performance metrics and diagnostics.

A point made by Gleckler et al. (2008) was that despite the increasing use of metrics it was not
generally possible to identify a “best” model from them, noting that this would almost certainly
depend on the intended application. The same conclusion may be drawn from the set of evaluations
presented in AR5. For example, two models from the Hadley Centre score among the best overall
according to a set of relative error measures of CMIP5 model performance for the atmosphere,
based on a global seasonal-cycle climatology for 1980-2005 (Figure 9.7 of Flato et al., 2013), but are
the poorest in reproducing the observed increase in ocean heat content over the same period
(Figure 9.17, ibid.).

There has been difficulty in establishing metrics that quantify the strength of the interactions in
coupled systems. This was noted in particular by WCRP’s Global Energy and Water Exchanges project
in establishing its imperatives for 2013 and beyond (www.gewex.org). Its Global Land Atmospheric
Coupling Experiment, for example, was successful in identifying how strongly soil moisture was
coherent with precipitation at the model resolution scale of order 100 km, but other than a relative
ranking of strength was unable to provide quantitative metrics or understanding of governing
processes or their accuracies.

6.2.6 Initial-value techniques

Knowledge of the present state of the atmosphere is essential for forecasting the weather for a
few days ahead. In contrast, climate predictions and projections simulate the statistics of weather
seasons to centuries in advance. Despite their differences, both weather predictions and climate
projections are generally performed with very similar atmospheric model components, and global
weather-prediction systems increasingly include other components more typical of climate models,
as discussed in section 4.1. The atmospheric component of a climate model, and other components
as appropriate, can be integrated as a weather prediction model if suitably initialized. This allows
parameterized sub-grid scale processes to be tested without the complication of feedbacks that can
substantially alter the underlying state of the atmosphere when models are integrated over
extended periods of time.

Understanding the source of systematic errors in climate models is challenging because of such
coupled feedbacks and compensating errors. The developing seamless approach is based on the
premise that the identification and correction of short-term climate-model errors have the potential
to improve the modelled climate on longer time scales. Initialized atmospheric simulations of a few
days have been used to compare model treatments of fast physical processes, notably involving
convection and clouds. This is now being extended to the use of initialized seasonal to decadal
hindcasts to relate transient weekly-to-monthly errors of the oceanic and atmospheric components
to pervasive long-term errors of coupled models. Despite substantial developmental efforts, the
latest generation of coupled models shows only modest improvement. Using initial-drift analysis
helps to move from the current rather ad hoc approach towards a systematic, bias-targeted, priority-
setting approach to model development. Vanniére et al. (2013) provide an example, using seasonal
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hindcasts to seek the root cause of error in representing the equatorial Pacific cold tongue in
coupled climate models.

6.3 Prediction and projection

6.3.1 General roles and requirements for observations

Observations play multiple roles in the prediction of forthcoming changes in the Earth system and
the scenario-based projection of possible future courses of the system. The importance of different
types of observation and of where they are made generally changes with the range of the prediction
or projection. As particular observations may serve multiple applications involving different time
ranges, priorities for observations in general vary from application to application, as well as from
region to region.

Observations are needed to provide the initial conditions and verifying data for predictions, both
close to real time for operational use and from past dates to provide starting points for the hindcasts
(or reforecasts) that are used to test system changes, to provide users with indications of the quality
of current operational systems and to implement schemes for calibrating forecasts to offset model
limitations. In the latter case use may be made of routine reanalyses, or observations may be
reprocessed especially for the specific purpose required. Observations and socio-economic data
related to external forcings or emissions of key trace species are also needed. As discussed further
below, these are required in particular for longer-range forecasting and to guide the setting of
scenarios for projections.

Basic questions as to which variables need to be observed, where they need to be observed and
with what spatial and temporal resolution are addressed by programmes such as GCOS in the case of
observations serving climate needs. It is not the function of this report to produce or reproduce
extensive and comprehensive specifications; indicative requirements and guidance covering much
that is relevant to this report can be found in the WMO OSCAR database.

Timeliness of delivery of observational data is another factor to be taken into account. Delivery
needs to be as prompt as reasonably possible, within from about one to a few hours of the
measurement time in the case of short- and medium-range weather forecasting. User desire for
information as early as possible has, however, to be balanced against the benefits of waiting for the
arrival of late or better-processed data. For seasonal forecasting this can mean a delay of around 10-
15 days to receive satellite altimeter data on sea-level with better orbit specification or bias-
corrected Argo salinity data, for example. Delays can be longer for specialized data for verification,
and recovered or previously restricted observations can be valuable many decades after they were
made when used in reanalysis or other forms of processing for study of climate change.
Nevertheless, given the increasing variety of data used in operational weather forecasting systems
and the practice of extending reanalyses in “climate data assimilation mode” a few days at most
behind real time, it can be foreseen that increased attention will need to be paid to planning near-
real-time data supply streams from future satellite missions.

Operational prediction requires that the observing system that supports it be resilient to failure.
This concerns both key satellite observing systems and the critical elements of the ground-based
telecommunication systems that transmit both in situ and space-based data. This implies some

Page 74 29 February 2016



Observation and Integrated Earth-system Science: A Roadmap for 2016-2025

degree of redundancy. Temporal stability of observations, or at least of reanalyses or other data
products derived from them, are requirements not only for monitoring a changing environment but
also for deriving calibrations of forecasting-system outputs (Kumar et al., 2012). Other requirements
include provision of metadata on observational uncertainty, for direct use in the selection of
observations to assimilate and the assignment of observation error statistics in the data analysis, and
for choosing appropriate perturbations to apply to the observations when used in ensemble data
assimilation systems.

6.3.2 Predictability and uncertainty

Predictability can refer to either the current or the fundamental limit to which some property of a
variable may be predicted. As discussed by Thompson (1957) for weather prediction, it may be
quantified as the length of the time range over which the error (or uncertainty) of a representative
sample of forecasts lies significantly below the error (or uncertainty) of a corresponding sample of
guesses such as provided by predicting climatology or persistence of the initial state. Thompson
estimated an inherent error doubling time of two days based on instability theory for mid-latitude
wintertime flow, and a corresponding predictability limit of about a week based on the observational
network of the time, noting both the potential to extend this by refining the network and the
diminishing returns to be expected from continuing refinements. Lorenz (1995), in an article entitled
“Predictability — a problem partly solved”, noted how the doubling times of small differences in
global-model states reduced from about five days for the early atmospheric models of the 1960s to
around 1.5 days for the ECMWF global forecast model in the mid-1990s. Since then, values have
settled at 1.2-1.4 days for ECMWF forecasts. The same period has seen the establishment of
ensemble prediction, the running of multiple forecasts from perturbed initial conditions, perhaps
also with a stochastic element to the model formulation, as a way of providing dynamic estimates of
forecast uncertainty and potential weather scenarios. However, even for the probabilistic forecasts
that such systems produce, there remains a predictability limit beyond which information other than
climatologically informed guesswork cannot be supplied on the instantaneous state of the weather.

The error of instantaneous forecasts does not saturate completely at a particular range, however.
Although continued growth of systematic model error can contribute, there is an element of
atmospheric predictability that is associated with longer-term variations in the atmosphere’s oceanic
and terrestrial lower boundary conditions, in its chemical composition and in the solar radiative
input it receives. As has long been appreciated, this “climatic predictability” (Lorenz, 1975) manifests
itself in skilful prediction of temporal and spatial means and other statistics, with averaging typically
taken over longer periods and larger areas for longer forecast ranges.

Uncertainty in climate-change projections is discussed in the contribution of Kirtman et al. (2013)
to AR5, based an analysis of CMIP5 results that builds on an earlier CMIP3 analysis by Hawkins and
Sutton (2009). Uncertainty is partitioned into contributions from three sources. These are the
natural internal variability intrinsic to the climate system, imperfect knowledge of future changes in
natural and anthropogenic forcings, and limitations of the models needed to estimate the responses
to changed forcings. Uncertainty over future anthropogenic forcings was represented in CMIP5 by
scenarios for concentrations of species that affect radiative forcing. There is also model-related
uncertainty in the link between such atmospheric concentrations and the underlying anthropogenic
emissions of the species themselves or their precursors.
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Figure 8 Sources of uncertainty in climate projections as a function of lead time based on an analysis of
CMIP5 results. (a) Projections of global mean decadal mean surface air temperature to 2100 together with a
quantification of the uncertainty arising from internal variability (orange), model spread (blue) and RCP
scenario spread (green). (b) Signal-to-uncertainty ratio for various global and regional averages. The signal is
defined as the simulated multi-model mean change in surface air temperature relative to the simulated mean
surface air temperature in the period 1986-2005, and the uncertainty is defined as the total uncertainty. (c—f)
The fraction of variance explained by each source of uncertainty for: global mean decadal and annual mean
temperature (c), European (30°N to 75°N, 10°W to 40°E) decadal mean boreal winter (December to February)
temperature (d) and precipitation (f), and East Asian (5°N to 45°N, 67.5°E to 130°E) decadal mean boreal
summer (June to August) precipitation (e). Source: Kirtman et al. (2013), after Hawkins and Sutton (2009),
where further detail may be found.

Caveats notwithstanding, the broad conclusions from results such as illustrated in Figure 8, taken
from Kirtman et al. (2013), are clear. Internal variability dominates uncertainty for the first decade or
more ahead, depending on region, season and variable. Thereafter, modelling becomes the largest
source of uncertainty. Uncertainty in forcing, estimated here from the spread of projections for
different CMIP5 “Representative Concentration Pathway (RCP)” scenarios, comes into play as the
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time range extends to multiple decades. Its extent evidently varies substantially depending on which
aspect of climate is being considered.

6.3.3 Prediction from days to decades

There are needs for forecasts of how the Earth-system will change over multiple time ranges. The
move to view and implement prediction in a more seamless way across the time ranges has been
discussed already, but different considerations nevertheless come into play when considering
predictions with different lead times. These are associated with aspects such as the fundamental
limits to predictability, the relative importance of observations of various types and the lengths of
observational records.

6.3.3.1 Short to medium-range prediction

Needs for information on what will happen within the Earth system are generally met in most
detail or with least uncertainty, and with substantial demonstrable socio-economic benefit, in short-
and medium-range weather forecasts out to days or at most around two weeks in advance. Such
forecasts are relatively well served by the observations that are critically needed to define initial
conditions and benefit from use of models that are operating over a time range for which
deficiencies in formulation generally do not substantially degrade the realism of the fields they
produce. Improvement of forecasting systems and assessment of the importance of the various
types of atmospheric and surface observations benefit from an extensive set of past conditions on
which to test system changes and data impacts, from the relative ease and rapidity with which
forecasts can be verified, and from extensive user feedback.

As both the synoptic-scale accuracy of forecasts and the resolution and other aspects of model
realism have increased, so the use of and demand for more accurate direct forecasts of weather
elements have increased. This in turn requires good initial specification of land-surface variables
such as soil moisture, vegetation and snow cover, in addition to the atmospheric fields of primary
importance for the synoptic quality of forecasts. The importance of data on ocean-wave and sea-ice
conditions, and the ongoing evolution of global forecast models to include coupled ocean circulation
and sea-ice components, and coupled schemes for atmospheric chemistry, accompanied by coupled
data assimilation, have already been discussed. These support marine, land-surface and air-quality
forecasts in their own rights as well as adding to the skill of weather forecasts.

6.3.3.2 Sub-seasonal to seasonal prediction

Sub-seasonal prediction beyond the time range of medium-range weather forecasting received
less attention for some time than prediction for a season or more ahead. Early experience with
monthly forecasting was one of limited benefit, while clearer prospects were seen for longer-term
prediction due to the predictability of tropical SST and linked conditions in the tropical atmosphere,
and the associated influence on extratropical weather-regime statistics on the longer, seasonal
timescale (Palmer and Anderson, 1994).

Several factors have led to renewed interest in prediction for the sub-seasonal to seasonal time
range. One is better understanding and prediction of the Madden-Julian Oscillation, a major
component of tropical intraseasonal variability with impact also at middle and high latitudes.
Developments in coupled atmosphere-ocean modelling and data assimilation are improving the
prediction of sub-seasonal SST variations and their influences on the atmosphere. Anomalous soil-
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moisture, snow and sea-ice conditions are other sources of predictability for the atmosphere beyond
the two-week time range for certain regions and times of year. In addition, substantial changes in
the stratospheric winter polar vortex have been found to be followed by extended periods of
anomalous tropospheric flow. The relatively slow nature of meridional and vertical transport in the
stratosphere may also enhance predictability through the persistence of anomalous radiative forcing
associated with anomalies in the distributions of trace species such as water vapour and ozone.

This renewed interest has led to establishment of a sub-seasonal to seasonal prediction project
jointly by the WCRP and WMO's World Weather Research Programme. The research
implementation plan for this project (WMO, 2013) provides more on its scientific rationale and
programmatic linkages. The plan does not address specific additional observational needs. However,
advances for this range of prediction over the coming ten years can be expected to place increased
emphasis on data relating to snow properties, soil moisture, near-surface ocean conditions and sea-
ice state, on observation in general for the tropics, upper stratosphere and mesosphere, and on
associated capabilities for data assimilation and reanalysis.

6.3.3.3 Seasonal to annual prediction

Of special importance for seasonal prediction are the variations of tropical SST in the Pacific
sector associated with ENSO. The associated changes in convective heat sources lead to widespread
changes in atmospheric circulation and a net warming of the atmosphere for a period of a year or so.
Socio-economic impacts are substantial. The central role ENSO plays for seasonal forecasting is
enhanced by its relatively high potential predictability, which is inherently dependent on oceanic
initial conditions, and in particular on the precursor provided by equatorial heat recharge. Realising
the potential depends critically on the adequacy of initial conditions for the oceanic component of
the coupled models used for prediction. Internal equatorial wave dynamics play a role, but it is now
accepted that linear dynamics is insufficient for predicting the evolution of SST: not every eastward
propagating Kelvin wave leads to an SST anomaly of the expected sign, and intensity varies from one
event to another. Indeed, the observed diversity of ENSO is the result of differences in wave/mean-
state interaction, the role of the equatorial and extra-equatorial Pacific Ocean and other tropical
ocean basins in modulating large scale atmospheric convection, and the response of the ocean to
aspects of Westerly Wind Events such as intensity, timing and fetch (e.g Menkes et al., 2014),
without excluding the effects of salinity on vertical mixing and horizontal pressure gradients (Zhu et
al., 2014). Observational needs are being reviewed in the light of changing observing and forecasting
capabilities, in a Tropical Pacific Observing System project (TPOS 2020; tpos2020.org/) that will also
consider biogeochemical aspects and human influences.

The skill of seasonal forecasting systems has increased since they became operational. The
improvement has been attributed in similar degree to better observationally-based initialization of
the ocean and improved coupled forecast models (Figure 9; see also Stockdale et al. (2011)).
Improved initialization reflects not only the contribution of the ocean observing system, but also
improved atmospheric surfaces fluxes (due partly, in turn, to improved atmospheric observation)
and better exploitation of the available observations by more advanced data assimilation methods
and assimilating models.

Determining observing-system impacts and implications for observing-system design is more
difficult for seasonal prediction than for weather forecasting, due to sampling limitations that arise
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from a shorter comprehensive observational record for the ocean and the longer time ranges over
which impacts are felt. The initialization problem is even more daunting for biogeochemical and
ecosystem prediction, including as it does critical linkages to components of the physical climate.
Assessing the reliability of forecasts is also hampered by limitations of sample size.
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Figure 9 Progress in the seasonal forecast skill of the ECMWEF system since it became operational around
1996. The left-hand bar shows the relative reduction in mean absolute error of forecasts of sea-surface
temperature in the eastern Pacific (NINO3 area) integrated over 1-6 month forecast lead times. Contributions
from improved ocean initialization (middle bar) and model development (right-hand bar) are almost equally
important. Developments in ocean and atmosphere models also contribute to the improvement in ocean
initialization. Source: Balmaseda et al. (2010).

6.3.3.4 Decadal prediction

Uncertainty exists as to how climate will change from a year to a decade or so ahead, in particular
at regional and local scales for which natural variability is large. Figure 8 indicates that this
uncertainty has two main sources: the internal variability of the climate system and the differences
between the responses of models to changing external forcing, including hydrological, cryospheric
and biogeochemical feedbacks. However, the figure and discussion given in section 6.3.2 relate to
ten-year means and are based on the particular setup of the CMIP5 projections. They thus do not
represent fully the influences of changes in volcanic activity and solar radiative inputs, which are
discussed separately in sections 6.3.5 and 6.3.6 below.

Aside from such effects, the key questions for decadal prediction concern the extent to which the
uncertainty due to internal variability out to a decade or so ahead can be reduced by
observationally-based initialization, the extent to which the forced change contributes to the skill of
prediction at this time range when scenario uncertainty generally remains small, and the extent to
which model improvement will contribute to improved predictions.

The status of decadal prediction has been assessed by Kirtman et al. (2013) in AR5 and reviewed
subsequently by Meehl et al. (2014). Many results show, as expected, that predictability associated
with the initial state tends to decay with time. The range over which initialization adds value
depends on the region and the variable considered. Significant skill from initialising hindcasts is
found to last for up to around a decade in trends for the Atlantic basin, especially in the subpolar
gyre, while skill is much more rapidly lost in the Pacific and Indian Oceans. There is limited evidence
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suggesting that some climatic events such as the Sahel drought of the 1970s and 80s, the mid-1970s
climate shift in the Pacific, the increase in European winter temperature from the 1970s to the 1990s
and variations in Atlantic hurricane activity may be predictable, but it is also found that the
predictability of internally generated decadal changes is generally low over land in surface
temperature and marginal in precipitation, limited to very few areas.

The observational needs for decadal prediction are understood to be similar to those for seasonal
to annual prediction, but with a greater need for information on the deep ocean. Synthetic
observing system experiments suggest that observations below 2000m should play a role, especially
in the prediction of the Atlantic Meridional Overturning Circulation. Initialising large scale modes of
variability such as the Pacific Decadal Oscillation may also be important. Sea-ice, land and snow
cover all have the potential to provide multi-year predictability. The lack of an observational record
long enough to explore and develop decadal prediction to the full is a fundamental one that will be
alleviated only a little by the decade of new observations and improved reanalyses that will become
available over the period of this roadmap. Nevertheless, with underlying predictive signals from
continued anthropogenic emissions and solar variability, and with continued model development
and concerted international collaboration a better appreciation of the prospects for decadal
prediction should emerge over the period. Decadal prediction may then become a component of
operational climate services, providing general information on the likely path of global or large-scale
climate change, even if skill levels do not allow uptake of products for a wide range of user
applications.

6.3.4 Projection of climate change

The term projection is widely applied in the context of climate change to refer to model
integrations for estimating the future conditions that would occur given prescribed scenarios for
uncertain factors causing climate change, notably future anthropogenic emissions of key gases and
aerosols, and future land use. Projections may also be run to assess possible benefits and side
effects of proposed geoengineering approaches to mitigating climate change. The alternative terms
non-initialized predictions and non-initialized simulations are also used, for example in AR5, but this
is a misnomer as projections usually entail initialization of some components of the climate or Earth
system. For example, initial greenhouse-gas concentrations were set to current observed values in
defining the RCPs used in the long CMIP5 integrations assessed in AR5. Run as continuations of
historical simulations for the period since 1850, the CMIP5 projections are initialized through
observationally based elements of the specified historic forcing and boundary fields. Together with
the use made of observations in designing and refining models so as to reproduce past climate, this
results in starting conditions for projections that are constrained not to differ significantly from the
present observed large-scale state of the climate system. Projections may accordingly be refined by
better availability and use of past and present observations, even if their primary sensitivity is to
differences in the set of scenarios that they encompass. Initialising observational data that could
benefit projections for the scenario-sensitive climate time range include those of deep-ocean
conditions and slowly varying cryospheric and other land conditions.

Moreover, scenario-based projections have a role to play even on short time scales when the
values of weather variables need to be strongly constrained by observations, in either a reanalysis or
a forecasting context. For example, development of environmental policy for control of emissions
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affecting air quality may make use of scenarios that explore the impacts of proposed limits to
emissions. Implementation of policy may benefit from running emission-reduction scenarios in near-
real-time to decide whether to impose emission restrictions on an emergency basis when severe
pollution episodes are predicted. Scenarios for volcanic emissions could be run when a particular
volcano is observed to be in a potentially imminent eruptive state or in the early stages of an actual
eruption when the amount and height of ash and gas injected into the atmosphere are not well
known.

The setting of scenarios in general will be based in part on observational and other forms of data
relating to anthropogenic emissions, land-cover changes and any other uncertain forcings that are
taken into account. As the capabilities of integrated modelling expand, eventually to include
modelling of human systems, scenarios should become more directly based on the actual decisions
to be made with regard to emissions, land use and other environmental matters, rather than
separately determined specifications of quantities such as the possible future concentration
pathways for greenhouse gases.

6.3.5 Volcanic influences

Volcanic eruptions are generally categorized as providing a variable and largely unpredictable
external forcing of the climate system (section 2.3), although they might equally be regarded as a
largely unpredictable component of the internal variability of the full Earth system. Either way, they
are a factor behind uncertainty in climate prediction and projection. IPCC (2013) qualifies its
“medium confidence” prediction of a global-mean surface temperature change for the period 2016—
2035 relative to 1986-2005 in the likely range of 0.3°C to 0.7°C by noting that it is based on the
assumption that there will be no major volcanic eruption in the period. It discusses how eruptions
similar in effect to those of Agung, El Chichén and Pinatubo that occurred within a thirty-year period
in the 20™ century would each reduce near-surface temperatures for a year or two by an amount in
the lower half of the otherwise predicted range of global temperature increase, with weaker
continuing effects possible due to the longer response-time of the ocean. The occasional occurrence
of more extreme eruptions in earlier centuries has also to be kept in mind.

Nevertheless, volcanic eruptions can imbue the system with predictability. This occurs for
predictions that start soon after eruptions. The forecasting problem then becomes one internal to
the climate system, as it is one of predicting the response to anomalous levels of volcanic aerosols
already in the atmosphere, and thus depends on the observation of these aerosols, assimilation of
the resulting data to construct initial conditions, and modelling of the subsequent aerosol content
and its radiative effects on temperature. Challenging as this is in practice, it offers the prospect of an
additional component of skill in predictions for time ranges out to the multi-annual.

Challenges for short- and medium-range forecasting are related, but different. Here there is an
emphasis on forecasting the immediate spread of the ash and gases injected by volcanoes, because
of the directly harmful effects they can have. Again, observations to determine initial conditions are
critical. Also important can be the effect of volcanic aerosols on infrared sounding measurements
made from space. Data from sounding channels that provide information on humidity can also be
sensitive to unusual amounts of aerosol, and their use in data assimilation may be problematic if
proper account is not taken of the aerosol effects. This was, for example, one of the lessons learnt
from undertaking the ERA-40 reanalysis (Uppala et al., 2005).
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6.3.6 Solar irradiance

Solar influences on climate have been discussed in a review by Gray et al. (2010) as well as in
many places throughout the WG | contribution to AR5. The AR5 prediction discussed above was
qualified also by noting that no allowance was made for secular changes in total solar irradiance.
Although declining irradiance was cited in AR5 as a factor contributing to a recent slowdown in near-
surface warming, modulation of global-mean surface temperature by the eleven-year solar cycle was
indicated to be under 0.1K from solar maximum to minimum. Longer-term projections based on
estimates of past variations are quite uncertain, but even if total solar irradiance were to decline
from its 20™ century “grand maximum” to a “grand minimum” in the present century the resulting
fall in the radiative forcing of surface-temperature change would be substantially smaller than the
projected rise due to greenhouse-gas increases.

Variations in solar irradiance in the ultraviolet part of the spectrum are observed to be
considerably larger than variations in total irradiance. Associated variations in ozone lead radiatively
to a solar cycle in near-stratopause temperature that significantly modulates the cooling climate-
change signal. Along with the evidence of a stratospheric influence on tropospheric predictability
beyond the medium-range, this points to a need for continued measurement from space of
spectrally-resolved solar irradiance.

7 Conclusions

Following general comment on modelling and data assimilation, the principal observational
needs discussed in preceding sections are summarized. This is supplemented by some further
discussion.

7.1 Earth-system modelling and data assimilation

Observations and their use with Earth-system models that couple atmospheric, oceanic, land and
cryospheric processes, including biogeochemical components, have been the subject of this report.
Increasing use is being made of such models in the study of climate change, but consideration here
has been in the broader context of global environmental monitoring and prediction or projection for
all time ranges out to a century or so ahead. Increasing demands and capabilities have brought
global forecasting models for weather, atmospheric composition, land and ocean conditions to the
point where they too can begin to be termed Earth-system models. A number of the challenges and
approaches for improving models, and the associated observational needs, are common to the
variants of Earth-system models used for monitoring, investigative studies, short-term forecasting
and long-term projection.

Notwithstanding increasing integration and common interests among developers, a single path or
priority route in the roadmap for the period ahead does not emerge from consideration of the range
of model components and applications involved. Developmental aims such as expanding the
modelling of ecosystems or integrating modelling of human systems and responses should not
detract from continuing efforts to improve the core representations of dynamical and physical
processes within models. For example, many aspects of the performance of Earth-system models
depend on how well the hydrological cycle is represented, and basic improvements are still required
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in the modelling of the processes involved. There remains an important need for specialist modellers
and for making the observations required to support their work.

Data assimilation continues to be developed with regard to the amounts of information extracted
from particular sets of observations, the range of variables to which it is applied and the coupling of
different Earth-system components. Further advances are expected over the period of the roadmap,
concerning both use of new observations and improved use of past observations in reanalysis. More
generally, whilst on a ten-year timescale there are goals and known applications for observations, it
must also be recognized that the observations taken over the coming decade will be used many
decades and centuries into the future for studying environmental change, in ways and with benefits
that cannot be fully foreseen.

7.2 Sustained long-term space-based observing systems

Long-term space-based observation is provided by sequences of multi-satellite missions
established for operational numerical weather prediction. The data provided by these missions have
become more comprehensive over time, and are important also for climate and other applications.
The data from polar orbit to be provided by the Chinese FY-3 series over the roadmap period should
considerably enhance what is provided by continuing and developing European and US
contributions.

The data from operational meteorological satellites are supplemented by data from other series
of satellites. Particular examples are the data from scatterometers, optical imagers and microwave
radiometers flown on a variety of platforms. Land-surface imagery is another type of measurement
from space that has long-term continuity and substantial planned provision into the future. Long-
term measurement of ocean surface topography has been provided by the sequence of
Topex/Poseidon and Jason altimeters.

A substantial further enhancement of long-term observation will occur over the roadmap period
with the full implementation of the Sentinel series of environmental missions. These provide
continuation of past types of observation on an operational basis and additional capabilities such as
improved resolution.

An important need is for confirmation of missions (or later launches within a multi-satellite
programme) that are expected to provide continuity but are still classed as “planned” in mission
databases, or for which there are still uncertainties concerning implementation. Full operational
establishment of GNSS occultation is a need.

Laying the foundations for successor operational systems will become important later in the
roadmap period.

7.3 Other requirements for long-term space-based observations

Notwithstanding an improving operational capability, there remain issues and uncertainties with
regard to other types of observation that have proved to be useful, may be demonstrated to be
useful by missions currently or soon to be in orbit, or for which good arguments have been
advanced.
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A case that has been noted in several preceding sections is that of the looming dearth of limb-
sounding. This has been identified as a concern for several years. The requirement for long-term
limb-scanning measurement from the upper troposphere to the stratopause was in particular
identified in the 2010 Implementation Plan developed by the GCOS programme (GCOS, 2010). This
requirement remains.

Also in the 2010 GCOS Implementation Plan, and likewise without much subsequent progress,
was a reference mission providing measurements with absolute calibration traceable to Sl standards,
such as was expected from the CLARREO mission that is currently in an “extended pre-Phase A” state
due to budgetary considerations. The strength of some of the case for this mission appears now to
have weakened, as the shortening of the time-to-detection of climate change it offers relative to
measurements by the hyperspectral sounders already in orbit (Wielicki et al., 2013) is being offset by
the delay it has experienced. Moreover, the benefits it promised for the calibration of data from
other satellites have been reduced due the inter-calibration enabled by the proven stable nature of
measurements from several hyperspectral sounders and of GNSS occultation. Currently, NASA
“continues to fund efforts to refine the mission design and to examine alternative platforms, such as
the International Space Station, focusing on lower cost implementation while achieving a majority of
the CLARREO science objectives” (clarreo.larc.nasa.gov/about-mission.html; February 2016).

The importance and challenges of modelling, monitoring and predicting the hydrological cycle
necessitate long-term measurement of water vapour, cloud, precipitation, soil moisture and several
other variables. Establishment of follow-on arrangements for the GPM mission will be required
during the roadmap period. Observation of aerosols is also important, for initialising short-range
predictions as well as for reducing the uncertainty in climate modelling. Improved observation from
space will be provided by the operational meteorological and Sentinel systems. Nevertheless, the
case for intermittent more-highly specified vertical-profiling research missions for the study of
clouds and aerosol is likely to remain, and will need evaluating in the light of what has been learnt
from recent and current missions and what will be learnt from the forthcoming EarthCARE mission.

Implementation of the proposed new generation of greenhouse-gas missions is another critical
requirement for the roadmap period, particularly from the viewpoint of their combined use with
ground-based observation for better estimation of source and sinks. The space-based contribution
to monitoring the emissions of the fast-reacting gases that influence air quality and climate forcing
would be served by spatial resolutions finer than currently planned, which should be explored
further during the period.

Spectral monitoring of outgoing short- and long-wave radiation is also required in the above
contexts, for diagnosing forcing and feedbacks associated with water vapour, cloud, aerosol and
constituent gases. Spectrally-resolved short-wave as well as total solar irradiance is also important to
measure, for its effects on the distribution of ozone in the upper stratosphere and mesosphere and
consequently on radiative forcing. Continuity of these measurements needs to be ensured.

Several instances of the usefulness of measurements of the variations in gravity have been noted
in preceding sections: for determination of the geoid and ocean bottom pressure, the amount of
groundwater and the mass of ice sheets. Application to estimation of the flood potential of large
river basins has also been reported (Reager et al., 2014). The GRACE follow-on mission should
provide the opportunity to explore the potential for a highly desirable increase in spatial resolution
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through use of laser interferometry to measure variations in distance between its two component
satellites, in addition to continuing the record provided by GRACE. It needs to be followed by higher
spatial resolution measurement from missions such as GRACE-II, recommended by NRC (2007), or
the proposed e.motion (Panet et al., 2013).

Gravimetry is just one type of relatively new or forthcoming measurement that has, or is
expected, to provide information useful for monitoring and predicting changes to the Earth system.
Examples of instruments in orbit whose value is currently being assessed include those measuring
soil moisture, ocean salinity and sea-ice thickness, and new measurements of wind, surface water,
biomass and fluorescence are expected in the first half of the roadmap period, as noted in section
3.6. Novel use of reflected GNSS signals to infer ocean- and land-surface properties (Yang et al.,
2009; Yin et al., 2015) is one of the objectives of the GEROS-ISS mission (Martin-Neira et al., 2014;
Wickert et al., 2014). Agility in mission planning will be needed to ensure prompt follow-on missions
for types of observation that have been demonstrated to yield cost-effective benefits. Associated
with this is the budgetary challenge of supporting routine measurement of an increasing number of
key Earth-system variables while maintaining a vibrant programme of missions dedicated to
answering research questions and demonstrating new measurement capabilities.

7.4 Requirements for additional observations and socio-economic data

The emphasis placed in this report on space-based observation of the Earth system should not
detract from the importance also of in situ measurement and land-, sea- and air-based remote
sensing. This includes the occasional undertaking of field programmes focussed on elucidating
particular processes or for calibration and validation of space-based measurements, as well as
systematic measurements from long-term networks. With regard to the latter, the networks of
observing sites established for particular types of measurement vary considerably in their density
and overall completeness of cover. Networks for precipitation and surface meteorological
observations are relatively dense, but still inadequate to meets local needs for information in many
parts of the world, in particular related to the impacts of and adaptation to climate variability and
change.

The physical state of the surface and upper ocean is now quite comprehensively observed
through buoys and profiling floats, although the declining status of the tropical moored-buoy
network was an issue that prompted establishment of the TPOS 2020 project. Sensors are being
developed for autonomous oceanic measurement of key biological and chemical variables. These
will require widespread deployment, and observation also needs to be extended downward, through
technological developments such as Deep Argo floats but also through ship-based measurement
that can comprehensively sample a range of important variables. Observation also needs enhancing
under sea ice.

Ground-based sampling of the atmosphere, the land and the fluxes between them from relatively
sparse but well-instrumented networks making and processing both in situ and remote-sensing
measurements to a high standard is essential. It needs to be sustained and expanded where
necessary. Some decline in the number of stations and far from uniform geographical coverage in
the networks for atmospheric composition is a particular concern.
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Much more detail on the current situation is contained in the review of in situ and remotely
sensed observation of climate provided in the status report by GCOS (2015) prepared in parallel with
this roadmap report. The GCOS report is being followed by an assessment by the GCOS programme
of the required actions for inclusion in a new implementation plan in 2016. Ciais et al. (2014) provide
a specific discussion and detailed recommendations for observation of the carbon cycle.

There is a need also for recovering past instrumental data and making them widely available. This
involves in particular the scanning and digitization of paper records, but also the rehabilitation of
some data held in digital form, such as from early satellite observations that have value as either
input or evaluation data for reanalysis. Related data on land-use change, volcanic forcings, solar
variations and so on are needed for use in climate models that are run to evaluate their performance
over the past century or more, and for use in the assimilating models used to produce century-scale
reanalyses. More generally, the products of data assimilation will be improved and become available
for a wider range of variables as observations and models are improved in the ways foreseen in this
roadmap. Data assimilation brings with it ancillary needs such as for good instrumental
characterization for forward radiative transfer modelling, including for the past instruments whose
data are used in reanalysis, and for good error characterization for data used in the form of
retrievals. In turn, there is a need for assimilation centres to improve access to feedback information
on the quality of both observational data and analysis products inferred from their processing.

Observation of ecosystems and biodiversity is generally not as well organized internationally as
observation of the physical and chemical state of the Earth system. Here progress is expected during
the roadmap period through initiatives that build on the concept of ECVs developed by GCOS. The
Framework for Ocean Observing developed by Lindstrom et al. (2012) and its coordination processes
are being organized around a set of Essential Ocean Variables (EOVs) that include but go beyond the
oceanic ECVs. The EOVs will include variables related to ecosystems and biodiversity. Moreover,
partners in the Group on Earth Observations Biodiversity Observation Network are developing and
seeking consensus around a general set of Essential Biodiversity Variables aimed at providing the
basis of monitoring programmes worldwide (Pereira et al., 2013).

Socio-economic data are a further requirement. International exchange and coordinated delivery
mechanisms for such data are generally less developed than for data on the natural Earth system.
One use for this type of data is in the development and operation of forecasting and climate services
that use the data in conjunction with the outputs of Earth-system models. In such cases, services for
national use may be developed by those that hold restricted data, but prompt exchange of data is
required, nevertheless, if they are valuable for improving estimates of the emissions of pollutants
that have transboundary effects, estimates that are needed for use in the regional and global models
now being used in monitoring and forecasting. A broader set of data will need to be made openly
available and readily accessible once modelling of human systems becomes integrated into Earth-
system models. Even if it takes some time for substantial progress to be achieved on the modelling
side, data collection and stewardship should be put in place in advance, to support the development
and evaluation of the required modelling.

The variables on which data are required include population, land use, land management and
economic activity. Population data should be spatially disaggregated to the minimum census unit
(typically of the order of a few tens of kilometres) by gender, age, health, wealth and education.
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Land-use and land-management data need to be made available with better temporal as well as
spatial resolution. Space-based data have a role to play here, but in situ survey data are required as
well, to quantify both inputs to the land, such as fertilizer, tillage, irrigation and pesticides, and the
removals of yields. Land management also includes information on forestry practices. Economic
activity for both goods and services, such as prices, quantities traded and destinations of export, are
the staple input and validation data for the economic models which underpin most human-system
projections in conjunction with demographic models. These data tend currently to be available only
at national scale, and as with the other types of data they need to be more spatially disaggregated.

7.5 New approaches to observation

Technological development underlies the various advances in satellite and in situ observation
discussed already in this report. It also continues to provide opportunities for new approaches to
making observations. Some are mentioned here.

A particular development in space-based observation involves the use of smaller satellites. So-
called microsatellites such as ESA’s PROBA series have already found application in imaging the
surface of the Earth, with monitoring of vegetation the focus of the latest mission to launch, PROBA-
V. Smaller still are the cubesats, built with standard dimensions based on one or several 10cm-sided
cubical units
(www.esa.int/Education/CubeSats_and_Education_the_Fly Your_Satellite! programme;
cubesat.jpl.nasa.gov/projects.html; www.gb50.eu/index.php). Examples of forthcoming missions
related to earth observation are PICASSO for measurement of stratospheric ozone and mesospheric
temperature, RAVAN and SIMBA for the radiation budget and TEMPEST-D for clouds and
precipitation. The RACE cubesat for water vapour measurement was lost due to launch failure late in
2014, but the GRIFEX cubesat contributing to detector development for measurement of air quality
and ocean colour from geostationary orbit was deployed in space early in 2015. The potential for
operating comprehensive measurement systems based on constellations of cubesats is being
assessed.

As regards in situ observation, deployment close to the Earth’s surface of the modern generation
of small unmanned aerial vehicles, or drones, is being explored for measurement of several types of
variable. This includes ecological observation (Koh and Wich, 2012; Anderson and Gaston, 2013),
meteorological and air-quality observation in the lower part of the planetary boundary layer
(lingworth et al., 2014), volcano monitoring (Diaz et al., 2012, Amici et al., 2013) and imagery to
support urban drainage modelling (Tokarczyk et al., 2015). Wireless sensor networks similarly have
multiple developing applications for local monitoring. Particular examples are the implementation
using calibrated radiation sensors undertaken in the context of developing reference measurement
of FAPAR, under the auspices of the Land Product Validation Subgroup of the CEOS Working Group
on Calibration and Validation (lpvs.gsfc.nasa.gov/Fpar_home.html), and the deployment of low-cost
temperature sensors for urban measurement, using proprietary Wi-Fi networks (Chapman et al.,
2015). Consideration has also been given to the potential for surface atmospheric observations from
motor vehicles (Mahoney and O’Sullivan, 2013) and smartphones (Mass and Madaus, 2014).
Stratospheric wind data may become available in future from balloons with active level-control
being developed in Google’s Project Loon.
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7.6 Data management and high-end computing

Technological (as well as institutional) issues have to be faced in handling the ever-increasing
volume of global observational data and related model data needed to support integrated Earth-
system science and its applications. This is one of the biggest of the “Big Data” challenges,
particularly in view of the diversity of the data involved. The requirement is for databases of
observations and the products derived from them that are easy to discover and access, that provide
data with structures and in formats that are easy to use, and that are linked to information on the
perceived quality of the observations and fitness-for-purpose of the products, something which itself
does not come free of development and information-technology costs. Data also have to be readily
available for time-critical applications, be they connected with shorter-term forecasting or the
demanding production schedule for longer-term reanalyses, and archival systems have to cope with
the rate at which derived data are produced by such applications. Past data may be useful long into
the future and require stewardship even if the volumes of data are small compared with those
produced by current observing systems and applications. Capacities will need to keep pace with
future growth in the rates at which both observational and derived data are produced. A greater
degree of on-demand construction of user-specific products, for example through use of cloud
computing, is also envisaged.

Information on the Earth system can be improved by exploiting the data provided by better
observing systems, but can also be improved by better extraction of information from the data
provided by past and present observing systems. This comes in part from the occasional re-
calibration of data.

By some measures at least, the major part of the improvement in numerical weather prediction
over the past thirty-five years has come from better data assimilation and modelling rather than
from improvements in observing systems, considerable though some of these have been (Dee et al.,
2014). Better data assimilation and modelling in general require greater levels of computing, and the
associated expenditure may have to rise more substantially than in the past if progress is to be
maintained and the benefits of the even larger investments made in observation more fully realized.
Here the challenge is to exploit effectively high-performance computer systems that make ever-
increasing use of parallel processing, as the growth provided rather inexpensively in the past by
increases in single-processor computing performance can no longer be sustained. This comes to the
fore in Earth-system data assimilation and the shorter-term global forecasting applications that use
the highest resolution and where time is of the essence for the delivery of results. There is otherwise
more scope for scheduling workload in parallel.

7.7 Enhancement of international co-operation

The existing mechanisms for international co-operation provide global fora for coordination
aimed at achieving a comprehensive overall system of systems for Earth observation, with
complementarity among its component systems. Nevertheless, much more remains to be done to
ensure that resources are used to greatest effect in meeting the various needs for observationally
based information on the Earth system.

Coordination among the providers of operational meteorological satellites has a long and
commendable history, and continues to broaden. The CEOS virtual constellations are a promising

Page 88 29 February 2016



Observation and Integrated Earth-system Science: A Roadmap for 2016-2025

approach that has already proved in some cases to be an efficient route towards enhanced
international co-operation and optimal use of world resources in terms of funding and expertise.
Also important is the strategic development of the Architecture for Climate Monitoring from Space
led by CEOS, CGMS and WMO. It includes consideration of what is needed for ground-based data
systems, including reprocessing, inter-calibration and product generation, where existing successful
initiatives such as GSICS, SCOPE-CM and the ESA CCl need sustaining and developing, as does co-
operation among the data providers and producers of reanalyses. The extent and timeliness of
international data exchange is improving or in prospect under initiatives such as GEO, Copernicus
and the Global Framework for Climate Services, but much more remains to be done. Continued co-
operation is also needed to protect all parts of the radio frequency spectrum used to measure,
collect and disseminate Earth observation data. The bands used for passive sensing require
particular vigilance.

Despite what has been achieved, the OSCAR and CEOS databases show several gaps and apparent
redundancies in current and planned future provision of Earth observation from space, highlighting
the scope for improved co-operation among agencies worldwide. Limitations to international co-
operation include lack of data sharing and otherwise undue costs and delays in data access. They
also result from political obstacles such as the ITAR restrictions on technology. Considerable
resources are consequently deployed in duplicating developmental effort and systems.

Increased international co-operation is a vital means to expand the scope of Earth observation
through the reduction of unnecessary redundancies, the sharing of the burden among a larger global
base and the redeployment of the freed effort and money into observational sectors where planned
provision is inadequate, if not into meeting the increasing costs of data handling and high-
performance computing. Extending international co-operation has proven extremely beneficial in
other domains of space research, such as planetary exploration and human space flight, as
demonstrated by the experience of COSPAR over what is approaching sixty years of social, economic,
political, scientific and technological change. It is of utmost importance that the barriers to further
extension of co-operation be rapidly removed.
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Appendix: List of names and acronyms

AATSR
ADM-Aeolus
AERONET
AIRS
Altika
AMIP
AMSR
AMSU-A
AR5

Argo
ARM
Aqua
Aquarius
ASCAT
ASTER
Aura
AVHRR
BUV
CALIPSO
CCDAS
cal

CCN
CEOS
CERES
CFMIP
CGMS
CLARREO
Cloudsat
CcMC
CMIP
CONTRAIL
Copernicus
COsMIC

COSPAR
CrlS
CryoSat

CTD
DEM
DORIS

DMSP
EarthCARE
ECMWEF
ECV

Advanced Along-Track Scanning Radiometer on Envisat

Atmospheric Dynamics Mission for wind measurement from space
AErosol RObotic NETwork for ground-based remote sensing of aerosol
Atmospheric Infrared Sounder on Aqua satellite

Altimeter for sea-level measurement

Atmospheric Model Intercomparison Project

Advanced Microwave Scanning Radiometer flown on several satellites
Advanced Microwave Sounding Unit A, flown on several satellites
Fifth Assessment Report of the IPCC

Global array of free-drifting ocean profiling floats

Atmospheric Radiation Measurement programme

Satellite of the EOS programme

Ocean-salinity and soil-moisture measuring satellite on SAC-D satellite
Advanced Scatterometer on Metop satellites

Advanced Spaceborne Thermal Emission and Reflection Radiometer on Terra

Satellite of the EOS programme

Advanced Very High Resolution Radiometer on NOAA-n and Metop satellites

Backscatter Ultraviolet spectrometer on early satellites
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
Carbon Cycle Data Assimilation System

Climate Change Initiative of ESA

Cloud Condensation Nucleus

Committee on Earth Observation Satellites

Clouds and the Earth's Radiant Energy System satellite-borne instrument

Cloud Feedback Model Intercomparison Project

Coordination Group for Meteorological Satellites

Climate Absolute Radiance and Refractivity Observatory
Satellite making advanced cloud observations using radar
Canadian Meteorological Centre

Coupled Model Intercomparison Project

Comprehensive Observation Network for Trace gases by Airliner
European Earth observation programme

Constellation Observing System for Meteorology, lonosphere, and Climate, a

mission comprising a set of GPS-receiver satellites
Committee on Space Research

Cross-track Infrared Sounder on JPSS satellites

Radar imaging satellite focussed on ice measurement

Conductivity, Temperature and Depth
Digital Elevation Model
Doppler Orbitography and Radio-positioning Integrated by Satellite

Defense Meteorological Satellite Program of the USA

Joint European/Japanese satellite for observing clouds, aerosols and radiation

European Centre for Medium-Range Weather Forecasts
Essential Climate Variable
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ENSO
Envisat

EOS

ERA

ERS

ESA

ET
EUMETSAT
FAPAR
FLUXNET
Future Earth
FY-3

GARP

GAW
GCOM-C, W
GCOS

GEO

GEMS

GEO-CAPE
GEOS
GEOSS
GEROS-ISS

GFDL
GGOS
GHRSST
GLOSS
GNSS
GOCE
GOCl
GOME
GOOS
GOSAT

GO-SHIP
GPCC

GPCP
GPM
GRACE
GRIFEX

GRUAN
GSICS

IAGOS
IASI
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El Niflo Southern Oscillation

Environmental satellite of ESA

Earth Observing System programme of NASA

European (or ECMWF) Reanalysis

European Remote Sensing satellites of ESA

European Space Agency

Evapotranspiration

European Organization for the Exploitation of Meteorological satellites
Fraction of Absorbed Photosynthetically Active Radiation

Network of micrometeorological tower measurement sites
Multi-sponsored research platform supporting transformation sustainability
Fengyun-3, a series of Chinese polar-orbiting meteorological satellites
Global Atmospheric Research Programme

Global Atmosphere Watch programme of WMO

JAXA's Global Change Observation Missions for Carbon and Water

Global Climate Observing System

Group on Earth Observations

Geostationary Environment Monitoring Spectrometer mission of the Korea
Aerospace Research Institute

GEOstationary Coastal and Air Pollution Events mission under development
NASA Goddard Earth Observing System model

Global Earth Observation System of Systems

GNSS Reflectometry, Radio Occultation and Scatterometry experiment, on the
International Space Station

Geophysical Fluid Dynamics Laboratory of NOAA

Global Geodetic Observing System

Group for High-Resolution Sea Surface Temperature

Global Sea-Level Observing System

Global Navigation Satellite System

ESA’s Gravity field and steady-state Ocean Circulation Explorer

Korea’s Geostationary Ocean Colour Imager

Global Ozone Monitoring Experiment instruments on ERS-2 and Metop
Global Ocean Observing System

Greenhouse gases Observing SATellite of JAXA

Global Ocean Ship-based Hydrographic Investigations Program
Global precipitation Climatology Centre

Global Precipitation Climatology Project

Global Precipitation Measurement mission

Gravity Recovery and Climate Experiment mission of NASA

GEO-CAPE Read-Out Integrated Circuit In-Flight Performance Experiment
cubesat mission

GCOS Reference Upper-Air Network

Global Space-based Inter-Calibration System

In-Service Aircraft for a Global Observing System
Infrared Atmospheric Sounding Interferometer on Metop
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ICESat Ice, Cloud and land Elevation Satellite of NASA

ICSU International Council for Science

IGBP International Geosphere-Biosphere Programme

IMPROVE Interagency Monitoring of Protected Visual Environments project
I0C Intergovernmental Oceanographic Commission of UNESCO

IPCC Intergovernmental Panel on Climate Change

ISCCP International Satellite Cloud Climatology Project

ISMN International Soil Moisture Network

Jason-n Satellite series measuring ocean surface topography

JAXA Japan Aerospace Exploration Agency

IMA Japan Meteorological Agency

JPS Joint Polar System (of meteorological satellites)

JRA Japanese Reanalysis

JPSS US Joint Polar Satellite System for operational environmental observation
LAI Leaf Area Index

Landsat Series of US land-imaging satellites

LULCC Land Use and Land Cover Change

MeASUREs Making Earth System Data Records for Use in Research Environments

programme of NASA
Megha-Tropiques  French/Indian satellite to study the water cycle in the tropical atmosphere

MERIS MEdium Resolution Imaging Spectrometer on Envisat

MERRA Modern-Era Retrospective Analysis for Research and Applications

Meteosat Series of European geostationary satellites

Metop Meteorological operational polar-orbiting satellite series of EUMETSAT
Metop-SG Second-generation Metop series

MLS Microwave Limb Sounder on Aura

MISR Multi-angle Imaging SpectroRadiometer on Terra satellite

MODIS Moderate Resolution Imaging Spectroradiometer on Aqua and Terra satellites
MOPITT Measurement of Pollution in the Troposphere instrument on Terra

NASA US National Aeronautics and Space Administration

NCAR US National Center for Atmospheric Research

NCEP National Centers for Environmental Prediction of NOAA

NMME North American Multi-Model Ensemble

NOAA US National Oceanic and Atmospheric Administration

NOAA-n Polar-orbiting satellite in the operational meteorological programme of NOAA
NRC US National Research Council

NWP Numerical Weather Prediction

Oceansat Indian satellite providing ocean colour and scatterometer measurements
OCM Ocean Colour Monitor instrument on Oceansat

0OcCo Orbiting Carbon Observatory of NASA

Odin Satellite of Swedish-led international mission

oLcl Ocean and Land Colour Instrument on Sentinel-3

omli Ozone Monitoring Instrument on the Aura satellite

OMPS Ozone Mapping and Profiler Suite instrument on Suomi NPP and JPSS satellites
ORAS4 Ocean Reanalysis using ECMWF'’s coupled ocean-atmosphere System 4
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OSCAR
PARASOL

PICASSO
POLDER

PROBA
QuikSCAT
RACE
RAPID
RAVAN
RCP
SAC-D

SAR

SARAL

SBA

SBUV
SCIAMACHY

SCOPE-CM

SeaWIFS
Sentinel-n
SEVIRI

SGLI
SIMBA
SLA

SLSTR
SMAP
SMMR
SMOS
SORCE
SRTM
SSM/I

SSS

SST

Suomi NPP
SWOT
TanDEM-X

TAO/TRITON
TCCON
TCRE
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Observing Systems Capability Analysis and Review tool of WMO

Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled
with Observations from a Lidar, a French mission observing clouds and aerosols
PICosatellite for Atmospheric and Space Science Observations

POLarization and Directionality of the Earth's Reflectances instrument on
PARASOL

Project for On-Board Autonomy series of microsatellites operated by ESA
NASA scatterometer mission

Radiometer Atmospheric CubeSat Experiment

Observing array for the Atlantic meridional overturning circulation
Radiometer Assessment using Vertically Aligned Nanotubes cubesat mission
Representative Concentration Pathway

Satelite de Aplicaciones Cientificas-D, an Argentinian satellite flying the NASA
instrument Aquarius

Synthetic Aperture Radar

Satellite with ARGOS data collection system and Altika

Societal Benefit Area (of the GEOSS)

Solar Backscatter Ultraviolet instrument on NOAA-n satellites

SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY on
Envisat

Sustained and Coordinated Processing of Environmental Satellite data for
Climate Monitoring

Sea-Viewing Wide Field-of-View satellite-borne Sensor

Series of Earth-observation satellites of the Copernicus programme

Spinning Enhanced Visible and InfraRed Imager on EUMETSAT geostationary
satellites

Second Generation Global Imager on GCOM-C satellites

Sun-earth IMBAlance radiometer cubesat mission

Sea-level anomaly

Sea and Land Surface Temperature Radiometer on Sentinel-3

Soil Moisture Active Passive NASA satellite

Scanning Multichannel Microwave Radiometer on NASA’s Nimbus-7 satellite
Soil Moisture and Ocean Salinity mission of ESA

Solar Radiation and Climate Experiment mission of NASA

Shuttle Radar Topography Mission

Special Sensor Microwave Imager instrument on DMSP satellites

Sea-surface salinity

Sea-surface temperature

Suomi National Polar-orbiting Partnership, first satellite in the JPSS series
Surface Water Ocean Topography mission

Synthetic aperture radar satellite twinned with TerraSAR-X for digital elevation
modelling

Array of moored buoys in the tropical Pacific Ocean

Total Carbon Column Observing Network

Transient Climate Response to cumulative CO; emissions
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TEMPEST-D

TEMPO

TES

Terra
TerraSAR-X
TOMS
Topex/Poseidon
TPOS

TRMM
TROPOMI

3MI

UNEP
UNESCO
UNFCCC
VIIRS
WCRP
WMO
WOCE
XBT

Temporal Experiment for Storms and Tropical Systems — Demonstrator cubesat
mission

Tropospheric Emissions: Monitoring of Pollution mission of NASA
Tropospheric Emission Spectrometer on Aura

Satellite of the EOS programme

Synthetic Aperture radar satellite

Total Ozone Mapping Spectrometer on multiple satellites

Satellite mission to map ocean surface topography

Tropical Pacific Observing System

Tropical Rainfall Measuring Mission

Tropospheric Monitoring Instrument, extending the capabilities of OMI
Multi-viewing, Multi-channel, Multi-polarization Imaging instrument on Metop-
SG

United Nations Environment Programme

United Nations Educational, Scientific and Cultural Organization

United Nations Framework Convention on Climate Change

Visible Infrared Imaging Radiometer Suite on NPP and JPSS satellites
World Climate Research Programme

World Meteorological Organization

World Ocean Circulation Experiment

Expendable bathythermograph
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