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Signal Quality and Compactness
of a Dual-Accelerometer System

for Gyro-Free Human Motion Analysis
Emma Villeneuve, William Harwin, William Holderbaum,

R. Simon Sherratt, Fellow, IEEE, Ruth White

Abstract

There is a growing interest in measuring human activities via worn inertial sensors, and situating two
accelerometers on a body segment allows accessing rotational kinematic information, at a significantly lower
energy cost when compared to gyroscopes. However, the placement of sensors has not been widely considered in
the literature. In practice, dual-accelerometer systems should be built as compact as possible to ensure long-term
wearability. In this study, the impact of sensor placement and nature of human activity on signal quality is
quantified by individual and differential Signal to Noise Ratios (SNR). To do so, noise-free signals are described
by a 2D kinematic model of a body segment as a function of kinematic variables and sensor location on the
segment. Measurements are modelled as kinematic signals disturbed by zero mean additive Gaussian noise.
Depending on the accuracy needed, one can choose a minimal SNR to achieve, with such dual-accelerometer
arrangement. We estimate SNR and minimal sensor separations for three datasets, two from the public domain
and one collected for this paper. The datasets give arm motion profiles for reaching, inertial data collected during
locomotion on a treadmill and during activities of daily life. With a dual-accelerometer arrangement, we show
it is possible to achieve a good differential SNR for the analysis of various human activities if the separation
between the two sensors and their placement are well chosen.

Index Terms

Accelerometers, angular velocity, wearable sensors, Signal to Noise Ratio, biomedical monitoring.

I. INTRODUCTION

INERTIAL Measurements Units (IMUs), which provide the orientation and motion of a moving body, are
widely used within the biomedical community [1]. Interest in inertial sensors has grown due to their low

price, compactness and accessibility to the general public. They are often used to estimate angles of human
limbs, particularly lower limb angles for gait analysis [2] [3] [4] [5] [6] [7] [8] [9] [10].

Angles can be computed from accelerometer data, however for gait analysis angular velocities are also
beneficial [11]. These features are useful for activity classification, especially when combined with acceleration
intensity [12]. Although gyroscopes can directly measure angular velocity, they can consume 1000 times more
current than accelerometers1. Therefore they are less appropriate for a long term residential monitoring system
where low power is crucial.

The angular acceleration can be estimated from the difference between the signals from two 2D accelerometers
[2] [5]. The angular velocity is recoverable from either the angular acceleration term or the squared velocity
term. The acceleration term can be integrated [5], alternatively the squared angular velocity term can be used
as a computation of the absolute value of the velocity [2], with the sign estimated from other sources [15]. A
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1The normal operating current is 1.8 µA for the ADXL362 accelerometer [13] and 3600 µA for the MPU-6050 gyroscope [14].
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TABLE I
DISTANCES `i OF THE ITH ACCELEROMETER FROM THE JOINT, IN LITERATURE. DISTANCES d = `2 − `1 BETWEEN

ACCELEROMETERS.

Ref. Type of Accelerometer
`1 [m] `2 [m] d [m]Motion Placement

[3] Walking Thigh ' 0.15 ' 0.5 ' 0.25
Shank ' 0.15 ' 0.40 ' 0.25

[18] Walking Thigh and shank n.a. n.a. 0.14

[5] Walking Thigh, shank
and foot

n.a. n.a. 0.055

[2] Walking Thigh
0.10 0.19 0.09
0.14 0.19 0.05
0.17 0.19 0.02

[19] Undetermined Robot arm 0.727 0.867 0.14
0.584 0.867 0.283

[15] Oscillation Pendulum 10 acc.
on 40 cm

0.4 0.04

pair or an array of accelerometers can also be used to estimate angle without integration in order to remove the
body linear acceleration [3] [15].

A key point of this study is to find a compromise between the compactness of a dual-accelerometer, which
depends on their separating distance, and a good measurement quality measured by a high Signal-To-Noise-Ratio
(SNR). Table I presents some locations of pairs of accelerometers in the literature. There are large variations of
the distances between accelerometers for the same motion (walking) and the same limb (thigh), from 2 cm [2]
to 25 cm [3]. However, the quality of angle estimation improves with the distance between accelerometers [2].

With the development of residential monitoring, the compactness of a measurement system is crucial for user
acceptance. If both accelerometers are close enough, they can be encased in a single wearable system. This
paper suggests metrics to quantify the impact of the sensor placement and separation on the signal quality.
Choosing a minimum signal quality dictates a minimal sensor separation between a pair of accelerometers so
that the difference between both accelerometer signals can be exploited.

Section II analyses the relationship between the performances of a dual-accelerometer system, the sensor
placement and separation. In section III, performances are quantified in several cases of locomotion and activity.
Three datasets including arm motion profiles [16], inertial data collected in a laboratory environment and inertial
data collected in a house environment from the Opportunity dataset [17], provide the necessary motion features.
Finally, sections IV and V focus on the sensor separation for a chosen minimal signal quality level in order to
build a dual-accelerometer as compact as possible. Minimal separations are estimated using the same datasets
for simple motions and daily activities.

II. SIGNAL QUALITY METRICS

A 2D kinematic model based on the sagittal plane is used to assess the performance of a dual-accelerometer
system [2] [3] [4] [5] [18]. This allows us to limit the dependencies of the SNR function.

A. 2D Kinematic Model of a Body Segment

The motion of a body segment in the sagittal plane can be described by the angle φ ∈ ]−π;π], angular
velocity ω ∈ R and angular acceleration α ∈ R of this segment. The unknown kinematic variables are gathered
in the following state-vector:

x = [φ, ω, α]T . (1)

As can be seen in Fig. 1, the angle corresponds to the rotation between the reference system of coordinates
(O,x0,y0) and the local system (O,x1,y1).

The measured acceleration of a point located on the body segment, written in the local coordinate system
(O,x1,y1) and relative to the reference system, is given by the following function h:

h(xt, `) = a1
J,t +

(
−`ω2

t − g cosφt
`αt + g sinφt

)
(2)
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where subscript t is the time index, a1
J is the acceleration of point J which is the origin of the body segment,

written in coordinate system {1}, ` the distance of the point from the joint J, and g the gravity component.

Fig. 1. Body segment model. The inertial reference coordinate system is (O,x0,y0). The system (O,x1,y1) is attached to the body
segment. Vector g is the gravity component, as measured by accelerometers.

B. Statistical Observation Model

Accelerometers measure linear acceleration with an associated measurement noise that can be modelled as an
additive zero mean Gaussian noise [15]. The measurements on the ith 2D accelerometer on the body segment
are modelled by a statistical observation model:

z(xt, `i) = h(xt, `i) + νt with νt ∼ N (0, R) (3)

where R ∈ R2×2 is the covariance matrix of the Gaussian noise νt [15]. If the noise on both axes have the same
statistical properties and are independent as in [15], then the covariance matrix simplifies as R = σ2I2 with I2
the identity matrix of R2×2 and σ ∈ R+ the standard deviation. It is reasonable to assume noise is independent
as each accelerometer creates its own thermal noise.

C. Difference between 2 accelerometers

Two 2D accelerometers are located on the body segment at `1 and `2 from the joint. Assuming the noise on
both accelerometers is independent [15], the difference between two accelerometer signals is defined as:

zδ(xt, `1, `2) = z(xt, `2)− z(xt, `1) (4)

= hδ(xt, `1, `2) + nt (5)

with hδ(xt, `1, `2) = h(xt, `2)− h(xt, `1) (6)

=

(
−(`2 − `1)ω2

t

(`2 − `1)αt

)
(7)

nt ∼ N (0, 2R) (8)

The difference between two observations only depends on the sensor separation `2− `1, and angular kinematics
ωt and αt. It is subject to greater noise when compared to the individual observation, as the cumulated covariance
matrix is 2R. Note that if both sensors are disturbed by an identical noise due to external factors such as skin
motion, then this perturbation is removed by computing the difference of signals.
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D. Signal-to-Noise Ratio

The SNR is defined by the ratio of the signal energy (if the energy is finite) by the noise energy. Let’s
consider a signal acquired during an interval [0;T ]. Then, the signal energy is given by the integration of the
instantaneous power P during this interval. Assuming, the noise variance σ2 is constant over time, then the
SNR of the 2D accelerometer signal on both axes reads as follows:

SNR =

∫
[0;T ] P (t)dt

2Tσ2
(9)

The SNR can be considered good when it is above 1 (0 dB), which means there is more signal than noise.
However, applications such as kinematic estimation or classification do not require the same level of SNR.

1) Instantaneous Power: The instantaneous power P (xt, `) of the noise-free signal of one accelerometer is
defined as the squared 2-norm of the vector-signal at each time t:

P (xt, `) = ||h(xt, `)||22 (10)

= `2(ω4
t + α2

t ) + g2

+ 2`g(ω2
t cosφt + αt sinφt) (11)

The instantaneous power of the noise-free difference signal between two 2D accelerometer located at at `1
and `2 is given by the squared 2-norm of the difference signal:

Pδ(xt, `1, `2) = ||hδ(xt, `1, `2)||22 (12)

= (`2 − `1)2(ω4
t + α2

t ) (13)

Hereafter P and Pδ are called individual and differential instantaneous power.
2) Individual SNR:

SNR =

∫
[0;T ] P1(xt, `)dt

2Tσ2
(14)

=
`2(ω4 + α2)

2σ2
+

g2

2σ2
(15)

with

• ω4 is the average power of ω2
t : ω4 =

1

T

∫
[0;T ]

ω4
t dt

• α2 is the average power of αt: α2 =
1

T

∫
[0;T ]

α2
t dt

According to equation (15), the individual SNR increases with the sensor distance ` to the joint.
3) Differential SNR: The differential SNR is given by the ratio of the energy of the difference signal, by the

energy of the noise of variance 2σ2:

SNRδ =

∫
[0;T ] Pδ(xt, `1, `2)dt

4Tσ2
(16)

=
(`2 − `1)2(ω4 + α2)

4σ2
(17)

According to equation (17), the differential SNR increases with the distance d = `2 − `1 between both
accelerometers. Note that the sampling rate does not affect both individual and differential SNR, assuming
it is sufficient to correctly capture human motions.

III. PERFORMANCE ANALYSIS

Three datasets were used in this study, two from the public domain and one collected for this paper. The
datasets give arm motion profiles for reaching, inertial data collected during locomotion on a treadmill, and
inertial measurements during activities of daily life.
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Fig. 2. Inertial sensor board equipped with a 3D accelerometer and a 3D gyroscope, used in the Controlled Locomotion Experiment
III-B.

A. Arm Motion Profile (Nagasaki dataset)

1) Description: The Nagasaki dataset [16] is a publicly available data source that provides the angular velocity
and acceleration profiles for arm motion, when reaching a target. Four seated male subjects, aged from 31 to
49, were asked to point to a target at different angles [20, 30, 40, 50, 60] degrees from the starting position,
and at different speeds which were defined as slow, intermediate and ballistic. The instantaneous angle of the
hand was measured by a goniometer, activated through a specially made handle, and recorded at 1 kHz. Each
configuration of amplitude and speed was collected ten times, for each subject. The study provides the average
angular displacement, the duration and the average acceleration.

2) Data processing: Using the arm motion profiles [16], the average angular velocity ω is estimated by the
ratio of the average angular displacement and the duration. From ω and the measured average acceleration
α [16], the motion features ω4 and α2 are computed for each angle and each speed, assuming that ω and α
are constant over time. This approximation allows the computation of the motion features without knowing
the instantaneous velocity and acceleration for each time sample. The corresponding differential SNR is then
computed using equation 17, for a target at 40 degrees and a noise standard deviation σ = 6 mg. This level of
noise was measured using the accelerometer of type ADXL362. Results are given in Figure 4.

B. Controlled Locomotion (dataset collected for this study)

1) Description: In order to measure reliable motion features for locomotion, inertial data were collected from
one healthy female subject aged 30, walking or slowly running on a treadmill at a constant speed of 2.5 km/h
or 6 km/h, during during 3 minutes. Data were captured at 50 Hz using three inertial sensor boards (Figure 2)
developed by the SPHERE project, relying on 3D accelerometers ADXL362 and 3D gyroscopes MPU6050.
Sensors were located at distal ends of the left upper arm, forearm, thigh and shank. They were attached with
Velcro straps and orientated so that the plane formed by axes X and Y was parallel to the sagittal plane. The
longer duration of the collected data allows a better accuracy on the averaging for motion features ω4 and α2.

2) Data processing: Angular velocity from the gyroscope on the main rotation axis allows ω4 to be computed
directly. The angular acceleration is derived by numerical differentiation and provides α2. Note that the estimation
of ω4 and α2 is robust against noise, as it was realised from 9000 samples. Using these two features, one can
compute the differential SNR using the Equation 17. Results are given in Figure 4.

C. Daily Activities (Opportunity Dataset)

1) Description: A subset of the publicly available data published as the Opportunity Activity Recognition
Dataset [17], is used in this paper. It contains inertial data collected on four subjects. Four Xsens IMU
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(accelerometers and gyroscopes) were located on left and right upper and forearms, and attached to a jacket by
straps. Subjects were asked to perform a series of daily morning activities in a residential environment, each
series iterated five times. Thanks to annotation, inertial data are associated with locomotion labels (stand, walk,
sit, lie) and high-level activity labels (relaxing, coffee time, early morning, cleanup, sandwich time).

2) Data processing: We selected gyroscope measurements on the main rotation axis and associated to the
’walking’ label or activity labels. Data were filtered by a low-pass filter in order to reduce noise. Motion features
ω4 and α2 were computed using the resulting filtered data and averaged on data from four subjects and five
repetitions. Differential SNR were derived from the equation 17, with the same level of noise σ = 6 mg. Results
are given in Figure 4.

D. Impact of Sensor Placement and Separation on SNR

According to equations 15 and 17, the individual SNR increases with the squared distance of the sensor from
the joint, and the differential SNR increases with the squared sensor separation. Hence, there is a trade-off
between the signal quality of a dual-accelerometer system and its compactness.

Figure 3 (a) shows the individual SNR of the first sensor as a function of its location `1 = `2 − d. Based
on the controlled locomotion dataset III-B collected for this study, the individual SNR varies between 41 and
46 dB for all sensor placements on the body, for walking and running. So in practice, the individual SNR is
always very high. In the following, the study focuses on the differential SNR.

Figure 3 (b) shows the differential SNR as a function of the separation between accelerometers, for several
sensor placements, during walking and running on a treadmill (Controlled Locomotion experiment III-B). The
differential SNR seems sensitive to sensor placement, and for walking it increases as the sensor is located lower
on the body. For instance, there is a gap of +15 dB between SNR on the upper arm and on the shank during
walking, and a gap of +7 dB during running. This result is logical since lower limbs are longer than upper limbs
so they have higher accelerations. As evident in Figure 3 (b), a separation of a few centimetres is necessary to get
a differential SNR above 0 dB on the arms and thigh during walking. But only a few millimetres are necessary
for running and for a shank sensor during walking. There is a gap of +20 dB between the differential SNR values
for sensor separations of 3 mm and 3 cm, for a given activity and sensor placement. Both sensor separations
are feasible, but resulting signal qualities quantified by the differential SNR are dramatically different. So, not
only the SNR depends on sensor placement but also strongly on the sensor separation and on the activity.

E. Impact of Activities on SNR

Figure 4 shows the values of the differential SNR computed for all motion atoms and activities in the
Nagasaki dataset [16], the Controlled Locomotion dataset (III-B) and the Opportunity dataset [17], for a fixed
sensor separation of 3 cm. In the case of daily activities from the Opportunity dataset, the differential SNR
varies between 1 and 8 dB for forearm sensors (cf. Figure 4). This is a small variation because activities are
mixtures of motion atoms at various speeds and in different proportions.

Overall, there is a difference of 30 dB between the lowest SNR realized during ’slow reaching’ (-14 dB)
and the highest SNR achieved during ’ballistic reaching’ (14 dB) and ’running on a treadmill’ (17 dB). This
strong variation, due to the different speeds of motion, confirms that the differential SNR depends more on the
nature of activity than on the sensor placement on the body. However, ’slow reaching’ and ’ballistic reaching’
are extreme motions that are unlikely to occur often in daily life. Figure 4 also shows that differential SNR on
the upper arm and forearm are quite close for all motions and activities.

So it is possible to achieve a good differential SNR for the analysis of various human activities if the sensor
separation and placement are well chosen.

IV. SENSOR SEPARATION FOR A COMPACT DUAL ACCELEROMETER

Section III has highlighted the impact of the sensor separation and placement and the user activity on the
quality of signals. In practice, a dual-accelerometer system should be designed as small as possible to ensure
the user can wear it. Depending on motion analysis methods, a minimal SNR can be chosen to achieve a target
accuracy. In this section, we analyse the sensor separation for a chosen SNR.
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Fig. 3. Signal-to-Noise-Ratio as a function of the sensor separation and placement. (a) Individual SNR of the first accelerometer.
(b) Differential SNR of two accelerometers. Computed for two activities (W: Walking, R: Running) and four sensor placements (UA:
Upper Arm, LA: Lower Arm, T: Thigh and S: Shank). Computed from the controlled locomotion dataset of section III-B.

A. Minimal Sensor Separation

From equations (15) and (17), one can compute the sensor placement for a given individual or differential
SNR, and for given motion features ω4 and α2.

First, the individual SNR is above 0 dB for all values of the sensor separation, if the noise standard deviation
respects the condition σ < g√

2
(equation 15) which is fulfilled in practice as σ is close to 0.01%g. Figure 3 (a)

shows individual SNR values above 40 dB, so the choice of the sensor separation is mainly driven by the
differential SNR. The second accelerometer is considered fixed at `2 and this section studies the placement of
the first location `1 = `2 − d with d ∈ R+ the sensor separation.

As we have shown in section II-D2, the differential SNR is at its highest when the distance is maximum,
which means the accelerometers are at each extremity of the limb (e.g. elbow and wrist). As a result, there is a
compromise between the differential signal quality and the size of the dual-accelerometer system. For a chosen
minimal SNRδ value in equation 17, the corresponding minimal sensor separation reads:

d =
2σ
√
SNRδ√

ω4 + α2
(18)
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Differential SNR [dB]

Fig. 4. Differential Signal-to-Noise-Ratio, for several motions and activities. Activities no.1-3 are reaching to target at 40 degrees [16];
activities no. 6-11 are extracted from the Opportunity dataset [17].

Note that if ω4 + α2 = 0, the body segment is static and one accelerometer is needed to compute its angle.

B. Case of a Sinusoidal Motion

The limb angles during gait can be approximated by a sinusoidal function of time:

φt = A sin(2πft) + φ0 (19)

with A∈R∗ the motion amplitude, f ∈R∗+ the motion frequency and φ0 the angle at time 0. The motion features
ω4 and α2 are computed on the interval

[
0;T = 1

f

]
, giving ω4 = 6(πfA)4 and α2 = 8(πf)4A2. Notice that,

as the energy of the accelerometer signal is not defined, the SNR is defined using the average power instead of
the energy:

SNRδ = (4A2 + 3A4)(πf)4
(`2 − `1)2

2σ2
(20)

The sensor separation to get a given value of the differential SNR is then:

d =
σ
√
2SNRδ

(πf)2|A|
√
3A2 + 4

(21)

If a motion is approximated by a sinusoidal, knowing the amplitude and the frequency of this motion allows
choosing a suitable sensor separation to obtain a specific differential SNR.

V. ESTIMATION OF MINIMAL SENSOR SEPARATION

In this section, we estimate the minimal sensor separation between accelerometers worn on the arm or leg, in
order to achieve SNRδ = 0 dB. This value indicates that the power of differential signal and noise are equal,
and is taken as a suggested limit of acceptable SNRδ for a practical system.

A. Data Processing

Using the same three datasets, the minimal separations for a differential SNR above 0 dB are computed using
equation 18, for a noise standard deviation σ = 6 mg. Results are given in Tables II, III and IV.

During locomotion, the arm and leg motions can be approximated by a sinusoidal. In the case of the controlled
locomotion experiment (III-B), the angle of each sensor relative to the vertical was computed from accelerometer
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TABLE II
ESTIMATED MINIMAL SENSOR SEPARATIONS FOR A REACHING ARM MOTION. AVERAGE ANGULAR VELOCITY ω AND AVERAGE

ANGULAR ACCELERATION α ARE PROVIDED BY [16].

Speed Amplitude ω α ω4 α2 d
[deg] [rad/s] [rad/s2] [s−4] [s−4] [mm]

Slow

20 0.397 0.501 0.0249 0.251 224
30 0.537 0.613 0.083 0.375 174
40 0.651 0.658 0.179 0.433 150
50 0.761 0.726 0.335 0.527 127
60 0.857 0.714 0.539 0.51 115

Intermediate

20 0.628 1.26 0.155 1.58 89.4
30 0.85 1.53 0.521 2.34 69.6
40 1.11 1.94 1.53 3.77 51.1
50 1.28 2.02 2.66 4.07 45.4
60 1.51 2.36 5.16 5.57 35.9

Ballistic

20 2.12 12.6 20.4 158 8.81
30 2.78 16 59.5 255 6.64
40 3.31 17.2 120 296 5.77
50 3.9 19.2 231 368 4.81
60 4.38 20.1 367 404 4.24

TABLE III
ESTIMATED MINIMAL SENSOR SEPARATIONS FOR ARM AND LEG MOTION DURING WALKING AND RUNNING, IN A LABORATORY

ENVIRONMENT.

Motion Location ω4 α2 d Eq. 18 Â f̂0 d Eq. 21
[s−4] [s−4] [mm] [deg] [Hz] [mm]

Walking Upper Arm 0.398 18.3 27.2 14 0.761 29.2
Walking Forearm 2.01 41.2 17.9 9.71 0.761 42.5
Walking Thigh 4.08 101 11.5 42.2 0.772 8.09
Walking Shank 85.5 497 4.88 74.3 0.772 3.63
Running Upper Arm 62.6 665 4.36 75.9 1.37 1.11
Running Forearm 83.7 630 4.41 78.9 1.37 1.05
Running Thigh 23 637 4.58 76.1 1.37 1.11
Running Shank 465 2824 2.05 78.2 1.37 1.06

data in the sagittal plane, using an arctangent function. The average motion amplitude was estimated from the
angle. The fundamental frequency was estimated as the non-null frequency with the highest amplitude in the
FFT power spectrum of the angle. Results are given in Table III. These features allow to compare minimal
separation from equations 18 and 21.

B. Arm Motion to Reach a Target

This section focusses on the arm motion for reaching a target and the corresponding minimal separations.
Results are given in Table II and Fig. 5. As expected, if the speed of motion increases, the minimal separation
decreases, with a maximal distance of 9 mm in the ballistic case, 89 mm in the intermediate case and 224 mm
in the slow case. As the amplitude increases, the average velocity and acceleration also increase so the distance
decreases. For instance, the minimal distance for an intermediate speed varies from 36 to 89 mm. Therefore,
there are strong variations of the minimal distance over the fifteen cases. In practice, activities of daily living
are likely to be processed at an intermediate speed, or a slower speed for older people.

C. Arms and Legs during Locomotion

Tables III and IV detail the estimated minimal separation for walking and running in a laboratory environment,
and walking in a residential environment. Both datasets are complementary, as the controlled locomotion dataset,
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TABLE IV
ESTIMATED DISTANCES FOR WALKING AND FOR ACTIVITIES OF DAILY LIFE IN A RESIDENTIAL ENVIRONMENT, USING THE

OPPORTUNITY DATASET [17]. LOCATIONS: L/R: LEFT/RIGHT, L/U: LOWER/UPPER.

Motion Location ω4 α2 d
/ Activity [s−4] [s−4] [mm]

Walking

RU arm 6.25 27.1 20.4
RL arm 12.3 45.1 15.5
LU arm 4.41 28.2 20.6
LL arm 7.89 48.8 15.6

Relaxing

RU arm 2.12 13.3 30
RL arm 3.15 21.5 23.7
LU arm 1.52 13.1 30.8
LL arm 2.61 20.3 24.6

Coffee time

RU arm 1.55 8.44 37.2
RL arm 2.52 18.6 25.6
LU arm 1.37 7.69 39.1
LL arm 2.87 15.2 27.7

Activity Location ω4 α2 d
[s−4] [s−4] [mm]

Early morning

RU arm 4.6 29.3 20.2
RL arm 12.5 51.7 14.7
LU arm 3.49 34.4 19.1
LL arm 5.82 58 14.7

Clean up

RU arm 8.69 37.4 17.3
RL arm 24.2 67.1 12.3
LU arm 2.98 17.7 25.9
LL arm 10.5 43.5 16

Sandwich time

RU arm 1.36 12.1 32.1
RL arm 3.64 24.6 22.1
LU arm 1.2 9.65 35.7
LL arm 3.3 21.1 23.8

Se
pa

ra
tio

n
[m

m
]

Angle to target [deg]

Fig. 5. Estimated minimal sensor separation for reaching arm motion as a function of the angle of the target.

collected for the study, provides reliable averages computed on long durations while the Opportunity dataset
highlights natural walking speeds.

According to equation 18, the minimal separation for walking analysis in a laboratory environment is smaller
on the forearm (18 mm) than on the upper arm (27 mm). It is logical as the forearm inertial data contain the
forearm acceleration on top of the accelerations of the whole body and of the upper arm. For the same reason,
the minimal separation is smaller on the shank (5 mm) than on the thigh (12 mm). Note that the leg distances
are smaller than the arm distances because their motions have a bigger amplitude. Distances for running are
even smaller (less than 5 mm) because the running motion is faster.

The estimated fundamental frequencies are close to 0.8 Hz for walking and 1.4 Hz for running. These values
are consistent with the interval [0; 2] Hz indicated by [20] for angular sway, and [0.6; 5] indicated by [21]
for gait pattern. In comparison with the first distances, the minimal distances computed with equation 21 are
underestimated, because the sinusoidal approximation overestimates the energy of the signals. This model should
be used with caution.

According to Table III, a distance of 3 cm allows to get a differential SNR greater than 0 dB for all sensor
locations on the body, for both walking and running analysis in a laboratory environment.

Results of Table IV for walking are consistent with previous comments. The minimal separation for walking
is close to 20 mm on the upper arm, and 16 mm on the forearm, both sides being very similar. Separations are
slightly shorter because natural walking may be less regular and induce higher angular velocity and accelerations.



11

D. Activities of Daily Life

In the daily life, activities are composed of mixtures of locomotion and targeted motions such as reaching.
The Opportunity dataset [17] was used to estimate some typical minimal separating distances for a variety of
arm motions in the context of daily activities (see Table IV). Overall, the slowest activities are ’coffee time’
with an average estimated distance of 26 mm on the forearm, ’relaxing’ with 24 mm and ’sandwich time’ with
23 mm. During these three activities, the subject’s body is on the whole static. On the contrary, ’early morning’
and ’clean up’ are more energetic activities and their estimated minimal distances are close to 14 mm on average
on the forearm.

Similarly to results about locomotion, estimated distances are slightly shorter on forearms than on upper arms
because measured accelerations are higher. The difference between the corresponding estimated distances varies
from 5 to 12 mm. The highest differences are found for activities ’coffee time’ and ’sandwich time’ which
involve motions such as bringing a cup or a sandwich to the mouth, moving mainly forearms.

Estimated distances in the Table IV are overall very similar for both arms, in particular for ’relaxing’ and
’early morning’. However, it is interesting to note that for some activities such as ’coffee time’, ’clean up’ and
’sandwich time’, angular velocities and accelerations are on average higher on the right side, resulting in slightly
shorter minimal distances. This may be due to the fact that subjects were probably right-handed. The difference
between distances on both sides stays below 1 cm and choosing the largest distance ensures a good SNR on
both sides. On the opposite, wearing a dual-accelerometer on the dominant hand allows a more compact system
for a given SNR.

VI. CONCLUSION

This paper studied the performance of a dual-accelerometer system, in particular the novel analysis of the
quality of the differential signal, depending on the sensor configuration.

Based on a 2D kinematic model of body segments and a statistical model of measurements, the individual
and differential Signal-to-Noise-Ratios (SNR) were analytically defined to quantify signal quality. They depend
on the sensor placement and separation, the noise standard deviation and two motion features. These SNR
were estimated for three datasets: the Nagasaki dataset for arm motion profiles [16], the Controlled Locomotion
dataset collected for this study for locomotion on a treadmill, and the Opportunity dataset [17] activities of daily
life. While the individual SNR is very high in practice, we show it is possible to achieve a good differential
SNR if the sensor placement and separation are well chosen. So, one can choose a minimal sensor separation to
reach a given differential SNR. The estimated minimal separations computed for differential SNR value of 0 dB
and a noise of 6 mg, were discussed for reaching, walking and running, and activities of daily life. A distance of
3 cm ensures a differential SNR greater than 0 dB on arms and legs during reaching, walking and running, both
in a laboratory or in a residential environment. This distance is also appropriate to measure arm motions during
most activities of the Opportunity dataset. Such distances, computed for a noise of 6 mg, increase linearly with
the noise standard deviation.

The minimal differential SNR chosen for the estimation of sensor separations should be sufficient for clas-
sification analysis and kinematic estimation. However, as the paper provided motion features for all motions
and activities studied, minimal distances can easily be recalculated with equations 17 or 21 for any level of
differential SNR required, in the limit of the body segment length. If the target user group has mixed functional
capacity, we suggest to identify the sensor separation which guarantees a sufficient SNR in all cases. Ultimately
the power requirements for gyroscopes may make them more attractive for long term wearable sensors, but in
the interim these metrics will enable a quantified basis for any design decisions for wearable technologies.
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