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Abstract

We extend the setting of the right endpoint estimator introduced in Fraga Alves and Neves

(Statist. Sinica 24:1811–1835, 2014) to the broader class of light-tailed distributions with finite

endpoint, belonging to some domain of attraction induced by the extreme value theorem. This

stretch enables a general estimator for the finite endpoint, which does not require estimation of the

(supposedly non-positive) extreme value index. A new testing procedure for selecting max-domains

of attraction also arises in connection with the asymptotic properties of the general endpoint esti-

mator. The simulation study conveys that the general endpoint estimator is a valuable complement

to the most usual endpoint estimators, particularly when the true extreme value index stays above

−1/2, embracing the most common cases in practical applications. An illustration is provided via

an extreme value analysis of supercentenarian women data.

KEY WORDS AND PHRASES: Extreme value theory Semi-parametric estimation Tail estimation

Regular variation Monte Carlo simulation Human lifespan

1 Introduction

The extreme value theorem (with contributions from Fisher and Tippett, 1928; Gnedenko, 1943;

de Haan, 1970) and its counterpart for exceedances above a threshold (Balkema and de Haan, 1974)

ascertain that inference about rare events can be drawn on the larger (or lower) observations in the

sample. While restricting attention to the large rare events, the theoretical framework provided by the

extreme value theorem reads as follows. If a non-degenerate limit G is achieved by the distribution

function (d.f.) of the partial maxima Xn,n of a sequence {Xn}n≥1 of independent and identically

distributed (i.i.d.) random variables (r.v.) with common d.f. F , and if there exist an > 0 and bn ∈ R
such that limn→∞ F

n(an x + bn) = G(x), for every continuity point of G, then G is one of the three

distributions

Λ(x) = exp{− exp(−x)}, x ∈ R, (1)

Φα(x) = exp{−x−α}, x > 0, α > 0, (2)

Ψα(x) = exp{−(−x)α}, x < 0, α > 0.

∗Funded by FCT - Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2013
†This reprint differs from the original in pagination and typographic detail
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These can be nested in the Generalized Extreme Value (GEV) d.f.

Gγ(x) := exp{−(1 + γx)−1/γ}, 1 + γx > 0, γ ∈ R. (3)

We then say that F is in the (max-)domain of attraction of Gγ , for some extreme value index (EVI)

γ ∈ R [notation: F ∈ D(Gγ)]. For γ = 0, the right-hand side of (3) is read as exp (−e−x). The theory

of regular variation (Bingham et al., 1987; de Haan, 1970; de Haan and Ferreira, 2006), provides

necessary and sufficient conditions for F ∈ D(Gγ). Let U be the tail quantile function defined by the

generalized inverse of 1/(1− F ), i.e. U(t) := F←
(
1− 1/t

)
, for t > 1. Then, F ∈ D(Gγ) if and only if

there exists a positive measurable function a(·) such that the condition of extended regular variation

lim
t→∞

U(tx)− U(t)

a(t)
=
xγ − 1

γ
, (4)

holds for all x > 0 [notation: U ∈ ERVγ ]. The limit in (4) coincides with the U -function of the

Generalized Pareto distribution (GPD), with distribution function 1+logGγ . Hence, for extrapolating

beyond the range of the available observations, the statistics of extremes will be exclusively focused

on those observations over a sufficiently high threshold. Then the excesses above this threshold are

expected to behave as observations drawn from the GPD.

The right endpoint of the underlying distribution function F is defined as

xF := sup{x : F (x) < 1} ≤ ∞,

which in terms of high quantiles is given by xF = limt→∞ U(t) = U(∞). For estimating the right

endpoint xF we will follow a semi-parametric approach, that is, our focus is on the domain of attraction

rather than on the limiting GEV distribution. We will also assume that k is an intermediate sequence

of positive integers k = kn such that k → ∞ and k/n → 0, as n → ∞. This is our large sample

assumption for the moment. Other mild yet reasonable conditions in the context of extreme value

estimation will come forth in section 3, which essentially convey suitable bounds on the intermediate

sequence kn.

This paper deals with a unifying semi-parametric approach to the problem of estimating the finite

right endpoint xF when F belongs to some domain of attraction where a finite endpoint is admissible,

more formally F ∈ D(Gγ)γ≤0. We term this estimator x̂F the general endpoint estimator. We will

provide evidence that despite x̂F not being asymptotically normal for all values of γ < 0 (a drawback

if one wishes to construct confidence intervals) it proves nonetheless to be a valuable tool in terms of

applications. One of the most obvious estimators of the right endpoint is the sample maximum. In

fact, de Haan and Ferreira (2006) point out in their Remark 4.5.5 that using the sample maximum Xn,n

to estimate xF in case γ < −1/2 is approximately equivalent to using the moment related estimator

for the endpoint. The striking feature of the general endpoint estimator is that it avoids the nuisance

of changing “tail estimation-goggles” each time we are dealing with yet another sample, possibly from

a distribution in a different domain of attraction. We exemplify this point by referring the study by

Einmahl and Magnus (2008), which could well benefit from using the same endpoint estimator at all

instances, in all athletic events. This freedom of constraint about γ ≤ 0 motivates the present general
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estimator, alongside with its preceding application to the long jump records in (Fraga Alves et al.,

2013).

The outline of the paper is as follows. Section 2 introduces the general estimator x̂F and its

theoretical assumptions, aligned with the usual semi-parametric framework. Large sample results

for x̂F are presented in Section 3, as well as a new test statistic based on x̂F aimed at selecting

max-domains of attraction. Section 4 is dedicated to a comparative study via simulation, involving

common parametric and semi-parametric inference approaches in extremes. Section 5 provides an

illustration of the exact behaviour of the general endpoint estimator, using the supercentenarian

women data set. Here we consider two alternative settings: estimation of the right endpoint with a

link to the EVI estimation, estimation of the endpoint when this link to the EVI is broken and finally

in Section 6, we list several concluding remarks. Appendix A encloses all the proofs of the large sample

results in Section 3 and Appendix B encompasses the finite sample properties for a consistent reduced

bias estimator of the endpoint, for an EVI in (−1/2, 0), being compared with POTML and Moment

methodologies.

2 Semi-parametric approach to endpoint estimation

We now introduce some notation. Let F be the d.f. of the r.v. X and X1,n ≤ X2,n ≤ . . . ≤ Xn,n be

the n-th ascending order statistics (o.s.) associated with the sample X1, . . . , Xn of n i.i.d. copies of

X. We assume F ∈ D(Gγ), for some γ ≤ 0, and that xF <∞.

Several estimators for the right endpoint xF of a light-tailed distribution attached to an EVI γ < 0

are available in the literature (e.g. Hall, 1982; Cai et al., 2013; de Haan and Ferreira, 2006). These

estimators often bear on the extreme value condition (4) with x = x(t)→∞, as t→∞: since γ < 0

entails that limt→∞ U(t) = U(∞) exists finite, then relation (4) rephrases as

lim
t→∞

U(∞)− U(t)

a(t)
= −1

γ
.

A valid estimator for the right endpoint xF = U(∞) thus arises by making t = n/k in the approximate

equality U(∞) ≈ U(t)−a(t)/γ , replacing U(n/k), a(n/k) and γ by suitable consistent estimators, i.e.

x̂∗ = Û
(n
k

)
−
â
(
n
k

)
γ̂

(cf. Section 4.5 of de Haan and Ferreira, 2006). Typically we consider the class of endpoint estimators

x̂∗ = Xn−k,n −
â
(
n
k

)
γ̂

. (5)

There is however one estimator for the right endpoint xF that does not depend on the estimation

of the EVI γ. This estimator, introduced in Fraga Alves and Neves (2014), is primarily tailored for

distributions with finite right endpoint in the Gumbel domain of attraction. The study of consistency

and asymptotic distribution of this same endpoint estimator is the main objective in this paper, while

it aims at covering the whole scenario in extremes, thus providing a unified estimation procedure for
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the right endpoint in the case of γ ≤ 0.

The general right endpoint estimator from Fraga Alves and Neves (2014) is defined as

x̂F := Xn,n +Xn−k,n −
1

log 2

k−1∑
i=0

log
(

1 +
1

k + i

)
Xn−k−i,n . (6)

With ai,k := log
(
k+i+1
k+i

)
/ log 2, the endpoint estimator x̂F in (6) can be expressed in the equivalent

form

x̂F := Xn,n +
k−1∑
i=0

ai,k (Xn−k,n −Xn−k−i,n) with
k−1∑
i=0

ai,k = 1. (7)

From the non-negativeness of the weighted spacings in the sum in (7), it is clear that estimator x̂F is

greater than Xn,n, which constitutes a major advantage to the usual semi-parametric right endpoint

estimators in the Weibull max-domain of attraction. Therefore, the estimator x̂F defined in (6)

can be seen as a real asset in the context of semi-parametric estimation of the finite right endpoint,

embracing all distributions connected with a non-positive EVI γ, which gains by far a broader spectrum

of application to the usual alternatives.

3 Endpoint estimation and testing

This section contains the main results of the paper, giving accounts of strong consistency and some-

times asymptotic normality (we will see that the limiting normal distribution is only attained if

γ < −1/2) of the general endpoint estimator x̂F defined in (6). A second order reduced bias version

of x̂F is also devised. Additionally, we provide the asymptotic framework for a statistical test aimed

at discriminating between max-domains of attraction. The new test statistic builds on the general

endpoint estimator x̂F . All the proofs are postponed to the Appendix A.

Proposition 1 Suppose xF exists finite. Assume that the extended regular variation property (4)

holds with γ ≤ 0. If k = kn → ∞, kn/n → 0, as n → ∞, then the following almost sure convergence

holds with respect to x̂F defined in (6):

x̂F
a.s.−→
n→∞

xF ,

then x̂F is a consistent estimator for xF <∞, i.e. x̂F
p−→

n→∞
xF .

Note that if F ∈ D(Gγ) with γ > 0, then x̂F converges almost surely to infinity. We now require

a second order refinement of condition (4) and auxiliary second order conditions in order to have a

grasp at the speed of convergence in (4). In particular, we assume there exists a positive or negative

function A0 with limt→∞A0(t) = 0 such that for each x > 0,

lim
t→∞

U(tx)−U(t)
a0(t)

− xγ−1
γ

A0(t)
= Ψ?

γ,ρ(x), (8)
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where ρ is a non-positive parameter and with

Ψ?
γ,ρ(x) :=


xγ+ρ−1
γ+ρ , γ + ρ 6= 0, ρ < 0,

log x, γ + ρ = 0, ρ < 0,
1
γ x

γ log x, ρ = 0 6= γ,
1
2 (log x)2, γ = ρ = 0,

a0(t) :=


a(t)

(
1−A0(t)

)
, ρ < 0,

a(t)
(
1−A0(t)/γ

)
, ρ = 0 6= γ,

a(t), γ = ρ = 0.

Moreover, |A0| ∈ RVρ and

lim
t→∞

a0(tx)
a0(t)

− xγ

A0(t)
= xγ

xρ − 1

ρ
, (9)

for all x > 0 (cf. Theorem 2.3.3 and Corollary 2.3.5 of de Haan and Ferreira, 2006). Denote U(∞) :=

limt→∞ U(t) (= xF ); if (8) holds with γ < 0 then, provided x = x(t)→∞,

lim
t→∞

U(∞)−U(t)
a0(t)

+ 1
γ

A0(t)
= Ψ?

γ,ρ(∞) := − 1

γ + ρ
I{ρ<0} (10)

by similar arguments of Lemma 4.5.4 of de Haan and Ferreira (2006), with IA denoting the indicator

function which is equal to 1 if A holds true and is equal to zero otherwise.

Theorem 2 Let F be a d.f. in the Weibull domain of attraction, i.e., F ∈ D(Gγ) with γ < 0. Suppose

U satisfies condition (8) with γ < 0 and, in this sequence, assume that (10) holds. We define

h(γ) :=
1

γ

(2−γ − 1

γ log 2
+ 1
)
. (11)

If the intermediate sequence k = kn is such that
√
knA0(n/kn)→ λ∗ ∈ R, then

kmin(−γ,1/2)
( x̂F − xF
a0
(
n
k

) − h(γ)
)

d−→
n→∞

W I{γ≥−1/2} +
(
N − λ∗ bγ,ρ

)
I{γ≤−1/2},

where W is a max-stable Weibull r.v., with d.f. exp{−(γx)−1/γ} for x < 0, N is a normal r.v. with

zero mean and variance given by

V ar(N) = 1 +
2

γ (log 2)2

(2−(2γ+1) − 1

2γ + 1
− 2−(γ+1) − 1

γ + 1
+

log 2√
2

(2−γ − 1)
)
. (12)

and bγ,ρ is defined as

bγ,ρ :=
1

log 2

∫ 1

1/2
Ψ?
γ,ρ

( 1

2s

) ds
s

=


1

γ+ρ

(
1

log 2
1−2−(γ+ρ)

γ+ρ − 1
)
, ρ < 0,

1
γ3 log 2

(
2−γ(log 2γ + 1)− 1

)
, ρ = 0.

Moreover, the r.v.s W and N are independent.
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Remark 3 The same normalization by (a0(n/k))−1, with respect to γ = 0, is obtained in Fraga Alves

and Neves (2014) towards the Gumbel limit.

Corollary 4 Under the conditions of Theorem 2,

√
k
(
x̂F−xF

a0
(
n
k

) − h(γ)
)

k(γ+1/2)+
d−→

n→∞
R,

where a+ := max(a, 0) and R is a random variable with the following characterization:

1. Case −1/2 < γ < 0: R is max-stable Weibull, with d.f. exp{−(γx)−1/γ} for x < 0, with mean

Γ(1−γ)/γ and variance equal to γ−2
(
Γ(1− 2γ)−Γ2(1−γ)

)
. Here and throughout, Γ(.) denotes

the gamma function, i.e. Γ(a) =
∫∞
0 ta−1e−t dt, a > 0.

2. Case γ < −1/2: R has normal distribution with mean −λ∗bγ,ρ and variance given in (12).

3. Case γ = −1/2: R is the sum of the two cases above, taken as independent components, which

yields a random part with mean Γ(1/2)−λ∗b−1/2,ρ =
√
π−λ∗b−1/2,ρ and variance 5− π+ 4

[
1 +

(1/
√

2− 1)(2 + log 2)/ log 2
]
/ log 2.

Remark 5 The function h(γ) is monotone decreasing for all γ < 0. Taking into account the statement

of Theorem 2, an adaptive reduced bias estimator based on the general estimator x̂F is given by

x̂FRB1 = x̂F − h(γ̂)â(n/k), with consistent estimators γ̂ and â(n/k). The dominant component of

the bias comes from the scale function a(n/k) which, in case γ is close to 0, determines a very slow

convergence. We have conducted several simulations in this respect, indicating that this bias correction

(of first order) has a very limited effect.

In addition, we consider an adaptive second order reduced bias estimator developed on the general

estimator x̂F and supported on the asymptotic statement in Theorem 2 for γ ∈ (−1/2, 0). The limiting

Weibull random variable W has a non-null mean equal to Γ(1−γ)/γ. We note that, for small negative

values of γ, the convergence of the normalized general estimator x̂F towards the Weibull limit can be

very slow since it is essentially governed by the function a ∈ RVγ and by the power transform kγ .

Formally, the general endpoint estimator x̂F satisfies the distributional representation

x̂F = xF + h(γ)a0
(n
k

)
+ a0

(n
k

)
kγW + op

(
a0
(n
k

)
kγ
)
,

with h(γ) defined in (11). We thus develop an adaptive second order reduced bias estimator as follows:

x̂FRB2 = x̂FRB1 −
Γ(1− γ̂)

γ̂
â0(

n

k
) kγ̂ (13)

(see Remark 5 for the definition of x̂FRB1). Furthermore, an approximated 100(1 − α)%-confidence

upper bound for xF is given by

xF < x̂F − â0(
n

k
)
[
h(γ̂) + kγ̂ qα

]
, (14)
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with estimated α-quantile of the Weibull limit distribution qα := (− logα)−γ̂/γ̂.

In practice, it is often advisable to perform statistical tests on the EVI sign so as to prevent against

an actual infinite endpoint. In Section 5, the testing procedures by Neves et al. (2006) and Neves

and Fraga Alves (2007) are applied with independent interest from the particular EVI estimation

problem inherent to the endpoint estimation. The hypothesis-testing problem regarding the suggested

max-domain of attraction selection is stated as follows:

H0 : F ∈ D(G0) vs H1 : F ∈ D(Gγ)γ 6=0. (15)

We will introduce another test statistic for tackling this testing problem. The new statistic Gn,k arises

in connection with the general endpoint estimator x̂F , thus in complete detachment of any extreme

value index estimation procedure. It is given by

Gn,k :=
x̂F −Xn−k,n

Xn−k,n −Xn−2k,n
. (16)

The next Theorem comprises the testing rule and ascertains consistency of the new testing procedure

with prescribed significance level α.

Theorem 6 Assume F ∈ D(Gγ), for some γ ∈ R. Furthermore assume that the tail quantile function

U satisfies the second order conditions (8) up to (9). We define

G∗n,k(0) := log 2Gn,k −
(
log k +

log 2

2

)
, (17)

where Gn,k is given in (16). If k = kn is an intermediate sequence such that
√
k A0(n/k) → λ∗ ∈ R,

as n→∞, then

• G∗n,k(0)
d−→

n→∞
Z, if γ = 0. Here Z has Gumbel distribution function Λ = G0;

• G∗n,k(0)
P−→

n→∞
+∞ , if γ > 0;

• G∗n,k(0)
P−→

n→∞
−∞ , if γ < 0.

Denoting by ξp := − log(− log(p)) the p-quantile of the Gumbel distribution, a critical region

for the two-sided test postulated in (15), at an approximate α-level, is deemed by Theorem 6. The

statement is that we reject H0 if either G∗n,k(0) ≤ ξα/2 or G∗n,k(0) ≥ ξ1−α/2. Theorem 6 also allows

testing for the one-side counterparts:

• H0 : F ∈ D(G0) vs H1 : F ∈ D(Gγ)γ>0,

thus rejecting H0 in favour of heavy-tailed distributions, if G∗n,k(0) ≥ ξ1−α;

• H0 : F ∈ D(G0) vs H1 : F ∈ D(Gγ)γ<0,

by rejecting H0 in favour of short-tailed distributions, if G∗n,k(0) ≤ ξα.

Denoting the power function for the testing problem (15) (and subsequent one-sided alternatives)

by βn(γ) := Pγ [reject H0], it follows immediately from Theorem 6 that all the designed tests are

consistent tests since, as n→∞, βn(γ)|γ 6=0 → 1, with an approximate level α given by βn(0)→ α.

7



4 Comparative study via simulation

After dealing with the consistency and asymptotic distribution of the general endpoint estimator x̂F

defined in (6), we are now ready to find out how these properties carry over to the finite sample setting.

The finite sample properties of the test statistic G∗n,k(0), defined in (17), are also investigated, assessing

how it performs at either discerning the presence of a heavy-tailed model (with d.f. F ∈ D(Gγ)γ>0), or

at detecting a short-tailed model (with F ∈ D(Gγ)γ<0). Consistency of the estimator (cf. Proposition

1) justifies our belief that a larger sample leads to more accurate estimation about the true value

xF , whereas consistency of the test (cf. Theorem 6) connects a larger sample with a more powerful

testing procedure. Of course how large “sufficiently large” is, in terms of both k and n, depends on

the particular circumstances. The number of upper order statistics k∗ (yet to be determined) can be

viewed as the effective sample size for extrapolation beyond the range of the available observations. In

particular, if k∗ is too small, then the endpoint estimator tends to have a large variance, whereas if k∗

is too large, then the bias tends to dominate. This typical feature will be reflected in our simulation

results. We argue comparison with other well-known endpoint estimators by means of their estimated

absolute bias and mean squared errors.

To this end, we have generated N = 300 samples from each of the four models listed below, taken

as key examples:

• Model 1, with d.f. F1(x) = 1− [1 + (−x)−τ1 ]
−τ2 , x < 0, τ1, τ2 > 0. The EVI is γ = −1/(τ1τ2)

and the endpoint xF1 = 0.

• Model 2, with d.f. F2(x) = 1−
∫ log(1−1/x)
−∞ λ2te−λtdt, x < 0, λ > 0. The EVI is γ = −1/λ and

the endpoint xF2 = 0. Moreover, X
d
= − 1/(eZ − 1), where Z is Gamma(shape = 2, rate = λ)

distributed.

• Model 3, with d.f. F3(x) = 1 −
[
1 + ( 1x − 1)−τ1

]−τ2 , x ∈ (0, 1), τ1, τ2 > 0. The EVI is

γ = −1/(τ1τ2) and the endpoint is xF3 = 1.

• Model 4, with d.f. F4(x) = 1− (1− x)−1/γ , x ∈ (0, 1), γ < 0. The EVI is γ and the endpoint

is xF4 = 1. This corresponds to a Beta(1,−1/γ) model.

Each one of these models satisfies the main assumption that F ∈ D(Gγ), for some EVI γ < 0, which

immediately entails a finite right endpoint xF .

Models 1, 2 and 3 are the same ones as in Girard et al. (2011, 2012), although these works only

tackle the EVI equal to −1. Model 4 is a Beta distribution parameterized in γ < 0. At the present

stage we are interested in studying the exact performance of the general endpoint estimator x̂F for

different ranges of the negative EVI. The extreme value index γ is therefore a design parameter in

the present simulation study, albeit under the restriction to γ < 0. The second design parameter is

of course the true right endpoint xF , thus assumed finite. A number of combinations between model

and design factors are assigned in order to obtain distinct values of the negative EVI, particularly
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γ = −1/2,−1/5, together with two possibilities for the right endpoint, xF = 0 and xF = 1. The

case γ = 0 has been extensively studied in Fraga Alves and Neves (2014), thus being obviated in the

present setting.

4.1 Endpoint estimation

The finite sample performance of the general estimator (notation: FAN) is here compared with the

näıve maximum estimator Xn,n (notation: MAX) and with the estimator x̂∗ (notation: MOM.inv)

introduced in equation (2.21) from Ferreira et al. (2003):

x̂∗ := Xn−k,n −
â(n/k)

γ̂−n,k
. (18)

We note that the above estimator evolves from (5) by using the consistent estimators for the EVI and

scale function, respectively defined as

γ̂−n,k := 1− 1

2

{
1−

(
N

(1)
n,k

)2
N

(2)
n,k

}−1
(19)

and

â(n/k) := N
(1)
n,k(1− γ̂

−
n,k), (20)

where

N
(r)
n,k :=

1

k

k−1∑
i=0

(Xn−i,n −Xn−k,n)r , r = 1, 2. (21)

Note that EVI estimator (19) is shift and scale invariant. The class (5) of estimators for the finite

right endpoint has already been applied to a lifespan study by Aarssen and de Haan (1994) and

Ferreira et al. (2003), under the assumptions of a finite endpoint and that the EVI lies between

−1/2 and 0. Another method for estimating the right endpoint for negative EVI is via modeling the

exceedances over a certain high threshold exactly by a Generalized Pareto distribution (GPD). The

result underpinning this parametric approach establishes that F ∈ D(Gγ) is equivalent to the relation

lim
t↑xF

sup
0<x<xF−t

∣∣∣∣F (t+ x)− F (t)

1− F (t)
−Hγ

( x
σt

)∣∣∣∣ = 0, (22)

where Hγ(x) := 1 + logGγ(x) is the GPD (see e.g. de Haan and Ferreira, 2006). In particular, if

γ = 0, the GPD reduces to the exponential d.f. H0(x) := 1 − exp(−x), x ≥ 0. In brief, condition

(22) states that F ∈ D(Gγ) if and only if the excesses Y := X − t above a high threshold t are

asymptotically Generalized Pareto distributed. Next to introducing the class of GP distributions,

relation (22) also enables to step away from the max-domain of attraction, towards the actual fit of

the GPD to the sample excesses, providing a natural entry point to the POT approach. Once selected

a high threshold t, the POT method deems the shape parameter γ ∈ R (analogue to the EVI) and scale

parameter σt > 0 (which ultimately accommodates the influence of the threshold t) as the two indices

characterizing the excess distribution function over t. Then we can proceed via maximum likelihood
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(ML), the methodology at the core of the POTML.GPD procedures. We note that, if γ < 0, the

parametric GPD fit corresponds to modeling the exceedances X over t by a Beta distribution with

finite right endpoint estimated by x̂FPOT = t− σ̂ML/γ̂ML. Of course, in the case γ = 0, a finite right

endpoint is not allowed while fitting the exponential distribution. References about the POTML.GPD

approach are the seminal works by Smith (1987) and Davison and Smith (1990).

In the semi-parametric setting, i.e. while working in the domain of attraction rather than dealing

with the limiting distribution itself, the upper intermediate o.s. Xn−k,n plays the role of the high

threshold t. For the asymptotic properties of the POTML estimator of the shape parameter γ under

a semi-parametric approach, see e.g. Drees et al. (2004), Li and Peng (2010) and Zhou (2010).

In case F ∈ D(Gγ) with γ < 0, we have mentioned before endpoint estimators arising from the

class (5). Now, let {Yi := Xn−i+1,n −Xn−k,n}ki=1 be the excesses above the supposedly high random

threshold Xn−k,n. Furthermore, and building on the relation above, the sample excesses {Yi}ni=1 are

assumed to follow a GPD. Then, the ML estimator (σ̂ML
k , γ̂ML

k ) can be worked out as the solution of

arg max
γ<0, σ>0

k∏
i=1

hγ(Yi/σ)/σ = arg max
γ<0, σ>0

k∏
i=1

(
1 +

γ

σ
Yi

)−(1/γ+1)
σ−k,

with hγ(x) := ∂
∂xHγ(x) (see p.19 of de Haan and Ferreira, 2006, for a detailed explanation). The

POTML.GPD estimator of the right endpoint is defined as

x̂FML := Xn−k,n − σ̂ML
k /γ̂ML

k , (23)

showing a close similarity with the semi-parametric class (5) of right endpoint estimators. We refer to

section 4.5.1 of de Haan and Ferreira (2006) and Qi and Peng (2009) for the semi-parametric handling

of (23).

The POTML.GPD endpoint estimator relies on the shift and scale invariant ML-estimator of the

shape parameter γ < 0, a restriction strictly to ensure that (23) is a valid endpoint estimator. However

there is no explicit formula for the ML-estimator. An accumulating literature has pointed out this

disadvantage. Maximization of the log-likelihood, reparameterized in (τ := γ/σ, γ), has been discussed

in Grimshaw (1993). Although theoretically well determined, even when γ ↑ 0, the non-convergence

to a ML-solution can be an issue when γ is close to zero. There are also irregular cases which may

compromise the practical applicability of ML. Theoretical and numerical accounts of these issues can

be found in Castillo and Daoudi (2009) and Castillo and Serra (2015) and references therein.

Inspired by the numeric examples in Girard et al. (2011, 2012), we have generated N = 300

replicates of a random sample with size n = 1000 and computed the average L1-error given by

E(k∗) :=
1

N

N∑
j=1

|ε(j, k∗)|, where ε(j, k∗) := x̂k∗(j)− xF , k∗ ≤ n,

where xk∗(j) denotes the endpoint estimator evaluated at the j-th replicate, for every k∗.

We borrow models 1-3 from Girard et al. (2011, 2012) and their performance measures but we will

not proceed with their proposals for endpoint estimation. Unlike their high order moment estimators,

none of the endpoint estimators adopted in the present simulation study (MAX, FAN, MOM.inv, and

10



Table 1: Average L1-errors. The lowest values appear in bold.

Model MAX FAN MOM.inv POTML.GP

Model 1 (xF = 0)
(τ1, τ2) = (2, 1) 0.028 0.013 0.024 0.019
(τ1, τ2) = (5, 1) 0.231 0.041 0.145 0.128

Model 2 (xF = 0)
λ = 2 0.009 0.005 0.009 0.008
λ = 5 0.173 0.044 0.133 0.133

Model 3 (xF = 1)
(τ1, τ2) = (2, 1) 0.027 0.012 0.022 0.014
(τ1, τ2) = (5, 1) 0.187 0.129 0.120 0.095

Model 4 (xF = 1)
γ = −1/2 0.029 0.014 0.029 0.014
γ = −1/5 0.234 0.171 0.103 0.085

POTML.GPD) require the knowledge of the original sample size n, since these rely on a certain number

k∗ of top o.s. only. For the purpose of simplicity, the number k∗ will be viewed as the effective sample

size. In the sequel, the näıve estimator MAX is attached to k∗ = 1 since it coincides with the first top

o.s.; the POTML.GPD and MOM.inv endpoint estimators are functions of the k∗ = k + 1 upper o.s.;

finally, the FAN estimator requires k∗ = 2k top observations. We can also compute the “optimal”

values of k∗ in the sense of minimizing the average L1-error, i.e. k∗0 := arg min{E(k∗), k∗ ≤ n}. Since

the MAX entails k∗ = 1, the associated function E is constant and this optimality criterium has

no effect on the näıve estimator. Table 1 displays the simulation results, where we have considered

parameter combinations with respect to γ = −0.5,−0.2 and xF = 0, 1. The POTML.GPD endpoint

estimates were found by maximizing the log-likelihood over γ < 0.

The relative performance of the adopted endpoint estimators on the “optimal” k∗0 is depicted

in the box-plots of Figures 1 and 2, in terms of their associated errors ε(j, k∗0), j = 1, . . . , N , with

N = 300. Apart from the obvious conclusion that the MAX tends to underestimate the true value

of the endpoint xF , we find that the POTML.GPD, MOM.inv and FAN estimators have distinct

behaviors with respect to the optimal levels k∗0. In particular, FAN estimates are not so spread out

as the ones returned by POTML.GPD or by the MOM.inv endpoint estimators, the latter showing

larger variability.

Figures 3 and 4 display the plain average L1-error (i.e. without the optimality assessment) against

the number k∗ of upper o.s. used in the corresponding estimation process. The pertaining mean

squared errors (MSE) are depicted in Figures 5 and 6, respectively. The four models here addressed

are set with EVI= −1/2,−1/5. From these results, it is clear that the MOM.inv and POTML.GPD

endpoint estimators are very unstable for small values of k∗ (k∗ ≤ 100), contrasting with the small

11



Figure 1: Boxplots of the optimal bias ε(j, k∗0), j = 1, . . . , N , with N = 300. Endpoint estimates are drawn from
Model 1 (left) and Model 2 (right), with true value xF = xF1 = xF2 = 0.

variance of the proposed FAN estimator along the entire trajectory. On the other hand, both MOM.inv

and FAN estimators show increasing L1-error with increasing of k∗, a common feature to extreme

semi-parametric estimators. The FAN estimator seems to perform best in those regions where other

estimators exhibit high volatility, which may range from small to moderately large values of k∗. This

feature is more severe when γ = −0.2 (see second row of Figures 3 and 4), where the instability persists

until an impressive k∗ = 300 is reached. Once attained a plateau of stability, the POTML.GPD tends

to perform very well in general. The best way to apply MOM.inv seems to dwell in a precise choice

of k∗, which should be selected at the very end of the very erratic path, just before bias sets in. The

general endpoint estimator (FAN) tends to return values with a low average L1-error and low MSE. In

fact, Figures 3 up to 6 not only provide us with a snapshot for this specific choice of EVI values (−1/2

and −1/5), but also allow to foresee the estimates behavior with respect to other EVIs in between,

once we screen the plots from the top to the bottom in each Figure. The boxplots in Figures 1 and 2

already suggested this possibility: the outliers marked in these boxplots seem to move from lower to

larger values of optimal bias ε(·, k∗0) as we progress on increasing EVI.

Altogether, the general endpoint estimator FAN seems to be an improvement to the näıve MAX

estimator and tends to surpass the MOM.inv and POTML.GPD estimators, by delivering low biased

estimates quite often, while showing a low variance component. This is particularly true for a EVI

close to zero, as it would be expected from the one estimator primarily tailored to tackle endpoint

estimation in the Gumbel max-domain of attraction (cf. Fraga Alves and Neves, 2014). Furthermore,

the FAN estimator seems to work remarkably well under a fairly negative EVI, considering that this
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Figure 2: Boxplots of the optimal bias ε(j, k∗0), j = 1, . . . , N , with N = 300. Endpoint estimates are drawn from
Model 3 (left) and Model 4 (right), with true value xF = xF3 = xF4 = 1.

is a general estimator which does not accommodate any specific information about the true value of

the EVI. The overall performance of the MOM.inv and POTML.GPD endpoint estimators is clearly

damaged by their large variance in the top of the sample. It is worthy to notice that the presented

estimation procedure x̂F acts as a complement to numerical POTML methods for endpoint estimation,

the latter only available for strict negative shape parameter γ; in contrast, x̂F presents an explicit

simple expression, unifying the estimation method to distributions with non-positive EVI, γ ≤ 0.

4.2 A testing procedure built on the general endpoint estimator

This section concerns the finite sample performance of Gn,k, presented in Theorem 6, as a convenient

tool for either discarding heavy-tailed models or for detecting short-tailed models F ∈ D(Gγ), γ <

0. One grounding result in this respect is that all the semi-parametric endpoint estimators we are

adopting, are consistent under the assumption that k = kn is an intermediate sequence of positive

integers, i.e. k = kn → ∞ and kn/n → 0, as n → ∞. The testing procedures we wish to apply

also bear on this usual assumption in statistics of extremes. There are many proposals for testing

procedures aiming at the selection of a suitable max-domain of attraction. For a wide view on this

topic, we refer the surveys on testing about extreme values conditions available in Hüsler and Peng

(2008) and Neves and Fraga Alves (2008). We recall that EVI estimation is not a requirement for the

general endpoint estimation defined (6) and emphasize that both Weibull and Gumbel domain are

allowed. Thus, for the time being, we will rely on testing procedures which do not require external
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Figure 3: Average L1-error, E(k∗), plotted against k∗ ≤ n/2. Endpoint estimates are drawn from Model 1 (left) and
Model 2 (right), with true value xF = xF1 = xF2 = 0.

estimation of the EVI. We will compare the new test statistic Gn,k, defined in (16), with the Ratio

and Greenwood statistics introduced in Neves et al. (2006) and Neves and Fraga Alves (2007) for the

one-side alternatives

H0 : F ∈ D(G0) vs H1 : F ∈ D(Gγ)γ>0

[or H ′1 : F ∈ D(Gγ)γ<0] .

The Ratio(R) and Greenwood(Gr) statistics are defined as

R :=
Xn,n −Xn−k,n

N1
Gr :=

N2

(N1)
2 ,

with Nj = N
(j)
n,k = 1

k

∑k−1
i=0 (Xn−i,n −Xn−k,n)j , j = 1, 2. Under H0, the standardized version of Ratio

statistic, R∗ := R − log k, is asymptotically Gumbel, whereas the suitably normalized Greenwood

statistic, Gr∗ :=
√
k/4(Gr − 2), is asymptotically standard normal. Formally, approximated α-

significant tests against the alternative H1 [resp. H ′1] render the rejection regions R∗ ≥ ω1−α [resp.

R∗ ≤ ωα] and Gr∗ ≥ z1−α [resp. Gr∗ ≤ zα], where ωε := Λ←(ε) and zε := Φ←(ε). Here, Φ denotes

the d.f. of the standard normal. Corresponding p-values of the test are p = 1 − Λ(g∗) against the

heavy-tailed alternative, and p = Λ(g∗) against the short-tailed alternative, for the observed values r∗

and gr∗ of the test statistics R∗ and Gr∗, respectively. The approximated p-values against heavy-tailed

alternatives H1 [resp. short-tailed alternatives H ′1] are given by 1−Λ(r∗) and 1−Φ(gr∗) [resp. Λ(r∗)
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Figure 4: Average L1-error, E(k∗), plotted against k∗ ≤ n/2. Endpoint estimates are drawn from Model 3 (left) and
Model 4 (right), with true value xF = xF3 = xF4 = 1.

and Φ(gr∗)], for an observed value g∗ := g∗n,k(0) of the test statistic G∗n,k(0).

Figures 7-8 summarize the comparison between the performance of the test based on G∗n,k(0) (cf.

Theorem 6) with the above mentioned tests R∗ and Gr∗. The simulations yield large p-values in

connection with the heavy-tailed alternatives H1, meaning that heavy-tailed distributions are likely

to be detected by these tests. On the opposite side, the test are not so sharp against short-tailed

alternatives in H ′1. The new test statistic G∗n,k(0) rejects on smaller values of k∗ than the R∗ statistic,

thus revealing more powerful than the Ratio-test.

The Greenwood test compares favourably to G∗n,k(0) in terms of power, against the heavy-tailed

alternative. However, it tends to be a more conservative test than the new proposal, often returning

p-values much less than 5%.

5 Case study: supercentenarian women lifespan

This section is devoted to the practical illustration of our methodology for statistical inference about

the endpoint. Our data set of oldest people comprises records of lifetimes in days of verified super-

centenarians (women), with deaths in the time window 1986-2012. The data set was extracted from

Table B of Gerontology Research Group (GRG), as of January 1, 2014, merged with Tables C and

E, as of June 29, 2015, available at http://www.grg.org/Adams/Tables.htm. Although the referred

database includes lifespan records tracing back to 1903, these are often sparse and with a low average

number of yearly records, which is not surprising since the GRG was only founded in 1990. The later
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Figure 5: Mean squared error (MSE) as function of the number of upper o.s. k∗, k∗ ≤ n/2. Endpoint estimates are
drawn from Model 1 (left) and Model 2 (right), with true value xF = xF1 = xF2 = 0.

two years of records 2013-2014 are not yet closed. Therefore we settle with the 1272 supercentenarian

women lifetimes, recorded from 1986 to 2012, and corresponding to approximately 90% of the total

number of records since 1903.

The terms “life expectancy” and “lifespan” describe two entirely different concepts, although people

tend to use these terms interchangeably. Life expectancy refers to the number of years a person is yet

expected to live at any given age, based on the statistical average. Lifespan, on the other hand, refers

to the maximum number of years that a person can potentially expect to live based on the greatest

number of years anyone has lived. We are interested in the latter.

Formally, in gerontology literature, maximum lifespan potential (MLSP) is the operative definition

for the verified age of the longest lived individual for a species (Olshansky et al., 1990b) and, in this

sense, can be viewed as a theoretical upper limit to lifetime. The oldest documented age reached

by any living individual is 122 years, meaning humans are said to have a MLSP of 122 years. In

Biology, theories of ageing are mainly divided into two groups: damage theories and program theories.

According to damage theories, we age because our systems break down over time; so, if damage theories

hold true, we can survive longer by avoiding damaging our organism. Program theories consider that

we age because there is an inbuilt mechanism that tells us to die; according to that, we cannot survive

longer than the upper limit of longevity despite of our best efforts (see Hanayama (2013)). Kaufmann

and Reiss (2007) also discussed the issue of whether the right endpoint of the life span is infinite, for

which they analyzed mortality data from West Germany. Their estimated shape parameter within the

Generalized Pareto model is equal to −0.08 and the right endpoint of the estimated beta distribution
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Figure 6: Mean squared error (MSE) as function of the number of upper o.s. k∗, k∗ ≤ n/2. Endpoint estimates are
drawn from Model 3 (left) and Model 4 (right), with true value xF = xF3 = xF4 = 1.

is equal to 122 years, an estimate that fits well to the worldwide reported life span of the most famous

record-holder, the Frenchwoman Jeanne-Louise Calment (122 years and 164 days) who was born in

Arles on Feb. 21, 1875 and died in Arles on Aug. 4, 1997. However, Kaufmann and Reiss (2007)

did not conclude categorically that human lifespan has a finite upper limit, arguing that by using the

concept of penultimate distributions we can show that an infinite upper limit is well compatible with

extreme value theory. They carry on pointing out a Beta distribution as a suitable model. Aarssen

and de Haan (1994) analyzed lifespan data from the Netherlands using statistical methods under the

extreme value theory umbrella. Aarssen and de Haan (1994) showed that there is a finite age limit,

tackled with reasonable confidence bounds in the 113 − 124 year span, a conclusion confined to the

years of birth 1877− 1881 in the Netherlands.

Stephen Coles, a specialist in tracking human supercentenarians and co-founder of the Supercente-

narian Research Foundation (SRF), refers to the supercentenarians as “the most extreme example of

human longevity that we know about, the oldest old”. In Coles (2011), the value 122 is referred to

as the “Calment Limit” for human longevity (what is designated here as the MLSP), which is sup-

ported on the fact that nobody has come even close that extreme age over the last 19 years. It is also

mentioned that, from his research experience, “supercentenarians had virtually nothing in common:

they had different occupations, lifestyles, religions and so on, regardless the common factor of long-

lived relatives.” Also, according to Vaupel (2011) “the explosion in very long life has already begun”,

although by his perspective “we cannot see much beyond 122.”

Several authors have stated that despite of the increasing “life expectancy”, the “maximum human
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Figure 7: Average p-values of the simulated G∗n,k(0), R∗ and Gr∗ either against a heavy-tailed alternative (left) or a
short-tailed alternative (right), with respect to k∗ ≤ n = 1000.
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Figure 8: Average p-values of the simulated G∗n,k(0), R∗ and Gr∗ either against a heavy-tailed alternative (left) or a
short-tailed alternative (right), with respect to k∗ ≤ n = 1000.
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lifespan” has not much changed. According to Troen and Cristafalo (2001) some biodemographic

estimates predict that elimination of most of the major diseases such as cancer, cardiovascular disease,

and diabetes would add no more than 10 years to the average life expectancy, but would not affect

MLSP (Olshansky et al., 1990a; Troen and Cristafalo, 2001). Other researchers go further enough to

hypothesize that mortality will be compressed against that fixed upper limit to life time (Compression

Theory by Fries, 1980). On the other hand, Wilmoth and Robine (2003) argue a possible world trend

in maximum lifespan, based on a long series of Swedish data. Above all, there is still plenty of scope

to assess significance of other covariates, like the negative impact of obesity and epidemic diseases on

the rise in life expectancy trends and the possible impact on the MLSP.

What researchers seem to agree on is the need for better data, since at present, there is insufficient

data available on the extreme elderly population. We should keep in mind that age is often misreported

and at the time the centenarians (and supercentenarians) were born, record keeping was less complete

than it is nowadays.

With this illustrative example of estimation of the ultimate lifespan by adopting the general end-

point estimator, it is not our aim to make conclusions for a specific cohort of individuals in time or

space, nor any other type of serial studies. Instead, the interest will be on the question of what are

sensible bounds for the MLSP, at the current state of the art.

At this point, several assumptions are needed about the right tail of the lifetime distribution, which

is the focus of our extreme value analysis. The first assumption is that the available data comprises a

sample of i.i.d. observations. We find reasonable to assume independence in our data, since we have

one record for each individual person. The stationarity assumption is preliminary asserted from the

plot in Figure 9 displaying the comparative boxplots for the larger women’s lifetimes by the year. A

common feature to all the boxplots is the presence of very large observations classified as extreme

outcomes. The boxplots also suggest an increasing third quartile as we progress in time. Such an

increase is not so apparent in the annual maxima as we move across the 27 time points (years). A

possible interpretation is that an increase in the mean of the supercentenarians’ lifetimes may not

be connected to an increasing lifespan over time, but rather to a possible trend in the frequency of

the highest lifetime observations. There is a recent semi-parametric development by de Haan et al.

(2015), suitable for assessing the presence of a trend in the frequency of extreme observations, which

is also reflected in the scale of extremes. However, their inference techniques require a large number

of replicates per year, and this is not at our grasp given the limited amount of observations available

within the same year. For instance in the top part of Figure 9, that we have always less than 40 yearly

observations until 1997 (the year of Calment), with the lowest number of 12 observations for 1991.

Although the number of observations virtually doubles for the later years, the absolute record still

stands on the Calment limit of 122 years, the overall sample maximum. The plot in Figure 10 shows

the Loess fit (Local scatterplot smoothing) to the yearly data, given by blue curve overlay. This is

almost parallel to the horizontal axis. Confidence bands are also presented with a preassigned 95%

confidence level. These seem rather narrow. Hence, we find no evidence of a particular trend through

this nonparametric technique.

Despite the above, a POT parametric approach is applied to detect a possible trend in the scale.

Here, the GPD is fitted to the threshold excesses, via a ML fit to Hγ(x/σ), GPD is fitted to the
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Figure 9: Comparative boxplots of the lifetimes of supercentenarians (Women) reported from 1986 to 2012.

110

112

114

116

118

120

122

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Year of death

A
ge

 in
 y

ea
rs

Annual lifetimes of supercentenarians (Women)

Figure 10: Loess fit to the lifetime of supercentenarians (Women) reported from 1986 to 2012.
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Table 2: Maximum-likelihood parametric GPD(σt) and GPD(σ) fit to the lifetime exceedances of supercentenarian
women for the time period 1986-2012.

σt `i, i = 0, 1 β̂0 β̂1 γ̂ thresh/#exc x̂FPOT p-value
exp{β0 + β1 t} -1739.324 0.327 0.006 -0.056 110/1272
exp{β0} -1740.238 0.432 – -0.061 135.36 0.1763
exp{β0 + β1 t} -867.215 0.497 -0.003 -0.083 111/639
exp{β0} -867.374 0.436 – -0.078 130.63 0.5729
exp{β0 + β1 t} -424.197 0.558 -0.013 -0.062 112/338
exp{β0} -425.542 0.304 – -0.045 142.05 0.1010
exp{β0 + β1 t} -192.652 0.567 -0.019 -0.044 113/164
exp{β0} -193.942 0.198 – -0.016 191.21 0.1083
exp{β0 + β1 t} -75.904 0.150 -0.021 0.141 114/82
exp{β0} -76.495 -0.237 – 0.170 – 0.2769

Figure 11: Boxplot and histogram built on the lifetimes of supercentenarian women, for the time interval 1986-2012.

threshold excesses, considering a trend through time as σ = σt = exp{β0 + β1 t}. The resulting

non-stationary model is denoted by M1, whereas the corresponding stationary version GPD with

σ = exp{β0} is denoted by M0. Let `1 and `0 be the maximized log-likelihoods for models M1

and M0, respectively. The Likelihood Ratio test for H0 : M1 = M0 using the deviance statistic

D = 2{`1 − `0} to formally compare models M1 and M0, returns the results summarized in Table 2,

for the lifetime data over the selected thresholds 110, 111, 112, 113 and 114. The last column contains

the p-values, related to the different threshold selection. Again, we find no strong evidence of a linear

trend in the log-scale parameter σ. Moreover, for each threshold, the EVI and endpoint ML estimates

for women lifetimes are also listed for the sake of comparison with subsequent results in Section 5.3.

The previous preliminary parametric analysis does not exhaust all the possible choices of parametric

models encompassing a trend in extremes. The interest is not in the selection of the most suitable

parametric model for extremes, but in being able to ascertain, with a certain degree of confidence,

that dropping out of the time covariate does not affect our subsequent analysis under the assumption

of stationary supercentenarian women’s lifetimes. For recent applications incorporating information

over time, we refer the works of Stephenson and Tawn (2013) and de Haan et al. (2015). The latter

comprises a comparative analysis with existing methodologies in a similar context.

The available supercentenarian women data should be regarded as the greatest lifetimes collection

ever attained by the human population. We have 1272 observations available, which we have found
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to satisfy the i.i.d. assumption. Figure 11 contains the boxplot and the histogram for the whole

univariate data set.

5.1 Testing finiteness in the right endpoint

Our first aim is to assess finiteness in the right endpoint of the d.f. F underlying the women lifespan

data. The detection of a possibly finite upper bound on our data follows a semiparametric approach,

meaning that we essentially assume that F belongs to some max-domain of attraction. We then

consider the usual asymptotic setting, where k = kn → ∞ and kn/n → 0, as n → ∞, and hence

Xn−k,n → xF a.s. According to this setting, it is only natural to expect that any statistical approach

to the problem of whether there is a finite endpoint or not, will depend on the extent of the dip into

the original sample of supercentenarian women’s records. The baseline to this issue is mostly driven

by a second and more operative question: how to select the adequate top sample fraction to use with

both our testing and estimation methods? A suitable choice of k comes from a similar approach to the

one in Wang (1995), where kopt is deemed to be selected at the value k from which the null hypothesis

is rejected.

For a more definite judgment about the existence of a finite upper bound on the supercentenarian

lifetimes, we are going to apply the testing procedure introduced in Neves and Pereira (2010). The

purpose now is to detect finiteness in the right endpoint of the underlying distribution which may

belong to either Weibull or Gumbel domains. More formally, the testing problem

H0 : F ∈ D(G0), x
F =∞ vs H1 : F ∈ D(Gγ)γ≤0, x

F <∞

is tackled using the log-moments Nr ≡ N
(r)
n,k, r = 1, 2, defined in (21), but now replacing the ob-

servations Xi,n by their log-transform log(Xi,n). It is possible to do so because we are dealing with

positive observations. We point out however that this leads to a non-location invariant method. The

test statistic T1 being used is defined as

T1 :=
1

k

k∑
i=1

Xn−i,n −Xn−k,n − T
Xn,n −Xn−k,n

, with T := Xn−k,n
N1

2

(
1− [N1]

2

N2

)−1
.

Under H0 the standardized version of the test, T ∗1 :=
√
k log k T1, is asymptotically normal. Moreover,

T ∗1 tends to inflect to the left for bounded tails in the Weibull domain and to the right if the underlying

distribution belongs to the Gumbel domain. The rejection region of the test is given by |T ∗1 | ≥ z1−α/2,
for an approximate α significance level. Figure 12 displays the sample path of T ∗1 . The most adequate

choice of the intermediate number k (which carries over to the subsequent semi-parametric inference)

is set on the lowest k at which the critical barriers with a α = 5% significance level are crossed. This

optimality criterium yields kNP0 = 487, spot on the smallest value where we find enough evidence of

a finite endpoint.

It remains to be assess whether the distribution underlying the supercentenarian data (now as-

sumed bounded from above) belongs to the Gumbel domain or to the Weibull max-domain of attrac-

tion. This will be carried out by a proper hypothesis-testing problem, termed statistical choice of

extremes domains. In view of our specific interest on the finite endpoint, we are using the one-sided
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Figure 12: Detecting finiteness in right endpoint for verified supercentenarians data set: sample paths of the normalized
statistics. The horizontal dashed lines correspond to the α = 5% critical barriers.

Figure 13: Testing max-domains of attraction with short tailed alternative, for verified supercentenarians data set:
sample paths of the normalized test statistics. The horizontal dashed lines correspond to the α = 5% critical barriers.

version of the test. The hypotheses are:

H0 : F ∈ D(G0) vs H ′1 : F ∈ D(Gγ)γ<0 .

Figure 13 depicts the sample paths of the new test statistic G∗n,k(0) from Theorem 6, the Greenwood

Gr∗ statistic, and the Ratio R∗ statistic, as well as their α = 5% asymptotic critical values. The

Greenwood test finds enough evidence to reject the Gumbel domain hypothesis in favour of a bounded

short-tail in Weibull domain, at the suitable intermediate value of kG0 = 465. The two other statistics,

new G∗n,k(0) and ratio R∗, lead to a more conservative conclusion, with both tests leaning towards the

non rejection of the null hypothesis. This conservative aspect also crops up in the simulations section

(Section 4), where the Greenwood test is found to be more powerful against short-tailed alternatives

attached to γ < 0.

From the previous analysis, we find it reasonable to assume a finite right endpoint for some

distribution in the Weibull domain simultaneously for all the adopted testing methods at the maximum

number of upper extremes

kopt := max{kG0 , kNP0 } = 487.
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Figure 14: Testing max-domains of attraction for verified supercentenarians data set: p-values for the normalized test
statistics, with heavy tailed alternatives. The horizontal dashed line corresponds to the α = 5% nominal level.

Therefore, based not only on the testing procedures but also on the complementary EVI estimation

presented in Section 5.3, it seems reasonable to conclude that the lifespan distribution belongs to the

Weibull domain of attraction with finite right endpoint xF .

For definitely discarding the presence of a heavy-tailed distribution underlying our data set, it is

also important to test:

H0 : F ∈ D(G0) vs H1 : F ∈ D(Gγ)γ>0 .

In Figure 14 we observe that all the p-values determined by all the three test statistics are increasing

with k. Again, the conservative behavior of the two tests seems to emerge. Despite all p-value paths

begin at very small values around zero, this only lingers for a tight range of higher thresholds which

may not be in good agreement with the requirement of a sufficiently large k. The Greenwood statistic

returns p-values very close to 1, from about k = 400 onwards. The other two statistics (G∗n,k(0) and

R∗) yield moderate p-values, with larger values returned by G∗n,k(0). It seems sensible then to discard

a heavy-tailed distribution for the supercentenarian women lifespan, a conclusion clearly verified by

the Greenwood test.

5.2 Endpoint estimation for women’s records without EVI knowledge

Following the testing procedures in 5.1 and the reported optimal number kopt = 487, we will present

analogous graphical tools with respect to endpoint estimation. The first purpose is to illustrate the

smooth behaviour of x̂F defined in (6), already anticipated in the simulations section (Section 4).

Figure 15 displays the comparative finite-sample behaviour of x̂F (notation: FAN) with the näıve

Calment limit (notation: MAX) for the supercentenarian’s data set. Recall that our database is

regarded as a collection of the greatest lifetimes of women population and that the general endpoint

estimator x̂F always returns values above the näıve endpoint estimate, i.e. greater than “Calment

limit” of 122.4 years.

After the initial rough path in the range of approximately one hundred top observations, the

estimates trajectory of x̂F then becomes very flat. Once we dip into the intermediate range of extremes,

the sample path becomes smoother.
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Figure 15: Endpoint estimation for verified supercentenarians data set: estimator x̂F and Calment limit.

Figure 16: EVI estimation with the verified supercentenarian data.

At this point we find it sensible to provide similar information provided by the other semi-

parametric and parametric endpoint estimators already intervening in the simulation study, as they

constitute a good complement to a more thorough insight about the true endpoint. This is the subject

of the next section.

5.3 Linking endpoint estimation of women’s records to EVI estimation

In this section, the endpoint estimation is tackled using methodologies that require an estimator for the

extreme value index γ < 0. In this sequence, we adopt the moment related estimator γ̂−n,k (notation:

MOM.inv), defined in (19), and the POTML.GPD estimator of the shape parameter γ̂ML
n,k to plug in

(23) (subject to γ < 0). Figure 16 is the estimates plot of the chosen estimators for γ, as function of

k. We note that these two estimators enjoy the location and scale invariance property. Retaining the

kopt = 487 larger observations (a value delivered by the testing procedures) as the effective sample,

we find the point estimates γ̂−n,487 = −0.087 and γ̂ML
n,487 = −0.059, both coherent with a short-tailed

distribution attached to some γ ∈ (−1/2, 0).
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Figure 17: Endpoint estimation with the verified supercentenarian data.

Figure 17 depicts the results for estimators x̂FML, x̂∗ (defined in (23) and (18), respectively). We

are also including the second order reduced bias version of the general endpoint estimator x̂FRB2 defined

in (13), by plugging in the estimators γ̂ = γ̂−n,k and â0
(
n
k

)
provided in (19) and (20), respectively. The

trajectory of x̂FRB2 lies in the middle range between that of x̂FML and of x̂∗.

The optimal value kopt = 487 can viewed as benchmark value (or change point) since it breaks the

disruptive estimates pattern. It actually pinpoints where the graph stops being too rough to make

inference and starts being more stable, so that we can infer about the endpoint. The latter applies

in particular to estimators x̂∗, x̂FRB2 and x̂FML, which return x̂∗kopt = 128.32, x̂FRB2,kopt
= 131.82 and

x̂FML,kopt
= 135.62. The simulations also outline the plain general endpoint estimator x̂F as being

relatively efficient (in terms of bias and MSE) on those moderate values of k∗ where other estimators

fall short. In this respect, Figure 15 shows a rather flat plateau from which we find safe to draw an

estimate for the endpoint, and this portion of the graph includes x̂Fkopt = 122.94. The asymptotic

results in Theorem 4 for γ ∈ (−1/2, 0) equip us with a tool for finding an approximate 100(1 − α)%

upper bound for the true endpoint xF . Obviously, this process calls for the estimation of γ since

we need some guidance about the proper interval where the EVI lies within. Hence, we have just

introduced the most direct link to the estimation of γ (see Figure 16) in connection with the general

endpoint estimator x̂F . Selecting kopt = 487, the 95% confidence upper bound for xF delivered by

(14) is 133.23 years.

We also note that the simulation outcomes relate well to the present results arising from the

available data of supercentenarian women’s records. For instance, we observe in Figure 16 that small

values of k (k ≤ 110, approximately) find positive estimates for the MOM.inv estimator which could

on their own account for the erratic pattern of x̂∗k in the plot of Figure 17, but the simulations have

yield this rough pattern very often in connection with a true negative EVI. Furthermore, the shape

parameter γ is estimated via POTML subject to γ < 0 (cf. Figure 16) and this returns endpoint
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Figure 18: Probability of exceeding the “Calment limit”, for a supercentenarian women, given today’s state of the art.

estimates x̂FML well aligned with the ones pertaining to x̂FRB2 and x̂∗k (cf. Figure 17). Therefore,

heeding to the simulation results, we find reasonable to conclude that the misrepresentation of the

negative EVI for moderate values of k is not the main factor compromising the performance of the

adopted endpoint estimators in the early part of the plot (amounting to about 10% of the original

sample size n, say).

Finally, this practical application also seems to suggest that removing the bias component from x̂F

causes an increase in the variance. The bias/variance trade-off effect is grasped more thoroughly in

the Appendix B, where the finite sample properties of the second order reduced bias estimator x̂FRB2

are studied by taking Models 1 and 4, from Section 4, as parent distributions. The brief simulation

study in the Appendix B is expected to reinforce the suggested competitive performance amongst the

above-mentioned endpoint estimators.

5.4 An upper limit to lifespan and probability of surpassing Calment limit

From the previous data analysis, one would say that the ultimate human lifespan would not be greater

than 133.23 years (the estimated upper bound from (14), obtained in section 5.3). This gives some

insight beyond Calment’s achievement: the absolute record of 122.4 years, still holding to the present

date (for the last 19 years). We thus expect that the probability of exceeding the “Calment limit”,

even for a supercentenarian women, will be extremely low. This tail probability can be estimated

using the following semi-parametric estimator:

P̂n(Xs > 122.4) :=
k

n

{
max

(
0, 1 + γ̂−n,k

122.4−Xn−k,n
â(n/k)

)}−1/γ̂−n,k
, (24)

(cf. (4.4.1) in de Haan and Ferreira, 2006) where Xs := X|X ≥ 110 denotes the lifetime of a super-

centenarian women, and γ̂−n,k, â(n/k) are the related estimators defined in (19) and (20), respectively.

Figure 18 depicts the probability estimates from (24), together with their POTML.GPD analogues,

for a wide range of larger values of the 1272 verified supercentenarians data set. In contrast with the

previous statistical analysis, the sample size n now intervenes in (24). Therefore, any inference drawn
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Figure 19: Probability of exceeding the “Calment limit” using the POTML.GPD approach and corresponding 95%
confidence bound: all sample (top); 350 ≤ k ≤ 700 (bottom).

on this account will apply to the subpopulation of supercentenarian women under study. All point

estimates are very close to zero. Figure 19 displays again the POTML.GPD estimates but with re-

spective 95% upper bounds. Since we are dealing with very small probabilities the asymptotic bounds

are not so sharp, as opposed to the case of an underlying distribution with infinite right endpoint.

6 Concluding remarks

The scope for application of the right endpoint estimator introduced in Fraga Alves and Neves (2014),

primarily designed for the Gumbel domain of attraction, is here extended to the case of an underlying

distribution function F in the Weibull domain. The consistency property and asymptotic distribution

of this general endpoint estimator x̂F renders a unified estimation procedure for the right endpoint

under the assumption that F ∈ D(Gγ)γ≤0. A new test statistic arises tied-up with x̂F thus incre-

menting the range of available testing procedures for selecting max-domains of attraction. Our main

findings are listed below.

• The general endpoint estimator does not require the estimation of the EVI, unlike the widely-
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used semi-parametric alternatives.

• By construction, the estimator x̂F always returns larger values than the sample maximum Xn,n,

a property not shared by other semi-parametric methodologies we have encountered so far,

particularly those predicated on the Weibull max-domain of attraction.

• The simulation study conveys a good finite sample performance of the general endpoint estima-

tor, ascertaining competitiveness to benchmark endpoint estimators specifically tailored for the

Weibull domain.

• Related to the previous, the general endpoint estimator performs better for distributions with

some γ > −1/2, which corresponds to the most common situation in practical applications.

• The problem of choosing the most adequate number k of upper order statistics is here mitigated

by the usual flat pattern of the estimates trajectories, a typical feature of the general endpoint

estimator.

• The application to the supercentenarian women’s lifetimes illustrates how we can easily establish

a confidence upper bound to the right endpoint, building on the asymptotic results for γ > −1/2.

A Proofs

This section is entirely dedicated to the proofs of the results introduced in Section 3. In what follows

we find more convenient to consider the estimator x̂F in the functional form

x̂F = Xn−k,n −
1

log 2

∫ 1

0

(
Xn−[2ks],n −Xn−[ks],n

) ds
s
, (A1)

where [a] denotes the integer part of a ∈ R (more details about the representation (A1) can be obtained

in Fraga Alves and Neves, 2014).

We note that if s ∈ [0, 1/(2k)[, then the integral in (A1) is equal to zero. Bearing this in mind,

we write

x̂F = Xn−k,n −
1

log 2

∫ 1

1
2k

(
Xn−[2ks],n −Xn−[ks],n

) ds
s
.

Moreover, if s ∈ [1/(2k), 1/k[ then [ks] = 0 (not depending on s) and thus Xn−[ks],n = Xn,n. Therefore,

we have that

x̂F = Xn−k,n −
1

log 2

{∫ 1
k

1
2k

Xn−[2ks],n
ds

s
−Xn,n

∫ 1
k

1
2k

ds

s
+

∫ 1

1
k

(Xn−[2ks],n −Xn−[ks],n)
ds

s

}
. (A2)

With a suitable variable transform on the last integral, we can reassemble (A2) in a tidy manner:

x̂F = Xn,n +Xn−k,n −
1

log 2

∫ 1

1
2

Xn−[2ks],n
ds

s
. (A3)

This is the main algebraic expression that will be used to derive the asymptotic distribution of x̂F in

the proof of Theorem 2, which is a natural consequence of the three random contributions in (A3).
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Proof of Proposition 1: We see that the integral in the functional form (A3) satisfies the inequalities

(log 2)Xn−k,n ≤
∫ 1

1
2

Xn−[2ks],n
ds

s
≤ (log 2)Xn−2k,n.

Therefore, we obtain the following upper and lower bounds involving x̂F − xF ,

Xn,n − xF ≤ x̂F − xF ≤ (Xn,n − xF ) +Xn−k,n −Xn−2k,n,

and the result thus follows easily because the three o.s. Xn,n, Xn−k,n and Xn−2k,n all converge almost

surely to xF , provided the intermediate nature of k = kn.

Remark 2 Alternative proof based on the functional form (7) of the k∗ := 2k top o.s.: strong consis-

tency of the general endpoint estimator comes from the lower and upper bounds of (7) given below.

x̂F − xF = (Xn,n − xF ) +

(
Xn−k,n −

1

log 2

k−1∑
i=0

log(
k + i+ 1

k + i
)Xn−k−i,n

)

≥ (Xn,n − xF ) +

(
Xn−k,n −Xn−k,n

1

log 2

k−1∑
i=0

log(
k + i+ 1

k + i
)

)
= Xn,n − xF

and on the other hand,

x̂F − xF ≤ (Xn,n − xF ) +

(
Xn−k,n −Xn−2k+1,n

1

log 2

k−1∑
i=0

log(
k + i+ 1

k + i
)

)
= (Xn,n − xF ) + (Xn−k,n −Xn−2k+1,n) ;

since for any intermediate k = kn the o.s. Xn,n, Xn−k,n, Xn−2k,n converge almost surely to xF , the

result follows.

Before getting under way to the proof of the main Theorem, we need to lay down some ground

results. These comprise a Proposition regarding γ < 0 and a Lemma for general γ.

Proposition 3 Suppose Xn,n is the maximum of a random sample whose parent d.f. F detains finite

right endpoint of F , i.e. xF = U(∞) <∞. Assume the second order condition (8) holds with γ < 0.

If k = kn is such that, as n→∞, k →∞, k/n→ 0 and
√
k A0(n/k)→ λ∗ ∈ R, then

1. for γ ≥ −1/2, for each ε > 0,

k−γ−ε
∣∣∣∣Xn,n − xF

a0
(
n
k

) ∣∣∣∣ p−→
n→∞

0. (A4)

Moreover,

k−γ
Xn,n − xF

a0
(
n
k

) d−→
n→∞

Zγ

γ
,

where Z denotes a standard Fréchet with d.f. Φ1 as in (2).
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2. for γ < −1/2,
√
k

∣∣∣∣Xn,n − xF

a0
(
n
k

) ∣∣∣∣ p−→
n→∞

0.

Proof: Owing to the well-known equality in distribution that Xi,n
d
=U(Yi,n), i = 1, 2, . . . , n, with{

Yi,n
}n
i=1

the n-th o.s. from a sample of n independent r.v.s with common (standard) Pareto d.f.

given by 1− x−1, x ≥ 1, then the following equality in distribution holds:

Xn,n − xF

a0
(
n
k

) d
=
{U( knYn,n n

k

)
− U

(
n
k

)
a0
(
n
k

) +
1

γ

}
−
{U(∞)− U

(
n
k

)
a0
(
n
k

) +
1

γ

}
.

Now we use conditions (8) and (10) with t replaced by n/k everywhere:

Xn,n − xF

a0
(
n
k

) d
=

{
kγ
(
n−1Yn,n

)γ − 1

γ
+

1

γ
+A0

(n
k

)
Ψ?
γ,ρ

(k
n
Yn,n

)(
1 + op(1)

)}
−
{
A0

(n
k

)
Ψ?
γ,ρ(∞)

(
1 + o(1)

)}
=

kγ
(
n−1Yn,n

)γ
γ

+A0

(n
k

){
Ψ?
γ,ρ

(k
n
Yn,n

)
+

1

γ + ρ
I{ρ<0}

}
+ op

(
A0

(n
k

))
We note at this stage that n−1Yn,n is asymptotically a Fréchet r.v. with d.f. given by Φ1 in (2). This

non-degenerate limit yields (k/n)Yn,n going to infinity with probability one, which implies in turn that

Ψ?
γ,ρ

(
k
(
n−1Yn,n

))
→ − (γ + ρ)−1I{ρ<0}, as n→∞. Therefore, we obtain for γ ≥ −1/2,

k−γ
Xn,n − xF

a0
(
n
k

) d
=

(
n−1Yn,n

)γ
γ

+ op
(
k−γ−1/2

)
, (A5)

by virtue of
√
kA0(n/k) = O(1), and (A4) thus follows directly for each ε > 0. The second part in

point 1. is ensured from (A5) by the continuos mapping theorem. For γ < −1/2, we observe from

(A5) that
√
k
Xn,n − xF

a0
(
n
k

) d
= k1/2+γ

(
n−1Yn,n

)γ
γ

+ op(1).

Since we are addressing the case γ + 1/2 < 0, the fact that n−1Yn,n converges in distribution to a

Fréchet r.v. suffices to conclude the proof. o

Lemma 4 Suppose that U satisfies the second order condition (8) with γ ∈ R and ρ ≤ 0. If k = kn

is an intermediate sequence such that
√
k A0(n/k) = O(1), then

√
k
(
Pn, Qn

)
:=
√
k

(∫ 1

1/2

Xn−[2ks],n − U
(
n
2ks

)
a0
(
n
k

) ds

s
,
Xn−k,n − U

(
n
k

)
a0
(
n
k

) )
(A6)

converges in distribution to the bivariate normal (P, Q) random vector with zero mean and covariance
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structure given by

E(P 2) =

{
2
γ

(
2−(2γ+1)−1

2γ+1 − 2−(γ+1)−1
γ+1

)
, γ 6= 0,

1− log 2, γ = 0,

E(P Q) =

{
− 1√

2
2−γ−1
γ , γ 6= 0,

log 2√
2
, γ = 0,

E(Q2) = 1.

Proof: The first component in (A6) shall be tackled by Theorem 2.4.2 of de Haan and Ferreira (2006)

with k replaced by 2k therein. In particular,

√
2k

∫ 1

1/2

Xn−[2ks],n − U
(
n
2ks

)
a0
(
n
k

) ds

s

=
a0
(
n
2k

)
a0
(
n
k

) √2k

∫ 1

1/2

{Xn−[2ks],n − U
(
n
2k

)
a0
(
n
2k

) −
U
(
n
2ks

)
− U

(
n
2k

)
a0
(
n
2k

) } ds
s

(A7)

Then, under the second order conditions (8) and (9), Theorem 2.4.2 of de Haan and Ferreira (2006)

yields for the definite integral on the right hand-side of (A7):

√
2k

∫ 1

1/2

Xn−[2ks],n − U
(
n
2ks

)
a0
(
n
k

) ds

s

=
1

2γ

∫ 1

1/2

{
s−γ−1Wn(s) + op(1)s−γ−1/2−ε + o

(√
2k A0

( n
2k

))} ds
s

+Op

(
A0

(n
k

))
,

where {Wn(s)}n≥1, s > 0, denotes a sequence of Brownian motions. Under the assumption that√
kA0

(
n/(2k)

)
= O(1), we obtain as n→∞,

√
k Pn =

1√
2

∫ 1

1/2
(2s)−γWn(s)

ds

s2
+Op

(
A0

(n
k

))
+ op(1).

If γ = 0, the integral on the right hand side becomes
∫ 1
1/2Wn(s) ds/s2. In either case, this integral

corresponds to the sum of asymptotically multivariate normal random variables. Now, the second com-

ponent of the random vector (A6) is asymptotically standard normal (cf. Theorem 2.4.1 of de Haan

and Ferreira, 2006). Finally, the covariance for the limiting bivariate normal, E(P Q), is calculated in

a straightforward way using similar calculations to the ones in p.163 of de Haan and Ferreira (2006). o

Proof of Theorem 2 Let h(γ) = (log 2)−1
∫ 1
1/2

{
(2s)−γ−1)/(−γ)

}
ds/s, which is defined in (11). Tak-

ing the auxiliary function a0 from the second order condition (8) we write the following normalization

of x̂F (cf. (A3) and (A7)):

x̂F − xF

a0
(
n
k

) − h(γ) = Wn −
1

log 2
Pn +Qn −

1

log 2

∫ 1

1/2

(
U
(
n
2ks

)
− U

(
n
k

)
a0
(
n
k

) − (2s)−γ − 1

γ

)
ds

s
,

with (Pn, Qn) defined in Lemma 4 and Wn :=
(
Xn,n − xF

)
/a0(n/k). Now, Lemma 4 entails that
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√
k(Pn, Qn) is asymptotically bivariate normal distributed as (P,Q). Proposition 3 expounds the

limiting distribution of Wn provided suitable normalization, possibly different than
√
k. Hence, the

crux of the proof is in the following distributional expansion, under the second order condition (8),

for large enough n:

k−γ
( x̂F − xF
a0
(
n
k

) − h(γ)
)

= k−γWn + k−(γ+1/2)
{√

kQn −
√
k

log 2

(
Pn +A0

(n
k

) ∫ 1

1/2
Ψ?
γ,ρ

( 1

2s

) ds
s

)}
. (A8)

We shall consider the cases γ > −1/2, γ = −1/2 and γ < −1/2 separately.

Case γ > −1/2: Proposition 3(1) and Lemma 4 upon (A8) ascertain the result, by virtue that W =

Zγ/γ with Z a standard Fréchet random variable.

Case γ = −1/2: The random component Wn is asymptotically independent of the remainder Pn and

Qn. This claim is supported on Lemma 21.19 of van der Vaart (1998). Hence, the combination

of Proposition 3 with Lemma 4 ascertains the result.

Case γ < −1/2: It is now convenient to rephrase (A8) with a suitable normalization in view of Propo-

sition 3 and the precise statement thus follows:

√
k
( x̂F − xF
a0
(
n
k

) − h(γ)
)

=
√
k
{
Qn −

Pn
log 2

− A0

(n
k

) 1

log 2

∫ 1

1/2
Ψ?
γ,ρ

( 1

2s

) ds
s

}
+Op(k

γ+1/2).

o

Proof of Corollary 4 The result follows immediately from Theorem 2, provided W and N are inde-

pendent random variables. Lemma 21.19 of van der Vaart (1998) ensures the latter. o

Proof of Theorem 6 The test statistic

Gn,k :=
x̂F −Xn−k,n

Xn−k,n −Xn−2k,n

expands as

Xn,n−U(n/k)
a0(n/k)

− 1
log 2Pn −

1
log 2

∫ 1
1/2

U
(
n/(2ks)

)
−U(n/k)

a0(n/k)
ds
s

Qn −
Xn−2k,n−U(n/k)

a0(n/k)

, (A9)

where Pn and Qn are defined and accounted for in Lemma 4. Under the stated conditions in the

Theorem, in particular condition (8) of regular variation of second order, we have for the remainder

building blocks:

Xn,n − U(n/k)

a0(n/k)

d
=

{
kγ(Yn,n/n)γ−1

γ

(
1 + op(1)

)
, γ 6= 0,(

log(Yn,n/n) + log k
)(

1 + op(1)
)
, γ = 0,

Xn−2k,n − U(n/k)

a0(n/k)

d
=

{
2−γ−1
γ +Op

(
1/
√
k
)
, γ 6= 0,

log(1/2) +Op
(
1/
√
k
)
, γ = 0
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(cf. proof of Proposition 3), and

b(γ) := − 1

log 2

∫ 1

1/2

U
(
n/(2ks)

)
− U(n/k)

a0(n/k)

ds

s
=

{
γ log 2−1+2−γ

γ2 log 2
+O

(
A0(n/k)

)
, γ 6= 0,

log 2
2 +O

(
A0(n/k)

)
, γ = 0.

Plugging all the blocks above back in expression (A9) for Gn,k, we therefore obtain:

if γ = 0,

G∗n,k(0) = log 2Gn,k −
(
log k +

log 2

2

)
= log 2

log(Yn,n/n) + b(0)− log 2
2 +Op

( log k√
k

)
+Op

(
A0(n/k)

)
log 2 +Op

(
1√
k

) ,

whereas, if γ 6= 0,

G∗n,k(0) = log 2Gn,k −
(
log k +

log 2

2

)
= log 2

kγ(Yn,n/n)γ−1
γ + b(γ)− log 2

2 − log k +Op
( log k√

k

)
+Op

(
A0(n/k)

)
2−γ−1
γ +Op

(
1√
k

) .

Finally, since Yn,n/n is a non-degenerate random variable, eventually, as it converges to a unit Fréchet,

the statement follows for γ ∈ R. o

B Finite sample properties of x̂FRB2, −1/2 < γ < 0

The illustrative example about the supercentenarian women’s records in section 5 also shows how the

second order expansion of the general endpoint estimator can be used to remove some contribution to

the asymptotic bias. This is the idea underpinning the reduced bias version (13), provided the true

negative EVI stays above −1/2.

Some finite sample results for x̂FRB2 are displayed in Figure 20. We have generate N = 300 samples

of size n = 1000 from the parent Models 1 (xF1 = 0) and 4 (xF4 = 1). These models were introduced

in the simulation study comprising section 4. Here, we have chosen to set the EVI at the values −0.4

and −0.2. The practical application in section 5 allows to foresee (cf. Figure 17) that by reducing the

bias in the general endpoint estimator, we end up with a new estimator with larger variance. To this

extent, we have furthermore anticipated a new estimator with very similar features to the designated

MOM.inv and POTML.GPD endpoint estimators. Now, the simulation results seem to support our

“guess”. The comparative box-plots in Figure 20 show a close resemblance of patterns within the

group encompassing the three estimators FAN.RB2, MOM.inv and POTML.GPD, although there

are situations in which the reduced bias version can serve as a good complement to the MOM.inv

and POTML.GPD, particularly for the cases of anomalous behaviour of the likelihood surface, often

encountered for the GPD. Figure 20 also illustrates the distinctive behavior of the general endpoint

estimator, emphasizing lower MSE delivered by this estimator.
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Figure 20: Boxplots of the errors ε(j, k∗0), j = 1, . . . , N = 300 (top) and Mean Squared Errors (MSE) plotted against
k∗, k∗ ≤ n, (down) for MAX, FAN, FAN.RB2, MOM.inv and POTML.GPD endpoint estimators.
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