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Synopsis  

Oxidation processes have a detrimental effect on hydrocarbon based materials such as 

fuels, lubricants, polymers and foodstuffs. Antioxidants are known to interrupt 

oxidation processes by predominantly reacting with radical species. The development 

of such stabilisers is discussed in Chapter 1. The use of dendritic architectures in antioxidant development is a relatively Ǯyoung’ area of research. This unique class of 

macromolecule consists of a well-defined, branched structure which can potentially 

bear a high loading of antioxidant under an excellent degree of structural control.  

 

Dendritic architectures are the focus of this thesis and Chapter 2 discusses the 

synthesis of a series of antioxidant functionalised polyester dendrons via the growth of 

the AB2 monomer bis(MPA). The intention was to provide a high degree of sterically 

hindered phenolic end groups for enhanced oxidative stabilisation properties in 

addition to good solubility within a hydrocarbon matrix and good thermal stability with 

a resistance to volatilisation at high temperatures.  It was revealed that these new 

branched antioxidants provided superior thermal and oxidative stability properties in 

comparison to the small molecule antioxidants currently used in the industry.   

Alternative functional core monomers were also investigated in Chapter 3. The 

functionalisation of glycerol and triethanolamine (TREN) with antioxidant moieties plus 

solubilising alkyl chains to yield a series of first generation polyester antioxidants is 

discussed. Once again, superior thermal and oxidative properties were revealed in 

comparison to the current industry antioxidants Irganox L135 and Irganox L57.  

The incorporation of a diphenylamine derivative into the same branching unit as the 

hindered phenol was investigated in Chapter 4 with the aim of targeting synergistic 

antioxidant properties. Excellent oxidative stabilities were observed, when compared to 

a 1:1 blend of Irganox L135 and Irganox L57, whereby an impressive 52% increase in 

oxidation induction time was observed. The enhanced stabilities were attributed to 

interesting structure-activity relationships from which it was concluded that the close 

contact of both amine and phenol functionalities was key in accessing improved 

antioxidant capabilities.  
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A radical scavenging assay was investigated in Chapter 5 with the aim to understand 

structure-activity relationships of new sterically hindered phenolic antioxidants. It was 

revealed that complex mechanistic pathways, in addition to solvent effects, limited the 

use of this assay. Therefore, further refinement of this potentially time-saving 

spectroscopic assay is required in order to render it usable in fuel and lubricant 

development.  
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Chapter 1  

Introduction 

Abstract 

This chapter outlines the detrimental effects of oxidation processes on hydrocarbon 

based materials with particular focus on fuels, lubricants and polymers. Antioxidants, 

such as sterically hindered phenol and diphenylamine derivatives, are known to interrupt 

oxidation processes by predominantly reacting with radical species. The development of 

such stabilisers is discussed with a focus on improving the structural characteristics to 

prevent additive migration within the bulk material. Volatilisation is a type of migration 

process and is a significant problem encountered with fuel and lubricant additive 

chemistry as a result of the high temperatures experienced within an engine. Antioxidant 

immobilisation, through various polymerisation techniques, is reported in the literature 

and provides a route to introducing higher molecular weights and enhanced thermal 

stabilities. An alternative approach to immobilisation is the use of dendritic architectures. 

This unique class of macromolecule consist of a well-defined, branched structure which 

can potentially bear a high loading of antioxidants under an excellent degree of structural 

control.  

1.1 Introduction to the Combustion Engine 

In the late 19th century, the rise of the oil industry prompted an interest in developing an 

internal combustion engine with the hope of providing more power to automotive 

vehicles and machinery. It was realised that chemical energy within a fuel can be accessed 

via combustion to provide mechanical power.[1] Many inventors proposed an array of 

possible designs, however, the first internal combustion engine using liquid fuel, to be 

built and sold, was claimed by Nikolaus Otto.[1]  Further developments to this engine 

design were most notably from Dugald Clerk, James Robson and Karl Benz, in the late 

1880s, who all developed two-stroke combustion engines. In the early 1890s Rudolf 

Diesel described a new form of engine based around the direct injection of the fuel into 

the cylinder.[1] Based on these designs, automotive engines are now generally divided 

into either spark-ignition for gasoline or compression ignition for diesel. Since these first 

internal combustion engines were introduced, the technology behind the automotive 

industry has changed dramatically and was controlled predominantly by customer 
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demand for more speed and power. Today, in terms of consumer preference, not much 

has changed; there is still an inclination for increased power and performance but more 

important, in the light of decreasing petroleum stocks and environmental concerns, is 

greater efficiency, extended engine life and lower emissions.[2]  

The majority of modern motor vehicles rely on a four-stroke combustion engine typically 

consisting of a piston within a cylinder equipped with two or four valves, one or two for 

the controlled delivery of the air to the cylinder and the others to permit the exhaust 

fumes to be expelled after combustion.[3] The fuel is delivered directly into the 

combustion chamber by injectors, which operate as fast acting valves (direct injection, 

DI, engines), or, in the slightly older port fuel injection (PFI) technology, the fuel is 

delivered through inlet valves. To highlight the inner workings of a typical cylinder a 

schematic representation of a typical compression engine cylinder found in an 

automobile is shown in Figure 1.1.  

 

 

 

 

 

 

Figure 1.1 Schematic representation of a cylinder combustion cycle which consists of four stages: 
intake, compression/ignition, power and exhaust. 

This basic four stroke principle of intake, compression/ignition, combustion and exhaust 

is a fundamental process of any automobile. In the PFI engines, the basic process begins 

with the fuel being drawn into the cylinder through the intake valve. The intake and 

exhaust valves close and the piston assembly compresses the fuel. In a gasoline engine a 

spark plug is used to ignite the fuel whereas in a diesel engine the fuel autoignites and 

causes an increase in pressure within the cylinder. The pressure drives the piston 

downwards and gives power to the vehicle. As the piston moves upwards, the exhaust 

valve opens and the cycle begins again.[3] Engines are assembled from many different 

components, all playing an important role while subjected to harsh conditions such as 
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temperature, pressure and mechanical forces.  Engine volumetric capacities have actually 

decreased over the years but the power output has actually increased. Consequently, this 

has put huge pressure on the components in the engine and hence with the endless 

developments of new engine technologies, the chemistry of fuels and lubricants also 

needs to remain in line. 

1.2 Fuel and Lubricant Composition 

Fuels and lubricants are derived from crude oil and are complex mixtures of hydrocarbon 

compounds, the ratios of which can be altered to tailor specific characteristics such as 

volatility and viscosity.  

1.2.1 Gasoline  

The spark ignition engine has remained a popular choice for personal automotive 

transport for many years and the fuel designed for this engine is gasoline. Gasoline is a 

careful formulation of hydrocarbons and additives which is now, more than ever, strongly 

controlled by emission regulations. A typical formulation consists of 30-60% saturated 

hydrocarbons with chain lengths in the region of C4-C12.[4] These hydrocarbons are given 

an octane rating between 0 and 100 which indicates the degree of compression it can 

withstand before igniting. The standards used to assign these ratings are heptane and 

2,2,4-trimethylpentane (iso-octane) which have octane ratings of 0 and 100, respectively, 

whereby the higher the rating, the higher the compression capability and resistance to 

autoignition. Aromatic compounds are another major component, they have high octane 

values and are typically used at 25-35%, however, toxic compounds such as benzene have 

caused significant limitations on their use.[4] Alkenes, in particular olefins, are used at 

10-15% and are typically clean burning. Other unsaturated hydrocarbons found in 

gasoline formulations include dienes, alkynes and polycyclic aromatics, however, these 

compounds are often only used in trace amounts.[4]  Performance enhancing additives are 

also incorporated into the formulation to improve a property of the fuel or the 

performance of the engine. They are used at low levels, typically <2500 ppm and include 

antioxidants, metal deactivators, ferrous and copper corrosion inhibitors, anti-wear 

additives and deposit control additives.   

1.2.2 Diesel 

In contrast to gasoline, which is spark-ignited, diesel fuel is ignited by the heat of 

compression within the engine. This difference in the ignition process reveals some 
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significant variances in their chemical composition and physical properties. Diesel 

consists of many aliphatic hydrocarbons containing carbon chain lengths of C8-C12 with 

boiling points in the range of 130-370 ᵒC.[5] Compared to gasoline, the fractions of 

hydrocarbons are typically heavier in a diesel formulation. The ignition quality of diesel 

is determined by the cetane number and the standards used to assign this rating are 

hexadecane and 2,2,4,4,6,8,8-heptamethylnonane which have cetane numbers of 100 and 

15, respectively.[6] Long chain, unbranched, saturated hydrocarbons have high cetane 

numbers with a good ignition quality whereas branched hydrocarbons and aromatics 

have low cetane numbers with a poor autoignition quality.[6] Combustion emissions from 

diesel engines lacking after treatment systems such as diesel particulate filters (DPF) and 

selective catalytic reduction (SCR), are considered one of the major sources of air 

pollution and can cause health problems. Such emissions include particulate matter, 

nitrogen oxides, carbon monoxide and unburnt hydrocarbons which can cause acid rain, 

photochemical smog and ozone depletion.[5] Hence, the search for alternative, more 

environmentally friendly fuels is required.  

1.2.3 Biofuels 

The uncertainties surrounding petroleum availability and concerns of harmful 

environmental pollution have encouraged researchers to investigate alternative fuels. 

There are two global, biorenewable fuels that have the potential to replace gasoline and diesel fuel. The term Ǯbiofuel’ refers to solid, liquid or gaseous fuels that are 
predominantly produced from biomass and they offer a number of advantages including 

sustainability, reduction of greenhouse gas emissions, agriculture and security of 

supply.[7,8] Bioethanol is one such fuel and is produced almost entirely from food crops. 

Biodiesel is another alternative and besides being a renewable resource it has a number 

of other distinct advantages. These include biodegradability, low toxicity and reduced 

exhaust emissions.[9] Biodiesel is derived from the transesterification of vegetable or 

animal oils and is composed of saturated and unsaturated long-chain esters 

(Scheme 1.1).  

 

 

Scheme 1.1 Transesterification reaction for producing biodiesel from a vegetable or animal derived 
triglyceride. 
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The use of vegetable oils in diesel engines is nearly as old as the diesel engine itself 

whereby the inventor of the diesel engine, Rudolf Diesel, reportedly used peanut oil as a 

fuel for demonstration purposes.[6] Other common sources of biodiesel include soybean 

oil, sunflower oil, corn oil, rapeseed oil and castor oil.[9] Unfortunately, biodiesel also has 

some undesirable characteristics which include oxidative instability and poor low 

temperature properties.[10,11] These performance characteristics highlight the need for 

more advanced additives to enhance the stabilisation of these new alternative fuels. 

1.2.4 Lubricants 

Lubricating oil is also derived from crude oil, however, it is less volatile and more viscous 

than gasoline or diesel. Lubricants are introduced into the engine to predominantly 

prevent friction and wear between surfaces and are typically comprised of 80% base oil 

and 20% performance additives. Base oils can be classified as natural or synthetic and 

are rated depending on the ratio of saturates, aromatics and sulfur content. The typical 

environments under which a lubricant performs can vary dramatically, however extreme 

conditions, including oxidative stress, chemical contamination, high temperatures and 

mechanical shear pressures, are usually common place. With the development of more 

powerful engines[3], automotive lubricants are subjected to even more extreme 

environments than ever before and can suffer from degradation. An understanding of 

such degradation processes is thus fundamental and the chemistry underpinning the 

performance of enhancing additives requires continuous development.  

1.3 Degradation Processes 

The earliest documented examples of the deterioration of modern hydrocarbon materials 

followed the discovery of rubber by European explorers in the Amazonian forests. On the 

voyage back to Europe its rebounding behaviour that made it so interesting was lost and 

it was believed it had perished during the journey.[12] This deterioration is nowadays 

referred to as Ǯageing’ or Ǯfatigue’ and has a significant impact on the properties of the 

material. Petroleum based products, such as those described previously, in addition to 

other industrial products such as plastics, cooking oil, cosmetics and processed foods are 

subjected to degradation resulting from mechanical, oxidative, heat and light stress.[13] 

Oxidative degradation is the dominant degradation process and understanding the 

mechanisms behind the process is essential for the development of effective stabilisation. 
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1.3.1 Mechanism of Oxidation 

The self-accelerating oxidation of hydrocarbons was the subject of significant research in 

the early 20th century where various proposals were suggested on the mechanism and 

products associated with the degradation process.[14–16] Booser and Fenske investigated 

the oxidation characteristics of a series of hydrocarbons, including 1-methylnaphthalene, 

hexadecane and phenanthrene, in an effort to understand the mechanisms of the 

deterioration of lubricating oil.[17] It was not until a few years later that Bolland and Gee, 

from the Natural Rubber Producers Research Association, experimentally established the 

chain mechanism of this process using ethyl linoleate. The fundamentals outlined in this 

series of papers have not been revised significantly since their proposal in the 1940s.[18,19] 

The self-accelerating oxidation of hydrocarbon based materials is more commonly termed Ǯautoxidation’ and can be defined as the reaction of organic substances with 
molecular oxygen under mild conditions.[20,21] Originally, the autoxidation mechanism 

was only proposed for polymers that contained an activated allylic C-H bond, such as 

those found in rubbers, however, it has since been universally adapted to explain the 

oxidative degradation of most hydrocarbon materials.  The general autoxidation 

mechanism consists of a four-step, free-radical chain reaction consisting of initiation, 

propagation, chain-branching and termination.  

1.3.1.1 Initiation 

Initiation begins with the generation of a free-radical species via a number of possible 

pathways. An initial consideration was the simple cleavage of the hydrocarbon to form 

two radicals, a process which can be initiated through heat, light or mechanical shear 

stress. The activation energy of this process, however, is large and so was unlikely to be 

the main source of free-radicals, even in a high temperature engine. Alternatively, 

hydrocarbon bonds can cleave through the reaction with oxygen to produce alkyl radicals ȋR˙) ȋScheme 1.2).[21,22] This process is typically catalysed by traces of transition metal 

ions (Mn+) such as cobalt, iron, vanadium, chromium, copper and manganese.[20,22–25] 

Traces of these transition metals can originate from polymer synthesis or are often found 

in the components of engine parts.  
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Scheme 1.2 Initiation of autoxidation through the generation of alkyl radicals ȋR˙). 
The site of oxygen attack is determined by the strength of the C-H bond. The ease of the 

homolytic cleavage of alkyl hydrogens follows the order of phenyl, primary, secondary, 

tertiary, allylic and benzylic.[22,24] Under ambient temperatures the rate of initiation is 

very slow with a rate constant of between 10-9–10-10 mol-1s-1.[22] At elevated 

temperatures, the selectivity of the process is reduced and the reaction rate increases.  

1.3.1.2 Propagation 

Propagation is where the radical species, generated from the initiation stage, stabilise 

themselves by reacting with another species. Propagation occurs through the irreversible reaction of the alkyl radical ȋR˙), formed during initiation, with oxygen to form an alkyl peroxy radical ȋROO˙) ȋScheme 1.3). In comparison to the initiation stage, this reaction 

is fast and has a very high rate constant of 107-109 mol-1s-1.[26] Bell and co-workers 

investigated the reactions of alkyl radicals associated with the low temperature oxidation 

of paraffins and revealed the activation energy of the combination of an alkyl radical with 

oxygen to be very low at ca. 4-8 kJmol-1.[27] The rate of reaction of the carbon-centred 

radicals depends on the carbon substituents and the stabilisation of the peroxy radical 

(ROO˙) dictates that tertiary alkyl radicals react faster with oxygen than primary alkyl radicals.  The newly formed peroxy radical ȋROO˙) can then abstract a hydrogen atom 
from another hydrocarbon molecule to form a hydroperoxide (ROOH) and a new alkyl radical ȋR˙). This process therefore generates a continuous propagation chain (Scheme 

1.3) reaction causing the oxidation of many hydrocarbon molecules.  

 

 

 

 

Scheme 1.3 Continuous generation of alkyl radicals ȋR˙) to form a propagation chain.  
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The oxidation process can hence be self-accelerating if the diffusion of oxygen within the 

material is a non-limiting factor.[28]  

1.3.1.3 Chain Branching 

Chain branching is a significant stage in the oxidation process as it is here where the 

physical characteristics of the bulk matrix (i.e. an engine lubricating oil, a hydrocarbon 

fuel, a polymer or a foodstuff) begin to change. This process begins with the cleavage of a 

hydroperoxide into an alkoxy radical. This reaction has a high activation energy and 

hence only occurs at increased temperatures. It has been reported that as the 

temperature increases above 100 ᵒC the hydroperoxide concentration decreases.[29] The 

resulting radicals can undergo a series of chemical reactions as outlined in Scheme 1.4. 

 

 

 

Scheme 1.4 Decomposition of hydroperoxides (ROOH) to generate further primary oxidation 
products in the form of alkyl radicals ȋR˙) in addition to secondary oxidation products 
including alcohols, aldehydes, ketones and water.  

Hydroxy and alkoxy radicals are so reactive that they abstract hydrogen atoms in a non-

selective manner therefore forming further initiator alkyl radicals. The decomposition of 

hydroperoxides has been reported over many years whereby the major degradation 

products are lower molecular weight aldehydes and ketones, however, the generation of 

alcohols and water has also been observed. [28–34] These compounds can contribute to a 

change in the properties of the material. For example a hydrocarbon based lubricant may 

experience, at this stage, an increase in volatility and an increase in polarity.[35] 

1.3.1.4 Termination 

The oxidation process eventually slows to a standstill before the hydrocarbon is 

completely consumed and this final stage is referred to as termination.  This is where two 

radical species combine (Scheme 1.5) to produce various compounds such as alcohols, 

acids, aldehydes, ketones, carboxylic acids and longer chain hydrocarbons.  
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Scheme 1.5 Examples of possible radical termination reactions. 

Over time, at high temperatures, the viscosity of the oil increases. This is thought to be a 

result of the reactive species formed in the oxidation process reacting further to form a 

complex mixture of oligomers and polymers. Once the viscosity of the oil has increased 

to the point where diffusion of oxygen is limited, termination reactions dominate.    

In terms of lubricant chemistry, the oxidation process is particularly detrimental. 

Oligomers which are still fully soluble in the oil cause an increase in viscosity. When these 

species continue to react, through polycondensation reactions, their molecular weights 

increase and solubility limits are reached. This causes immiscibility between the 

oligomers and the lubricant which leads to the formation of Ǯsludge’.[36] Volatile 

components of the oil, either produced during oxidation or from the base oil itself, are 

readily lost through evaporation when the temperatures of the engine increase. This also 

results in a viscosity increase and the volume of the lubricant is reduced.  In addition to 

the formation of sludge, the metal surfaces of the engine components can be found to be 

coated with lacquers or deposits. These varnish-like deposits have been found to consist 

of carbon and complex carbonised organic components and can cause an accumulation 

and aggregation of wear debris, soot and acids.[36] These deposits not only reveal the 

failure of the material but can also block and inhibit key components in the engine leading 

to reduced power, increased fuel usage and at time failure of the engine. There are a series 

of preventative measures which can be introduced to the material to reduce the effects of 

the oxidation process. The most effective preventative measures include the trapping of catalytic impurities through the use of Ǯmetal deactivators’ or by the destruction of alkyl and alkyl peroxy radicals and hydroperoxides through the use of Ǯantioxidants’. 
1.4 Antioxidants 

Antioxidants are important additives whose role it is to preserve the chemical and 

physical properties of many different organic materials during transportation, storage, 

processing and service conditions.[37] Antioxidants can be divided into a number of 

groups, however two types have proved to be particularly effective and are termed 

primary or secondary antioxidants.[35,38] Primary antioxidants, also referred to as Ǯradical 
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scavengers’, function by intercepting and stabilising free radicals such as alkyl peroxyl radicals ȋROO˙) hence interrupting the propagation chain. These specialised compounds 
are typically reductive in nature with relatively weak O-H and N-H bonds and sterically 

hindered phenols and aromatic amines represent this class of antioxidant.[39] A large 

number of primary antioxidants have been developed and tested in a range of substrates. 

Key examples of phenolic antioxidants are presented in Figure 1.2 that are typically used 

in polymers, fuels or lubricants.  

 

 

 

Figure 1.2 Examples of some common primary antioxidants used to stabilise fuels, lubricants and 
polymers: i) Irganox L135, ii) 2,4-dimethyl-6-tert-butylphenol, iii) phenyl-α-
naphthylamine, iv) Ethanox 4702. 

 The effectiveness of this class of antioxidant was revealed early on and hydroquinones 

and phenols were reported as intercepting alkyl peroxy radicals to give a much more 

stable radical hence leading to a termination of the chain mechanism.[40–42] As previously 

discussed, the reaction of alkyl radicals with oxygen is very fast and subsequent 

abstraction of hydrogen from the substrate by an alkyl peroxy radical is the rate 

determining step. Alkyl peroxy radicals are typically present at high concentrations in the 

oxidising system hence the main requirement of a primary antioxidant is to neutralise 

these species. It is known that the efficiency of this type of antioxidant depends in their 

rate of reaction with alkyl peroxy radicals ȋROO˙) and the reactivity of the generated antioxidant radical ȋA˙).[43–45] The antioxidant radical is stabilised through steric 

hindrance and resonance structures (Scheme 1.6).  

 

 

 

Scheme 1.6 The radical scavenging mechanism of a sterically hindered phenol. 

The steric hindrance is provided by the two tert-butyl moieties in the ortho position and 

prevent the phenoxy radical from attacking other hydrocarbons. The resonance structure 

can further combine with a second alkyl peroxy radical to form the alkyl peroxide which 

i) ii) iii) iv) 
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is stable at temperatures <120 ᵒC.[22,35] Typically one phenolic antioxidant can eliminate 

two radical species; this ratio is referred to as the stoichiometric value. In contrast to 

phenolic antioxidants, aromatic amines operate via a much more complex radical 

scavenging mechanism. The reaction of diphenyl amines is dependent on the 

temperature whereby at relatively low temperatures of <120 ᵒC the interaction with 

peroxy radicals is the dominant reaction and a similar hydrogen abstraction pathway to 

sterically hindered phenols is followed.[35] This initial process is highlighted in green in 

Scheme 1.7 and in the temperature region described, one diphenylamine can eliminate 

four peroxy radicals. At temperatures >120 ᵒC, a catalytic cycle has been proposed which 

gives access to an enhanced stabilisation mechanism. This secondary process is 

highlighted in blue in Scheme 1.7. 

 

 

 

 

 

 

 

 

 

 

Scheme 1.7 Proposed radical scavenging mechanism of aromatic amine antioxidants.[22,35] 

The nitroxyl radical can react with a secondary alkyl radical and subsequent thermal 

decomposition regenerates the original diphenylamine.[46] This gives rise to high 

stoichiometric values, examples of which are shown in Table 1.1. 
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Table 1.1 Stoichiometric values for a range of diphenylamine derivatives, analysed in a paraffin oil 
at 130 ᵒC.[47] 

A further stoichiometric enhancement is observed when two or more antioxidant species 

are present at the same time. This phenomena is referred to as synergism and three types 

were defined[48] by Scott - homosynergism, heterosynergism and autosynergism. A process 

can only be classified as true synergism if the combined use of two or more antioxidants 

provides a greater stabilisation than the individual antioxidants. Homosynergism is the 

most commonly exploited type, especially in the fuels and lubricants industry, and is 

experienced when two antioxidants acting by the same mechanism interact. A common 

example is the combination of a hindered phenol and a diphenylamine, and it has been 

reported that this synergism works so well as a result of a regeneration cycle depicted in 

Scheme 1.8.[35,38]  

 

 

 

 

 

 

Scheme 1.8 Mechanism of regeneration between a diphenylamine and a sterically hindered phenol. 

Secondary antioxidants are another class of important antioxidants. Their function is to 

prevent the formation of free radicals by decomposing unstable hydroperoxides before 

Structure Stoichiometric Value 
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their homolytic cleavage, into non-radical, less reactive alcohols. Organosulfur, 

organophosphorous or a combination of both, such as zinc dialkyldithiophosphates 

(ZDDPs), are well-known secondary antioxidants (Figure 1.3). Recent developments in 

additive chemistry, however, has revealed a shift away from secondary antioxidants in 

an attempt to reduce sulfur, phosphorous and ash emissions. The presence of 

phosphorous in fuels and lubricants is a particular problem because it is a known catalyst 

poison and hence severely affects the performance of exhaust after treatment systems.  

 

 

 

 

Figure 1.3 Examples of some typical secondary antioxidants: i) tris(2,4-di-tert-butylphenyl) 
phosphite (Irgafos 168), ii) zinc dialkyldithiophosphates.[13] 

Significant research effort has been targeted at understanding and improving the 

antioxidant capabilities of primary antioxidants. Sterically hindered phenols have been a 

popular topic of research in comparison to aromatic amines possibly as a result of their 

more simplistic radical scavenging mechanism. The majority of the commercially 

available sterically hindered phenols are based on different derivatives of BHT-like 

functionalities possessing a variety of substituents. Even though these antioxidants 

revealed sufficient stabilisation during their early applications, instability and volatility 

issues at high temperatures have led the additive industry to examine natural 

antioxidants as an alternative.  An example of this progression has been observed in the 

stabilisation of biodiesel. As discussed, biodiesel is derived from fats and oils and is 

particularly susceptible to oxidative degradation in comparison to a traditional fuel or 

lubricant. A number of studies have investigated the biodiesel stabilisation effects of both 

synthetic and natural antioxidants.[10,49–52] Santos and co-workers reported a comparison 

of the thermal stabilities of a series of common synthetic antioxidants and known natural 

antioxidants (Figure 1.4).[51]  

i) ii) 
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Figure 1.4 A series of synthetic antioxidants, butylated hydroxyanisole (BHA), butylated hydroxyl 
toluene (BHT), tert-butylhydroquinone (TBHQ) and propyl gallate (PG) for comparison 
against a series of naturally occurring antioxidants, tocopherol, gallic acid, caffeic acid and 
ferulic acid.  

Each antioxidant was subjected to thermogravimetric analysis and results for the 

synthetic antioxidants revealed initial decomposition temperatures to be less than 

110 ᵒC. The low thermal stability of these synthetic antioxidants highlighted the 

implications of using them for high temperature applications within an engine. In 

comparison, a significant increase in thermal stability was revealed for the naturally 

occurring antioxidants with the tocopherol exhibiting the best stability with an initial 

degradation temperature of 200 ᵒC. Interestingly, an earlier study by Dunn analysed the 

oxidative stability properties of a similar range of antioxidants in a biodiesel blend.[10] 

Oxidation onset temperature analysis and phase separation studies revealed that even 

though the natural antioxidant, tocopherol, showed a good physical compatibility with 

the biodiesel it actually provided the least oxidative stability in comparison to BHT and 

BHA. These two studies highlight the importance of being able to tailor antioxidants to 

suit the individual and diverse array of applications requiring stabilisation.  

Particular effort has been focussed on developing the optimal balance of properties 

including solubility, volatility, extractability, toxicity and production cost. As discussed, 

natural antioxidants have shown potential as more thermally stable antioxidants, 

however very little is known about their structure-activity relationships. The natural 

hindered phenol, α-tocopherol, is the major active component in Vitamin E (Figure 1.5). 

It has been revealed that this natural phenol can provide a much higher oxidative stability 

to polyolefins than other commercially available synthetic antioxidants and Burton and 

Ingold reported that the reactivity of α-tocopherol towards alkyl peroxy radicals in 

styrene at 30 ᵒC was nearly 250 times greater than BHT.[53]   
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Figure 1.5 Structure of α-tocopherol, the active component in Vitamin E. 

Ingold previously alluded to the effects of ring substituents on the rate of reaction 

between hindered phenols and peroxy radicals.[54] In this study, they reported that the 

reaction was accelerated by a para oxygen and by the presence of methyl groups instead 

of tert-butyl groups in the 2- and 6- positions. Penketh also agreed with this finding and 

reported that BHA had an average antioxidant rating of 205 in petroleum when compared 

to the reference compound BHT which had a rating of 70.[55]  

Many of the reported correlations between the structure and activity of α-tocopherol 

were carried out at ambient temperatures. It has, however, been reported that the 

optimal structure of an antioxidant varies according to the conditions it will be subjected 

to. For example, more hindered phenols are reportedly better than the less hindered 

derivatives for the long term stabilisation of polyolefins. A more recent investigation took 

this proposal into account and was carried out by Breese and co-workers.[56] The key 

structural characteristics of α-tocopherol were investigated by analysing a series of 

model compounds each possessing the three structural characteristics - an aliphatic tail, 

ortho substituents and a para oxygen (Figure 1.6).  

 

 

 

 

 

 

Figure 1.6 Chemical structures of the model compounds investigated by Breese and co-workers.[56] 

Studies investigating antioxidant efficiency typically blend antioxidants into polymer 

samples. Breese and co-workers, however, used the liquid hydrocarbon squalane as a 
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model for polypropylene which allowed faster and cheaper sample preparation. In this 

report they dissolved the antioxidant samples in squalane and analysed the oxidation 

induction time (OIT) of the sample at 190 ᵒC, using differential scanning calorimetry 

(DSC). By studying a series of model compounds it was revealed that the key structural 

difference between α-tocopherol and BHT was the oxygen atom para to the active 

hindered hydroxyl. A 94% increase in antioxidant activity was observed for BHA with the 

para oxygen in comparison to the analogous compound BHT which had no para oxygen. 

It was noted, however, that the radical scavenging stoichiometric value of the hindered 

phenol may be reduced in this structural configuration, hence as an alternative it was 

proposed that an oxygen in the ortho position would provide the same efficiency as the 

ortho and para positions are electronically equivalent. Unfortunately, the effect of methyl 

versus tert-butyl substitution was not evaluated as the model compound 2,4,5-methyl 

phenol proved to be too volatile under the OIT conditions used.  A number of other studies 

have reported the effect of substituents on the antioxidant activity of phenolic 

antioxidants, most notably a series of publications presented by Kajiyama and 

Ohkatsu.[57–60] A wide range of phenolic derivatives were described and the effect of 

ortho, meta and para substituents on antioxidant activity was investigated. Antioxidant 

activity was, however, analysed using an oxygen absorbance method whereby styrene 

was autoxidised using an azobisisobutyronitrile (AIBN) initiator. Consequently this study 

did not address the issue of understanding antioxidant performance under extreme high 

temperature conditions.  

Although the synthetic and natural antioxidants discussed provide protection against the 

damaging effects of energetic free radicals formed within the oxidation process, they 

suffer from some serious drawbacks. Migration is a term that describes a range of 

physical processes and interactions involving the materials surroundings and its 

constituents which include the rate of additive diffusion, additive solubility and 

volatilisation.[61] These limitations are predominantly attributed to the antioxidants 

molecular size hence various approaches have been used to access higher molecular 

weight antioxidants. Attention was therefore drawn towards macromolecular structures 

and the manufacturers of plastics, where migration is a significant problem, have 

effectively abandoned the use of BHT in favour of less volatile antioxidants such as 

Irganox 1010.[13] This macromolecular antioxidant not only had a higher molecular 
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weight but also provided a greater number of antioxidant functionalities per molecule 

(Figure 1.7).   

 

 

 

 

 

 

 

Figure 1.7 The structure of BHT compared to Irganox 1010.  

Even though these higher molecular weight antioxidants provided some alleviation of the 

limitations previously experienced, to access applications in ever more extreme 

environments, for example in an engine where components are subjected to high 

temperatures, pressures and mechanical shear, more advanced systems are required. It 

has been reported that even high molecular weight antioxidants, such as Irganox 1010, 

leach and migrate from a polymer matrix under such conditions leading to a reduction in 

oxidative stability and premature aging.[62–64]  Antioxidant immobilisation therefore 

represents one route to enhanced long-term stability by attempting to reduce antioxidant 

mobility.[13,61] A number of different approaches to this have been reported and have 

revealed improved migration resistance, thermal stability and processability, one 

example of which is the covalent bonding of the antioxidant to the polymer matrix itself.  

Munteanu and Csunderlik reported the synthesis of three monomeric antioxidants 

bearing the same antioxidant moiety but different polymerisable groups (Figure 1.8).[65]  

 

 

 

Figure 1.8 Monomeric antioxidants bearing methacrylate (1.1), styrene (1.2) and cinnamic acid 
(1.3) polymerisable groups.  
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Each antioxidant monomer was grafted on to low molecular weight polyethylene 

(LMWPE) and high density polyethylene (HDPE). Since antioxidants function as free 

radical scavengers it was proposed, in early literature, that they would prevent free-

radical-initiated polymerisations.[66] With this in mind various attempts to protect the 

phenolic hydroxyl were reported, however, it was revealed this was unnecessary.[66] 

Munteanu and Csunderlik reported that their grafting reactions yielded a mixture of 

grafted polyethylene, unreacted monomeric antioxidant and the antioxidant 

homopolymer. Although this approach was not able to ensure 100% antioxidant binding 

to the polyethylene, antioxidant action was, however, preserved revealing greater 

polyethylene stabilisation over time in accelerating aging analysis.  

An improved approach to antioxidant grafting was reported by Al-Malaika and Suharty 

whereby acrylic functionalised phenolic antioxidants were grafted onto polypropylene 

using a trifunctional co-agent, trimethylol propane triacrylate (Scheme 1.9).[67]  

 

 

 

 

 

 

Scheme 1.9 Grafting of acrylic functionalised phenolic antioxidant with the coagent trimethylol 
propane triacrylate and polypropylene as reported by Al-Malaika and Suharty.[67] 

In the presence of trimethylol propane triacrylate (1.5), the competing grafting reactions, 

such as antioxidant homopolymerisation, were dramatically reduced to less than 10% 

which equated to over 90% of antioxidant grafting efficiency. Crucially, no adverse 

modifications to the physical characteristics (molar mass and solubility) of the polymer 

were reported, however, no mechanical data was examined.  Alternative polymerisable 

functionalities have also been reported by Kim and co-workers who revealed the 

synthesis of polymeric hindered phenol antioxidants containing maleimide 

functionalities. This series of monomers were successfully grafted onto LMWPE (Figure 

1.9).[68]  
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Figure 1.9 A series of monomeric phenolic antioxidants containing a polymerisable maleimide 
functionality.  

The grafting reactions described have shown some potential in increasing oxidative 

stability to the polymer matrix and have overcome a number of migration issues, 

however this method is not suitable for non-polymer matrices such as fuels, lubricants or 

food. An alternative immobilisation of antioxidants has also been achieved by the 

polymerisation of monomer bound antioxidants either through free-radical 

polymerisation or by ring opening metathesis polymerisation (ROMP). Dale, in 1978, 

reported maleimide functionalised phenols for use in foodstuffs.[69] It was proposed that 

the molecular weight could be tuneable through radical polymerisation. The molecular 

weight could hence be increased to a level which prevented absorption into the cells in 

the body, therefore reducing potential toxicity issues associated with many synthetic 

antioxidants. Kim and co-workers also reported the radical polymerisation of their 

maleimide functionalised phenols (1.7-1.9) previously presented in Figure 1.9 (Scheme 

1.10). The functionalised polymaleimides exhibited high thermal stabilities in the range 

of 210-350 ᵒC which was above the targeted polymer processing conditions. In addition, 

these polymers were soluble in chloroform, acetone, ethyl acetate, tetrahydrofuran and 

dichloromethane but their solubility in non-polar solvents was not disclosed.  

 

 

 

Scheme 1.10 Synthesis of polymeric phenolic antioxidants from monomeric maleimide functionalities.  

Shehata and Farouk reported the synthesis of acrylic-based polymeric antioxidants 

(Scheme 1.11).[70] They observed that when the acrylic-based polymeric antioxidants 

were blended into a styrene butadiene rubber, excellent stability properties were 
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revealed when compared to a commercial antioxidant, N-isopropyl-N-phenyl-p-

phenylenediamine. Mechanical properties of the unaged styrene butadiene rubber were 

unaffected by the addition of the polymeric antioxidants and all of the elastomeric 

properties of the polymer were retained for a much longer time period under aging 

conditions.  

 

 

 

Scheme 1.11 Example synthesis of acrylic-based polymeric antioxidants, via solution polymerisation, 
as reported by Shehata and coworkers.[70] 

Free radical polymerisation does, however, come with its own limitations in particular 

when a peroxide is used as the radical initiator as it has been reported that sterically 

hindered phenols can be consumed by the peroxide species. Ring opening metathesis 

provides an alternative route to the polymerisation of monomer bound antioxidants.[71] 

The ruthenium catalysts, introduced by Grubbs and co-workers, have shown a high 

tolerance to a broad variety of functional groups in addition to a high level of control over 

polymer architecture.[72] A series of sterically hindered phenol functionalised 

norbornene derivatives were reported by Xue and co-workers by employing the so-called ǮGrubbs’ reaction (Scheme 1.12).[71]   

 

 

 

 

Scheme 1.12 Synthesis of polymeric norbornene derivatised phenolic antioxidants via ROMP where 
n=0 or 2.[71]    

The radical scavenging capability of the polymeric antioxidants were analysed using a 

stable radical assay. Results revealed that when n=2, the radical scavenging capability 

was greater than when n=0, therefore providing an insight into the structure-activity 

relationships of phenolic antioxidants.  
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Acyclic diene metathesis (ADMET) polymerisation also presents a feasible route to 

polymeric antioxidants and such methodology has recently been reported by Beer and 

co-workers (Scheme 1.13).[73]  ADMET polymerisation of α,ω-dienes affords a strictly 

linear, unsaturated polyethylene backbone and precise functionality placement can be 

achieved along the backbone.  

 

 

 

 

 

 

 

 

 

Scheme 1.13 Synthesis of polymeric antioxidants via ADMET polymerisation as reported by Beer and 
co-workers. 3,5-di-tert-butyl-4-hydroxy-cinnamic acid (1.14, 1.15) and 3-(3,5-di-tert-
butyl-4-hydroxy-phenyl)propionic acid (1.16, 1.17) derivatives are shown.[73]     

Evaluation of the antioxidant efficiency was achieved through the addition of the 

polymeric antioxidants to polypropylene. The commercial antioxidant Irganox 1010, a 

widely used stabiliser for polypropylene, was used as a comparison. Equimolar amounts 

of the sterically hindered phenols were applied to ensure comparable results and the 

oxidation induction time was initially analysed at 185 ᵒC, using differential scanning 

calorimetry. Results revealed that the 3,5-di-tert-butyl-4-hydroxy-cinnamic acid polymer 

(1.15) did not provide sufficient oxidative stability to the polypropylene sample in 

comparison to Irganox 1010 and it was proposed the conjugated double bond, present in 

3,5-di-tert-butyl-4-hydroxy-cinnamic acid, was responsible for this loss in performance. 

The 3-(3,5-di-tert-butyl-4-hydroxy-phenyl)propionic acid polymer derivative (1.17) did, 

however, increase the oxidation induction time to such an extent that the analysis 

temperature had to be raised to 200 ᵒC for the data to be gathered in a sensible time 

frame. At this higher temperature comparable concentrations of the 3-(3,5-di-tert-butyl-
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4-hydroxy-phenyl)propionic acid polymer (1.17) and Irganox 1010 revealed oxidation 

induction times of 34 minutes and 41 minutes, respectively. This study not only 

highlighted the structural relevance of a conjugated double bond on antioxidant activity 

but it also provided a positive conclusion that as a result of the higher molecular weight 

and good compatibility with polypropylene, enhanced long term stabilisation could be 

expected from the 3-(3,5-di-tert-butyl-4-hydroxy-phenyl)propionic acid polymer.  

Some additional immobilisation techniques have revealed the attachment of primary 

antioxidants to polymeric additives such as nanoparticles and nanotubes.[74,75] Gao and 

co-workers[75] presented the immobilisation of a sterically hindered phenol onto the 

periphery of nano-silica particles. The particles were blended into polypropylene and a 

greater oxidation induction time was observed for the bound antioxidant in comparison 

to its low molecular weight equivalent. Single-walled carbon nanotubes were 

functionalised with BHT derivatives by Lucente-Schultz and co-workers.[74] It was 

reported that not only efficient radical scavenging but also reduced cell toxicity was 

achieved in comparison to their low molecular weight derivatives therefore making these 

materials potentially suitable for therapeutic medical devices.  

Even though these approaches to antioxidant immobilisation have shown promising 

results particularly in the stabilisation of polyolefins, there are, however, limitations 

associated with these methodologies. Such limitations include high costs from expensive 

starting materials, phase separation and poor solubility within the polymer matrix. 

Therefore, in an attempt to target more cost effective and higher molecular weight 

antioxidants possessing both solubility within a hydrocarbon matrix and whilst 

possessing a high degree of functionality, attention has been drawn towards more 

structurally controlled and branched architectures such as dendritic macromolecules. 

1.5 Dendritic macromolecules 

The synthesis of polymers with highly controlled molecular architectures has gained 

increasing importance as a result of the rising demand for speciality polymers that 

possess novel properties.[76] Dendritic chemistries have been applied to many areas of 

science and has been shaped by collaborations between biologists, inorganic, organic, 

physical and polymer chemists in addition to contributions from other areas of chemistry 

such as analytical, industrial and theoretical.[77] Dendrons, dendrimers and 

hyperbranched polymers are all classified as dendritic macromolecules. One of the 
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intriguing properties of their architecture is the large number of end groups that may be 

modified to afford macromolecules with tailored chemical and physical properties.  Flory 

was the first to introduce the concept of hyperbranched polymers, however at the time 

of this report the studies were purely theoretical in nature.[78] Synthetic investigations on 

hyperbranched polymers[79] was, however, carried out in the late 1970s which revealed 

irregularly branched macromolecules with polydispersity both in terms of molecular 

weight characteristics and branching factors. Focus was quickly directed to highly branched Ǯstarburst’ and Ǯarboral’ structures, independently reported by Tomalia[80,81] 

and Newkome[82–84], which are now more commonly referred to as Ǯdendrimers’. These 
new dendrimers were similar to hyperbranched polymers in that they consisted of three 

structural regions: a central core, layered branching units and terminal groups. However, 

when all of the branched end groups were fully reacted, these structures afforded a highly 

and perfectly branched, mono-disperse spherical polymer. A schematic representation of 

the key structural features of a dendrimer is shown in Figure 1.10.  

 

 

 

 

 

 

Figure 1.10 A schematic representation of the structural characteristics of a dendrimer.  

Dendrimers are constructed in a step-wise manner by repeatable synthetic steps with each repetitive cycle creating an additional layer of branches or Ǯgenerations’. Two major 
synthetic approaches have successfully emerged and are referred to as either a divergent 

or convergent approach.  

In 1981, Denkewalter[85,86] reported the first globular polymers prepared by a repetitive 

stepwise process originating from a polyfunctional core; a process which is now referred to as Ǯdivergent growth’. The drawback to this report was that the products obtained were 
poorly characterised and it was believed they were highly contaminated with unwanted 

structures therefore rendering them far from what would now be described as a true 
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dendrimer.[87] The potential of the divergent growth approach, however, was realised by 

both Tomalia[80] and Newkome[82] who used building blocks and synthetic steps that 

preserved a high degree of symmetry about the branching points. The key feature of 

divergent growth involves the dendrimer being grown radially outwards from a central 

polyfunctional core by the addition of  typically ABx type monomers in a series of coupling 

and activation processes.[88–91] The molecular size and the number of chain ends increase 

with each new generation in proportion to the functionality of the ABx monomer. A 

schematic representation of this growth method is shown in Scheme 1.14. 

 

 

 

 

Scheme 1.14 Dendritic growth via the divergent approach.[91] 

A limitation associated with the divergent growth strategy is that the number of chain 

ends increases rapidly at each stage of the growth process. This leads to a number of 

potential problems as the growth progresses. Firstly, any incomplete reaction of the 

terminal groups can lead to imperfections in the subsequent generation, with the 

probability of these imperfections increasing with the increasing growth. Secondly, in 

order to obtain a monodisperse higher generation dendrimer, a large excess of reagent is 

required to prevent side reactions and ensure full conversion of all terminal groups. Even 

though the divergent approach has proven successful for a range of dendrimer 

syntheses,[80,82,92,93] it still remains a relatively uncontrolled process.  

In an attempt to overcome the limitations associated with the divergent approach, 

Hawker and Fréchet[90,94] developed an alternative Ǯconvergent’ growth where their 

initial reports demonstrated the synthesis of dendritic polyethers based on the 3,5-

dihydroxybenzyl alcohol monomer. By exploiting the symmetrical nature of dendrimers, 

the convergent approach initiates growth from the chain ends and repetition of the 

coupling and activation proceeds towards a focal point to afford larger and larger dendritic fragments or Ǯdendrons’. The final reaction required the attachment of these 

fragments to a polyfunctional core.[87,88,91] A schematic representation of this growth 

method is shown in Scheme 1.15. 
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Scheme 1.15 Dendritic growth via a convergent approach where T represents a terminal group, X/Y are 
reactive groups and P is a protected group.[91] 

Unlike the divergent approach, generation growth using convergent methodology 

involves coupling reactions at a predetermined and constant number of reactive sites of 

a monomer rather than at an ever increasing number of sites associated with a growing 

dendrimer. This approach, therefore, leads to a greater degree of control over the purity 

and structural integrity of both the individual dendrons and the final dendrimer. A 

limitation of this approach, however, is the requirement that increasingly larger 

dendrons must be used for generational growth, leading to potential steric problems at 

the final coupling stage. Nevertheless, the convergent growth approach has been utilised 

in the synthesis of a range of dendrimers possessing various functionalities including 

polyesters,[95,96] polyamines,[97,98] polyethers,[99] polyphenylenes[100] and 

polyetherketones[101]. Considering the large number of steps involved in the synthesis 

and purification of higher generation dendrimers, it is desirable to simplify the 

preparation. Hence, with the advent of new chemical techniques and improved synthetic 

methodologies dendrimers can now be prepared more efficiently and in shorter reaction 

times than ever before. As first described by Kolb and co-workers[102], a particular 

framework of highly efficient chemical reactions (yields >99%) classed as Ǯclick’ chemistry has recently opened up the field of dendrimer synthesis. ǮClick’ chemistry is a 
term used to describe a chemical reaction which joins together small units to generate 

substances quickly and reliably in high yield. Some of the more successful Ǯclick’ 
chemistry reactions, in terms of dendrimer synthesis, include copper-catalysed azide-

alkyne cycloaddition (CuAAC)[103], UV initiated thiol-ene coupling (TEC)[104] and the Diels-

Alder reaction[105]. These robust reactions are highly selective, known to proceed in a 

variety of solvents and have simple, non-chromatographic purification methods. From an 

industrial point of view these are all desirable properties when considering a scalable 

process.  
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A highly controlled architecture is not the only advantage dendrimers have over linear 

macromolecules. Some unique viscosity and solubility characteristics have also been 

realised from a number of dendrimer studies.[100,106,107] When a dendrimer is in solution, 

the volume occupied by a single molecule increases slowly with generation whereas its 

mass increases rapidly.[108]  This growth pattern, associated with dendrimers, determines 

the solution properties and causes a deviation from the properties of liner molecules 

especially those with high molecular weights. This deviation has been measured using 

the physical parameter of intrinsic viscosity. In contrast to linear polymers, the intrinsic 

viscosity of dendrimers does not increase with molecular mass but reaches a maximum 

at a certain dendrimer generation.[92,109] It is believed that a gradual transition in overall 

shape, from a more extended arrangement for lower generation dendrimers to a compact 

globular shape for higher generation dendrimers, causes the deviation in physical 

behaviour of dendrimers from those of linear macromolecules.[108]  

Among the large number of innovative multi-functional polymers reported in the 

literature, those based on 2,2-bis(hydroxymethyl)propionic acid (bis(MPA)) as the 

building block have gained significant interest. Bis(MPA) is a commercially available, 

simple, pro-chiral molecule with a molecular weight of 134.06 g mol-1 and features two 

hydroxyl moieties and one carboxylic group (Figure 1.11).   

 

 

Figure 1.11 The structure of 2,2-bis(hydroxymethyl)propionic acid (bis(MPA)). 

A variety of novel polymeric scaffolds have been developed using the single AB2 

monomer, bis(MPA).[110,111] The first indication of the usefulness of bis(MPA) as a 

monomer for the synthesis of highly complex polymers was reported by Hult and co-

workers.[112] A series of esterification reactions were employed to reach up to generation 

4 via a convergent growth approach.  The large number of growth and deprotection steps, 

however, prompted development of a slightly improved strategy hence a Ǯdouble-stage’ 
convergent approach was reported.[88] This approach saw the focal point of each single 

dendron coupled in a divergent manner to the outside of another dendron or dendrimer 

which had been prepared independently by convergent or divergent growth. This 

method was used to prepare a fourth generation tridendron dendrimer based on 2,2-
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bis(hydroxymethyl)propionic acid (bis(MPA)). If a strictly convergent or divergent 

process was used to synthesise this dendrimer seven synthetic steps and three 

purifications would be required. By using a combination of both growth procedures, the 

synthetic steps are reduced to six with only two purification steps. The synthetic route to 

one of bis(MPA) dendrons is shown in Scheme 1.16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.16  Double-stage convergent approach for the synthesis of the fourth generation 
monodendron based on bis(MPA).[88] 

Further improvement to the synthesis of these polyester dendrons was realised by 

Fréchet and co-workers who exploited the inexpensive anhydride activated benzylidene 

protected bis(MPA).[113] Iterative esterification and hydrogenolysis deprotection yielded 

a monodisperse fifth generation dendrimer possessing 96 terminal hydroxyl groups.  

Even though some impressive macromolecules have been generated using these growth 

procedures, the esterficiations typically rely on the use of the coupling agent N, N’-
dicyclohexylcarbodiimide (DCC) which requires toxic catalysts such as 

4-(dimethylamino)pyridine (DMAP) and lengthy purification procedures. Very recently, 
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Malkoch and co-workers presented an approach to polyester dendrimers which was 

described as novel, efficient, scalable and sustainable and eliminated the use of DCC and 

toxic catalysts.[114] The approach was based on fluoride-promoted esterification using 

imidazolide-activated bis(MPA) monomers, and a sixth generation bis(MPA) dendrimer 

was generated possessing an impressive 192 terminal hydroxyl moieties. Using this 

protocol the time taken to synthesise and isolate the sixth generation dendrimer 

macromolecule was less than one day which highlights the incredible advances in 

dendrimer synthesis.  

Although the homofunctional dendrimers described can offer a large degree of peripheral 

functionality, an interest in multi-functional systems has driven the chemistry of 

bis(MPA) dendrimers towards the development of more complex materials. The first 

heterofunctional bis(MPA) dendrimer was reported by Fréchet and co-workers in 2002 where they were termed Ǯbow-tie’ dendrimers ȋFigure 1.12) (also referred to as ǮJanus’ 
dendrimers).[115] 

 

 

Figure 1.12 Schematic representation of a heterofunctional, Ǯbow-tie’ dendrimer, consisting of a 
central core, generational growth and different terminal functionalities.  

Heterofunctional dendrimer architecture gives access to both a high degree of 

functionality and tailored solubility while maintaining a well-defined structure. This 

poses an interesting application for antioxidant immobilisation whereby the diffusion 

and phase-separation issues observed previously for polymeric antioxidants could be 

targeted. Rissanen and co-workers have reported a series of bisfunctionalised ǮJanus’ 
molecules based on the bis(MPA) monomer, an example of which is presented in Figure 

1.13.[116–118] 
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Figure 1.13 Example of a ǮJanus’ dendrimer reported by Rissanen and co-workers bearing bis(MPA) 
and 3,4-bis-hexyloxybenzoic ester terminal groups. 

The series of amphiphilic Janus dendrimers were analysed for their thermal behaviour 

and were of particular interest because of their two distinct terminal groups of 

significantly different polarity. It was revealed, using thermogravimetric analysis, that 

the degradation temperatures ranged from 241-308 ᵒC. This is a promising result and it 

would be interesting to see if through the functionalisation of the hydroxyl end groups 

with sterically hindered phenol derivatives the thermal stability remains in this higher 

temperature range. In terms of antioxidant immobilisation, dendritic chemistry has 

revealed very few examples of being used for such an application. There have been no examples in the literature of a Ǯtrue’ dendrimer being functionalised with antioxidant 
moieties, possibly a result of the many synthetic steps to reach the higher generations 

and functionalities. One example was reported, however, by Bergenudd and co-

workers.[119] In this case a bis(MPA) hyperbranched polymer was functionalised with a 

sterically hindered phenol derivative. A hyperbranched polymer contains a mixture of 

linear and fully branched ABx repeating units and from an industrial point of view are a 

good, cost-effective alternative to dendrimers.[120] They can be produced on a large scale 

at a reasonable cost and still present some of the properties associated with dendrimer 

architectures even though irregularity is present within the structure.[121] Several 

methods can be used to synthesise hyperbranched polymers including the self-

condensation of AB2 monomers. Aliphatic hyperbranched polyesters have been studied 

extensively and the esterification is usually carried out in the bulk using an acid catalyst. 

This class of macromolecule has also been industrially developed by Perstorp Speciality 

Chemicals with applications ranging from radiation-curable resins, binders, lubricants 

and thermoset plastics.  
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Bergenudd and co-workers reported[119] the synthesis and analysis of three 

hyperbranched antioxidants based on the hyperbranched polyester Boltorn® which is a 

commercial product from Perstorp Speciality Chemicals. Boltorn® is based on a 

pentaerythritol core and bis(MPA) monomers. A core molecule is typically used to control 

the polycondensation and prevent the formation of insoluble cross-linked polymeric 

materials.[121] Boltorn® has a large number of hydroxyl end groups which can be 

chemically modified to meet the desired properties.  Second, third and fourth generation   

Boltorn® was modified with 3-(3,5-di-tert-butyl-4-hydroxy-phenyl) propionic acid and 

then blended into both squalane and polypropylene. The oxidation induction time was 

analysed and results revealed that all three generations provided superior oxidative 

stability to squalane in comparison to the commercial antioxidant Irganox 1010. 

Interestingly, insignificant stability was achieved in polypropylene blends and it was 

proposed the hyperbranched antioxidants had low mobility within the polymer matrix. 

This reveals an opportunity to develop this concept further by targeting solubility 

through the introduction of alkyl chains into the dendritic architecture.    

1.6 Conclusion 

An introduction to the oxidative degradation pathway of hydrocarbon based materials 

has been discussed. Antioxidants, predominantly sterically hindered phenol and 

diphenylamine derivatives, have revealed excellent oxidative stability properties. 

However, the low molecular weight of these discrete compounds has caused significant 

migration issues, most notably within polyolefins.  A solution to this problem, referred to 

as antioxidant immobilisation, has been discussed whereby polymeric antioxidants have 

been developed to not only provide enhanced stability to a material but also reduced 

volatility at high temperatures. An array of polymer architectures have been reported, 

however, these come at a cost by often requiring expensive starting materials and 

catalysts. In addition, poor dispersion within a hydrocarbon matrix has been 

encountered. Dendritic macromolecules provide an alternative route to antioxidant 

immobilisation by using relatively cheap starting materials to produce highly 

functionalised, well-defined and disperse architectures. In comparison to the polymeric 

antioxidant immobilisation methods described, dendritic antioxidants remain a 

relatively new area of research and hence is the focus of this thesis.  
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1.7 Aims of the research 

Dendritic macromolecules present an interesting architecture which is well-defined 

whereby a high degree of functionality can be accessed through the iterative growth of 

branching units surrounding a central core. Using these unique structural characteristics, 

higher molecular weight antioxidants can therefore be targeted with select 

functionalities.  

The initial aim of this project was to develop a series of antioxidant functionalised 

polyester dendrons synthesised through the growth of the AB2 monomer bis(MPA). The 

intention was to provide a high degree of sterically hindered phenolic end groups for 

enhanced oxidative stabilisation properties, good solubility within a hydrocarbon and 

good thermal stability with a resistance to volatilisation at high temperatures (Chapter 

2).   

Alternative functional core monomers were also investigated with a focus on low cost 

and commercial availability. Hence, glycerol and triethanolamine (TREN) were targeted 

and subsequently functionalised with antioxidant moieties and solubilising alkyl chains 

to yield a series of first generation polyester antioxidants (Chapter 3).  

Through the enhancement of the hindered phenolic polyester dendrons, synthesised in 

Chapter 2, it was envisaged that by incorporating a diphenylamine derivative into the 

same branching unit as the hindered phenol, synergistic antioxidant properties could be 

targeted (Chapter 4).  

The literature has highlighted numerous studies into the structural and functional 

characteristics of hindered phenols, however the analysis procedures reported do not 

often correlate hence comparison of results remains problematic. A radical scavenging 

assay, which is easily accessible, was therefore investigated with the aim to understand 

structure-activity relationships of new sterically hindered phenolic antioxidants 

(Chapter 5). 
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Chapter 2  

 

Synthesis and Analysis of a Series of Novel Dendritic Phenolic Antioxidants 

 

Abstract 

Antioxidants are essential for providing organic compounds with protection against 

oxidative degradation. Current antioxidants, particularly those designed for use in 

hydrocarbon media, suffer from a variety of limitations including high volatility and poor 

solubility. In order to overcome these issues, a series of dendritic antioxidants have 

therefore been designed and synthesised. Using 2,2-bis(hydroxymethyl)propionic acid 

(bis(MPA)) as the branching unit, a divergent synthetic approach was employed to yield 

a range of dendritic polyesters, using N,N’-dicyclohexylcarbodiimide as the coupling 

reagent. A hindered phenolic, 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid, was 

appended to the hydroxyl terminated polyesters to provide the  antioxidant functionality. 

The thermal stability, assessed by thermogravimetric analysis (TGA), revealed that all of 

the functionalised dendrons have increased thermal stability when compared to 

2,6-di-tert-butyl-4-methylphenol (BHT). Antioxidant ability was evaluated using 

differential scanning calorimetry (DSC) and when blended into a lubricant base oil, at 

0.5% w/w, an increase in antioxidant performance was observed when compared to 

current industrial antioxidants. 

 

2.1 Introduction 

With a constant effort to reduce worldwide automotive emissions and meet the ever 

tightening environmental legislation controlling Original Equipment Manufacturers 

(OEMs), current fuel and lubricant additives need to be advanced or replaced.[1–3] 

Significant pressure on fuel suppliers is being applied by the Government and Legislative 

Bodies to reduce emissions and also consumer behaviour is changing towards more 

environmentally friendly preferences.[1–3] The requirement for enhanced fuel and engine 

efficiency is also a growing demand, both of which can be improved through the use of 

additives which serve to protect the fuel and engine from degradation.  
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The oxidative degradation of organic materials has been studied for many years and 

materials derived from petroleum, such as gasoline, diesel and lubricants, are particularly 

susceptible as a result of harsh conditions within a combustion engine.[4–7] High 

temperatures and pressures in the presence of air and metal contaminants all contribute 

to the acceleration of oxidative degradation.[8,9] The oxidation process of liquid 

hydrocarbons was first proposed by Bolland and Gee in 1946 who described a free radical 

pathway.[10,11] Since then, the mechanism of oxidation has been investigated extensively 

and these studies highlighted a complex process where by-products are formed such as 

acids, alcohols, aldehydes, ketones and higher molecular weight hydrocarbons.[8,9,12–16]  

Collectively, these by-products cause discolouration, increased viscosity and eventual 

physical failure of both the petroleum based product and the combustion engine. The rate 

of this detrimental process can be decreased if alkyl peroxy radicals, produced in the 

oxidative process, are scavenged efficiently.[17] Additives such as antioxidants are 

introduced into hydrocarbon materials in order to extend their lifetime.[8,9,11,16] A class of 

compounds described as hindered phenolics have been studied comprehensively for 

their radical scavenging ability in petroleum based-products.[17–22] It has been found that 

phenolic antioxidants act by interrupting the reported[10] radical pathway by providing a 

more labile proton when compared to the hydrocarbon species. This scavenging 

mechanism is highlighted in Figure 2.1 for the antioxidant BHT and shows that phenolic 

antioxidants can directly remove a number of radicals from the oxidation chain reaction. 

This is achieved by both liberation of a hydrogen radical and through radical coupling 

processes, consequently inhibiting the oxidation pathway.[9]  

 

 

 

Figure 2.1 Proposed mechanism of radical scavenging of BHT.  

There are many examples of both synthetic and natural hindered phenols (Figure 2.2) 

demonstrating varying methods to connect BHT-like functionalities and a number of 

studies have been dedicated to determine structure-activity relationships.[23–28] 
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Figure 2.2 Examples of synthetic and natural phenolic antioxidants: BHT, 4,4’-methylenebis(2,6-di-

tert-butylphenol) and α-tocopherol from vitamin E. 

Antioxidants are, however, eventually consumed either through chemical loss, from their 

antioxidant action, or physical loss.[16,29,30] Physical loss is influenced by factors such as 

volatilisation and precipitation out of the hydrocarbon matrix and often adding a larger 

amount of the antioxidant at the start would compensate for this loss.[16,29,30] This, 

however, has its own disadvantages in that antioxidants often have limited solubility in 

hydrocarbons and are also relatively expensive. In order to overcome the current issues 

facing hydrocarbon additives, a series of phenolic-based analogues were prepared with 

an increasing number of antioxidant units. A branched alkyl chain was also incorporated 

to aid solubility in hydrocarbon media such as base oils. The structure of the analogues 

was based on a dendritic design whereby a central linker can be extended to increase the 

number of reactive end group functionalities. The antioxidant potencies were evaluated 

using a series of thermal and oxidative tests including thermogravimetric analysis (TGA) 

and differential scanning calorimetry (DSC). 

 

2.2 Results and Discussion 

Aliphatic polyesters are the focus of this chapter as it was anticipated that an aliphatic 

core will have better solubility in a hydrocarbon medium than a fully aromatic structure. 

The proposed use for these compounds is incorporation into fuels or lubricants and it 

was hypothesised the additional oxygen provided by the polyester moieties could aid 

cleaner fuel combustion. The design of a series of antioxidant functionalised dendrons 

was inspired by an aliphatic hyperbranched polyester, Boltorn®. This hyperbranched 

polyester was first developed by Hult and co-workers with a structure based around 

bis(MPA) and to date its primary use has been in the coatings industry.[31–34] Boltorn® is 

of particular interest because of its ability to access a range of molecular weights with a 

large number of hydroxyl end groups which can be chemically modified to meet a range 
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of properties such as antioxidant capability. With these targets in mind, a more 

structurally controlled antioxidant functionalised dendron was designed with bis(MPA) 

as the central core. A branched alkyl chain was introduced to the central core to aid 

solubility in a hydrocarbon medium and higher molecular weight generations were 

accessed through further reaction with bis(MPA).  

2.2.1 Synthesis and Characterisation 

A series of branched polyester hydroxyl linkers were synthesised using a divergent 

approach, with initial attempts utilising Fischer esterification methodology. Direct 

esterification was proposed as a potential route to a first generation hydroxyl linker to 

avoid the use of the multiple steps required in protection chemistry. Fischer esterification 

involved reacting bis(MPA) with 2-ethylhexanol as the solvent in the presence of 

concentrated sulfuric acid at a temperature of 160 ᵒC (Scheme 2.1).  

 

 

 

Scheme 2.1 Fisher esterification of bis(MPA) and 2-ethylhexanol. 

This methodology is a well-established route for forming ester linkages and has been 

applied to industrial scale processes, however, the desired product 2.1 for this reaction 

was not achieved. The polyesterifcation of bis(MPA) to produce highly branched 

polymers has been studied and through using concentrated sulfuric acid as the catalyst 

and a temperature of 140 ᵒC a range of hyperbranched polymers, derived from bis(MPA), 

have been successfully synthesised by MalmstrÖm and co-workers.[34,35] Bis(MPA) 

possesses both acidic and alcoholic functionalities allowing it to homopolymerise in the 

esterification process. Therefore, an alternative approach was developed to utilise 

protection chemistry to prevent polyesterification, an approach often taken in the 

controlled synthesis of dendrimers.[36–39]   

The synthetic procedure used to reach the first generation hydroxyl linker is summarised 

in Scheme 2.2. Synthesis originated with the successful protection of the 1,3-diol moiety 

of bis(MPA) with an acetonide group (2.2). This was achieved by reaction of bis(MPA) 

with 2,2-dimethoxypropane (DMP) and a catalytic amount of p-toluene sulfonic acid 
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(TsOH) in acetone. This reaction was carried out at room temperature and afforded high 

yields (ca. 80%).  

 

 

 

 

 

Scheme 2.2 Synthesis of the first generation hydroxyl linker based upon bis(MPA). 

Protection of the 1,3-diol was confirmed through IR spectroscopic analysis (Figure 2.3) 

whereby the alcoholic –OH stretch at 3364 cm-1 was not evident in the spectrum of the 

acetonide protected bis(MPA). 

 

 

 

 

 

 

 

Figure 2.3 Overlay of FTIR spectra to show the protection of bis(MPA) with an acetonide group to 

yield 2.2. 

A Steglich esterification approach, using N,N’-dicyclohexylcarbodiimide (DCC) as the 

coupling agent,  was employed for the synthesis of 2.3 and all further esterifications 

reported in this chapter.[40] Initial reactions utilised 4-dimethylaminopyridine (DMAP) as 

the catalyst, common to many esterification reactions of this type, however yields 

obtained via this approach were typically low (ca. 40%). An alternative esterification 

catalyst, 4-(dimethylamino)pyridinium-4-toluenesulfonate (DPTS) (Figure 2.4), was 

first reported by Moore and Stupp.[41] The advantages of using DPTS were probed by 
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studying the esterification of simple compounds. It was noted that when solely using the 

traditional catalyst DMAP, significant amounts of the inactive acyl urea formed but upon 

introduction of an acid catalyst, TsOH, the acyl urea formation was suppressed.[41] The 

optimal ratio of DMAP to TsOH was subsequently found to be 1:1 and the compound DPTS 

can accurately deliver this ratio to the reaction medium.[41] 

 

 

Figure 2.4:  4-(Dimethylamino)pyridinium-4-toluenesulfonate 2.4 - DPTS catalyst. 

The DPTS catalyst was synthesised following the method described by Moore and Stupp 

but with the modification of substituting the solvent benzene for toluene. Using DPTS at 

60 mol% the yield of the ester 2.3 improved from ca. 40% to 90%. 1H NMR spectroscopic 

analysis confirmed the formation of the desired ester linkage as the methylene proton 

resonances, evident at 3.5 ppm for the 2-ethylhexanol starting material, were subjected 

to a downfield shift to 4.07 ppm in 2.3 as a result of the electron withdrawing effect of 

the newly formed ester bond. 13C NMR spectroscopic analysis also confirmed the 

generation of the desired ester moiety as a characteristic ester carbonyl 13C resonance 

was observed at 174 ppm. DCC mediated coupling has also been shown to provide a 

successful route to esterification under mild conditions with functional group 

compatibility. Alternative esterification methods were investigated for the synthesis of 

2.3 which included anhydride coupling and acyl chloride activation of the carboxylic acid, 

however in these cases the yields were poor (<50%).  

To yield the first generation hydroxyl linker 2.1, the acetonide group was removed easily 

to regenerate the diol moiety. This was achieved by stirring the protected diol (2.3) in 

methanol in the presence of an acidic Dowex 50W-X8 resin at 50 ᵒC. The reaction was 

monitored closely by thin layer chromatography and complete deprotection was seen 

within a few hours. Deprotection was confirmed using 13C NMR spectroscopy whereby 

the characteristic acetonide 13C resonance at 98 ppm was no longer observed (Figure 

2.5). Furthermore, FTIR spectroscopic analysis revealed the reappearance of the 

characteristic hydroxyl absorption at 3411 cm-1. The FTIR spectra also revealed a 

prominent alkyl absorbance at 2933 cm-1 from the alkyl chain attached in the previous 

esterification step. 
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Figure 2.5 13C NMR spectra of 2.3 and 2.1 to reveal the disappearance of the acetonide resonance at 

98 ppm indicating that deprotection was complete.  

Using the first generation hydroxyl linker 2.1, higher generation hydroxyl terminated 

polyesters could be accessed using the same protection and deprotection strategy 

outlined previously. The second generation polyester hydroxyl linker 2.6 was generated 

by the route shown in Scheme 2.3. DCC mediated coupling was utilised again to esterify 

2.1 and 2.2 to produce the diacetonide triester 2.5. Successful synthesis of the triester 

2.5 was confirmed by 13C NMR spectroscopic analysis where the characteristic tertiary 

carbon resonance, from the acetonide protecting group, was apparent at 98.1 ppm. In 

addition, using 1H NMR spectroscopy, the triplet assigned to the terminal hydroxyl 

protons at 3.09 ppm was not evident and a new singlet at 4.33 ppm corresponding to the 

newly attached methylene protons from the protected bis(MPA) was present. 

Deprotection of 2.5, using Dowex 50W-X8 resin, yielded the hydroxyl terminated second 

generation linker in good yield (ca. 70%). 1H NMR spectroscopic analysis revealed 

successful deprotection with the observation of a multiplet at 3.22 ppm assigned to the 

terminal hydroxyl protons. FTIR spectroscopic analysis also revealed a hydroxyl stretch 

at 3261 cm-1 to reinforce that the deprotection had been achieved.  
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Scheme 2.3 Synthesis of the second generation hydroxyl linker 2.6. 

In addition, the increase in hydrogen bonding from first (2.1) to second (2.6) generation 

esters was also evident, whereby a shift in the hydroxyl stretch was observed from 

3384 cm-1 to 3261 cm-1 (Figure 2.6).  

 

 

 

 

 

 

 

 

Figure 2.6 FTIR spectroscopy overlay showing an increase in hydrogen bonding from first (2.1) to 

second (2.6) generation esters. 

A final generation of hydroxyl linker 2.8 was synthesised following Scheme 2.4. Again, 

DCC mediated coupling was employed to yield the hepta-ester 2.7. At this stage, a large 

excess of 2.2 was required to ensure complete reaction of all four of the terminal hydroxyl 

units leading to solubility issues in the reaction medium used and thus the yield was 

significantly lower, at ca. 40%, than previous reactions of this kind.  
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Scheme 2.4 Synthesis of the third generation polyester hydroxyl linker 2.8. 

Complete reaction of the terminal hydroxyl moieties to yield 2.7 was observed by FTIR 

spectroscopic analysis which revealed the absence of the hydroxyl stretch, evident in the 

spectra of 2.6 at 3261 cm-1. Successful coupling of the acetonide protected bis(MPA) (2.2) 

was further confirmed by use of 13C NMR spectroscopy by the presence of the tertiary 

carbon resonance at 98.1 ppm in the spectrum. As observed previously, the acetonide 

protecting group could be removed in good yield (ca. 80%), in this case affording the 

hydroxyl terminated third generation hepta-ester 2.8. The insolubility of 2.8 in CDCl3 

unfortunately renders comparison of the 1H NMR resonances difficult as a result of the 

differences in chemical shift between CDCl3 and DMSO-d6. In DMSO-d6 a triplet was, 

however, evident at 4.65 ppm which integrated to 8 protons as expected for the terminal 

hydroxyl functionalities. In addition, FTIR spectroscopic analysis demonstrated the re-

appearance of the hydroxyl stretch at 3286 cm-1 in addition to mass spectrometric 

analysis confirming the molecular weight [M+Na]+ (C43H74O22) m/z = 965.4564 (Calc. 
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965.4564). In summary, three generations of hydroxyl terminated bis(MPA) polyesters 

have been synthesised successfully in good yield.  

The antioxidant functionality was then introduced in a divergent approach utilising the 

proven DCC mediated coupling route. The sterically hindered phenol 3-(3,5-di-tert-butyl-

4-hydroxy-phenyl)-propionic acid was chosen as the terminal unit in order to provide 

antioxidant functionality to the hydroxyl linkers of the bis(MPA)-based ester dendrons 

(Figure 2.7).  

 

 

 

Figure 2.7 Structure of sterically hindered phenolic 3-(3,5-di-tert-butyl-4-hydroxy-phenyl)-

propionic acid, used for its antioxidant capabilities. 

As highlighted previously, sterically hindered phenols have been shown to provide 

excellent antioxidancy in a range of applications from the natural environment to food, 

plastics and lubricants. 3-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-propionic acid was 

chosen for a number of chemical characteristics in addition to its commercial availability.  

The sterically hindered phenol possesses an acid moiety making it suitable for DCC 

esterification, it also possesses a two carbon chain linker between the aromatic ring and 

the acidic functionality which was believed to aid the solubility of the final compound in 

a hydrocarbon-based medium. 3-(3,5-Di-tert-butyl-4-hyroxy-phenyl)-propionic acid was 

coupled to the hydroxyl chain ends of the first generation hydroxyl linker (2.1), as shown 

in Scheme 2.5, to obtain the desired diphenol (2.9) in good yield (ca. 75%). The product 

was purified by flash column chromatography to yield a viscous, colourless oil.  

 

 

 

 

 

Scheme 2.5 Attachment of antioxidant functionality to the first generation hydroxyl linker.  
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1H NMR spectroscopic analysis revealed the successful coupling of the antioxidant 

functionality to the first generation hydroxyl linker 2.1 as shown in Figure 2.8. The 

singlet observed at 5.08 ppm was assigned to the phenolic protons and has an integral of 

2H to confirm full reaction of the terminal 1,3-diol from the first generation linker. In 

addition, a downfield shift of the bis(MPA) methylene resonances to 4.23 ppm is observed 

and the previously seen doublets, as a result of splitting from the terminal hydroxyls, 

coalesce to a singlet (highlighted in green in Figure 2.8). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 1H NMR spectra displaying coupling of antioxidant functionality to the first generation 

hydroxyl linker.  

The second and third generation polyester hydroxyl linkers were subject to the same 

synthetic route as described for the first generation ester to yield the respective tetra- 

(2.10) and octa- (2.11) phenolic esters (Figure 2.9). The second generation tetraphenol 

2.10 was obtained as a low melting point glassy solid (m.p 42 ᵒC). 13C NMR spectroscopic 

analysis revealed the successful addition of the antioxidant end groups to the hydroxyl 

linker 2.6 by the presence of a resonance at 152.2 ppm corresponding to the aromatic 

carbon adjacent to the phenolic functionality. In addition, new resonances were evident 
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between 120 and 140 ppm corresponding to the aromatic carbon atoms. Further 

confirmation by 1H NMR spectroscopic analysis shows, when integrated with respect to 

the terminal methyl protons of the solubilising alkyl chain, a singlet at 1.42 ppm 

corresponding to 72 protons of the eight tert-butyl groups on the antioxidant unit. 

Furthermore, the broad multiplet evident at 3.21 ppm, observed in the second generation 

hydroxyl linker (2.6), was not visible indicating complete reaction of the hydroxyl end 

groups.  
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Figure 2.9 Structures of the second generation (2.10) and third generation (2.11) antioxidants, 

respectively. 

The third generation octaphenol 2.11 required an adapted synthesis to generate 

successfully the desired product. An alternative solvent was used to overcome the 

insolubility of the third generation hydroxyl linker in dichloromethane. 

Dimethylacetamide was found to be one of the few compatible solvents and DCC and 

DPTS were used as described previously.  The purification of the octaphenol 2.11 proved 

to be challenging with initial precipitation into water to remove the dimethylacetamide, 

followed by dissolution in dichloromethane and multiple washings with sodium 

hydroxide to remove the excess 3-(3,5-di-tert-butyl-4-hydroxy-phenyl)-propionic acid. 

Flash column chromatography was then used to remove traces of the 

N,N’-dicyclohexylurea (DCU) by-product from the esterification process, however, a 

second pass over the column was required to remove the trace impurities. The 

octaphenol 2.11 was yielded as a white solid in yield of only ca. 15%. The lengthy 

purification process suggests that impurities and solvent are easily trapped within the 

large structure of the compound. Entrapment of small molecules within dendritic 

structures has been reported in the literature most notably by Meijer and co-

workers.[42,43] This work described that once small molecules were trapped within the 

dendritic structure, diffusion out into the surrounding environment was extremely slow. 

The low yield of the octaphenol 2.11 was attributed to the bulkiness surrounding the 

hydroxyl end groups of the third generation hydroxyl linker (2.8) which could potentially 

inhibit the successful coupling using DCC. An alternative method of esterification, such as 

acyl chloride activation of the 3-(3,5-di-tert-butyl-4-hydroxy-phenyl)-propionic acid, 

may actually improve the yield in this case by reducing the bulkiness of the coupling 

reagents and also preventing the formation of unwanted by-products such as DCU. 

Confirmation of the successful isolation of 2.11 was determined by 1H NMR spectroscopy 

(Figure 2.10). By integrating the methylene protons adjacent to the ester linkage of the 

solubilising alkyl chain (a singlet at 1.41 ppm, 2 protons) with respect to the protons of 

the tert-butyl groups of the antioxidant terminal units (a singlet at 1.41 ppm, 144 

protons) complete conversion of the terminal hydroxyl moieties was ascertained.  
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Figure 2.10 1H NMR spectra for generation 3 octaphenol 2.11. 

FTIR spectroscopic analysis also confirmed complete reaction of all of the hydroxyl end 

groups. The broad absorbance at 3287 cm-1 in the third generation hydroxyl linker 2.8 

was suppressed in the third generation octaphenol 2.11. In addition, a new absorbance 

was observed at 3642 cm-1 in accordance with the coupled phenolic functionalities. 

 

 

 

 

 

 

 

Figure 2.11 Overlay of the FTIR spectra of 2.8 and 2.11 to show complete consumption of the hydroxyl 

end groups.   

Thermal analysis of all of the dendritic antioxidants (2.9, 2.10 and 2.11) by differential 

scanning calorimetry revealed a glass transition temperature (Tg) for each compound at 
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-6.17 ᵒC, 23.37 ᵒC and 43.83 ᵒC, respectively. The differences in the glass transition 

temperatures correspond well with the physical appearance of each generation, ranging 

from a viscous oil (2.9) to a powder (2.11), and an increase of ca. 20 ᵒC was recorded for 

each generational increase in molecular weight (767.10>1506.10>3026.00). 

 

 

 

 

 

 

 

 

Figure 2.12 A DSC thermogram overlay for the first (2.9), second (2.10) and third (2.11) generation 

polyphenols showing the mid-point glass transition (Tg). 

In summary, three generations of antioxidant functionalised polyester dendrons have 

been synthesised successfully. The synthetic pathway used to generate the first (2.9) and 

second generation (2.10) dendrons was scaled up to 100 g which shows potential for use 

in industry. 

2.2.2 Thermal Stability Studies 

Thermogravimetric analysis was used to probe the thermal stability characteristics of the 

synthesised generational series of antioxidants 2.9-2.11. One of the key issues of current 

antioxidants, as discussed, is volatilisation from the bulk material and it was postulated 

that by increasing the molecular weight of the antioxidant this effect could be reduced. 

Analysis was carried out under a nitrogen atmosphere and the samples were heated 

gradually at 10 ᵒC/minute from ambient temperature to 500 ᵒC. The thermal stability of 

the diphenol 2.9 was compared to three commercial antioxidants, BHT (Figure 2.1), 

Irganox L135 and Irganox L57. Irganox L135 is a phenolic antioxidant and Irganox L57 is 

an octylated diphenylamine which is designed to work at higher temperatures (Figure 

2.13). 
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Figure 2.13 Commercial antioxidants a) Irganox L135 and b) L57. 

The thermogravimetric analysis traces are shown in Figure 2.14. A significant increase 

in the thermal stability of 2.9 when compared to all three commercial antioxidants was 

observed. The most significant increase in thermal stability was observed when 

compared to BHT and examination of molecular weight alone reveals that BHT (Mw = 

220.36) is nearly 4 times smaller than 2.9 (Mw = 767.10) meaning it is much more 

susceptible to volatilisation, hence complete consumption was seen at ca. 150 ᵒC. 

 

 

 

 

 

 

  

 

Figure 2.14 Thermogravimetric analysis of 2.9 when compared to BHT, Irganox L135 and Irganox 

L57.   

The first generation diphenol 2.9 also revealed a thermal stability of ca. 100 ᵒC higher 

than both Irganox L135 (Average Mw = 390.61) and L57 (Average Mw = 337.55). This 

result again highlights that the large molecular weight of the diphenol 2.9 is contributing 

to the observed enhanced thermal stability properties.  
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The polyphenols 2.10 and 2.11 were also analysed and revealed a one-step degradation, 

however loss of residual entrapped solvent (ca. 10%) was observed at ca. 100 ᵒC (Figure 

2.14). A slight increase in the stability was observed between each generation, most likely 

a result of increasing bulkiness.  

 

 

 

 

 

 

 

 

Figure 2.15 Thermogravimetric analysis of polyphenol dendrons 2.9, 2.10 and 2.11.  

The thermogravimetric data shows that the design of these dendritic compounds has 

successfully increased bulk and reduced the effect of physical loss of the antioxidant 

through volatilisation. It can therefore be assumed that these new antioxidants will be 

present in a hydrocarbon medium for an increased amount of time at high temperatures, 

consequently providing prolonged stability to the material.  

2.2.3 Oxidative Stability Studies 

To further assess the antioxidancy potential of the polyphenols they were blended into a 

synthetic lubricant base oil, Durasyn 164. Durasyn 164 is a polyalphaolefin, 

hydrogenated hydrocarbon base oil composed of dec-1-ene trimers typically used in 

lubricating oils. At this stage it was found that both the first generation (2.9) and second 

generation (2.10) were soluble in the hydrocarbon, however, the third generation (2.11) 

was insoluble and hence analysis of this polyphenol was not possible. The commercial 

antioxidants Irganox L135 and Irganox L57 were once again used as a comparison and 

samples were prepared by blending of 0.5% w/w of each antioxidant in 50 mL of 

lubricant base oil; gentle heating and magnetic stirring was required to ensure a fully 

homogenous blend.  
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The blends were analysed using pressurised differential scanning calorimetry (PDSC). 

DSC is a technique that monitors the heat effects associated with phase transitions and 

chemical reactions as a function of temperature. Oxidation induction time (OIT) and 

oxidation onset temperature (OOT) are two DSC methods used to probe the effect of 

antioxidants on the stability of an oil sample. OIT was analysed by following a standard 

dynamic procedure where the sample is heated at a defined constant heating rate under 

oxidising conditions until a reaction begins. Typically, 2 mg of sample was added to an 

aluminium crucible and the DSC cell was pressurised to 100 psi with cylinder air. The 

temperature was raised to 50 ᵒC and held isothermally for 5 minutes then ramped at 

20 ᵒC/min to 210 ᵒC and held isothermally until the oxidation of the sample was induced. 

The time of onset of the exotherm minus the time taken to reach 210 ᵒC is then recorded. 

An example of a typical oxidation induction time trace is shown in Figure 2.16. 

 

 

 

 

 

 

 

 

Figure 2.16 An example of a typical oxidation induction time trace. 

The time taken for the sample to reach 210 ᵒC can be determined from the derivative heat 

flow trace highlighted in blue in Figure 2.16. The thermal profile of the sample being 

analysed is shown in green and a large exotherm is seen to start at around 12 minutes 

indicating the material is undergoing oxidation. The OIT can hence be calculated by 

subtracting the time taken for the sample to reach 210 ᵒC from the time of the onset of 

the exotherm. The results for each oil blend are shown in Figure 2.17.  
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Figure 2.17 Average Oxidation Induction Time of 0.5% w/w antioxidant-base oil samples run in 

duplicate. 

Oxidation induction time analysis has shown that primarily the presence of 2.9 and 2.10 

in the base oil has increased greatly the stability of the sample (ca. 229%) (Figure 2.17). 

The induction time has been increased from <3 minutes for the unblended base oil to 

ca. 12 minutes for the blended samples. Secondly 2.9 and 2.10 have shown superiority 

to both of the commercial antioxidants, Irganox L135 and Irganox L57. Interestingly, 

there was not a significant difference between the results for 2.9 and 2.10 even though 

the number of active phenolic end groups has doubled between the two dendrons. This 

trend suggests that possibly increasing the number of active end groups is not the only 

answer for improved antioxidant ability.  As discussed previously, often a larger amount 

of antioxidant is added to the material to overcome the issues of physical and chemical 

loss, however, this is not always feasible as a result of poor solubility and the expense 

associated with such specialised compounds. To investigate the benefits of this new 

series of antioxidants further, a normalisation test was carried out where additional 

blends were generated with respect to the number of moles of Irganox L135 which 

possesses only one active phenolic. The number of moles of the first and second 

generation were then either halved or quartered corresponding to their respective 2 and 

4 active phenolic groups (Table 1). The results from these blends are shown in Figure 

2.18 and compared to the original 0.5% w/w blends. 
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Table 2.1 Calculations to determine amount of 2.9 and 2.10 required when compared to Irganox 

L135. 

 

 

 

 

 

 

 

Figure 2.18 Average Oxidation induction time comparison of w/w and mol% oil blends run in 

duplicate. 

The results in Figure 2.18 are very promising as it shows that even though there has 

been a slight drop in induction time, the dendrons 2.9 and 2.10 still perform much better 

than Irganox L135. This could be significant when applied to an industrial process as any 

small saving on the amount of antioxidant required could have a substantial impact on 

the overall costs of the product or process.  

Oxidation onset temperature (OOT) analysis was also performed. A smaller amount of 

sample is required for this test, using only 0.5 mg of sample in an aluminium crucible. The 

cell was pressurised to 500 psi with cylinder air with a flow of 60 mL/min. The 

temperature was raised to 50 ᵒC and allowed to stabilise before heating at 50 ᵒC/min to 
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350 ᵒC. The temperature at which the oxidation exotherm occurs is reported and a typical 

trace is shown in Figure 2.19. 

 

 

 

 

 

 

 

 

Figure 2.19 An example of a typical trace showing oxidation onset temperature.  

The OOT results for each oil blend are shown in Figure 2.20 where again, a significant 

increase in temperature was observed when 2.9 and 2.10 were incorporated into the 

blend when compared to the base oil in isolation. This data shows that the onset of 

oxidation can be delayed through the use of 2.9 and 2.10. 

 

 

 

 

 

 

 

Figure 2.20 Average Oxidation Onset Temperature of 0.5% w/w antioxidant-base oil samples run in 

duplicate. 

Most significantly, these novel antioxidant dendrons reveal a performance comparable to 

Irganox L57. As described previously, this competitor is an aromatic amine designed to 
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work at much higher temperatures than the hindered phenolic compounds. This shows 

that not only have these compounds provided increased oxidative stability to the sample 

but they are capable of performing in a temperature region that was not predicted from 

this class of compound. 

 

2.3 Conclusions and Future Work 

A synthetic pathway has been developed to access a series of antioxidant terminated 

polyester dendrons. The antioxidant dendrons 2.9 and 2.10 (first and second 

generations, respectively) were scaled up successfully to 100 g and have shown superior 

thermal stability when compared to the industry standard BHT. Dendrons 2.9 and 2.10 

were also soluble in a base oil and when blended at 0.5% w/w increased oxidative 

stability was observed in comparison to two current commercial antioxidants. In 

particular they exceeded the performance of the high temperature antioxidant, Irganox 

L57, which is a very promising result. This study would further benefit from 

investigations into the effect of these novel compounds in other petrochemical products 

such as diesel and biodiesel. There is also scope to further improve the dendritic 

structures described. In particular, the solubility of the polyphenols could be improved further through the use of a Ǯbow-tie’ dendritic structure as described in Chapter 1. The 

heterofunctionality of bow-tie dendrimers would allow the incorporation of the same 

number of solubilising groups to antioxidant functionalities thereby improving the 

solubility of the higher generation phenols in a hydrocarbon medium.  

 

2.4 Experimental 

Reagents and solvents were purchased from Sigma Aldrich and used without further 

purification with the exception of 3-(3,5-di-tert-butyl-4-hydroxy-phenyl)-propionic acid 

which was purchased from Alfa Aesar. All solvents were dried and freshly distilled prior 

to use. Tetrahydrofuran (THF) was distilled under a nitrogen atmosphere from sodium 

and benzophenone. Dichloromethane was distilled under a nitrogen atmosphere from 

calcium hydride.  
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2.4.1 Purification and Characterisation 

Thin layer chromatography (TLC) was performed on aluminium sheets coated with 

Merck silica gel 60 F24. Spots were visualised under ultra-violet light (254 nm) with 

potassium permanganate as the visualising agent. Column chromatography was 

performed using Merck silica gel 60 (40-63 µm particle size) and a mobile phase as 

specified. Melting points were recorded using a Stuart MP10 melting point apparatus.   

1H NMR and 13C NMR spectra were recorded using either CDCl3 or DMSO-d6 as solvent on 

either a Bruker Nanobay 400 or Bruker DPX 400 operating at 400 MHz for 1H NMR or at 

100 MHz for 13C NMR. Infrared (IR) spectroscopic analysis was carried out using a Perkin 

Elmer 100 FT-IR instrument with a diamond ATR sampling attachment with samples 

either as solids or oils. Mass spectrometry analysis was carried out on a Thermo-Fisher 

Scientific Orbitrap XL LC-MS. Samples were prepared as methanol solutions (1 mg/mL) 

and were ionised using electrospray ionisation (ESI) and the parent mass ions are quoted.  

2.4.2 Thermal and Oxidative Analysis 

Thermogravimetric analysis (TGA) was performed using a TA instrument TGA 2950. TGA 

was carried out under a nitrogen atmosphere from ambient temperature to 500 ᵒC at a 

rate of 10 ᵒC/min using a sample of approximately 10 mg.  

Pressurised differential scanning calorimetry (PDSC) was carried out at the BP 

Technology Centre, Pangbourne. Oxidation induction time (OIT) was performed using a 

TA instrument Q10 (0010-0141) or Q20 (0020P-0137). The industry standard 

CEC L-085-99 method was followed whereby 2 mg of sample was added to an aluminium 

crucible. The cell was pressurised to 100 psi with cylinder air and the temperature was 

raised to 50 ᵒC and held isothermally for 5 minutes. The temperature was then ramped 

at 20 ᵒC/min to 210 ᵒC and held isothermally until the oxidation of the sample was 

induced. The time of onset of the exotherm minus the time taken to reach 210 ᵒC is 

reported in this method. PDSC oxidation onset temperature (OOT) was performed using 

a TA instrument 2910. An in-house method was used whereby 0.5 mg of sample was 

added to an aluminium crucible. The cell was pressurised to 500 psi with cylinder air with 

a flow of 60 mL/min. The temperature was raised to 50 ᵒC and allowed to stabilise before 

heating at 50 ᵒC/min to 350 ᵒC. The temperature at which the oxidation exotherm occurs 

is reported in this method. 
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2.4.3 Synthetic Methods 

Preparation of 2,2,5-trimethyl-1,3-dioxane-5-carboxylic acid (2.2) 

2,2-Bis(hydroxymethyl)propanoic acid (bis(MPA)) (10.00 g, 74.55 mmol), 2,2-

dimethoxypropane (13.8 mL, 111.83 mmol) and p-toluene sulfonic acid (p-TsOH) (0.71 

g, 3.73 mmol) were dissolved in acetone (50 mL). The reaction was stirred at room 

temperature for 2 hours. The catalyst was neutralised with 1.0 mL of NH3/EtOH (50:50). 

The solvent was removed in vacuo and the resulting residue was dissolved in 

dichloromethane (200 mL) and extracted with two portions of water (40 mL). The 

organic phase was dried over magnesium sulfate (MgSO4), filtered and then evaporated 

to yield 10.32 g (80%) of 2.2 as a white powder. IR (ATR) v/cm-1: 2984, 1719, 1072, 825, 

717. 1H NMR (400 MHz/CDCl3)/ppm, δ = 1.21 (s, 3H, -CH3), 1.42 (s, 3H, -CH3), 1.45 (s, 3H, 

-CH3), 3.68 (d, 2H, J=12.0 Hz, -CH2O, equatorial), 4.20 (d, 2H, J=12.0 Hz, -CH2O, axial); 13C 

NMR (100 MHz/CDCl3)/ppm, δ = 18.4, 21.8, 25.4, 41.7, 65.9, 98.4, 180.0. Found [M+H]+ 

(C8H14O4) m/z = 175.0964 (Calc. 175.0965).  

Preparation of the first generation acetonide (2.3) and general esterification 

procedure 

2-Ethylhexan-1-ol (7.30 mL, 46.97 mmol), 2,2,5-trimethyl-1,3-dioxane-5-carboxylic acid 

(2.2) (9.00 g, 51.67 mmol) and DPTS (60%) were dissolved in dry dichloromethane 

(40 mL). The solution was stirred at room temperature for 30 minutes. To the solution, 

N,N’-dicyclohexylcarbodiimide (DCC) (12.60 g, 61.06 mmol) dissolved in dry 

dichloromethane (40 mL) was added over 15 minutes. The reaction was left overnight at 

room temperature under a nitrogen atmosphere. The reaction mixture was filtered to 

remove the white N,N’-dicyclohexylurea (DCU) precipitate and the filtrate was 

concentrated. The crude product was dissolved in dichloromethane and washed 

sequentially with 0.5M HCl and saturated NaHCO3. The organic phase was dried over 

MgSO4, filtered and the solvent was removed in vacuo to yield a pale yellow oil. Hexane 

was added to the crude product and the resulting white precipitate was filtered off. The 

solvent was once again removed in vacuo and the resulting oil was purified by flash 

column chromatography on silica eluting with hexane/ethyl acetate (95:5) (Rf= 0.23) to 

afford 9.50 g (71%) of 2.3 as a thin colourless oil. IR (ATR) v/cm-1: 2934, 1735, 1158, 

1080, 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.90 (s, 3H, -CH3), 1.21 (s, 3H, -CH3), 1.30 (m, 

6H, -CH2), 1.39 (s, 3H, -CH3), 1.43 (s, 3H, -CH3), 1.61 (m, 1H, -CH) 3.63 (d, 2H, 
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J=12.0 Hz, -CH2O), 4.07(m, 2H, -CH2), 4.17 (d, 2H, J=12.0 Hz, -CH2O); 13C NMR (100 

MHz/CDCl3)/ppm, δ = 11.0, 14.0, 18.7, 23.0, 23.8, 24.2, 28.9, 30.4, 38.8, 41.9, 66.0, 67.0, 

98.0, 174.3. Found [M+H]+ (C16H30O4) m/z = 287.2222 (Calc. 287.2223).  

Preparation of the first generation hydroxyl linker (2.1) and general procedure for 

removal of acetonide protecting group 

The first generation acetonide (2.3) (2.5 g) was dissolved in methanol (30 mL) and 

DOWEX 5W-X8 resin (ca. 2 g) was added. The solution was stirred at 50 °C and monitored 

by TLC analysis, using hexane/ethyl acetate (80:20) as the eluent, until the deprotection 

was complete. The resin was filtered off and the filtrate was concentrated in vacuo to yield 

2.02 g (94%) of 2.1 as a colourless viscous oil. IR (ATR) v/cm-1: 3458, 2694, 1722, 1042. 

1H NMR (400 MHz/CDCl3)/ppm, δ = 0.90 (m, 6H, -CH3), 1.08 (s, 3H, -CH3), 1.36 (m, 

8H,  -CH2), 1.60 (m, 1H, -CH) 3.08 (t, 2H, J=16.0 Hz, -OH), 3.72 (m, 2H, -CH2O), 3.88 (m, 2H, 

-CH2O), 4.09 (m, 2H, -CH2); 13C NMR (100 MHz/CDCl3)/ppm, δ =11.0, 14.0, 17.2, 22.9, 

23.8, 28.9, 38.7, 49.2, 67.3, 68.0, 176.1. [M+H]+ (C13H27O4) m/z = 247.1909 (Calc. 

247.1910). 

Preparation of the second generation acetonide (2.5) 

 2,2,5-Trimethyl-1,3-dioxane-5-carboxylic acid (2.2) (4.88 g, 28.01 mmol), first 

generation hydroxyl linker (2.1)  (3.00 g, 12.18 mmol), DPTS (60%) and DCC (5.78 g, 

28.01 mmol) were allowed to react according to the general esterification procedure. The 

crude product was purified by flash column chromatography on silica eluting with 

hexane/ethyl acetate (90:10) (Rf= 0.05) increasing polarity to (80:20) to afford 4.60 g 

(70%) of 2.5 as a colourless oil. IR (ATR) v/cm-1: 2966, 1734, 1079, 831. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.89 (m, 6H, CH3), 1.16 (s, 6H, CH3), 1.29-1.42 (m, 23H, CH2 and 

CH3), 1.59 (m, 1H, CH), 3.63 (d, 4H, J=12 Hz, CH2), 4.05 (m, 2H, CH2), 4.16 (d, 4H, J=12 Hz, 

CH2), 4.33 (s, 4H, CH2); 13C NMR (100 MHz/CDCl3)/ppm, δ = 10.9, 14.0, 17.8, 18.5, 22.4, 

23.7, 24.8, 28.9, 30.3, 38.7, 42.0, 46.8, 65.3, 65.9, 67.6, 98.1, 172.6, 173.5. Found [M+Na]+ 

(C29H50O10Na) m/z = 581.3295 (Calc. 581.3296).  

Preparation of the second generation hydroxyl linker (2.6) 

The second generation acetonide (2.5) (3.9 g) was dissolved in methanol (40 mL). Using 

the general procedure for removal of the acetonide protective group a yield of 2.32 g 

(70%) of 2.6 was obtained as a waxy solid. (m.p 38-40 ᵒC) IR (ATR) v/cm-1: 3284, 2940, 
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1733, 1240, 1115, 1044. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.90 (m, 6H, -CH3), 1.05 (s, 

6H, -CH3), 1.31 (m, 11H, -CH3, -CH2), 1.59 (m, 1H, -CH), 3.22 (m, 4H, -OH), 3.71 (m, 4H, -

CH2), 3.83 (m, 4H, -CH2), 4.07 (m, 2H, -CH2), 4.27 (d, 2H, J=12 Hz, -CH2), 4.45 (d, 2H, J=12 

Hz, -CH2); 13C NMR (100 MHz/CDCl3)/ppm, δ = 10.9,14.0, 17.1, 18.2, 22.9, 23.7, 28.9, 30.4, 

38.7, 46.5, 49.7, 64.8, 67.8, 68.1, 173.1, 175.2. Found [M+H]+ (C23H43O10) m/z = 479.2836 

(Calc. 479.2851). 

Preparation of the third generation acetonide (2.7) 

 2,2,5-Trimethyl-1,3-dioxane-5-carboxylic acid (2.2) (9.43 g, 54.16 mmol), second 

generation hydroxyl linker (2.6)  (4.32 g, 9.03 mmol), DPTS (60%) and DCC (11.18 g, 

54.16 mmol) were allowed to react according to the general esterification procedure. The 

crude product was purified by flash column chromatography on silica eluting with 

hexane/ethyl acetate (70:30) increasing polarity to (50:50) (Rf= 0.28) to afford 5.95 g 

(60%) of 2.7 as a white solid. IR (ATR) v/cm-1:2937, 1723, 1079, 830. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.89 (t, 6H, J=12Hz, -CH3), 1.15 (s, 12H, -CH3), 1.27 (m, 16H, -CH3), 

1.35 (s, 13H, -CH3  and -CH2), 1.41 (s, 12H, -CH3), 1.60 (m, 1H, -CH), 3.62 (d, 8H, J=12Hz, -

CH2), 4.03 (m, 2H, -CH2), 4.15 (d, 8H, J=12Hz, -CH2), 4.26 (m, 4H, -CH3), 4.31 (m, 8H, -CH3); 

13C NMR (100 MHz/CDCl3)/ppm, δ =10.9, 14.1, 17.7, 18.5, 22.2, 22.9, 23.7, 25.1, 28.9, 30.3, 

38.7, 42.0, 46.7, 46.8, 64.9, 66.0, 67.9, 98.1, 171.9, 172.1, 173.5. Found [M+Na]+ 

(C55H90O22Na) m/z = 1125.5800 (Calc. 1125.5824).  

Preparation of the third generation hydroxyl linker (2.8) 

The third generation acetonide (2.7) (3.83 g) was dissolved in methanol (40 mL). Using 

the general procedure for removal of the acetonide protective group a yield of 3.03 g 

(79%) of 2.8 was obtained as a white powder. IR (ATR) v/cm-1: 3278, 2934, 1727, 1119, 

1043. 1H NMR (400 MHz/DMSO-d6)/ppm, δ = 0.85 (m, 6H, -CH3), 1.01 (s, 12H, -CH3), 1.17 

(s, 6H, -CH3, -CH2), 1.20 (s, 3H, -CH3), 1.26 (m, 8H, -CH2), 1.56 (m, 1H, -CH), 3.46 (m, 16H, 

-CH2), 3.99 (m, 2H, -CH2), 4.11 (m, 12H, -CH2), 4.65 (t, 8H, J=12Hz, -OH); 13C NMR (100 

MHz/DMSO-d6)/ppm, δ = 10.7, 13.8, 16.7, 16.9, 17.1, 22.3, 23.2, 28.2, 29.7, 38.0, 46.2, 46.3, 

50.2, 63.6, 64.5, 65.8, 171.8, 172.0, 174.0. Found [M+H]+ (C43H75O22) m/z = 943.4751 

(Calc. 943.4745). 
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Preparation of first generation diphenol (2.9) 

 3-(3,5-Di-tert-butyl-4-hydroxyphenyl)propanoic acid (3.40 g, 12.17 mmol), first 

generation hydroxyl linker (2.1) (1.00 g, 4.059 mmol), DPTS (60%) and DCC (2.51 g, 

12.17 mmol) were allowed to react according to the general esterification procedure. The 

crude product was purified by flash column chromatography on silica eluting with 

hexane/ethyl acetate (90:10) (Rf= 0.38) to afford 2.34 g (75%) of 2.9 as a viscous 

colourless oil. IR (ATR) v/cm-1: 3644, 2957, 1734, 1435, 1135, 756. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.88 (m, 6H, -CH3), 1.16 (s, 3H, -CH3), 1.33 (m, 8H, -CH2),  1.43 (s, 

36H, -CH3), 1.61 (m, 1H, -CH), 2.60 (t, 4H, J= 16 Hz, -CH2), 2.85 (t, 4H, J=16.0 Hz, -CH2), 

4.04 (m, 2H, -CH2), 4.23 (s, 4H, -CH2), 5.08 (s, 2H, -OH), 6.98 (s, 4H, -ArCH). 13C NMR (100 

MHz/CDCl3)/ppm, δ =11.0, 14.0, 17.7, 22.9, 23.7, 28.9, 30.3, 30.9, 34.3, 36.2, 38.7, 46.4, 

65.5, 67.3, 124.7, 130.8, 135.9, 252.2, 172.7, 172.9. Found [M+H]+ (C47H75O8) m/z = 

767.5462 (Calc. 767.5462).  

Preparation of second generation tetraphenol (2.10) 

3-(3,5-Di-tert-butyl-4-hydroxyphenyl)propanoic acid (4.36 g, 15.67 mmol), second 

generation hydroxyl linker (2.6) (1.50 g, 3.13 mmol), DPTS (60%) and DCC (3.23 g, 15.67 

mmol) were allowed to react according to the general esterification method. The crude 

product was purified by flash column chromatography on silica eluting with 

hexane/ethyl acetate (90:10) (Rf= 0.13) to afford 3.39 g (72%) of 2.10 as a colourless 

glassy solid (m.p 42 ᵒC). IR (ATR) v/cm-1: 3646, 2958, 1739, 1435, 1121, 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.87 (m, 6H, -CH3), 1.13 (s, 6H, -CH3), 1.22 (s, 3H, -CH3), 1.31 (m, 

8H, -CH2), 1.42 (s, 72H, -CH3), 1.57 (m, 1H, -CH), 2.59 (t, 2H, J=16 Hz, -CH2), 2.83 (t, 2H, 

J=16 Hz, -CH2), 4.01 (m, 2H, -CH2), 4.18 (s (br), 8H, -CH2), 4.25 (s (br), 4H, -CH2), 5.06 (s, 

4H, -OH), 6.98 (s, 8H, -ArCH) . 13C NMR (100 MHz/CDCl3)/ppm, δ = 11.0, 14.0, 17.7, 18.2, 

22.9, 23.7, 28.9, 30.3, 30.9, 34.3, 36.2, 38.7, 46.4, 65.5, 67.3, 68.1, 124.7, 130.8, 135.9, 

252.2, 173.1, 175.2. Found [M+Na]+ (C91H138O18) m/z = 1541.9775 (Calc. 1541.9883).  

Preparation of third generation octaphenol (2.11) 

3-(3,5-Di-tert-butyl-4-hydroxyphenyl)propanoic acid (1.48 g, 5.30 mmol), third 

generation hydroxyl linker (2.8) (0.50 g, 0.53 mmol), DPTS (60%) and DCC (1.09 g, 5.30 

mmol) were allowed to react according to the general esterification method with the 

exception of dimethylacetamide which was used as the solvent (30 mL). The crude 
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reaction was purified by precipitation into water followed by the general washing 

procedure and flash column chromatography on silica eluting with chloroform/methanol 

(99.5:0.5) to afford 0.24 g (15%) of 2.11 as a white powder. IR (ATR) v/cm-1: 3640, 2954, 

1736, 1435, 1120, 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.85 (m, 6H, -CH3), 1.13 (s, 12H, -

CH3), 1.21 (s, 6H, -CH3), 1.26 (s, 11H, -CH2), 1.41 (s, 142H, tert-butyl -CH3), 1.54 (m, 1H, -

CH), 2.59 (t, 2H, J=16 Hz, -CH2), 2.83 (t, 2H, J=16 Hz, -CH2), 4.18 (m, 2H, -CH2), 4.22 (m, 

28H, -CH2), 5.06 (s, 8H, -OH), 6.97 (s, 16H, -ArCH). 13C NMR (100 MHz/CDCl3)/ppm, δ = 

10.9, 14.1, 17.7, 22.9, 30.3, 30.8, 34.3, 36.1, 46.4, 65.0, 124.7, 130.8, 135.9, 152.2, 171.9, 

172.5. Found [M+Na]+ (C179H266O38) m/z = 3046.8690 (Calc. 3046.8882). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 
 

67 
 

2.5 References 

1 Deloitte, Global Automotive Consumer Study Exploring consumers’ mobility choices 
and transportation decisions, 2014. 

2 PriceWaterhouseCoopers, The automotive industry and climate change: 

Framework and Dynamics of the CO2 Revolution, 2007. 

3 KPMG International, The Transformation of the Automotive Industry: The 

Environmental Regulation Effect, 2010. 

4 A. Farmer and E. Sundralingam, J. Chem. Soc, 1942, 121–139. 

5 A. Farmer and E. Sundralingam, J. Chem. Soc, 1943, 125–133. 

6 J. L. Bolland, Proc. R. Soc. A Math. Phys. Eng. Sci., 1946, 186, 218–236. 

7 C. E. Frank, Chem. Rev., 1950, 46, 155–169. 

8 R. M. Mortier and S. T. Orszulik, Chemistry and Technology of Lubricants, Springer, 
Netherlands, 1997. 

9 T. Mang and W. Dresel, Lubricants and Lubrication, Wiley-VCH, Weinheim, 2nd 
edn., 2007. 

10 J. L. Bolland and G. Gee., Trans. Faraday. Soc., 1946, 42, 236–243. 

11 E. T. Denisov and I. B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry 

and Biology, Taylor & Francis, Florida, 2005. 

12 E. R. Booser and M. R. Fenske, Ind. Eng. Chem, 1944, 44, 1850–1856. 

13 F. R. Mayo, Accounts Chem. Res., 1968, 1, 193–201. 

14 G. Karavalakis, S. Stournas and D. Karonis, Fuel, 2010, 89, 2483–2489. 

15 S. Schober and M. Mittelbach, Eur. J. Lipid Sci. Technol., 2004, 106, 382–389. 

16 H. Zweifel, Stabilisation of Polymeric Materials, Springer-Verlag, Berlin, 1998. 

17 K. U. Ingold, Chem. Rev., 1961, 61, 563–589. 

18 R. O. Dunn, Fuel Process. Technol., 2005, 86, 1071–1085. 

19 R. Dinkov, G. Hristov, D. Stratiev and V. Boynova Aldayri, Fuel, 2009, 88, 732–737. 

20 W. W. Focke, I. van der Westhuizen, A. B. L. Grobler, K. T. Nshoane, J. K. Reddy and 
A. S. Luyt, Fuel, 2012, 94, 227–233. 



Synthesis and Analysis of a Series of Novel Dendritic Phenolic Antioxidants 
 

68 
 

21 D. Lomonaco, F. J. N. Maia, C. S. Clemente, J. P. F. Mota, A. E. Costa and S. E. 
Mazzetto, Fuel, 2012, 97, 552–559. 

22 N. A. Santos, A. M. T. M. Cordeiro, S. S. Damasceno, R. T. Aguiar, R. Rosenhaim, J. R. 
Carvalho Filho, I. M. G. Santos, A. S. Maia and A. G. Souza, Fuel, 2012, 97, 638–643. 

23 K. D. Breese, J. F. Lamèthe and C. DeArmitt, Polym. Degrad. Stab., 2000, 70, 89–96. 

24 Y. Ohkatsu and T. Nishiyama, Polym. Degrad. Stab., 2000, 67, 313–318. 

25 T. Matsuura and Y. Ohkatsu, Polym. Degrad. Stab., 2000, 70, 59–63. 

26 T. Kajiyama and Y. Ohkatsu, Polym. Degrad. Stab., 2001, 71, 445–452. 

27 T. Kajiyama and Y. Ohkatsu, Polym. Degrad. Stab., 2002, 75, 535–542. 

28 A. Torres de Pinedo, P. Peñalver and J. C. Morales, Food Chem., 2007, 103, 55–61. 

29 N. C. Billingham and P. Garcia-Trabajo, Polym. Degrad. Stab., 1995, 48, 419–426. 

30 H. Bergenudd, P. Eriksson, C. DeArmitt, B. Stenberg and E. Malmström Jonsson, 
Polym. Degrad. Stab., 2002, 76, 503–509. 

31 WO 93/17060, Perstorp AB, A. Hult, E. Malmström, M. Johansson, K. Soerensen, 
1993,  

32 M. Johansson, T. Glauser, A. Jansson, A. Hult, E. Malmström and H. Claesson, Prog. 

Org. Coatings, 2003, 48, 194–200. 

33 M. Johansson, E. Malmström and A. Hult, Prog. Org. Coatings, 2003, 48, 619–624. 

34 E. Malmström, M. Johansson and A. Hult, Macromolecules, 1995, 28, 1698–1703. 

35 E. Malmström and A. Hult, Macromolecules, 1996, 29, 1222–1228. 

36 P. R. Ashton, D. W. Anderson, C. L. Brown, A. N. Shipway, J. F. Stoddart and M. S. 
Tolley, Chem. Eur. J., 1998, 4, 781–795. 

37 H. Ihre, A. Hult, J. M. J. Fréchet and I. Gitsov, Macromolecules, 1998, 31, 4061–
4068. 

38 S. M. Grayson and J. M. J. Fréchet, Chem. Rev., 2001, 101, 3819–3867. 

39 H. Ihre, O. L. Padilla De Jesús and J. M. J. Fréchet, J. Am. Chem. Soc., 2001, 123, 
5908–5917. 

40 B. Neises and W. Steglich, Angew. Chem. Int. Ed., 1978, 522–524. 

41 J. S. Moore and S. I. Stupp, Macromolecules, 1990, 23, 65–70. 



Chapter 2 
 

69 
 

42 J. F. Jansen, E. M. M. de Brabander-van den Berg and E. W. Meijer, Science (80-. )., 
1994, 266, 1226–1229. 

43 F. G. A. Jansen, E. W. Meijer and E. M. M. de Brabander-van den Berg, J. Am. Chem. 

Soc., 1995, 117, 4417–4418.  

 



Chapter 3 
 

70 
 

Chapter 3  

 

Investigating a series of alternative core monomers for dendritic antioxidants 

 

Abstract 

Antioxidant immobilisation techniques have been described in the opening chapters of 

this thesis and it has been revealed that through the use of dendritic macromolecules, 

enhanced thermal and oxidative stabilities can be achieved. This chapter reports two 

alternative core monomers in the form of glycerol and triethanolamine (TREN) 

derivatives, which were used to synthesise an alternative range of antioxidant 

functionalised macromolecules. When blended into a lubricant base oil at 0.5% w/w, the 

oxidation induction times were seen to be greater than the current industry antioxidants, 

Irganox L135 and Irganox L57. It was observed, in the case of the glycerol-based series, 

that a solubilising unit was required to ensure good dispersity within the hydrocarbon 

medium in order to provide enhanced stabilisation properties. However, if the number of 

solubilising moieties was greater than the number of antioxidant moieties the oxidation 

induction time was seen to decrease. The functionalised TREN antioxidant derivatives 

also revealed some excellent oxidation induction times, however poor solubility in the 

hydrocarbon medium was a significant issue. Again, a solubilising unit was introduced 

and dissolution within the hydrocarbon was achieved while still maintaining an oxidation 

induction time greater than the current industry standards.  

 

3.1 Introduction 

Chapter 2 reported the use of the bis(MPA) monomer in the synthesis of a series of 

polyester dendrons. The multi-functionality of this monomer promoted a controlled 

architectural growth allowing both solubilising and functional end-groups to be 

incorporated. The literature has also revealed the great versatility of using this monomer 

to produce many other functional macromolecules for a diverse array of applications,[1,2] 

however, a number of alternative and inexpensive monomers can be exploited. Glycerol 
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(1,2,3-propanetriol) (Figure 3.1) has recently emerged as an important industrial 

chemical.  

 

Figure 3.1 Structure of 1,2,3-propanetriol, commercially known as glycerol. 

Over the last decade, biodiesel has been realised as a viable fuel alternative and glycerol 

is the major by-product from its production.[3,4] Biodiesel production generates about 

10% (w/w) of crude glycerol and, with the world biodiesel market continuously 

increasing, it has been predicted that by 2016 around 4 billion gallons of glycerol will be 

produced per year.[4] This surplus has prompted the industry to search for new 

applications where glycerol can be used as a low-cost feedstock for functional derivatives. 

Uses in areas such as fuels, chemicals, automotives, pharmaceuticals and detergents have 

been established.[3] Glycerol has also been used for a number of years as a monomer in 

the synthesis of dendritic macromolecules. In particular, biological applications have 

been targeted such as drug delivery systems and tissue engineering.[5–8]  

Another interesting class of dendritic macromolecules are poly(amidoamines), which are 

more commonly referred to as PAMAM dendrimers and were first described by Tomalia 

and co-workers in the 1980s.[9] This class of dendritic macromolecule are often described 

as being the most intensively investigated as they were the first dendrimer family to be 

synthesised, characterised and commercialised.[10] PAMAM dendrimers are particularly 

unique because they can be designed to mimic the structural architecture of globular 

proteins hence, a range of biomedical applications have been proposed such as drug 

delivery, molecular encapsulation and gene therapy.[11,12] PAMAM dendrimers typically 

consist of an ethylenediamine core, however, more recently triethanolamine (TREN) 

cores (Figure 3.2) have been reported.[13,14] It has been suggested that a TREN core 

allows greater flexibility to the branching units in comparison to other cores such as 

bis(MPA) or glycerol which can be advantageous for certain applications.  

 

 

Figure 3.2 Structure of ethylenediame and  triethanolamine (TREN).  

More recently, Ottaviani and co-workers[15] reported a series of PAMAM dendrimers with 

a TREN core which revealed some interesting copper (II) binding characteristics. The 
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transition metal binding ability of the TREN core has been known for a number of 

years[16–18] and could be particularly relevant in the design of oxidation inhibitors. It has 

been reported that traces of transition metal ions play a significant role in the catalysis of 

the oxidation process.[19–21] The oxidative stability of a material could potentially be 

increased by introducing an antioxidant with both radical scavenging and metal chelation 

properties.  

Herein, the synthesis of a series of first generation, antioxidant functionalised polyesters 

is described whereby glycerol or TREN derivatives were utilised as the core monomer. 

Solubilising alkyl chains were introduced to the core monomers to aid better dispersion 

within a hydrocarbon medium. When blended into a lubricant base oil and subjected to 

accelerated oxidative conditions, enhanced stabilisation properties were revealed when 

compared to current industrial antioxidants.  

3.2 Results and Discussion 

3.2.1 Glycerol 

Glycerol consists of two primary alcohols and one secondary alcohol, both differing in 

reactivity, which can be exploited to introduce different functionalities onto the 

periphery of the core. Initial synthesis, however, began by exhaustively coupling all three 

hydroxyl moieties with 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid, using N, N’-
dicyclohexylcarbodiimide (DCC) mediated esterification to generate the first generation 

triphenol 3.1 (Scheme 3.2).  

 

 

 

 

Scheme 3.1 Synthesis of the triphenol 3.1 from the reaction between glycerol and 3-(3,5-di-tert-butyl-
4-hydroxyphenyl)propionic acid.  

The triphenol (3.1) was yielded as a glassy solid with a low melting point of ca. 40 ᵒC and 

its synthesis was confirmed by 1H NMR spectroscopic analysis (Figure 3.3).  
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Figure 3.3 1H NMR spectroscopic analysis of triphenol 3.1.  

1H NMR spectroscopic analysis revealed successful coupling of all three phenolic moieties 

to the glycerol core. The methyne glycerol proton resonance, observed at 5.28 ppm 

integrated to ca. 1 proton, as expected, with respect to the tert-butyl proton resonance at 

1.42 ppm which integrated to 54 protons. In addition, a singlet resonance at 5.07 ppm 

was also observed, representing the three phenolic hydroxyl protons.  

The difference in reactivity of the primary and secondary alcoholic moieties of the 

glycerol was then exploited to introduce a solubilising alkyl chain with the aim to improve 

dissolution within a hydrocarbon medium. To generate the diphenol (3.2), the primary 

alcohol moieties were first reacted with two equivalents of 3-(3,5-di-tert-butyl-4-

hydroxyphenyl)propionic acid whereby the reaction was monitored closely by thin layer 

chromatography. The diester (3.3) was thus generated with one free hydroxyl moiety in 

a ca. 45% yield (Scheme 3.3).  

 

 

 

 

 

 

Scheme 3.2 Synthesis of the diester (3.3), followed by the reaction of the remaining secondary 
hydroxyl to yield the diphenol (3.2). 
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Successful synthesis of the diester 3.3 was confirmed by 1H NMR spectroscopic analysis. 

A significant upfield shift of the methyne glycerol proton, from 5.28 ppm in the triphenol 

3.1 to 4.00 ppm in the diester 3.3 was observed. An additional resonance was also 

observed for the unreacted secondary hydroxyl proton at 2.20 ppm.  The remaining 

hydroxyl moiety was reacted in another DCC mediated esterification with 

2-ethylhexanoic acid. Subsequently, the diphenol 3.2 was generated as a viscous, 

colourless oil. The attachment of the alkyl moiety was confirmed by 13C NMR 

spectroscopic analysis whereby additional alkyl carbon resonances were observed in the 

region of ca. 11-25 ppm. A second ester carbonyl carbon resonance was also observed at 

175.5 ppm confirming that a new ester linkage had been formed between the glycerol 

secondary hydroxyl and 2-ethylhexanoic acid.   

The final reaction scheme of the glycerol series saw the incorporation of two alkyl 

moieties onto the glycerol monomer. Here, the primary hydroxyl moieties were first 

reacted with 2-ethylhexanoic acid to yield the diester (3.4), where the secondary 

hydroxyl remained unreacted (Scheme 3.4).  

 

 

 

 

 

 

Scheme 3.3 Synthesis of the diester (3.4) followed by reaction of the remaining secondary hydroxyl 
moiety to yield the monophenol (3.5). 

Synthesis of the diester (3.4) was confirmed by FTIR spectroscopic analysis (Figure 3.4) 

whereby a hydroxyl stretch was observed at 3499 cm-1 in addition to a carbonyl ester 

absorbance at 1736 cm-1. This analysis therefore confirmed the ester linkages had been 

achieved while preserving the secondary hydroxyl moiety intact. 1H NMR spectroscopic 

analysis confirmed that the correct ratio of alkyl chains to free hydroxyls was achieved 

by revealing a hydroxyl resonance at 2.58 ppm which integrated to 1 proton with respect 
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to the 12 protons observed at 0.90 ppm representing the methyl protons of the alkyl 

chain.  

 

 

 

 

 

 

Figure 3.4 FTIR spectroscopic analysis of the diester 3.4. 

The remaining secondary hydroxyl moiety was reacted with 3-(3,5-di-tert-butyl-4-

hydroxyphenyl)propionic acid to yield the monophenol (3.5). Successful addition of the 

sterically hindered phenol was confirmed using 13C NMR spectroscopic analysis where a 

second ester carbonyl carbon resonance was observed at 172.1 ppm in addition to a new 

resonance with a high intensity at 30.3 ppm representing the tert-butyl carbons of the 

newly appended phenolic moiety. 1H NMR spectroscopic analysis (Figure 3.5) further 

confirmed the formation of the monophenol (3.5). 

 

 

 

 

 

 

 

 

 

Figure 3.5 1H NMR spectroscopic analysis of the monophenol 3.5. 
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The analysis in Figure 3.5 revealed an upfield shift of the methyne glycerol proton from 

4.09 ppm to 5.30 ppm as a result of the newly formed ester linkage on the secondary 

alcohol. The loss of the hydroxyl resonance at 2.57 ppm was also noted and a new 

resonance was revealed at 5.09 ppm which represented the phenolic hydroxyl proton 

and integrated to 1 with respect to the quaternary glycerol proton. 

The mono-, di- and tri-phenol glycerol derivatives 3.1, 3.2 and 3.5 were blended into the 

synthetic lubricant base oil, Durasyn 164, at 0.5% w/w as described in Chapter 2.  

Current commercial antioxidants were used as a comparison, where Irganox L135 is a 

phenolic antioxidant and Irganox L57 is an aromatic amine antioxidant (Figure 3.6). 

 

 

 

 

Figure 3.6 Commercial antioxidants a) Irganox L135 and b) Irganox L57 wherein R and R’ can be an 
alkyl chain of varying length and degree of branching. 

The blends were analysed using pressurised differential scanning calorimetry where 

oxidation induction time (OIT) and oxidation onset temperature (OOT) were the two 

assessment methods used. Oxidation induction time analysis revealed that the presence 

of 3.1, 3.2 or 3.5 in the base oil increased the oxidative stability by a greater amount than 

the current commercial antioxidants (Figure 3.7). 

 

 

 

 

 

 

 

Figure 3.7 Average Oxidation induction time analysis of the glycerol series 3.1, 3.2 and 3.5 (tested in 
duplicate). 
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By initially comparing the two monophenols, Irganox L135 and 3.5, it was noted that by 

increasing the molecular weight the induction time increased. Irganox L135 and the 

monophenol 3.5 are structurally similar in that they both contain one active phenolic 

moiety in addition to solubilising functionalities which promote good dispersion within 

the hydrocarbon medium. The average molecular weight of Irganox L135 is ca. 390 

whereas the molecular weight of 3.5 is ca. 605. This increase in molecular weight may 

contribute to a reduction in volatility, hence, a greater induction time was observed for 

the monophenol 3.5. These results also reiterated the findings from Chapter 2 whereby 

a series of polyester dendrons were revealed to provide a greater oxidative stability to a 

lubricant base oil than the small molecule alternatives. In addition, structure-activity 

relationships were investigated by comparing the triphenol 3.1 and the diphenol 3.2. It 

was expected that the triphenol 3.1 would provide the greatest oxidative stability to the 

lubricant base oil in comparison to the diphenol 3.2 as a result of the extra active phenolic 

functionality. This, however, was not observed and instead the diphenol 3.2 provided the 

greatest stability with an oxidation induction time of ca. 12 minutes in comparison to ca. 

10 minutes for the triphenol 3.1. This induction time was also much greater than both of 

the commercially available antioxidants Irganox L135 and L57 and it was proposed that 

the diphenol 3.2 had the most effective balance between active functionalities, molecular 

weight and solubility. The triphenol 3.1 required prolonged heating and agitation to 

ensure full dissolution in the hydrocarbon whereas the diphenol 3.2 reached 

homogeneity more rapidly.  

Oxidation onset temperature was also analysed and revealed that all three phenolic 

glycerol derivatives were capable of providing greater oxidative stability to the lubricious 

base oil than Irganox L135 (Figure 3.8). The diphenol 3.2, in particular, was observed to 

be performing in a high temperature region alongside the aromatic amine, Irganox L57. 
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Figure 3.8 Average Oxidation onset temperature analysis of the glycerol series 3.1, 3.2 and 3.5 

(tested in duplicate). 

The structures of the three antioxidant functionalised glycerol polyesters are 

summarised in Table 3.1 whereby the number of active antioxidant groups and number 

of solubilising groups are compared.  
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(ᵒC) 

  

 

3 

 

 

0 

 

 

10.10 

 

 

246.80 

  

 

2 

 

 

1 

 

 

11.85 

 

 

248.56 

 

 

 

 

 

1 

 

 

2 

 

 

8.50 

 

 

245.3 

 

Table 3.1 Summary of the three antioxidant functionalised glycerol polyesters 3.1, 3.2 and 3.5.  
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In conclusion, the oxidative stability analysis revealed the importance of having the 

correct ratio of active functionality to solubilising groups. Too little active functionality, 

in the case of the monophenol 3.5, resulted in a reduced stability. Nevertheless, this 

stability was still an improvement in comparison to the commercially available 

antioxidants. Solubility was also revealed to be a key factor when targeting enhanced 

oxidative stabilities and the best antioxidant properties and dispersion was observed for 

the diphenol 3.2. The triphenol 3.1 may theoretically be able to provide the greatest 

stability, however, the solubility in the hydrocarbon medium was poor and hence the 

radical scavenging process was thought to be hindered. The solubility could be improved 

by introducing an alkyl chain linker between the glycerol core monomer and the 3-(3,5-

di-tert-butyl-4-hydroxyphenyl)propionic acid. This would ensure that while improving 

solubility within the hydrocarbon, the number of active functionalities is not reduced.  

3.2.2 Nitrogen-centred core monomers 

The second series of core monomers saw the use of triethanolamine and 

triisopropanolamine which provided a nitrogen at the centre of the macromolecule. It 

was envisaged that the nitrogen core may have been able to provide some additional 

activity such as transition metal chelation.  Triethanolamine has been reported as an 

effective copper chelator in the literature.[16–18] Triethanolamine was first reacted with 

3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid in a DCC mediated esterification to 

afford the triphenol 3.6 (Scheme 3.5).  

 

 

 

 

 

Scheme 3.4 Synthesis of the triphenol 3.6 from the reaction of triethanolamine with 3-(3,5-di-tert-
butyl-4-hydroxyphenyl)propionic acid. 

Successful coupling of the 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid to the 

triethanolamine was achieved and confirmed using 1H NMR spectroscopic analysis. The 

analysis revealed a singlet resonance at 5.06 ppm which was characteristic to the 

phenolic hydroxyl proton. When this singlet resonance was integrated with respect to the 
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resonance observed for the methylene protons adjacent to the nitrogen core a ratio of 3:6 

(phenol:methylene) was revealed. Mass spectrometric analysis also revealed the 

expected molecular weight of 930.6458.  

Triisopropanolamine was also used as the central core monomer and it was proposed 

that the methyl moieties of the core would provide additional stability to both the ester 

functionalities and the nitrogen core in addition to improving the solubility of the final 

triphenol. This was once again achieved through reaction with 3-(3,5-di-tert-butyl-4-

hydroxyphenyl)propionic acid using a DCC mediated coupling reaction (Scheme 3.6). 

 

 

 

 

 

Scheme 3.5 Synthesis of the triphenol 3.7 from the reaction of triisopropanolamine with 3-(3,5-di-
tert-butyl-4-hydroxyphenyl)propionic acid. 

In comparison to the triethanolamine core, triisopropanolamine revealed a more 

complex 1H NMR spectrum (Figure 3.9) which was a consequence of the stereogenic 

centre adjacent to the ester linkage in the triphenol 3.7.  

 

 

 

 

 

 

 

 

Figure 3.9 1H NMR spectroscopic analysis of the triphenol 3.7. 
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Primarily, the synthesis of the triphenol 3.7 was confirmed by the singlet resonance 

observed at 1.42 ppm which integrated to 54 protons, which was expected for the six tert-

butyl moieties. This integration was carried out with respect to the methyne proton 

resonance observed at 4.95 ppm which integrated to 3 protons. A complex multiplet was 

observed in the range of 2.4 ppm to 2.7 ppm which resulted from the splitting of the 

methylene protons adjacent to the nitrogen core and the chiral carbon. The stereogenic 

centres gave rise to different conformational isomers or rotamers which were not 

separable on the 1H NMR analysis time-scale. In addition, the resonance associated with 

the methylene protons of 3,5-di-tert-butyl-4-hydroxyphenylpropionic acid were also 

observed in the same ppm range which further complicated the analysis. Mass 

spectrometric analysis confirmed the expected molecular weight was achieved whereby 

(C60H93NO9) m/z = 972.6924.  

The triphenols 3.6 and 3.7 were blended into the synthetic lubricant base oil, Durasyn 

164, at 0.5% w/w as previously described and oxidation induction time and oxidation 

onset temperatures were analysed. Oxidation induction time analysis (Figure 3.10) once 

again revealed enhanced oxidative stabilities in comparison to the commercially 

available antioxidants.  

 

 

 

 

 

 

 

Figure 3.10 Average Oxidation induction time analysis of triphenols 3.6 and 3.7 (tested in duplicate).  

The triphenol 3.6, derived from the triethanolamine core, revealed an excellent oxidation 

induction time of ca. 15 minutes. This was an unexpected result as complete homogeneity 

of the triphenol in the lubricious base oil was not achieved. A much longer heating time 

over a few hours compared to ca. 30 minutes and a higher temperature of 70 o C compared 
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to 50 ᵒC was required in order to produce the blend. At room temperature, precipitation 

of the antioxidant (3.6) was observed on the bottom of the sample container. It was 

therefore proposed that the large induction time may be attributed to the chemical 

properties of the core monomer. The nitrogen possesses a lone pair of electrons which 

may contribute to the radical scavenging process. Secondly, as mentioned, 

triethanolamine is known to chelate transition metal ions which are reported to catalyse 

the oxidation process. If the transition metal species can be removed from the chain 

reaction, the rate of degradation would be reduced. It is unknown from the scope of this 

work whether the triethanolamine is still capable of chelation after functionalisation with 

sterically hindered phenols and further studies would need to be carried out to confirm 

this hypothesis. The triisopropanolamine triphenol 3.7 revealed a good induction time of 

ca. 11 minutes, however, this wasn’t as high as the triphenol 3.6 (ca. 15 minutes). This 

data indicates that the triethanolamine contributes to the capabilities of the antioxidant. 

A third proposal as to why the triphenol 3.6 revealed such a large induction time in 

comparison to the triphenol 3.7 is the flexibility of the triethanolamine core. It was 

proposed that once soluble in the lubricious base oil, the triphenol 3.6 had more 

flexibility around the phenolic linkages and potentially a good dispersion was achieved. 

The saturation point of 3.6 in Durasyn 164 may have been reached at the 0.5% w/w 

concentration.  In comparison, the triphenol 3.7 possesses methyl groups that contribute 

steric hindrance around the central nitrogen and also cause a more rigid structure. 

Oxidation onset temperature also revealed enhanced stability properties where the 

triphenols 3.6 and 3.7 afforded oxidation onset temperatures of 251.14 ᵒC and 244.70 ᵒC, 

respectively. 

In an attempt to overcome the solubility issues encountered with the triphenols 3.6 and 

3.7, an alternative synthetic approach was targeted to allow incorporation of a 

solubilising alkyl chain. The synthesis was achieved by reacting diethanolamine with 

2-ethylhexyl bromide to afford the diol 3.8. DCC mediated esterification was 

subsequently used, as previously described, to couple the 3-(3,5-di-tert-butyl-4-

hydroxyphenyl)propionic acid to the core to afford the diphenol 3.9 in ca. 70% yield.  
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Scheme 3.6 Incorporation of a solubilising alkyl chain onto diethanolamine to afford the diol 3.8 
followed by the DCC coupling of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid to 
yield the diphenol 3.9. 

Successful synthesis of the diol 3.8 was revealed by 1H NMR spectroscopic analysis 

whereby the methyl protons of the newly appended alkyl chain revealed a resonance at 

0.88 ppm and integrated to 6 protons with respect to the 4 methylene protons adjacent 

to the nitrogen core which revealed a resonance at 3.61 ppm. In addition, a broad singlet 

was observed at 2.85 ppm which was characterised to the remaining hydroxyl protons. 

FTIR spectroscopic analysis further confirmed the presence of the hydroxyl moieties by 

a broad absorbance at 3334 cm-1.  Synthesis of the diphenol 3.9 was confirmed using 13C 

NMR spectroscopic analysis. The analysis revealed the successful formation of the ester 

linkages between the diol 3.8 and 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid 

by revealing a resonance at 173.1 ppm which is characteristic to carbonyl carbons. In 

addition, aromatic carbon resonances were also observed in the region of ca. 125-150 

ppm. FTIR spectroscopic analysis confirmed the complete reaction of both hydroxyl 

moieties by revealing a new absorbance at 3642 cm-1, which is characteristic to phenolic 

hydroxyls, and the broad hydroxyl absorbance from the diol 3.8 was no longer observed 

at 3334 cm-1. A carbonyl absorbance was also noted at 1730 cm-1 further confirming the 

formation of ester linkages.  
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For a comparison against the triisopropanolamine core monomer, diisopropanolamine 

was also functionalised and the diphenol 3.11 was yielded via the pathway shown in 

Scheme 3.8.  

 

 

 

 

 

 

Scheme 3.7 Incorporation of a solubilising alkyl chain onto diisopropanolamine to afford the diol 3.10 
followed by the DCC coupling of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid to 
yield the diphenol 3.11. 

The synthesis of the intermediate diol 3.10 was confirmed using 1H NMR spectroscopic 

analysis and revealed a similar spectrum to the intermediate diol 3.8, however an 

additional resonance at 1.14 ppm was observed for the methyl protons adjacent to the 

hydroxyl moieties. It was also noted that the stereogenic centres adjacent to the hydroxyl 

moieties gave rise to more complex splitting patterns as a result of the conformational 

isomers. Synthesis of the diphenol 3.11 could once again be confirmed using 13C NMR 

spectroscopic analysis whereby the ester carbonyl resonance was observed at 172.7 

ppm. In addition, an intense resonance at 30.3 ppm was also observed which was 

characterised to the 4 tert-butyl moieties of the 3-(3,5-di-tert-butyl-4-

hydroxyphenyl)propionic acid. 

The diphenols 3.9 and 3.11 were blended into the synthetic lubricant base oil, Durasyn 

164, at 0.5% w/w and once again the oxidation induction time and oxidation onset 

temperatures were analysed. An initial observation was that both 3.9 and 3.11 were fully 

soluble in the lubricious base oil with minimal heating required. Oxidation induction time 

analysis (Figure 3.11) revealed excellent oxidation induction times, once again, for both 

diphenols 3.9 and 3.11.  
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Figure 3.11 Average Oxidation induction time analysis of diphenols 3.9 and 3.11 (tested in duplicate). 

Interestingly, the more sterically hindered diphenol 3.11 revealed the larger induction 

time at ca. 12 minutes in comparison to the diphenol 3.9 which had an induction time of 

ca. 11 minutes. This is the opposite result to the triphenol derivatives (3.6 and 3.7) which 

would indicate that the additional steric hindrance may actually contribute to an 

enhanced oxidative stability.  Comparison of the diphenol 3.11 and the triphenol 3.7 

revealed that the replacement of the one active phenolic moiety for a solubilising alkyl 

chain had little to no effect on the oxidation induction time. This once again highlights the 

importance of balancing functionality with solubility.  

Additionally, the oxidation induction time analysis has also revealed that the diphenols 

3.9 and 3.11, which contain a nitrogen core, performed in the same time region, of 

approximately 10-12 minutes, as the glycerol diphenol 3.2. This would suggest that the 

nitrogen core is not having any additional effect on the antioxidant capabilities of the 

phenols. Instead it can be concluded that the benefits of using a core monomer can lead 

to higher molecular weights and hence reduced volatility in addition to tailored solubility 

characteristics. Another perspective to consider is that the presence of the solubilising 

alkyl chain may have disrupted the metal chelating characteristics that are known for 

triethanolamine. Chelation is a structurally sensitive process and it is quite possible that 

the structural adaptation involved in the synthesis of the diphenols 3.9 and 3.11 resulted 

in unfavourable metal binding.   Finally, oxidation onset temperature analysis revealed 

very similar results of 245.41 ᵒC and 245.89 ᵒC for the diphenols 3.9 and 3.11, 

respectively which again agreed with the analysis of the glycerol diphenol 3.2.  

0

3.58

5.92

10.92
11.69

0

2

4

6

8

10

12

14

Base Oil Irganox L135 Irganox L57 Diphenol

(3.9)

Diphenol

(3.11)

A
ve

ra
g

e
 O

xi
d

a
ti

o
n

 I
n

d
u

ct
io

n

T
im

e
 

(m
in

u
te

s)

Sample



Chapter 3 
 

86 
 

3.3 Conclusions 

In conclusion, a series of alternative core monomers were investigated for their use in the 

synthesis of dendritic phenolic antioxidants. The series of glycerol-based antioxidants 

revealed some interesting structure-activity relationships and highlighted the need to 

consider a balance between both solubility and functionality when designing new 

antioxidant macromolecules. This was observed from the comparison between the 

diphenol (3.2) and the triphenol (3.1) whereby the diphenol (3.2), which had improved 

solubility, revealed the higher induction time of ca. 12 minutes. A series of nitrogen core 

monomers were also investigated and the triphenols 3.6 and 3.7 revealed some excellent 

oxidation induction times in the region of ca. 12-15 minutes, however solubility in the 

lubricious base oil was an issue. As an alternative, the diphenols 3.9 and 3.11 were 

synthesised to include a solubilising alkyl chain and these again revealed oxidation times 

in the region of ca. 10-12 minutes. It was therefore concluded that the central core 

monomer does not necessarily contribute to the antioxidant capabilities but instead 

promotes an increase in molecular weight and hence reduced volatility. In addition, 

solubilising alkyl chains can be introduced easily to a core monomer and enhanced 

antioxidant properties are targeted. It has been revealed that solubility is just as 

important as antioxidant functionality when considering the design of new antioxidant 

macromolecules.   

 

3.4 Experimental 

Reagents and solvents were purchased from Sigma Aldrich or Fisher Scientific and used 

without further purification with the exception of 3-(3,5-di-tert-butyl-4-hydroxy-

phenyl)-propionic acid which was purchased from Alfa Aesar. Dichloromethane was 

distilled under a nitrogen atmosphere from calcium hydride. All further purification and 

characterisation was carried out as described in Chapter 2.  

Preparation of propane-1,2,3-triyl tris(3-(3,5-di-tert-butyl-4-hydroxyphenyl) 

propanoate) (3.1) and general esterification procedure. 

Glycerol (1.00 g, 10.86 mmols), 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid 

(9.70 g, 34.75 mmols) and DPTS (60%) were dissolved in dry dichloromethane (60 mL) 

and stirred at room temperature for 30 minutes. To the solution, DCC (7.21 g, 34.75 
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mmols) dissolved in dry dichloromethane (40 mL) was added over 15 minutes. The 

reaction was left overnight at room temperature under a nitrogen atmosphere. The 

reaction mixture was filtered to remove the white DCU precipitate and the filtrate was 

concentrated. The residue was purified by flash column chromatography on silica eluting 

with hexane/ethyl acetate (90:10) (Rf = 0.30) to afford 6.64 g (70%) of 3.1 as a highly 

viscous yellow oil. IR (ATR) v/cm-1: 3641, 2954, 1739, 1435, 1138. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 1.42(s, 54H, CH3 tert-butyl), 2.61(t, 6H, J=8 Hz, Ar-CH2CH2-COO), 

2.86(t, 6H, J=8 Hz, Ar-CH2CH2-COO), 4.15(m, 2H, -CH2), 4.28(m, 2H, -CH2), 5.07(s, 3H, -

OH), 5.28(m, 1H, -CH), 6.98(s, 6H, ArH).13C NMR (100 MHz/CDCl3)/ppm, δ = 30.3, 30.9, 

34.3, 36.2, 62.2, 69.0, 124.8, 130.8, 136.0, 152.2, 172.3, 172.7. Found [M+Na]+ (C54H80O9) 

m/z = 895.5697   (Calc. 895.5792).  

Preparation of 2-hydroxypropane-1,3-diyl bis(3-(3,5-di-tert-butyl-4-hydroxy 

phenyl) propanoate) (3.3)  

Glycerol (1.00 g, 10.86 mmol), 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid (6.05 

g, 21.72 mmol), DPTS (60%) and DCC (5.15 g, 24.98 mmol) were allowed to react 

according to the general esterification procedure. The crude product was purified by flash 

column chromatography on silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.27) 

to afford 2.96 g (45%) of 3.3 as a pale yellow oil. IR (ATR) v/cm-1:3580, 3503, 2954, 1722, 

1434. 1H NMR (400 MHz/CDCl3)/ppm, δ = 1.43(s, 36H, CH3 tert-butyl), 2.65(t, 4H, J=8 Hz, 

Ar-CH2CH2-COO, 2.88(t, 4H, J=8 Hz, Ar-CH2CH2-COO), 4.00(m, 1H, -OH), 4.08(m, 2H, -CH2), 

4.13(m, 2H, -CH2), 5.09(s, 2H, ArOH), 6.99(s, 4H, ArH).13C NMR (100 MHz/CDCl3)/ppm, δ 

= 30.3, 30.9, 34.3, 36.2, 65.2, 68.3, 124.8, 130.8, 136.0, 152.3, 173.2. Found [M+Na]+ 

(C37H56O7) m/z = 635.3922 (Calc. 635.4026). 

Preparation of 2-((2-ethylhexanoyl)oxy)propane-1,3-diyl bis(3-(3,5-di-tert-butyl-

4-hydroxyphenyl)propanoate) (3.2)  

The diester 3.3 (0.5 g, 0.82 mmol), 2-ethylhexanoic acid (0.13 mL, 0.82 mmol), DPTS 

(60%) and DCC (0.22 g, 1.06 mmol) were allowed to react according to the general 

esterification procedure. The crude product was purified by flash column 

chromatography on silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.33) to afford 

0.47 g (76%) of 3.2 as a colourless oil. IR (ATR) v/cm-1: 3283, 2935, 1727, 1463, 1118. 1H 

NMR (400 MHz/CDCl3)/ppm, δ = 0.88(m, 6H, -CH3), 1.27(m, 4H, -CH2), 1.45(s, 36H, CH3 
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tert-butyl), 1.50-1.65(m, 4H, -CH2), 2.30(m, 1H, -CH), 2.60(t, 6H, J=8 Hz, Ar-CH2CH2-COO), 

2.86(t, 6H, J=8 Hz, Ar-CH2CH2-COO), 4.14(m, 2H, -CH2), 4.30(m, 2H, -CH2), 5.08(s, 2H, -

OH), 5.33(m, 1H, -CH), 6.98(s, 4H, ArH).13C NMR (100 MHz/CDCl3)/ppm, δ = 11.8, 

13.9,22.6, 25.5, 29.5, 30.2, 30.8, 31.7, 34.3, 36.2, 47.3, 62.5, 68.6, 124.7, 130.8, 135.9, 

152.2, 172.6, 175.5. Found [M+Na]+ (C45H70O8) m/z = 761.4958 (Calc. 761.5071). 

Preparation of 2-hydroxypropane-1,3-diyl bis(2-ethylhexanoate) (3.4)  

Glycerol (1.00 g, 10.86 mmol), 2-ethylhexanoic acid (3.47 mL, 21.72 mmol), DPTS (60%) 

and DCC (5.15 g, 24.98 mmol) were allowed to react according to the general 

esterification procedure. The crude product was purified by flash column 

chromatography on silica eluting with hexane/ethyl acetate (90:10) (Rf = 0.25) to afford 

1.12 g (30%) of 3.4 as a colourless oil. IR (ATR) v/cm-1: 3457, 2935, 1736, 1166. 1H NMR 

(400 MHz/CDCl3)/ppm, δ =0.90(m, 12H, -CH3), 1.20-1.34(m, 8H, -CH2), 1.45-1.67(m, 8H, 

-CH2), 2.32(m, 2H, -CH), 2.58(m, 1H, -OH), 4.10(m, 1H, -CH), 4.18(m, 4H, -CH2).13C NMR 

(100 MHz/CDCl3)/ppm, δ =11.8, 13.9, 22.6, 25.4, 29.6, 31.7, 47.2, 64.8, 68.5, 176.6. Found 

[M+Na]+ (C19H36O5) m/z = 367.2341 (Calc. 367.2563). 

Preparation of 2-((3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyl)oxy)propane-

1,3-diyl bis(2-ethylhexanoate)) (3.5)  

The diester 3.4 (0.3 g, 0.81 mmol), 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid 

(0.34 g, 1.21 mmol), DPTS (60%) and DCC (0.25 g, 1.21 mmol) were allowed to react 

according to the general esterification procedure. The crude product was purified by flash 

column chromatography on silica eluting with hexane/ethyl acetate (90:10) (Rf = 0.34) 

to afford 0.38 g (75%) of 3.5 as a colourless oil. IR (ATR) v/cm-1: 3638, 2959, 1737, 1136. 

1H NMR (400 MHz/CDCl3)/ppm, δ = 0.89(m, 12H, -CH3), 1.20-1.33(m, 8H, -CH2), 1.43(s, 

18H, CH3 tert-butyl), 1.47-1.69(m, 8H, -CH2), 2.28(m, 2H, -CH), 2.60(t, 2H, J=8 Hz, Ar-

CH2CH2-COO), 2.86(t, 2H, J=8 Hz, Ar-CH2CH2-COO), 4.16(m, 2H, -CH2), 4.36(m, 2H, -CH2), 

5.09(s, 1H, ArOH), 5.29(m, 1H, -CH), 6.98(s, 2H, ArH).13C NMR (100 MHz/CDCl3)/ppm, δ 

= 11.8, 13.9, 22.6, 25.4, 29.6, 30.3, 30.9, 31.6, 34.3, 36.4, 47.2, 61.7, 69.2, 124.7, 130.8, 

135.9, 152.2, 172.2, 175.8. Found [M+Na]+ (C36H60O7) m/z = 627.4231 (Calc. 627.4339). 
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Preparation of nitrilotris(ethane-2,1-diyl) tris(3-(3,5-di-tert-butyl-4-hydroxy 

phenyl)propanoate) (3.6) 

Triethanolamine (1.0 mL, 7.52 mmol), 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic 

acid (8.79 g, 31.58 mmol), DPTS (60%) and DCC (6.52 g, 31.58 mmol) were allowed to 

react according to the general esterification procedure. The crude product was purified 

by flash column chromatography on silica eluting with hexane/ethyl acetate (90:10) 

(Rf = 0.28) to afford 4.53 g (65%) of 3.6 as a white powder. IR (ATR) v/cm-1:3625, 2954, 

1725, 1434, 1149. 1H NMR (400 MHz/CDCl3)/ppm, δ =1.42(s, 54H, CH3 tert-butyl), 2.59(t, 

6H, J=8 Hz, -CH2), 2.82(m, 12H, -CH2), 4.12(t, 6H, J=8 Hz, -CH2), 5.07(s, 3H, -OH), 6.98(s, 

6H, ArH).13C NMR (100 MHz/CDCl3)/ppm, δ = 30.3, 31.0, 34.3, 36.5, 53.3, 62.6, 124.8, 

131.0, 135.9, 152.2, 173.1. Found [M+H]+ (C57H87NO9) m/z = 930.6458 (Calc. 930.6381). 

Preparation of nitrilotris(propane-1,2-diyl) tris(3-(3,5-di-tert-butyl-4-

hydroxyphenyl) propanoate) (3.7) 

Triisopropanolamine (0.85 g, 4.49 mmol), 3-(3,5-di-tert-butyl-4-hydroxyphenyl) 

propionic acid (5.00 g, 17.96 mmol), DPTS (60%) and DCC (3.71 g, 17.96 mmol) were 

allowed to react according to the general esterification procedure. The crude product was 

purified by flash column chromatography on silica eluting with hexane/ethyl acetate 

(90:10) (Rf = 0.29) to afford 2.80 g (62%) of 3.7 as a highly viscous yellow oil. IR (ATR) 

v/cm-1:3645. 2954, 1726, 1435, 1164, 755. 1H NMR (400 MHz/CDCl3)/ppm, δ = 1.17(m, 

9H, -CH3), 1.42(s, 54H, CH3 tert-butyl), 2.45-2.72(m, 12H, -CH2), 2.85 (t, 6H, J=8 Hz, -CH2), 

4.96(m, 3H, -CH), 5.07(s, 3H, -OH), 6.99(s, 6H, ArH).13C NMR (100 MHz/CDCl3)/ppm, δ = 

18.2, 30.3, 31.0, 34.3, 36.8, 60.1, 69.0, 124.8, 131.1, 135.9, 152.2, 172.7. Found [M+H]+ 

(C60H93NO9) m/z = 972.6924 (Calc. 972.6850). 

Preparation of 2,2'-((2-ethylhexyl)azanediyl)bis(ethan-1-ol) (3.8) 

2-Ethylhexyl bromide (3.40 mL, 19 mmols) was added to diethanolamine (2.00 g, 19.00 

mmols) and sodium carbonate (2.42 g, 23.00 mmols) in acetonitrile. The reaction was 

heated under reflux for 48 hours. Upon completion, the reaction was cooled to room 

temperature, filtered and the solvent was removed in vacuo. The crude product was 

purified by flash column chromatography on silica eluting with chloroform/methanol 

(80:20) (Rf = 0.17) to afford 1.89 g (46%) of 3.8 as a yellow oil. IR (ATR) v/cm-1: 3320, 

2922, 1456, 1036. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.88(m, 6H, CH3), 1.26-1.46(m, 9H, 
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-CH,-CH2), 2.33(m, 2H, -CH2), 2.59-2.67,(m, 4H, CH2) 2.85(s, 2H, -OH), 3.61(t, 4H, J=4 Hz, -

CH2).13C NMR (100 MHz/CDCl3)/ppm, δ = 10.6, 14.1, 23.2, 24.2, 28.8, 31.1, 37.3, 56.8, 

59.6, 59.7. Found [M+H]+ (C12H27NO2) m/z = 218.2113 (Calc. 218.2042). 

Preparation of ((2-ethylhexyl)azanediyl)bis(ethane-2,1-diyl) bis(3-(3,5-di-tert-

butyl-4-hydroxyphenyl)propanoate) (3.9) 

The diol 3.8 (0.5 g, 2.30 mmol), 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid 

(1.48 g, 5.30 mmol), DPTS (60%) and DCC (1.09 g, 5.30 mmol) were allowed to react 

according to the general esterification procedure. The crude product was purified by flash 

column chromatography on silica eluting with hexane/ethyl acetate (90:10) (Rf = 0.35) 

to afford 1.24 g (73%) of 3.9 as a viscous yellow oil. IR (ATR) v/cm-1:3642, 2960, 1730, 

1433, 1157, 765. 1H NMR (400 MHz/CDCl3)/ppm, δ =0.86(m, 6H, -CH3), 1.23-1.32(m, 9H, 

-CH, -CH2), 1.42(s, 36H, -CH3 tert-butyl), 2.33(m, 2H, -CH2), 2.59(t, 4H, J=8 Hz, -CH2), 

2.72(t, 4H, J=8 Hz, -CH2), 2.86(t, 4H, J=8 Hz, -CH2), 4.12(t, 4H, J=8 Hz, -CH2), 5.07(s, 2H, -

OH), 6.99(s, 4H, ArH).13C NMR (100 MHz/CDCl3)/ppm, δ = 10.7, 14.2, 22.2, 24.1, 28.8, 

30.3, 30.9, 31.0, 34.3, 36.5, 37.6, 53.3, 59.7, 62.6, 124.8, 131.1, 135.9, 152.2, 173.1. Found 

[M+H]+ (C46H75NO6) m/z = 738.5670 (Calc. 738.5594). 

Preparation of 1,1'-((2-ethylhexyl)azanediyl)bis(propan-2-ol) (3.10) 

2-Ethylhexyl bromide (2.67 mL, 15.00 mmols) was added to diisopropanolamine (2.00 g, 

15.00 mmols) and sodium carbonate (1.91 g, 18.00 mmols) in acetonitrile. The reaction 

was heated under reflux for 48 hours. Upon completion, the reaction was cooled to room 

temperature, filtered and the solvent was removed in vacuo. The crude product was 

purified by flash column chromatography on silica eluting with chloroform/methanol 

(90:10) (Rf = 0.24) to afford 1.29 g (35%) of 3.10 as a pale yellow oil. IR (ATR) v/cm-1: 

3348, 2960, 1457, 1054. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.88(m, 6H, CH3), 1.14(m, 

6H, -CH3), 1.26-1.46(m, 9H, -CH,-CH2), 2.28-2.48,(m, 6H, -CH2) 2.82(s, 2H, -OH), 3.81(m, 

2H, -CH).13C NMR (100 MHz/CDCl3)/ppm, δ = 10.12, 10.6, 14.1, 20.2, 20.6, 23.1, 24.1, 24.3, 

24.5, 28.4, 28.7, 29.0, 31.0, 31.1., 31.3, 36.9, 37.3, 37.5, 59.9, 60.3, 61.1, 63.3, 63.5, 63.9, 

64.0, 64.7, 65.5, 65.6. Found [M+H]+ (C14H31NO2) m/z = 246.2428 (Calc. 246.2355). 
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Preparation of ((2-ethylhexyl)azanediyl)bis(propane-1,2-diyl) bis(3-(3,5-di-tert-

butyl-4-hydroxyphenyl)propanoate) (3.11) 

The diol 3.10 (0.5 g, 2.04 mmol), 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid 

(1.31 g, 4.69 mmol), DPTS (60%) and DCC (0.96 g, 4.69 mmol) were allowed to react 

according to the general esterification procedure. The crude product was purified by flash 

column chromatography on silica eluting with hexane/ethyl acetate (90:10) (Rf = 0.37) 

to afford 1.01 g (62%) of 3.11 as a viscous yellow oil. IR (ATR) v/cm-1: 3643, 2960, 1727, 

1434, 1054, 767. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.88(m, 6H, -CH3), 1.18(m, 6H, -

CH3), 1.22-1.37(m, 9H, -CH, -CH2), 1.42(s, 36H, -CH3 tert-butyl), 2.25-2.62(m, 10H, -CH2), 

2.85(t, 4H, J=8 Hz, -CH2), 4.96(m, 2H, -CH), 5.06(s, 2H, -OH), 6.99(s, 4H, ArH).13C NMR 

(100 MHz/CDCl3)/ppm, δ = 10.7, 10.8, 14.2, 18.4, 18.5, 23.3, 20.0, 28.9, 30.3, 30.9, 31.0, 

34.3, 36.8, 37.5, 60.0, 60.1, 60.2, 60.3, 68.9, 69.0, 69.1, 69.2, 124.8, 131.1, 135.9, 152.1, 

172.7. Found [M+H]+ (C48H79NO6) m/z = 766.5983 (Calc. 766.5907). 
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Chapter 4  

 

Investigating the synergy between diphenylamine derivatives and hindered phenolic 

antioxidants. 

 

Abstract 

Diphenylamines and hindered phenols have been shown to exhibit a synergistic 

antioxidant effect when both are present in a material. For this synergism to be effective, 

both compounds have to be in close proximity which is a diffusion controlled process. It 

was therefore hypothesised that if both diphenylamine and phenolic functionalities were 

incorporated into the same compound the synergistic effect would be enhanced.  Three 

series of diphenylamine derivatives were synthesised utilising the palladium catalysed 

Buchwald-Hartwig amination. The diphenylamine derivatives were designed to possess 

carboxylic acid functionalities in either the ortho, meta or para position with respect to 

the secondary amine. Methyl or ethyl spacers were also incorporated between the 

carboxylic acid and the aromatic ring to further investigate structure-activity 

relationships. The first generation bis(MPA)-based diol linker (Chapter 2) was 

selectively reacted with 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid to yield a 

first generation mono-phenolic linker with one free hydroxyl to which the diphenylamine 

derivatives were attached. The antioxidant ability of the first generation mixed amine-

phenols was evaluated using differential scanning calorimetry (DSC) and when blended 

into a lubricant base oil, at 0.5% w/w, an increase in antioxidant performance was 

observed. The antioxidant performance was compared to the current industry 

antioxidants Irganox L135 and Irganox L57 as both individual components and as a 

synergistic blend together. Excellent oxidative stability was observed from Series 3 

whereby an ethyl spacer was introduced between the diphenylamine the carboxylic acid 

in the meta or para position with respect to the secondary amine functionality. An 

impressive 52% increase in the oxidation induction time was observed in comparison to 

the current synergistic blend of Irganox L135 and Irganox L57.  
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4.1 Introduction 

The first chapters of this thesis introduced the concept of autoxidation in organic 

materials and how, through the inclusion of stabilising additives, the rate of the 

degradation process can be reduced. Phenolic antioxidants (Chapter 2 and 3) are widely 

reported in the literature and are recognised across many industries as efficient radical 

scavengers, however this chapter introduces another common radical scavenger in the 

form of diphenylamines, examples of which are shown in Figure 4.1. 

 

 

 

Figure 4.1 Example structures of some common arylamine antioxidants a) diphenylamine, 
b) N-phenyl-1-napthylamine and c) bis(4-(1,1,3,3-tetramethylbutyl) phenyl)amine. 

The scavenging behaviour of diphenylamines is comparable to that of phenols. A similar 

hydrogen abstraction pathway to phenolic antioxidants has been reported where at 

50 ᵒC, they can trap two peroxy radicals through donation of a hydrogen atom from their 

NH group to a peroxy radical.[1–3] A unique characteristic of diphenylamines, however, is 

that at temperatures >100 ᵒC, their stoichiometric factors increase.[4] An example of 

which was reported in 1978 when an unbelievable stoichiometry of n = 41 was revealed 

from the diphenylamine inhibited oxidation of paraffin oil at 130 ᵒC.[5] After much debate, 

this dramatic observation was later attributed by Korcek and co-workers to a cyclical 

scavenging pathway involving the regeneration of the original amine (Scheme 4.1).[6]  

 

 

 

 

 

 

Scheme 4.1 Proposed mechanism of catalytic activity of diphenylamine radical scavengers.[6]  

a) b) c) 
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The regeneration was found to be part of a catalytic cycle which relied upon the formation 

of the corresponding nitroxide. The nitroxide was an intermediate that had been 

proposed much earlier on by Thomas and co-workers,[7–9] however the proof of the 

reduction of diarylnitroxides to regenerate the corresponding diamines provided an 

explanation for the high stoichiometric values at temperatures >100 ᵒC.[6] A survey of the 

literature does not reveal any disagreement of this proposed mechanism, however, it has 

been noted that there is still much to learn about the kinetics and mechanisms 

surrounding the radical scavenging pathways of diphenylamines.[4,10] While data has 

been reported on improving the individual antioxidant capabilities of hindered phenols 

and diphenylamines through structural variations, very little research, has been reported 

on the inclusion of both functional groups within the same compound. The closest 

example found of  a mixed phenol and amine derivative was reported by Valgimigli and 

co-workers who found by introducing nitrogen into the aromatic ring of the phenol, 

radical scavenging ability was improved.[11–13] In addition, a couple of current industrial 

antioxidants have also made use of introducing nitrogen containing functionalities 

(Figure 4.2), however diphenylamine structures have not been described on the same 

compound with a sterically hindered phenol.    

 

 

 

Figure 4.2 Example structures of some nitrogen containing antioxidants a) Ethanox 703, b) Irganox 
565 and c) a pyrimidinal structure developed by the collaboration between the Valgimigli 
and Porter groups.[11–13] 

It is well-known, particularly in lubricant chemistry, that phenols and diphenylamines, 

when in the presence of each other, show a synergistic effect and greater antioxidant 

capabilities are observed.[10] The term Ǯsynergismǯ refers to the cooperative action of two 

or more additive species in such a way that the total effect is greater than the sum of the 

individual effects taken independently.[14] Scott, in 1965, expressed this idea in terms of 

the molar ratio of each antioxidant whereby the replacement of a molar percentage of an antioxidant A by an antioxidant B would be predictable by the ideal straight line aǯ-bǯ 
(Figure 4.3).[15] In reality, the result is generally better or worse than predicted, if better 
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this is termed Ǯsynergismǯ and is a practical advantage. If the result is worse, it is termed Ǯantagonismǯ and that ratio would have to be avoided.[15] 

 

 

 

 

 

 

Figure 4.3 Synergism and antagonism expressed as a function of the molar ratio of antioxidant A and 
B.[15] 

Synergism can also be expressed mathematically by stating that synergism is obtained 

when T1,2 > T1 + T2 where T1 and T2 are the induction periods for each antioxidant and 

T1,2 is the induction period under the action of both.[14] The synergism between phenols 

and diphenylamines was reported by Meskina and co-workers in the late 1960s [16–18] and 

some noteworthy combination effects have been observed over the years. The success of 

this combination is attributed to the regeneration of the diphenylamine by the sterically 

hindered phenol.[19,20] Diphenylamines react sacrificially in the scavenging process, in 

comparison to sterically hindered phenols, as a result of their higher rate constants 

associated with the reaction of peroxy radicals ȋROO˙Ȍ. The less efficient phenolic serves 

as a hydrogen donor for the aminyl radical hence allowing the parent amine to be 

regenerated (Scheme 4.2).[21–23] 

 

 

 

 

 

 

Scheme 4.2 Mechanism of synergism between a diphenylamine and a sterically hindered phenol.[23] 

Molar ratio of A/B

ANTAGONISM

SYNERGISM

BA

b’

a’
A

n
ti

o
xi

d
an

t 
E

ff
ec

ti
ve

n
es

s 



Chapter 4 

98 
 

The formed phenoxy radicals ȋArO˙Ȍ are irreversibly consumed through reaction with 

subsequent peroxy radicals ȋROO˙Ȍ. The diphenylamine only starts to be consumed after 

the disappearance of all of the phenolic component.[21–23] The subsequent development 

of synergistic packages has been one of the major developments of stabilisation 

technology most notably in the stabilisation of polymers, fuels and lubricants.[15] This 

chapter outlines the synthesis of a series of diphenylamine derivatives which have been 

appended to a mono-phenolic linker to derive a series of novel mixed amine-phenol 

antioxidants. It was hypothesised that while synergistic effects have been found for 

blending separate components together there must undoubtedly be significant 

limitations to the process. If the literature is correct in stating that the amine antioxidant 

is regenerated by the phenol then the two compounds would have to be within a contact 

distance which is assumed to be diffusion controlled. This could potentially be hindered 

by the relative antioxidant concentrations within the hydrocarbon medium and also by 

the large array of other chemical species within the formulation not only from other 

additive components but also from degradation products. To alleviate these limitations it 

was proposed that by incorporating both functional groups on the same compound, 

synergism could be targeted in a more controlled manner. Herein, the synthesis of a series 

of mixed amine-phenol derivatives is reported where, when blended into a lubricant base 

oil, enhanced synergistic and antioxidant capabilities were revealed.  

4.2 Results and Discussion 

4.2.1 Synthesis, Characterisation and Testing – Series 1 

An initial diphenylamine 4.1 was designed whereby the ester functionality was initially 

placed in the meta position (Figure 4.4) with respect to the secondary amine as this was 

believed to be the favoured position for enhanced antioxidant performance, in 

comparison to ortho or para.  

 

 

Figure 4.4 Structure of initial diphenylamine 4.1. 

Side reactions in the radical scavenging pathway of diphenylamines results in 

termination of the catalytic cycle which explains the large but not infinite radical 

scavenging stoichiometries (Scheme 4.3).[10]  It has been reported that both the aminyl 
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radical and its nitroxide have significant spin density at the ortho and para positions of 

their aromatic rings allowing these side reactions to occur.[10,24]  

 

 

 

 

Scheme 4.3 Examples of radical scavenging termination reactions of a) aminyl radical and b) nitroxide 
radical substituted in the para position.[10] 

Palladium catalysed Buchwald-Hartwig amination was used to synthesise the 

diphenylamine whereby an aryl halide or sulfonate was coupled to a primary amine 

(Scheme 4.4). Buchwald and Hartwig independently developed the palladium catalysed 

N-arylation methodology using suitable diamine or phosphine ligands in the 1990s.[25-28] 

Significant progress has since been made in improving the efficiency and applicability of 

palladium catalysed C-N cross-coupling reactions and numerous palladium species, 

ligands and reaction conditions have been reviewed in the literature.[29–32] 

 

 

Scheme 4.4 General scheme for the coupling of aniline and an aromatic halide where X represents Cl, 
Br, I or Ts and R, in the case of this chapter, represents a methyl ester (CO2Me) at a position 
ortho, meta or para to the halide on the aromatic ring.  

For the scope of this chapter, focus was drawn to research carried out by Csuk and 

co-workers which revealed the successful coupling of ester bearing arylamines, using 

Buchwald-Hartwig methodology, of which excellent yields of >85% were reported.[33] 

Based on the findings of Csuk and co-workers, optimised reaction conditions were 

derived through a series of model reactions using methyl 3-bromobenzoate and aniline 

as the reactants (Scheme 4.5). Palladium acetate (Pd(OAc)2) was chosen as the catalyst, 

which has been described as the most versatile palladium species, from an industrial 

perspective, with toluene used as the solvent.[31]  
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Scheme 4.5 General synthesis of the diphenylamine 4.1. Two diphosphine ligands ȋ±Ȍ2,2ǯ-bis(diphenylphosphino)-1-ͳǯ-binaphthalene 

(rac. BINAP) and bis[(2-diphenylphosphino)phenyl]ether (DPE-Phos) (Figure 4.5) were 

investigated initally using cesium carbonate (Cs2CO3) as the base for functional group 

compatibility.  

 

 

Figure 4.5 Structures of two diphosphine ligands a) rac. BINAP and b) DPE-Phos 

The highest yield of the diphenylamine 4.1 was achieved using rac. BINAP (>60%) in 

comparison to DPE-Phos which yielded less than 15% of the target compound. Therefore, 

rac. BINAP was chosen as the ligand. A range of bases were also investigated in an attempt 

to increase the yield (Table 4.1), however, Cs2CO3 remained the most successful. Sodium 

tert-butoxide (NaOtBu) is used commonly in C-N coupling reactions, however, it caused 

hydrolysis of the ester moiety of methyl 3-bromobenzoate and the desired compound 

was not observed. It was also found that de-gassing of the solvent and the pre-mixing of 

Pd(OAc)2 with the diphosphine ligand was a requirement for optimisation. These 

practical observations were in agreement with that reported by Csuk.[33]  

Catalyst Ligand Solvent Base Yield of (3.1) 

Pd(OAc)2 BINAP Toluene Cs2CO3 60% 

Pd(OAc)2 DPE-Phos Toluene Cs2CO3 <15% 

Pd(OAc)2 BINAP Toluene K2CO3 18% 

Pd(OAc)2 BINAP Toluene Triethylamine - 

Pd(OAc)2 BINAP Toluene NaOtBu - (Ester hydrolysis) 

 

Table 4.1 Effect of the ligand and base on the generation of 4.1.  
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The aim of this research was to introduce the diphenylamine derivatives into a compound 

already bearing a phenolic functionality with the hypothesis that greater synergistic 

effects would be revealed. Hence, a carboxylic acid functionality was targeted, via ester 

hydrolysis, to allow simple attachment of the diphenylamine to a suitable linker. The 

optimised synthetic procedure used to reach the initial target compound is detailed in 

Scheme 4.6.  

 

 

 

 

 

Scheme 4.6 Synthesis of series 1 diphenylamine carboxylic acid (4.2). 

Successful coupling of methyl 3-bromobenzoate to aniline to form 4.1 was achieved and 

synthesis was confirmed using 1H NMR spectroscopic analysis where an upfield shift was 

observed for the aromatic HA proton resonance from 8.17 ppm in methyl 

3-bromobenzoate, to 7.72 ppm in the diphenylamine 4.1 (Figure 4.6). This change in 

chemical shift was associated with the loss of the strongly electron-withdrawing bromine 

and replacement with an electron donating nitrogen moiety. In addition, when the 

secondary amine proton resonance was integrated with respect to the methyl ester 

proton resonance at 3.90 ppm an integral of one was revealed indicating conversion from 

a primary to a secondary amine. The carboxylic acid 4.2 was yielded via the base 

catalysed ester hydrolysis of the methyl ester 4.1. Cleavage of the methyl moiety was 

confirmed by 13C NMR spectroscopic analysis whereby the methyl resonance at 52.2 ppm 

was no longer evident. In addition, a slight downfield shift was observed for the carbonyl 

13C resonance from 167 ppm, associated with the ester moiety, to 172 ppm for the newly 

formed carboxylic acid.  FTIR spectroscopic analysis also revealed a broad absorbance 

from ca. 2400-2900 cm-1 which is characteristic of a carboxylic acid hydroxyl stretch. 
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Figure 4.6 Overlay of 1H NMR spectra to show the upfield shift of the HA proton at 8.17 ppm from 
methyl 3-bromobenzoate to 7.72 ppm upon coupling to aniline. 

In Chapter 2, a first generation hydroxyl linker was synthesised and successfully 

functionalised with phenolic end groups to provide antioxidant activity. The first 

generation hydroxyl linker was therefore used to introduce both the amine and phenol 

functionalities. Two synthetic procedures were targeted, both utilising 

N,N’-dicyclohexylcarbodiimide (DCC) mediated coupling.  The first, shown in Scheme 

4.7, was a statistical reaction whereby the diphenylamine 4.2, the hindered phenol 

3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid and the first generation hydroxyl 

linker 2.1 were reacted in a ratio of 1:1:1. 

 

 

 

 

 

 

 

Scheme 4.7 The statistical reaction between 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid, 4.2 
and 2.1 to yield the mixed amine-phenol 4.3.   

HA 

HA 
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The statistical reaction successfully yielded the desired compound 4.3, however, 

competing by-products, shown in Figure 4.7, resulted in a yield of ca. 30%. Even though 

this yield was low, it was statistically the maximum yield that could be obtained from this 

reaction. Upon separation of the crude reaction mixture using flash column 

chromatography it was revealed that both the by-products 2.9 and 4.4 were recovered 

in ca. 30% yield. This reaction was successful in as far as the expected yields were 

achieved, however the scope of this work required a more controlled synthetic approach 

to ensure a good yield of 4.3 to enable detailed antioxidant analysis. The statistical 

approach may be beneficial in industry because even though compounds 2.9 and 4.4 are 

inevitably synthesised as by-products, they can be utilised independently as antioxidants.  

 

 

 

 

Figure 4.7 Potential products from the statistical reaction shown in Scheme 4.7. 

An alternative dilution method was therefore utilised where a mono-phenolic hydroxyl 

linker was synthesised from the reaction of a single hydroxyl functionality with 

3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid (Scheme 4.8).  

 

 

 

Scheme 4.8 Synthesis of the mono-phenolic hydroxyl linker (4.5) using the first generation hydroxyl 
linker (2.1) and 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid. 

A five-fold excess of the first generation hydroxyl linker was dissolved in 

dichloromethane along with DCC and 4-(dimethylamino)pyridinium-4-toluenesulfonate 

(DPTS). The 3,5-di-tert-butyl-4-hydroxyphenylpropionic acid was added slowly to the 

reaction and the progress was monitored closely by thin layer chromatography which 

indicated when the reaction was complete. An excellent yield of ca. 90% was achieved 

using this methodology. Synthesis of the mono-phenol hydroxyl linker 4.5 was confirmed 
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by 1H NMR spectroscopic analysis. Mono protection of the terminal hydroxyl moiety was 

ascertained by integrating the methylene protons adjacent to the ester linkage of the 

solubilising alkyl chain (a multiplet at 4.06 ppm, 2 protons) with respect to the protons 

of the tert-butyl groups of the antioxidant terminal unit (a singlet at 1.43 ppm, 

18 protons). In addition, a downfield shift of the doublet resonances, associated with the 

methylene protons adjacent to the newly formed ester linkage, was observed from 3.70 

and 3.88 ppm to 4.22 and 4.32 ppm. An upfield shift from 3.07 ppm to 2.53 ppm was 

observed for the remaining hydroxyl proton and the adjacent methylene protons were 

represented by a broad singlet at 3.57 ppm. 1H-1H COSY NMR spectroscopic analysis 

(Figure 4.8) also confirmed the assignment by showing a correlation between the 

methylene resonance at 3.57 ppm and the hydroxyl resonance at 2.53 ppm whereas the 

methylene doublet resonances at 4.34 and 4.21 ppm did not reveal a coupling to the 

hydroxyl resonance indicating they were instead  appended to the newly formed ester 

functionality. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 1H-1H COSY NMR spectroscopic analysis to confirm the structure of the mono-phenol 
hydroxyl linker (4.5) 

The remaining hydroxyl moiety on the mono-phenol hydroxyl linker (4.5) was then 

functionalised with the diphenylamine (4.2) via DCC mediated coupling (Scheme 4.9). 

The mixed amine-phenol 4.3 was successfully synthesised with an improved yield of 

ca. 70%. The overall yield for the two-step synthetic approach was therefore ca. 80%. 
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Scheme 4.9 Synthesis of the mixed amine-phenol 4.3 via the mono-phenol hydroxyl linker 4.5.  

Mass spectrometric analysis confirmed the expected molecular weight 

[M+Na]+ (C43H59NO7) m/z = 724.4184 (Calc. 724.419). In addition, 1H NMR spectroscopic 

analysis revealed a 1:1 ratio of amine to phenol proton resonances at 5.86 ppm and 

5.07 ppm, respectively.  The loss of the hydroxyl proton resonance at 2.53 ppm was 

observed and a downfield shift of the adjacent methylene resonance was seen at 

4.43 ppm as a result of the newly formed ester linkage to the diphenylamine (Figure 4.9).  

 

 

 

 

 

  

 

 

 

Figure 4.9 1H NMR spectra displaying the coupling of the diphenylamine 4.2 to the mono-phenolic 
hydroxyl linker 4.5. 

To investigate structure-activity relationships of the novel mixed amine-phenol, the 

bis(diphenylamine) 4.4 was also synthesised, as shown in Scheme 4.10. 
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Scheme 4.10 Synthesis of first generation bis(diphenylamine) 4.4.  

Synthesis of the bis(diphenylamine) 4.4 was confirmed using FTIR spectroscopic analysis 

where the loss of the broad hydroxyl absorbance at 3400 cm-1 was evident and a distinct 

absorbance at 3357 cm-1 characteristic of a secondary amine was revealed. Absorbances 

were also evident at 1516 and 1596 cm-1 which are characteristic of C-C aromatic 

stretches in addition to absorbances at 692 and 745 cm-1 corresponding to the C-H out of 

plane bends on the aromatic rings.  

The para substituted diphenylamine, shown in Figure 4.10, was provided by BP 

Technology Centre, Pangbourne for incorporation into this study. A structural difference 

was that there was a methylene spacer between the carboxylic acid and the aromatic ring 

which diminished the deactivating effect of the ester moiety, hence improving the 

antioxidant capability of the amine.  This carboxylic acid was attached to the 

mono-phenolic linker 4.5 and the first generation hydroxyl linker to yield both the mixed 

amine-phenol (4.6) and the bis(diphenylamine) (4.7) (Table 4.2).  

 

 

Figure 4.10 Structure of the para substituted diphenylamine provided by BP Technology Centre, 
Pangbourne.  

The structures of the four potential antioxidant compounds are shown in Table 4.2. To 

further assess the antioxidancy potential of the novel compounds, they were blended into 

the synthetic lubricant base oil, Durasyn 164, at 0.5% w/w as described in Chapter 2.   
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Mixed Amine-Phenol Bis(diphenylamine) 

 

 

 

 

 

 

 

 

 

Table 4.2 Structure of the meta substituted amine-phenol (4.3) and bis(diphenylamine) (4.4) for 
comparison against the para substituted amine-phenol (4.6) and bis(diphenylamine) 
(4.7).  

Current commercial antioxidants were used as a comparison, where Irganox L135 is a 

phenolic antioxidant and Irganox L57 is an aromatic amine antioxidant (Figure 4.11). 

The blends were analysed using pressurised differential scanning calorimetry.  

 

 

 

 

Figure 4.11 Commercial antioxidants a) Irganox L135 and b) L57. 

Oxidation induction time (OIT) and oxidation onset temperature (OOT) were the two 

methods used. The miscibility of the bis(diphenylamines) 4.4 and 4.7 in the lubricant 

base oil was poor and full dissolution was only evident at high temperatures. When the 

blends were left to stand at room temperature, the bis(diphenylamines) precipitated out 

of solution and aggregated on the side of the sample container hence analysis was not 

possible. In comparison, the mixed amine-phenols remained in solution even though an 

extended heating period was required to ensure full dissolution. The results for the OIT 

of each oil blend are shown in Figure 4.12. 

a) b) 
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Figure 4.12 Average Oxidation induction time of 0.5% w/w antioxidant-base oil samples (tested in 
duplicate). 

Oxidation induction time analysis revealed that the presence of 4.3 and 4.6 in the base 

oil has increased the oxidative stability (Figure 4.12). The induction time has been 

increased from <3 minutes for the unblended base oil to ca. 10-13 minutes for the 

blended samples. In addition, 4.3 and 4.6 have shown superiority to both of the 

commercial antioxidants, Irganox L135 and Irganox L57. However, the synergistic effect 

of having both functionalities on the same compound did not outweigh the effect of 

blending both together as evident in the L135/L57 blend. The methylene spacer in the 

mixed amine-phenol 4.6 appeared to have a positive effect on the antioxidant capabilities, 

showing an induction time of ca. 3 minutes longer than 4.3. Oxidation onset temperature 

analysis was also performed and the results for each oil blend are shown in Figure 4.13 

where again, a significant increase in temperature was observed when 4.3 and 4.6 were 

incorporated into the blend when compared to the base oil in isolation.  

 

 

 

 

 

 

 

Figure 4.13 Average Oxidation onset temperature of 0.5% w/w antioxidant-base oil samples (tested 
in duplicate). 

3.58

5.92

9.99

13.15

15.76

0

2

4

6

8

10

12

14

16

18

A
v

e
ra

g
e

 O
x

id
a

ti
o

n
 I

n
d

u
ct

io
n

 T
im

e

(m
in

u
te

s)

Sample

223.11

237.66

249.07 250.62 250.96
253.84

200

210

220

230

240

250

260

A
v

e
ra

g
e

 O
x

id
a

ti
o

n
 O

n
se

t 
T

e
m

p
e

ra
tu

re

(ᵒ
C

)

Sample



 
Investigating the Synergy Between Diphenylamine Derivatives and Hindered Phenolic Antioxidants. 

 
 

109 
 

The results revealed these compounds do have antioxidant capabilities but physical 

properties such as solubility was not yet optimised. To further refine the structure of the 

mixed amine-phenols, two additional series of derivatives were generated. 

4.2.2 Synthesis, Characterisation and Testing – Series 2 

The first issue to address was the poor solubility observed for both the 

bis(diphenylamines) and the mixed amine-phenols in Series 1. An alkyl chain was 

therefore introduced by using 4-butylaniline as the starting material. The most effective 

position to link the diphenylamine to the hydroxyl linker was also investigated and ortho, 

meta and para carboxylic acid substituted diphenylamines were synthesised via the 

Buchwald-Hartwig amination methodology developed in Series 1. The esters 4.8 (ortho), 

4.9 (meta) and 4.10 (para) were generated first, followed by base hydrolysis to yield the 

carboxylic acids 4.11, 4.12 and 4.13. The general synthesis of this series of compounds 

is shown in Scheme 4.11. 

 

 

 

 

 

 

 

Scheme 4.11 General scheme for the synthesis of Series 2 diphenylamine derivatives.  

Successful coupling of 4-butylaniline to methyl 3-bromobenzoate and methyl 

4-bromobenzoate was achieved to yield the meta and para diphenylamines 4.9 and 4.10, 

respectively (ca. 50%). The synthesis of 4.8, using methyl 2-bromobenzoate, proved 

more challenging where a low yield of only ca. 25% was achieved. It was believed this 

low yield was attributed to the combination of steric hindrance surrounding the bromine 

from the ester moiety in the ortho position and through use of the bulky base Cs2CO3. In 

an attempt to improve the yield K2CO3 was used instead and an increase in yield to 53% 

was observed. The synthesis of 4.8 was confirmed using 1H NMR spectroscopic analysis 
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where a dramatic downfield shift of the amine proton resonance was revealed from 

3.5 ppm in 4-butylaniline (starting material) to 9.4 ppm in the diphenylamine 4.8. This 

shift was associated with intramolecular hydrogen bonding between the secondary 

amine and the ester carbonyl as shown in Figure 4.14. A slight downfield shift of the 

amine proton resonance in 4.9 and 4.10 was observed at ca. 5.6 ppm. 

 

 

Figure 4.14 Intramolecular hydrogen bonding in the diphenylamine 4.8. 

The diphenylamine 4.8 also exhibited a characteristic ortho substitution proton splitting 

pattern as observed by 1H NMR spectroscopic analysis (Figure 4.15). Consultation of the 

2D NMR spectroscopic analyses, HMBC revealed a long range coupling between the 

apparent doublet, HA, at 7.95 ppm and the ester carbonyl carbon at 170 ppm. Subsequent 

assignments were determined using 1H-1H COSY NMR spectroscopic analysis which 

revealed proton coupling between HA at 7.95 ppm and the apparent triplet, HB, at 6.68 

ppm. HB also revealed coupling to the apparent triplet HC at 7.29 ppm. The four protons 

associated with the 4-butylaniline ring coalesced into a single resonance at 7.17 ppm 

which partially masked the resonance for proton HD. 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 1H NMR spectroscopic analysis of diphenylamine 4.8. 
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Subsequent ester hydrolysis yielded 4.11, 4.12 and 4.13 in good yield (>80%). The loss 

of the methyl moiety was observed using 13C NMR spectroscopic analysis whereby the 

methyl resonance at ca. 52 ppm, in all three compounds, was not observed. The 

mono-phenol hydroxyl linker (4.5) was functionalised with all three carboxylic acid 

diphenylamine derivatives (4.11, 4.12 and 4.13) to yield a series of mixed amine-phenols 

(4.14-16) shown in Table 3.3. In addition, the bis(diphenylamines) were also generated 

from reaction with the first generation diol linker 2.1. Synthesis of the mixed 

amine-phenols was confirmed using 1H NMR spectroscopic analysis. The hydroxyl proton 

resonance at 2.53 ppm, of the mono-phenolic linker, was not observed for each of 4.14, 

4.15 and 4.16.  

Mixed Amine-Phenol Bis(diphenylamine) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 Structure of the ortho, meta and para substituted amine-phenols (4.14, 4.15 and 4.16) 
and the bis(diphenylamines) (4.17, 4.18 and 4.19) for comparison. 
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Full characterisation of 4.16 revealed the expected proton splitting pattern resulting 

from the symmetry associated with the diphenylamine in an AAǯXXǯ system 

(Figure 4.16). The protons associated with the 4-butylaniline ring, were observed at 7.08 

and 7.15 ppm as apparent doublets. This was in contrast to the observed singlet for the 

ortho substituted diphenylamine 4.8 which was caused by the change in electronics 

associated with the intramolecular hydrogen bonding. The apparent doublets at 

7.84 ppm were attributed to the protons closest to the electron withdrawing ester 

moiety, hence a more downfield shift was observed when compared to the apparent 

doublets at 6.91 ppm which corresponded to the protons adjacent to the secondary 

amine.     

 

 

 

 

 

 

 

 

Figure 4.16 1H NMR spectroscopic analysis of mixed amine-phenol 4.16.  

Synthesis of the bis(diphenylamines) (4.17-19) was once again confirmed using FTIR 

spectroscopic analysis where the loss of the broad hydroxyl absorbance at 3400 cm-1 was 

evident and a distinct absorbance at 3376 cm-1 characteristic of a secondary amine was 

revealed. Mass spectrometric analysis confirmed the expected molecular weights and 

provided additional structural information whereby the presence of dimers was revealed 

for all three bis(diphenylamines) (Figure 4.17).  
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Figure 4.17 Mass spectrometric analysis of 4.17, 4.18 and 4.19 to reveal dimer formation.  

The mass spectrometry data suggested that there was some degree of intermolecular 

interaction between the bis(diphenylamines). Scrutiny of the structures revealed that 

these compounds would lend themselves to Π-Π stacking of the aromatic functionalities 

in addition to intermolecular interactions between the straight chain butyl moieties. The 

implications of these structural characteristics on solubility was revealed in the oxidation 

analysis.      

Both the mixed amine-phenols and the bis(diphenylamines) were blended into the 

lubricant base oil Durasyn 164 at 0.5% w/w. Oxidation induction time analysis of 4.14-

4.16 revealed a difference in the antioxidant capabilities of each compound (Figure 

4.18). This demonstrated that there was clearly a favoured substitution position on the 

ring for enhanced antioxidant properties.  

 

 

 

 

 

 

Figure 4.18 Average Oxidation induction time of Series 2, mixed amine-phenol base oil samples 
(tested in duplicate). 

The mixed amine-phenol 4.14 exhibited the quickest oxidation induction time in 

comparison to 4.15 and 4.16. The poor performance of the mixed amine-phenol 4.14 was 

attributed to the ortho substitution which allowed intramolecular hydrogen bonding 

between the aromatic amine proton and the carbonyl oxygen from the ester moiety. It 
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was proposed that the intramolecular hydrogen bonding stabilised the secondary amine 

to such an extent that the initial step of hydrogen abstraction required a higher energy of 

activation hence the rate of reaction with peroxyl radicals was reduced. The success of an 

antioxidant can be determined by how well it competes with the substrate (in this case 

the base oil) for the reaction with peroxyl radicals. The potential presence of an 

intramolecular hydrogen bond in the mixed amine-phenol 4.14 was confirmed using 

computational analysis (Cerius2®) to generate an energy minimised conformation 

(Figure 4.19). The computational analysis revealed a twisting of both the amine and 

phenolic branches towards each other. A distance of 2.013 Å was predicted between the 

secondary amine proton and the carbonyl oxygen, which equates to typical hydrogen 

bonding parameters.   

 

 

 

 

 

 

 

Figure 4.19 Energy minimised computational model of the mixed amine-phenol 4.14, revealing 
presence of a potential intramolecular hydrogen bond.  

In comparison, the mixed-amine phenol 4.15, which was substituted in the meta position, 

revealed the best oxidation induction time of 13.4 minutes. Interestingly, this result still 

was not greater than a simple 1:1 (0.25% w/w of each of Irganox L135 and Irganox L57) 

blend of the two current antioxidants Irganox L135 and Irganox L57, however some 

improvement had been observed from Series 1. A direct comparison was made between 

the oxidation induction times from Series 1 and 2 to determine the structural 

characteristics that were contributing to an increase in induction time (Figure 4.20).  
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Figure 4.20 Comparison of oxidation induction time analysis from Series 1 and 2. 

Comparison of the meta substituted mixed amine-phenols 4.3 and 4.15 (from Series 1 

and 2, respectively) revealed that through the addition of an alkyl chain, oxidation 

induction time increased. It was proposed that this increase was associated with an 

improved solubility in the lubricant base oil and hence better diffusion within the 

medium was achieved. Additionally, comparison of the para substituted mixed amine-

phenols 4.6 and 4.16 revealed that incorporation of a methylene spacer between the 

aromatic ring and the ester moiety had an even greater effect on the oxidation induction 

time than just the addition of a solubilising group. This was believed to be a result of a 

change in the electronics of the system. Instead of the strongly electron-withdrawing 

ester moiety, the methyl spacer provided some electron-donating capacity to the 

aromatic ring. Greater electron donation into the aromatic ring provided an increased 

stability to the aminyl radical hence reducing the bond dissociation energy of the N-H and 

in turn the rate of reaction with peroxy radicals is increased.  

Oxidation onset temperature was also analysed and revealed the same trend of increasing 

oxidative stability from 4.14 (ortho) to 4.16 (para) to 4.15 (meta) (Figure 4.21).  

 

 

 

 

 

 

Figure 4.21 Oxidation onset temperature analysis of Series 2, mixed amine-phenol base oil samples. 
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The ortho substituted mixed amine-phenol 4.14 revealed an oxidation onset temperature 

that was significantly less than that observed for the diphenylamine Irganox L57. The 

para and meta substituted mixed amine-phenols (4.16 and 4.15, respectively), however, 

revealed the ability to perform in the higher temperature region associated with 

diphenylamines.   

Oxidative stability analysis of the bis(diphenylamines) proved more challenging as the 

solubility in the lubricant base oil remained an issue even with the additional butyl chain. 

Better dispersion was achieved instead of the complete aggregation of the additive, as 

seen for Series 1, however, a hazy precipitation was noted.  Oxidation induction time 

analysis revealed very poor results for the series of bis(diphenylamines) whereby only 

4.18 was able to stabilise the base oil for more than 3 minutes.  

 

 

 

 

 

 

 

 

Figure 4.22 Oxidation induction time analysis of bis(diphenylamines) 4.17-4.19. 

Oxidation onset temperature analysis also revealed the same trend where 4.18 provided 

the best stabilisation out of the series, however it was noted that none of the new species 

were able to perform better than Irganox L57. This was unexpected as this series of 

bis(diphenylamines) possessed an additional diphenylamine in comparison to Irganox 

L57 which theoretically gave them a greater radical scavenging capacity.  
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The poor dispersion within the lubricant oil significantly hindered the radical scavenging 

ability of this series of bis(diphenylamines). It was proposed that a branched alkyl unit 

would need to be incorporated, for example 2-ethylhexanol, to disrupt the ordered 

structures and hence improve solubility. These results did, however, give confirmation 

that there was a synergistic effect occurring in the mixed phenol-amines where both 

induction time and onset temperature were significantly increased through 

incorporation of a phenolic moiety. 

4.2.3 Synthesis, Characterisation and Testing – Series 3 

Oxidative stability analysis of the mixed amine-phenols from Series 1 (4.3 and 4.6) 

revealed an improvement in antioxidant performance when a methylene spacer was 

introduced between the aromatic ring and the ester moiety. Further development in 

Series 2 revealed that, with the addition of a butyl chain to enhance solubility, meta and 

para substitution provided the greatest stability to the lubricant base oil and so were the 

focus of this series. The inclusion of a methyl or ethyl spacer at these positions was 

investigated. The esters 4.20 (meta -CH2CH2-), 4.21 (para –CH2-) and 4.22 

(para  -CH2CH2-) were generated first, followed by ester hydrolysis to yield the carboxylic 

acids 4.23, 4.24 and 4.25. The general synthesis of this series of compounds is shown in 

Scheme 4.12. 

 

 

 

 

 

 

 

Scheme 4.12 General scheme for the synthesis of series 3 diphenylamine derivatives. 

Successful coupling of 4-butylaniline to the respective bromobenzoate was achieved to 

yield the diphenylamines 4.20, 4.21 and 4.22 in reasonable yield (ca. 60%). Ester 

hydrolysis generated 4.23, 4.24 and 4.25 in good yield of ca. 80%. The mono-phenol 
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hydroxyl linker (4.5) was functionalised with the carboxylic acid diphenylamine 

derivatives (4.23, 4.24 and 4.25) to yield a series of mixed amine-phenols (4.26-28) 

shown in Table 4.4. In addition, the bis(diphenylamines) (4.29-31) were also generated 

by reaction of the carboxylic acid diphenylamine derivatives with the first generation diol 

linker (2.1). 

Mixed Amine-Phenol Bis(diphenylamine) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4 Structure of the mixed amine-phenols (4.26, 4.27 and 4.28) and the bis(diphenylamines) 
(4.29, 4.30 and 4.31) for comparison 

Full characterisation of the mixed amine-phenol 4.26 was carried out using NMR 

spectroscopic analysis. Interpretation of the 1H NMR spectrum for 4.26, detailed in 

Figure 4.23, revealed the complex splitting pattern associated with meta substitution. 

The aromatic protons associated with the 4-butylaniline ring, were observed at 7.00 and 

7.08 ppm as apparent doublets. The apparent triplet at 7.14 ppm was assigned to the 

proton HC. This was confirmed using 1H-1H COSY NMR spectroscopic analysis whereby 

both the apparent doublets HB and HD revealed a direct ortho coupling to HC with J values 
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of ca. 8.0 Hz. The apparent singlet at 6.82 ppm represented the proton HA where no strong 

coupling to the protons HB-HD was observed. The complex multiplet observed in the 

range of 2.54-2.64 ppm encompassed the 6 methylene protons highlighted in red, which 

again was confirmed using 2D NMR techniques. 

  

 

 

 

 

 

Figure 4.23 1H NMR spectroscopic analysis of the mixed amine-phenol 4.26. 

Additional confirmation of successful synthesis was revealed by the correct proton ratio 

of the singlets at 5.07 and 5.69 ppm representing the phenolic and secondary amine 

protons, respectively.  

The mixed amine-phenols (4.26, 4.27 and 4.28) and the bis(diphenylamines) (4.29, 4.30 

and 4.31) were blended into the lubricant base oil Durasyn 164 at 0.5% w/w. Oxidation 

induction time analysis of 4.26-4.28 revealed a dramatic increase in the stabilisation 

capabilities of all three compounds where the induction time for each exceeded that of 

the Irganox L135/57 1:1 blend. 
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Figure 4.24 Oxidation induction time analysis of Series 3, mixed amine-phenol base oil samples. 

The greatest induction time was revealed for the mixed amine-phenol 4.26 where an 

increase of ca. 8 minutes from the L135/57 blend was observed. The mixed amine-phenol 

4.26 possessed an ethyl spacer between the aromatic ring and the ester moiety, which 

directed electron density towards the aromatic ring.  An increase of ca. 4 minutes was 

observed from 4.27 to 4.28 where an additional methylene unit was introduced. This 

result indicated that stabilisation of the secondary amine, through electron donation, was 

a significant factor in increasing the antioxidant capabilities of these compounds. It was 

also proposed that the ethyl spacers provided the ideal contact distance between the 

diphenylamine and the phenol, therefore potentially increasing the ability of amine 

regeneration. This proposal was supported by using computational analysis (Cerius2®) 

to generate an energy minimised conformation (Figure 4.25 a)). A stabilised structure 

was revealed, with an energy of -807 Kcal, whereby the amine and the phenol were within 

2.39 Å of each other. In comparison, minimisation of the mixed amine-phenol 4.15 was 

carried out to determine a favoured conformation without the ethyl spacer 

(Figure 4.25 b)). 
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Figure 4.25 Energy minimised computational model of a) the mixed amine-phenol 4.26, revealing a 
close contact distance (2.39 Å) between the phenol and the secondary amine and b) the 
mixed amine-phenol 4.15 revealing a larger intramolecular distance (7.46 Å). 

The computational analysis revealed the energy of 4.15 was reduced the further away 

the amine and phenol became which was opposite to that found for 4.26. A stabilised 

structure with an energy of -665 Kcal revealed a much larger distance of 7.46 Å between 

the secondary amine and the phenol. This reinforced the proposal that the ethyl spacer 

promotes a closer contact distance between the two functionalities potentially promoting 

amine regeneration. A direct comparison of the meta substituted compounds (4.3, 4.15 

and 4.26) from the three series revealed the increase in induction time associated with 

each of the structural developments (Figure 4.26). This highlighted the significance of 

enhanced solubility through the inclusion of an alkyl chain which increased the induction 

time by ca. 3 minutes (4.15). In addition, inclusion of electron donating substituents as 

opposed to electron withdrawing substituents increased the oxidation induction time by 

a further ca. 10 minutes (4.26). 

 

 

 

 

 

a) b) 
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Figure 4.26 Comparison of average oxidation induction time analysis from Series 1 (4.3), series 2 
(4.15) and series 3 (4.26). 

Oxidation onset temperature analysis also revealed excellent stability properties from 

the mixed amine-phenols where 4.26, 4.27 and 4.28 all performed in the same 

temperature region as the L135/57 blend.  (Figure 4.27).  

 

 

 

 

 

 

 

Figure 4.27 Average Oxidation onset temperature analysis of Series 2, mixed amine-phenol base oil 
samples (tested in duplicate). 

The bis(diphenylamines) 4.29-4.31 also revealed similar solubility issues as seen in 

Series 2. Oxidation induction times did not exceed that of the aromatic amine Irganox 

L57 hence reinforcing further still the excellent synergistic effects of combining both 

diphenylamines and sterically hindered phenols within the same compound.  
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4.3 Conclusions 

In conclusion, three series of first generation mixed amine-phenols and 

bis(diphenylamines) were successfully synthesised, blended into the lubricant base oil 

Durasyn 164 and analysed for their oxidative stability properties, highlighting interesting 

structure-activity relationships. The mixed amine-phenols were all soluble in the 

lubricant base oil at 0.5% w/w which was further improved through the introduction of 

a butyl chain on the aniline ring. Even with the additional alkyl chain, all derivatives of 

the bis(diphenylamines) revealed poor solubility and hence oxidation induction times 

and oxidation onset temperatures were all lower than the current diphenylamine 

antioxidant Irganox L57. Series 2 of the mixed amine-phenols revealed that meta (4.15) 

and para (4.16) substitution provided the best oxidative stability properties. These 

properties were further enhanced in Series 3 through the inclusion of methyl or ethyl 

spacers between the diphenylamine and the ester moiety from the attachment to the 

mono-phenol linker. It was observed that meta substitution with an ethyl spacer (4.26) 

provided the longest oxidation induction time of ca. 23 minutes, which was ca. 8 minutes 

longer than the current 1:1 synergistic blend of Irganox L135 and Irganox L57. It was 

proposed that electron donation into the aromatic ring was potentially allowing better 

stabilisation of the aminyl radical, generated from the initial hydrogen abstraction. 

Additionally, computational modelling revealed that the combination of meta 

substitution and an ethyl spacer allowed close contact of both amine and phenol 

functionalities suggesting the regeneration of the diphenylamine by the phenol could be 

enhanced using these structural combinations.   

4.4 Experimental 

Reagents and solvents were purchased from Sigma Aldrich or Fisher Scientific and used 

without further purification with the exception of 3-(3,5-di-tert-butyl-4-hydroxy-

phenyl)-propionic acid which was purchased from Alfa Aesar and methyl 

(3-(4-bromophenyl)propanoate which was purchased from TCI Chemicals. 

Dichloromethane was distilled under a nitrogen atmosphere from calcium hydride. All 

further purification and characterisation was carried out as described in Chapter 2.  
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Series 1 and general procedures: 

Preparation of methyl 3-(phenylamino)benzoate (4.1) and general procedure for 

Buchwald-Hartwig amination reactions 

In a 25 mL round-bottomed flask, toluene (10 mL) was degassed with argon for 20 

minutes. Under a flow of argon, Pd(OAc)2, BINAP and Cs2CO3 were added and left to stir 

for a further 20 minutes. To the mixture, methyl (3-bromobenzoate) and aniline were 

added. The reaction was stirred at 120 ᵒC and monitored by thin layer chromatography 

(TLC) for 24 hours. Upon completion, the reaction was cooled to room temperature and 

filtered through Celite®, with hexane as the eluent, followed by concentration under 

reduced pressure. The residue was purified by flash column chromatography on silica 

eluting with hexane/ethyl acetate (90:10) (Rf = 0.23) to afford 0.87 g (82%) of 4.1 as a 

pale yellow solid. M.p 110-112 ᵒC. IR (ATR) v/cm-1: 3358, 3030, 1694, 1578, 1294, 744. 

1H NMR (400 MHz/CDCl3)/ppm, δ = 3.90(s, 3H,-COOCH3), 5.81(s, 1H, -NH), 6.98 (app. t, 

1H, app J=8 Hz, CHparaC4H4-NH), 7.09(app. d, 2H, CHparaC2H2metaC2H2ortho-NH), 7.23 (m, 1H, 

HN-CH-C(COOCH3)-CHCHCH-), 7.29(m, 3H, C2H2ortho-HN-CH-C(COOCH3)-CHCHCH-), 

7.57(app. d, 1H, HN-CH-C(COOCH3)-CH), 7.72(m, 1H, HN-CH-C(COOCH3)); 13C NMR (100 

MHz/CDCl3)/ppm, δ = 52.2, 118.2, 118.4, 121.5, 121.77, 121.80, 129.4, 129.3, 131.4, 

142.4, 143.6, 167.1. Found [M+H]+ (C14H13NO2) m/z = 228.1019 (Calc. 228.0946). 

Preparation of 3-(phenylamino)benzoic acid (4.2) and general procedure for base 

catalysed ester hydrolysis reactions 

To a solution of 4.1 (0.5 g, 2.2 mmol) in ethanol (10 mL), aqueous potassium hydroxide 

(0.25 g, 4.4 mmol) was added at room temperature. The mixture was then allowed to stir 

at 100 ᵒC for a minimum of 1 hour and was monitored closely by TLC until consumption 

of 4.1 was observed. Upon completion, the reaction was allowed to cool and the ethanol 

was removed in vacuo. The remaining solution was cooled to 0 ᵒC and acidified to pH 2 

with 2M HCl. The resulting precipitate was collected via vacuum filtration and washed 

with water (15 ml). The precipitate was then dissolved in chloroform (20 mL) and 

washed with brine (20 mL). The organic layer was dried over MgSO4, filtered and the 

solvent removed in vacuo to yield 0.38 g (81 %) of 4.2 as a white solid. M.p 140-142 ᵒC.  

IR (ATR) v/cm-1: 3398, 2992-2540 (br), 1682, 1584, 1464, 1294, 748. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 6.99 (app. t, 1H, app J=8 Hz, CHparaC4H4-NH), 7.10(app. d, 2H, 
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CHparaC2H2metaC2H2ortho-NH), 7.30(m, 4H, C2H2ortho-HN-CH-C(COOH)-CHCHCH-), 7.64(app. 

d, 1H, HN-CH-C(COOH)-CH), 7.77(m, 1H, HN-CH-C(COOCH3)); 13C NMR (100 

MHz/CDCl3)/ppm, δ = 118.5, 118.6, 122.0, 122.2, 129.5, 129.6, 130.5, 142.2, 143.8, 172.2. 

Found [M+H]+ (C13H11NO2) m/z = 214.0863 (Calc. 214.0868).  

Preparation of the mono-phenolic linker (4.5) 

The first generation hydroxyl linker (2.3) (5 g, 22.30 mmol), N,N’-

dicyclohexylcarbodiimide (DCC) (0.92 g, 4.46 mmol) and DPTS (60%) were dissolved in 

dry dichloromethane (50 mL) and cooled to 0 ᵒC. To this, a solution of 3-(3,5-di-tert-

butyl-4-hydroxy-phenyl)-propionic acid (1.24 g, 4.46 mmol) in dry dichloromethane (20 

mL) was added dropwise to the solution. The reaction was left to stir at room 

temperature and was monitored closely by TLC (90:10 hexane/ethyl acetate) until any 

small formation of the diphenol was observed (Rf = 0.38). The reaction mixture was 

filtered to remove the white N, N’-dicyclohexylurea (DCU) precipitate and the filtrate was 

concentrated in vacuo. The crude product was immediately subjected to flash column 

chromatography on silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.24) to afford 

2.15 g (95%) of 4.5 as a colourless oil. IR (ATR) v/cm-1: 3528, 2960, 1726, 1140, 1042. 1H 

NMR (400 MHz/CDCl3)/ppm, δ = 0.89(t, 6H, -CH2CH3), 1.15(s, 3H, -CH3), 1.28-1.37(m, 8H, 

COO-CH2-CH(CH2CH3)-CH2CH2CH2CH3), 1.43(s, 18H, CH3 tert-butyl), 1.59(m, 1H, COO-

CH2-CH(CH2CH3)-C4H9), 2.53(s(br), 1H, -OH), 2.62(t, 2H, Ar-CH2CH2-COO-), 2.86(t, 2H, Ar-

CH2CH2-COO-), 3.57(m, 2H, HO-CH2-C,), 4.05(m, 2H, COO-CH2-CH(CH2CH3)-C4H9), 4.20(d, 

1H, COO-CH-C equatorial), 4.33(d, 1H, COO-CH-C axial), 5.09(s, 1H, Ar-OH), 6.98(s, 2H, Ar-

CH); 13C NMR (100 MHz/CDCl3)/ppm, δ = 11.0, 14.1, 17.6, 23.0, 23.8, 28.9, 30.4, 30.9, 34.3, 

36.3, 38.7, 48.3, 64.9, 65.7, 67.3, 124.7, 130.7, 136.0, 152.3, 173.4, 174.6. Found [M+Na]+ 

(C30H50O6) m/z = 529.3500 (Calc. 529.3505).  

Preparation of the mixed amine-phenol (4.3) and general procedure 

The mono-phenolic linker (4.5) (0.34 g, 0.67 mmol), 3-(phenylamino)benzoic acid (3.2) 

(0.16 g, 0.74 mmol) and DPTS (60%) were dissolved in dry dichloromethane (10 mL) and 

stirred at room temperature for 30 minutes. To the solution, DCC (0.15 g, 0.74 mmol) 

dissolved in dry dichloromethane (10 mL) was added over 15 minutes. The reaction was 

left overnight at room temperature under a nitrogen atmosphere. The reaction mixture 

was filtered to remove the white DCU precipitate and the filtrate was concentrated. The 
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residue was purified by flash column chromatography on silica eluting with hexane/ethyl 

acetate (80:20) (Rf = 0.32) to afford 0.31 g (46%) of 4.3 as a viscous yellow oil. IR (ATR) 

v/cm-1: 3641, 3385, 2960, 1731, 1517, 1132, 749. 1H NMR (400 MHz/CDCl3)/ppm, δ = 

0.84(t, 6H, -CH2CH3), 1.23-1.36(m, 12H, alkyl -CH2 , -CH3), 1.42(s, 18H, CH3 tert-butyl), 

1.56(m, 1H, -CH), 2.60(t, 2H, Ar-CH2CH2-COO), 2.85(t, 2H, Ar-CH2CH2-COO), 4.04(m, 2H, 

COO-CH2-CH(CH2CH3)-C4H9), 4.34(s, 2H, Ar-COO-CH2-C), 4.44(s, 2H, Ar-COO-CH2-C), 

5.08(s, 1H, -OH), 5.87(s, 1H, -NH), 6.97(m, 3H, ArCHparaC4H4-NH and Ph-CH), 7.09(app. d, 

2H, ArCHparaC2H2metaC2H2ortho-NH), 7.30(m, 4H, ArC2H2ortho-HN-ArCH-C(COOH)-CHCHCH-), 

7.50(app. d, 1H, HN-ArCH-C(COOH)-CH), 7.67(m, 1H, HN-ArCH-C(COOCH3).13C NMR (100 

MHz/CDCl3)/ppm, δ =11.0, 14.1, 18.0, 22.9, 23.7, 28.9, 30.3, 30.9, 34.3, 36.2, 38.7, 46.6, 

65.6, 66.1, 67.5, 118.0, 118.5, 121.5, 121.7, 121.9, 124.7, 129.4, 129.5, 130.8, 136.0, 142.2, 

143.7, 152.2, 166.0, 172.7, 172.9. Found [M+Na]+ (C43H59NO7) m/z = 724.4184 (Calc. 

724.4292).  

Preparation of the bis(diphenylamine) (4.4) and general procedure 

The first generation hydroxyl linker (2.3) (0.28 g, 1.12 mmol), 3-(phenylamino)benzoic 

acid (3.2) (0.5 g, 2.34 mmol) and DPTS (60%) were dissolved in dry dichloromethane 

(20 mL). To the solution, DCC (0.48 g, 2.34 mmol) dissolved in dry dichloromethane 

(10 mL) was added over 15 minutes. The reaction was left overnight at room 

temperature under a nitrogen atmosphere. The reaction mixture was filtered to remove 

the white DCU precipitate and the filtrate was concentrated. The crude product was 

purified by flash column chromatography on silica eluting with hexane/ethyl acetate 

(80:20) (Rf = 0.4) to afford 0.47 g (66%) of 4.4 as a viscous orange oil. IR (ATR) 

v/cm-1:3380, 2960, 1714, 1590, 1494, 1204, 1104, 746. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.81(m, 6H, -CH2CH3), 1.20-1.33(m, 8H, alkyl -CH2), 1.41(s, 3H, -CH3), 1.54(m, 1H, -

CH), 4.06(m, 2H, COO-CH2-CH(CH2CH3)-C4H9), 4.55(s, 4H, Ar-COO-CH2-C), 5.79(s(br), 2H, 

-NH), 6.97(app. t, 2H, app. J=8 Hz, CHparaC4H4-NH), 7.08(app. d, 4H, app. J=8 Hz, 

CHparaC2H2metaC2H2ortho-NH), 7.29(m, 8H, C2H2ortho-HN-CH-C(COOCH3)-CHCHCH-), 

7.51(app. d, 2H, app. J=4 Hz, HN-CH-C(COOCH3)-CH), 7.65(app. s, 2H, HN-CH-C(COOCH3)). 

13C NMR (100 MHz/CDCl3)/ppm, δ = 10.9, 14.0, 18.1, 22.9, 23.7, 28.9, 30.3, 38.7, 46.8, 

66.3, 67.5, 118.1, 118.5, 121.4, 121.7, 121.9, 129.5, 130.8, 142.2, 146.7, 166.0, 172.9. 

Found [M+H]+ (C39H44N2O6) m/z = 637.3272 (Calc. 637.3199). 
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Preparation of mixed amine-phenol (4.6) 

The mono-phenolic linker (4.5) (0.74 g, 1.46 mmol), 2-(4-(phenylamino)phenyl)acetic 

acid (0.5 g, 2.20 mmol), DPTS (60%) and DCC (0.45 g, 2.2 mmol) were allowed to react 

according to the general mixed amine-phenol procedure. The crude product was purified 

by flash column chromatography on silica eluting with hexane/ethyl acetate (80:20) 

(Rf = 0.31) to afford 0.75 g (72%) of 4.6 as a viscous pale yellow oil. IR (ATR) v/cm-1: 

3641, 3385, 2960, 1731, 1517, 1132, 749. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.87(m, 

6H, -CH2CH3), 1.16(s, 3H, -CH3), 1.31-1.36(m, 8H, alkyl -CH2), 1.42(s, 18H, CH3 tert-butyl), 

1.54(m, 1H, -CH), 2.57(t, 2H, J=8 Hz, Ar-CH2CH2-COO), 2.83(t, 2H, J=8 Hz, Ar-CH2CH2-COO), 

3.54(s, 2H, Ar-CH2-COO), 4.01(m, 2H, COO-CH2-CH(CH2CH3)-C4H9), 4.22(m, 4H, CH2-COO-

CH2-C), 5.07(s, 1H, ArOH), 5.68(s, 1H, -NH), 6.92(app. t, 1H, app. J=8 Hz, CHparaC4H4-NH), 

6.97(s, 2H, Ph-CH), 7.03(m, 4H, ArCHortho-NH-ArCHortho), 7.14(app. d, 2H, J=12 Hz, NH-

ArCHCH-C(CH2COO-)), 7.25(app. t, 2H, J=8 Hz, ArCHparaCHmetaCHortho-NH).13C NMR (100 

MHz/CDCl3)/ppm, δ = 10.9, 14.0, 17.8, 22.9, 23.7, 28.9, 30.3, 30.8, 34.3, 36.2, 38.7, 40.5, 

46.4, 65.4, 65.8, 67.4, 117.8, 121.0, 124.7, 126.0, 129.3, 130.2, 130.8, 136.0, 142.2, 143.0, 

152.2, 171.3, 172.6, 172.8. Found [M+H]+ (C44H61NO7) m/z = 716.4524 (Calc. 716.4448).  

Preparation of bis(diphenylamine) (4.7) 

The first generation hydroxyl linker (2.3) (0.43 g, 1.91 mmol), 2-(4-

(phenylamino)phenyl)acetic acid  (1 g, 4.40 mmol), DPTS (60%) and DCC (0.91 g, 4.4 

mmol) were allowed to react according to the general bis(diphenylamine) procedure. The 

crude product was purified by flash column chromatography on silica eluting with 

hexane/ethyl acetate (80:20) (Rf = 0.43) to afford 0.98 g (77%) of 4.7 as a viscous dark 

red oil. IR (ATR) v/cm-1: 3385, 2960, 1727, 1596, 1516, 1132, 746. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.86(m, 6H, -CH2CH3), 1.16(s, 3H, -CH3), 1.25-1.35(m, 8H, alkyl -

CH2), 1.54(m, 1H, -CH), 3.52(s, 4H, Ar-CH2-COO), 3.98(m, 2H, COO-CH2-CH(CH2CH3)-

C4H9), 4.17(d, 2H, J=8 Hz, Ar-COO-CH2-C), 4.24(d, 2H, J=12 Hz, Ar-COO-CH2-C), 5.67(s, 2H, 

-NH), 6.92(app. t, 2H, app. J=8 Hz, CHparaC4H4-NH), 6.99(app. d, 4H, app. J=8 Hz, NH-CHCH-

(CH2COO-)), 7.04(app. d, 4H, app. J=8 Hz, ArCHparaCHmetaCHortho-NH), 7.10(app. d, 4H, app. 

J=8 Hz, NH-CHCH-(CH2COO-)), 7.25(app. t, 4H, app. J= 8 Hz, ArCHparaCHmetaCHortho-NH). 

13C NMR (100 MHz/CDCl3)/ppm, δ = 10.9, 14.1, 17.9, 22.9, 23.7, 28.8, 30.3, 38.6, 40.4, 
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46.3, 65.6, 67.4, 117.9, 121.0, 126.0, 129.3, 130.2, 142.2, 143.0, 171.3, 172.8. Found 

[M+H]+ (C41H48N2O6) m/z = 665.3585 (Calc. 665.3512). 

Series 2 

Preparation of methyl 2-((4-butylphenyl)amino)benzoate (4.8) 

Methyl (2-bromobenzoate) (1.00 g, 4.65 mmol) and 4-butylaniline (0.88 mL, 5.58 mmol) 

were added to Pd(OAc)2 (21 mg, 0.09 mmol), BINAP (116 mg, 0.18 mmol) and K2CO3 

(0.90 g, 6.51 mmol) and were allowed to react according to the general Buchwald-

Hartwig amination procedure. The crude residue was purified by flash column 

chromatography on silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.38) to afford 

0.70 g (53%) of 4.8 as a white solid. M.p 135 o C.  IR (ATR) v/cm-1: 3321, 2928, 1684, 1514, 

1230, 1082, 746. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.95(t, 3H, J= 8 Hz, -

CH3CH2CH2CH2Ar), 1.39(sex., 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 1.61(quin., 2H, J=8 Hz, -

CH3CH2CH2CH2Ar), 2.61(t, 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 3.91(s, 3H,-COOCH3), 6.70(app. 

t, 1H, app J=8 Hz, H3COOC-CHCHCHCHC-NH), 7.17(app. s, 4H, C4H9-ArCH), 7.20 (app. d, 

1H, H3COOC-CHCHCHCHC-NH), 7.29(app. t, 1H, H3COOC-CHCHCHCHC-NH), 7.96(app. d, 

1H, H3COOC-CHCHCHCHC-NH), 9.40(s, 1H,-NH); 13C NMR (100 MHz/CDCl3)/ppm, δ = 

14.0, 22.4, 33.8, 35.1, 51.7, 111.4, 113.8, 116.6, 122.6, 123.1, 126.2, 129.3, 131.6, 134.1, 

138.2, 138.6, 148.6, 169.0. Found [M+H]+ (C18H21NO2) m/z = 284.1645 (Calc. 284.1572). 

Preparation of methyl 3-((4-butylphenyl)amino)benzoate (4.9) 

Methyl (3-bromobenzoate) (0.5 g, 2.33 mmol) and 4-butylaniline (0.44 mL, 2.79 mmol) 

were added to Pd(OAc)2 (17 mg, 0.08 mmol), BINAP (95 mg, 0.16 mmol) and Cs2CO3 

(1.06 g, 3.26 mmol) and were allowed to react according to the general Buchwald-

Hartwig amination procedure. The crude residue was purified by flash column 

chromatography on silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.36) to afford 

0.35 g (55%) of 4.9 as a pale yellow solid. M.p 121-123 ᵒC. IR (ATR) v/cm-1: 3364, 2927, 

1700, 1288, 1217, 750. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.93(t, 3H, J= 8 Hz, -

CH3CH2CH2CH2Ar), 1.36(sex., 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 1.59(quin., 2H, J=8 Hz, -

CH3CH2CH2CH2Ar), 2.57(t, 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 3.89(s, 3H,-COOCH3), 5.72(s, 

1H, -NH), 7.03(app. d, 2H, app. J=8 Hz, HN-ArCHCH), 7.11(app. d, 2H, app. J= 8 Hz, C4H9-

ArCHCH), 7.19 (app. d, 1H, app. J= 8 Hz, HN-CH-C(COOCH3)-CHCHCH-NH), 7.28(app. t, 1H, 

J=8 Hz, HN-CH-C(COOCH3)-CHCHCH-NH), 7.52(app. d, 1H, J=8 Hz, HN-CH-C(COOCH3)-
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CHCHCH-NH), 7.66(app. s, 1H, HN-CH-C(COOCH3)); 13C NMR (100 MHz/CDCl3)/ppm, δ = 

14.0, 22.4, 33.8, 35.0, 52.1, 117.4, 119.3, 120.7, 121.1, 129.3, 129.4, 131.3, 136.9, 139.7, 

144.3, 167.2. Found [M+H]+ (C18H21NO2) m/z = 284.1646 (Calc. 284.1572). 

Preparation of methyl 4-((4-butylphenyl)amino)benzoate (4.10) 

Methyl (4-iodobenzoate) (1 g, 3.82 mmol) and 4-butylaniline (0.72 mL, 4.58 mmol) were 

added to Pd(OAc)2 (18 mg, 0.08 mmol), BINAP (100 mg, 0.16 mmol) and Cs2CO3 (1.74 g, 

5.35 mmol) and were allowed to react according to the general Buchwald-Hartwig 

amination procedure. The crude residue was purified by flash column chromatography 

on silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.36) to afford 0.54 g (50 %) of 

4.10 as a waxy brown solid. M.p 51 ᵒC. IR (ATR) v/cm-1:3340, 2922. 1689, 1591, 1435, 

1285, 754. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.94(t, 3H, J= 8 Hz, -CH3CH2CH2CH2Ar), 

1.38(sex., 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 1.61(quin., 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 

2.59(t, 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 3.87(s, 3H,-COOCH3), 5.94(s, 1H, -NH), 6.93(app. d, 

2H, app. J=12 Hz, HN-ArCHCH-CHCH-C(COOCH3));, 7.09(app. d, 2H, app. J= 8 Hz, HN-

ArCHCH), 7.15(app. d, 1H, app. J= 8 Hz, C4H9-ArCHCH), 7.89(app. d, 2H, J=8 Hz, ArCHCH-

C(COOCH3));13C NMR (100 MHz/CDCl3)/ppm, δ = 14.0, 22.4, 33.7, 35.1, 51.7, 114.0, 120.6, 

121.2, 129.4, 131.5, 138.2, 138.3, 148.7, 167.0. Found [M+H]+ (C18H21NO2) m/z = 

284.1645 (Calc. 284.1572). 

Preparation of 2-((4-butylphenyl)amino)benzoic acid (4.11) 

Aqueous potassium hydroxide (36 mL, 7.27 mmol) was added to 4.8 (1.03 g, 3.63 mmol) 

in ethanol (20 mL) at room temperature and allowed to react according to the general 

ester hydrolysis procedure to yield 0.90 g (92 %) of 4.11 as a pale yellow solid. M.p 147-

148 ᵒC. IR (ATR) v/cm-1:3333, 3000-2480 (br), 2922, 1650, 1574, 1514, 1441, 1256, 746. 

1H NMR (400 MHz/CDCl3)/ppm, δ = 0.95(t, 3H, J= 8 Hz, -CH3CH2CH2CH2Ar), 1.39(sex., 2H, 

J=8 Hz, -CH3CH2CH2CH2Ar), 1.61(quin., 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 2.61(t, 2H, J=8 Hz, 

-CH3CH2CH2CH2Ar), 6.72(app. t, 1H, app J=8 Hz, HOOC-CHCHCHCHC-NH), 7.15 (app. d, 1H, 

HOOC-CHCHCHCHC-NH), 7.18(app. s, 4H, C4H9-ArCH), 7.33 (app. t, 1H, HOOC-

CHCHCHCHC-NH), 8.01(app. d, 1H, HOOC-CHCHCHCHC-NH), 9.25(s, 1H,-NH);13C NMR 

(100 MHz/CDCl3)/ppm, δ = 14.0, 22.4, 33.7, 35.1, 109.9, 113.9, 116.7, 123.1, 123.7, 126.3, 
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129.4, 132.5, 135.2, 137.8, 139.1, 149.5, 173.2. Found [M+H]+ (C17H21NO2) m/z = 

270.1490 (Calc. 270.1416). 

Preparation of 3-((4-butylphenyl)amino)benzoic acid (4.12) 

Aqueous potassium hydroxide (14 mL, 2.76 mmol) was added to 4.9 (0.39 g, 1.38 mmol) 

in ethanol (7 mL) at room temperature and allowed to react according to the general ester 

hydrolysis procedure to yield 0.3 g (81 %) of 4.12 as a pale yellow solid. M.p 79-80 ᵒC. IR 

(ATR) v/cm-1: 3386, 3000-2500 (br), 2928, 1687, 1520, 1288, 746. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.94(t, 3H, J= 8 Hz, -CH3CH2CH2CH2Ar), 1.38(sex., 2H, J=8 Hz, -

CH3CH2CH2CH2Ar), 1.60(quin., 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 2.58(t, 2H, J=8 Hz, -

CH3CH2CH2CH2Ar), 7.04(app. d, 2H, app. J=8 Hz, HN-ArCHCH), 7.13(app. d, 2H, app. J= 8 

Hz, C4H9-ArCHCH), 7.23 (app. d, 1H, app. J= 8 Hz, HN-CH-C(COOH)-CHCHCH-NH), 

7.32(app. t, 1H, J=8 Hz, HN-CH-C(COOH)-CHCHCH-NH), 7.60(app. d, 1H, J=8 Hz, HN-CH-

C(COOH)-CHCHCH-NH), 7.72(app. s, 1H, HN-CH-C(COOH)-CHCHCH-NH); 13C NMR (100 

MHz/CDCl3)/ppm, δ = 14.0, 22.4, 33.8, 35.0, 117.6, 119.5, 121.4, 121.7, 129.4, 129.5, 

130.4, 137.1, 139.5, 144.5, 172.0. Found [M+H]+ (C17H21NO2) m/z = 270.1489 (Calc. 

270.1416). 

Preparation of 4-((4-butylphenyl)amino)benzoic acid (4.13) 

Aqueous potassium hydroxide (18 mL, 3.53 mmol) was added to 4.10 (0.5 g, 1.76 mmol) 

in ethanol (9 mL) at room temperature and allowed to react according to the general ester 

hydrolysis procedure to yield 0.41 g (86%) of 4.13 as a white solid. M.p 138 ᵒC IR (ATR) 

v/cm-1: 3406, 3070-2545 (br), 2921, 1663, 1598, 1513, 1288, 1175, 755. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.94(t, 3H, J= 8 Hz, -CH3CH2CH2CH2Ar), 1.39(sex., 2H, J=8 Hz, -

CH3CH2CH2CH2Ar), 1.61(quin., 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 2.60(t, 2H, J=8 Hz, -

CH3CH2CH2CH2Ar), 6.00(s, 1H, -NH), 6.94(app. d, 2H, app. J=12 Hz, HN-ArCHCH-CHCH-

C(COOH));), 7.11(app. d, 2H, app. J= 8 Hz, HN-ArCHCH), 7.17(app. d, 1H, app. J= 8 Hz, C4H9-

ArCHCH), 7.96(app. d, 2H, J=8 Hz, ArCHCH-C(COOH)); 13C NMR (100 MHz/CDCl3)/ppm, δ 

= 14.0, 22.4, 33.7, 35.1, 113.9, 119.4, 121.6, 129.4, 132.3, 137.9, 138.6, 149.5, 171.5. Found 

[M+H]+ (C17H21NO2) m/z = 270.1489 (Calc. 270.1416). 

Preparation of mixed amine-phenol (4.14) 

The mono-phenolic linker (4.5) (0.21 g, 0.40 mmol), 2-((4-butylphenyl)amino)benzoic 

acid (4.11) (0.4 g, 1.49 mmol), DPTS (60%) and DCC (0.31 g, 1.49 mmol) were allowed to 
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react according to the general mixed amine-phenol procedure. The crude product was 

purified by flash column chromatography on silica eluting with hexane/ethyl acetate 

(90:10) (Rf =0.25) to afford 0.25 g (82%) of 4.14 as a yellow oil. IR (ATR) v/cm-1: 3636, 

3324, 2960, 1731, 1516, 1225, 1134, 748. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.85(m, 

6H, -CH2CH3), 0.94(t, 3H, J=8 Hz, -CH3CH2CH2CH2Ar), 1.25-1.38(m, 13H, -CH2CH3, -CH3 and 

CH3CH2CH2CH2Ar), 1.42(s, 18H, CH3 tert-butyl), 1.60(m, 3H, -CH3CH2CH2CH2Ar and -

CH(CH2CH3)), 2.61(m, 4H, Ph-CH2CH2-COO- and -C3H7CH2Ar), 2.85(t, 2H, J=8 Hz, Ph-

CH2CH2-COO-), 4.08(m, 2H, COO-CH2-CH(CH2CH3)-C4H9), 4.37(s, 2H, COO-CH2-C), 4.42(s, 

2H, COO-CH2-C), 5.07(s, 1H, -OH) 6.67(app. t, 1H, -OOC-CHCHCHCHC-NH), 6.97(s, 2H, Ph-

CH), 7.15(m, 5H, C4H9-ArCH and -OOC-CHCHCHCHC-NH), 7.29(app. d, 1H, J=8 Hz, -OOC-

CHCHCHCHC-NH), 7.85(app. d, 1H, J=8 Hz, -OOC-CHCHCHCHC-NH), 9.31(s, 1H, -NH); 

13C NMR (100 MHz/CDCl3)/ppm, δ = 10.9, 14.0, 18.0,22.4, 22.9, 23.7, 28.9, 30.3, 30.9, 33.7, 

34.3, 35.1, 36.2, 38.7, 46.6, 65.8, 67.5, 110.7, 113.8, 116.7, 123.3, 124.7, 129.3, 130.8, 

131.4, 135.9, 137.9, 138.8, 148.8, 152.2, 167.8, 172.7, 173.0. Found [M+Na]+ (C47H67NO7) 

m/z = 780.4810 (Calc. 780.4918). 

Preparation of mixed amine-phenol (4.15) 

The mono-phenolic linker (4.5) (0.61 g, 1.20 mmol), 3-((4-butylphenyl)amino)benzoic 

acid (4.12)  (0.48 g, 1.80 mmol), DPTS (60%) and DCC (0.37 g, 1.80 mmol) were allowed 

to react according to the general mixed amine-phenol procedure. The crude product was 

purified by flash column chromatography on silica eluting with hexane/ethyl acetate 

(90:10) (Rf =0.23) to afford 0.75 g (82%) of 4.15 as a dark yellow oil. IR (ATR) v/cm-

1:3633, 3381, 2955, 1725, 1213, 749. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.84(m, 6H, -

CH2CH3), 0.93(t, 3H, J=8 Hz, -CH3CH2CH2CH2Ar), 1.23-1.39(m, 13H, -CH2CH3, -CH3 and 

CH3CH2CH2CH2Ar), 1.42(s, 18H, CH3 tert-butyl), 1.57(m, 3H, -CH3CH2CH2CH2Ar and -

CH(CH2CH3)), 2.59(m, 4H, Ph-CH2CH2-COO- and -C3H7CH2Ar), 2.84(t, 2H, J=8 Hz, Ph-

CH2CH2-COO-), 4.05(m, 2H, COO-CH2-CH(CH2CH3)-C4H9), 4.34(s, 2H, COO-CH2-C), 4.43(s, 

2H, COO-CH2-C), 5.07(s, 1H, -OH), 5.75(s, 1H, -NH), 6.97(s, 2H, Ph-CH), 7.02(app. d, 1H, 

app. J=8 Hz, ArCH-C(C4H9)), 7.11(app. d, 2H, app. J=8 Hz, ArCH-CNH), 7.21(app. d, 2H, app. 

J=8 Hz, HN-CH-C(COO-)-CHCHCH-), 7.28(m, 1H, HN-CH-C(COO-)-CHCHCH-), 7.46(app. d, 

1H, J=8 Hz, HN-CH-C(COO-)-CHCHCH-), 7.60(m, 1H, HN-CH-C(COO-)); 13C NMR (100 

MHz/CDCl3)/ppm, δ = 11.0, 14.0, 17.9, 22.4, 22.9, 23.7, 28.9, 30.3, 30.9, 33.8, 34.3, 35.0, 
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36.2, 38.7, 46.6, 65.7, 66.1, 67.4, 117.3, 119.4, 120.7, 121.0, 124.7, 129.4, 130.8, 130.9, 

136.0, 144.4, 152.2, 166.1, 172.7, 172.9. Found [M+H]+ (C47H67NO7) m/z = 758.4961 (Calc. 

758.4918). 

Preparation of mixed amine-phenol (4.16) 

The mono-phenolic linker (4.5) (0.50 g, 0.99 mmol), 4-((4-butylphenyl)amino)benzoic 

acid (4.13) (0.4 g, 1.49 mmol), DPTS (60%) and DCC (0.31 g, 1.49 mmol) were allowed to 

react according to the general mixed amine-phenol procedure. The crude product was 

purified by flash column chromatography on silica eluting with hexane/ethyl acetate 

(80:20) (Rf =0.33) to afford 0.65 g (86%) of 4.16 as a an orange oil. IR (ATR) v/cm-1: 3636, 

3361, 2960, 1715, 1598, 1517, 1170, 754. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.84(m, 

6H, -CH2CH3), 0.94(t, 3H, J=8 Hz, -CH3CH2CH2CH2Ar), 1.24-1.21(m, 11H, -CH2CH3, -CH3), 

1.36(m, 2H, CH3CH2CH2CH2Ar), 1.42(s, 18H, CH3 tert-butyl), 1.58(m, 3H, -

CH3CH2CH2CH2Ar and -CH(CH2CH3)), 2.60(m, 4H, Ph-CH2CH2-COO- and -C3H7CH2Ar), 

2.84(t, 2H, J=8 Hz, Ph-CH2CH2-COO-), 4.06(m, 2H, COO-CH2-CH(CH2CH3)-C4H9), 4.34(s, 2H, 

COO-CH2-C), 4.40(s, 2H, COO-CH2-C), 5.07(s, 1H, -OH), 5.97(s, 1H, -NH), 6.91(app. d, 2H, 

app. J=8 Hz, NH-ArC-CH), 6.97(s, 2H, Ph-CH), 7.06(app. d, 2H, app. J=8 Hz, ArCH-C(C4H9)), 

7.15(app. d, 2H, app. J=8 Hz, ArCH-CNH), 7.84(app. d, 2H, app. J=8 Hz, ArCH-C(COO-)); 

13C NMR (100 MHz/CDCl3)/ppm, δ = 11.0, 14.0, 14.1, 17.9, 22.3, 22.9, 23.7, 28.9, 30.3, 

30.9, 33.7, 34.3, 35.0, 36.2, 38.7, 46.7, 65.6, 65.7, 67.4, 114.0, 119.9, 121.3, 124.7, 129.4, 

130.9, 131.6, 135.9, 138.1, 138.4, 149.0, 152.2, 165.9, 172.8, 173.1. Found [M+Na]+ 

(C47H67NO7) m/z = 780.4810 (Calc. 780.4918). 

Preparation of bis(diphenylamine) (4.17) 

The first generation hydroxyl linker (2.3) (0.20 g, 0.91 mmol), 2-((4-

butylphenyl)amino)benzoic acid (4.11)   (0.56 g, 2.09 mmol), DPTS (60%) and DCC 

(0.43 g, 2.09 mmol) were allowed to react according to the general bis(diphenylamine) 

procedure. The crude product was purified by flash column chromatography on silica 

eluting with chloroform/hexane (70:30) (Rf =0.56) to afford 0.56 g (82%) of 4.17 as a 

yellow oil. IR (ATR) v/cm-1:3320, 2960, 1683, 1514, 1216, 1074, 745. 1H NMR (400 

MHz/CDCl3)/ppm, δ =0.83(m, 6H, -CH2CH3), 0.92(t, 6H, J=8 Hz, -CH3CH2CH2CH2Ar), 1.21-

1.40(m, 12H, -CH2CH3 and CH3CH2CH2CH2Ar), 1.46(s, 3H, -CH3), 1.60(m, 5H, -

CH3CH2CH2CH2Ar and -CH(CH2CH3)), 2.59(t, 4H, J=8 Hz, -CH3CH2CH2CH2Ar), 4.10(m, 2H, 
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COO-CH2-CH(CH2CH3)-C4H9), 4.56(s, 4H, COO-CH2-C), 6.66(app. t, 2H, app. J=8 Hz, -OOC-

CHCHCHCHC-NH), 7.15(m, 10H, C4H9-ArCH and -OOC-CHCHCHCHC-NH), 7.30(m, 2H, -

OOC-CHCHCHCHC-NH), 7.88(app. d, 2H, app. J=8 Hz, -OOC-CHCHCHCHC-NH), 9.32(s, 2H, 

-NH; 13C NMR (100 MHz/CDCl3)/ppm, δ = 10.9, 14.0, 22.4, 22.9, 23.7, 28.9, 30.3, 33.7, 35.1, 

46.9, 66.0, 67.6, 110.7, 113.8, 116.6, 123.3, 126.2, 129.3, 131.4, 134.4, 138.0, 138.7, 148.8, 

167.8, 173.1. Found [M+Na]+ (C47H60N2O6) m/z = 771.4344 (Calc. 771.4451). 

Preparation of bis(diphenylamine) (4.18) 

The first generation hydroxyl linker (2.3) (0.17 g, 0.74 mmol), 3-((4-

butylphenyl)amino)benzoic acid (4.12) (0.46 g, 1.70 mmol), DPTS (60%) and DCC 

(0.35 g, 1.70 mmol) were allowed to react according to the general bis(diphenylamine) 

procedure. The crude product was purified by flash column chromatography on silica 

eluting with hexane/ethyl acetate (80:20) (Rf = 0.50) to afford 0.42 g (75%) of 4.18 as a 

pale yellow oil. IR (ATR) v/cm-1:3376, 2960, 1721, 1515, 1208, 1103, 747. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.80(m, 6H, -CH2CH3), 0.93(t, 6H, J=8 Hz, -CH3CH2CH2CH2Ar), 1.19-

1.37(m, 12H, -CH2CH3 and CH3CH2CH2CH2Ar), 1.40(s, 3H, -CH3), 1.58(m, 5H, -

CH3CH2CH2CH2Ar and -CH(CH2CH3)), 2.56(t, 4H, J=8 Hz, -C3H7CH2Ar), 4.05(m, 2H, COO-

CH2-CH(CH2CH3)-C4H9), 4.55(s, 4H, COO-CH2-C), 5.74(s, 2H, -NH), 7.00(app. d, 4H, app. J=8 

Hz, ArCH-C(C4H9)), 7.10(app. d, 4H, app. J=8 Hz, ArCH-CNH), 7.18(m, 2H, HN-CH-C(COO-

)-CHCHCH-), 7.25(m, 2H, HN-CH-C(COO-)-CHCHCH-), 7.46(app. d, 2H, app. J=8 Hz, HN-CH-

C(COO-)-CHCHCH-), 7.60(m, 2H, HN-CH-C(COO-)); 13C NMR (100 MHz/CDCl3)/ppm, δ = 

11.0, 14.0, 18.1, 22.3, 22.9, 23.7, 28.9, 30.3, 33.8, 35.0, 38.7, 46.8, 66.3, 67.5, 117.3, 118.9, 

119.4, 120.6, 121.0, 126.3, 129.3, 130.8, 136.9, 139.6, 144.4, 166.1, 172.9. Found [M+Na]+ 

(C47H60N2O6) m/z = 771.4343 (Calc. 771.4451). 

Preparation of bis(diphenylamine) (4.19) 

The first generation hydroxyl linker (2.3) (0.15 g, 0.65 mmol), 4-((4-

butylphenyl)amino)benzoic acid (4.13)  (0.4 g, 1.49 mmol), DPTS (60%) and DCC (0.31 g, 

1.49 mmol) were allowed to react according to the general bis(diphenylamine) 

procedure. The crude product was purified by flash column chromatography on silica 

eluting with hexane/ethyl acetate (80:20) (Rf = 0.53) to afford 0.44 g (90%) of 4.19 as a 

pale orange oil. IR (ATR) v/cm-1: 3345, 2960, 1696, 1596, 1514, 1265, 1168, 1100, 755. 

1H NMR (400 MHz/CDCl3)/ppm, δ = 0.82(m, 6H, -CH2CH3), 0.94(t, 6H, J=8 
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Hz, -CH3CH2CH2CH2Ar), 1.20-1.38(m, 15H, -CH2CH3, -CH3, and CH3CH2CH2CH2Ar), 1.61(m, 

5H, -CH3CH2CH2CH2Ar and -CH(CH2CH3)), 2.59(t, 4H, J=8 Hz, -CH3CH2CH2CH2Ar), 4.08(m, 

2H, COO-CH2-CH(CH2CH3)-C4H9), 4.52(s, 4H, COO-CH2-C), 5.96(s, 2H, -NH), 6.90(app. d, 

4H, app. J=8 Hz,  ArCH-CNH), 7.08(app. d, 4H, app. J=8 Hz, ArCH-C(C4H9)), 7.15(app. d, 4H, 

app. J=8 Hz, ArCH-CNH), 7.85(app. d, 4H, app. J=8 Hz ArCH-C(COO-)); 13C NMR (100 

MHz/CDCl3)/ppm, δ = 10.9, 14.0, 18.1, 22.3, 22.9, 23.7, 28.9, 30.3, 33.7, 35.0, 38.7, 47.0, 

65.9, 67.4, 114.0, 120.0, 121.2, 129.4, 131.6, 138.1, 138.1, 148.9, 165.9, 173.2. Found 

[M+Na]+ (C47H60N2O6) m/z = 771.4344 (Calc. 771.4451). 

Series 3 

Preparation of methyl 3-(3-((4-butylphenyl)amino)phenyl)propanoate (4.20) 

Methyl 3-(3-bromophenyl)propanoate (1 g, 4.11 mmol) and 4-butylaniline (0.78 mL, 4.93 

mmol) were added to Pd(OAc)2 (18 mg, 0.08 mmol), BINAP (100 mg, 0.16 mmol) and 

Cs2CO3 (1.87 g, 5.75 mmol) and were allowed to react according to the general Buchwald-

Hartwig amination procedure. The crude residue was purified by flash column 

chromatography on silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.41) to afford 

0.43 g (34%) of 4.20 as an orange oil. IR (ATR) v/cm-1: 3380, 2925, 1725, 1591, 1514, 

1166, 778. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.93(t, 3H, J= 8 Hz, -CH3CH2CH2CH2Ar), 

1.36(sex., 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 1.58(quin., 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 

2.56(t, 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 2.61(t, 2H, J=8 Hz, ArC-CH2CH2-COOCH3), 2.89(t, 

2H, J=8 Hz, ArC-CH2CH2-COOCH3), 3.67(s, 3H,-COOCH3), 5.60(s, 1H, -NH), 6.71( app. d, app. 

J=8 Hz, 2H, HN-CH-C(CH2CH2(COOCH3))-CHCHCH-), 6.86(app. d, app. J=8 Hz, 2H, HN-CH-

C(CH2CH2(COOCH3))-CHCHCH-), 7.00(app. d, 2H, app. J=8 Hz, HN-ArCHCH), 7.09(app. d, 

2H, app. J= 8 Hz, C4H9-ArCHCH), 7.14 (app. d, 1H, app. J= 8 Hz, HN-CH-C(COOCH3)-

CHCHCH-NH); 13C NMR (100 MHz/CDCl3)/ppm, δ = 14.0, 22.4, 31.0, 33.8, 35.0, 35.7, 51.7, 

114.8, 116.7, 118.8, 120.2, 129.2, 129.4, 136.1, 140.4, 141.8, 144.1, 173.4. Found [M+H]+ 

(C20H25NO2) m/z = 312.1958 (Calc. 312.1885). 

Preparation of ethyl 2-(4-((4-butylphenyl)amino)phenyl)acetate (4.21) 

Ethyl 2-(4-(bromophenyl)acetate (0.5 g, 2.06 mmol) and 4-butylaniline (0.39 mL, 2.47 

mmol) were added to Pd(OAc)2 (9 mg, 0.04 mmol), BINAP (50 mg, 0.08 mmol) and Cs2CO3 

(0.94 g, 2.88 mmol) and were allowed to react according to the general Buchwald-

Hartwig amination procedure. The crude residue was purified by flash column 
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chromatography on silica eluting with hexane/ethyl acetate (85:15) (Rf = 0.33) to afford 

0.43 g (67%) of 4.21 as an orange oil. IR (ATR) v/cm-1: 3385, 2928, 1725, 1608, 1514, 

1308, 1140, 750 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.92(t, 3H, 

J=8 Hz, -CH3CH2CH2CH2Ar), 1.25(t, 3H, J=8 Hz, ArC-CH2-COOCH2CH3), 1.35(sex., 2H, 

J=8 Hz, -CH3CH2CH2CH2Ar), 1.57(quin, 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 2.55(t, 2H, 

J=8 Hz, -CH3CH2CH2CH2Ar), 3.53(s, 2H, ArC-CH2-COOCH2CH3), 4.14(q, 2H, J=8 Hz, ArC-

CH2-COOCH2CH3), 5.62(s, 1H, -NH), 6.97(m, 4H, HN-ArCH4-CH2(COOCH2CH3)), 7.00(app. 

d, 2H, app. J=8 Hz, HN-ArCHCH), 7.07(app. d, 2H, app. J= 8 Hz, C4H9-ArCHCH); 13C NMR 

(100 MHz/CDCl3)/ppm, δ = 14.0, 14.3, 22.4, 33.9, 35.0, 40.7, 60.8, 117.1, 118.6, 125.8, 

129.2, 130.1, 136.0, 140.6, 142.9, 172.1. Found [M+H]+ (C20H25NO2) m/z = 312.1958 (Calc. 

312.1885). 

Preparation of methyl 3-(4-((4-butylphenyl)amino)phenyl)propanoate (4.22) 

Methyl 3-(4-(bromophenyl)propanoate (1 g, 4.11 mmol) and 4-butylaniline (0.78 mL, 

4.93 mmol) were added to Pd(OAc)2 (18 mg, 0.08 mmol), BINAP (100 mg, 0.16 mmol) 

and Cs2CO3 (1.87 g, 5.75 mmol) and were allowed to react according to the general 

Buchwald-Hartwig amination procedure. The crude residue was purified by flash column 

chromatography on silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.37) to afford 

1.61 g (91%) of 4.22 as a waxy yellow solid. M.p 48 o C. IR (ATR) v/cm-1: 3384, 2960, 1726, 

1514, 1191, 823. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.93(t, 3H, J= 8 

Hz, -CH3CH2CH2CH2Ar), 1.36(sex., 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 1.57(quin, 2H, J=8 

Hz, -CH3CH2CH2CH2Ar), 2.55(t, 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 2.61(t, 2H, 

Ar-CH2CH2-(COOCH3)), 2.89(t, 2H, Ar-CH2CH2-(COOCH3)), 3.67(s, 3H, -COOCH3), 5.56(s, 

1H, -NH), 6.97(m, 4H, HN-ArCH4-CH2(COOCH2CH3)), 7.07(app. d, 2H, app. J= 8 Hz, 

C4H9-ArCH4); 13C NMR (100 MHz/CDCl3)/ppm, δ = 14.0, 22.4, 30.2, 33.9, 34.9, 36.0, 51.6, 

117.5, 118.2, 129.1, 129.2, 132.5, 135.7, 140.8, 142.0, 173.5. Found [M+H]+ (C20H25NO2) 

m/z = 312.1958 (Calc. 312.1885) 

Preparation of 3-(3-((4-butylphenyl)amino)phenyl)propanoic acid (4.23) 

Aqueous potassium hydroxide (11 mL, 2.24 mmol) was added to 4.20 (0.35 g, 1.12 mmol) 

in ethanol (6 mL) at room temperature and allowed to react according to the general ester 

hydrolysis procedure to yield 0.25 g (70%) of 4.23 as a waxy red solid. M.p 45 o C. IR (ATR) 
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v/cm-1: 3407, 3102-2601 (br), 2960, 1687, 1605, 1519, 1303, 792. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.93(t, 3H, J= 8 Hz, -CH3CH2CH2CH2Ar), 1.38(sex., 2H, J=8 

Hz, -CH3CH2CH2CH2Ar), 1.58(quin., 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 2.56(t, 2H, J=8 

Hz, -CH3CH2CH2CH2Ar), 2.67(t, 2H, J=8 Hz, ArC-CH2CH2-COOCH3), 2.89(t, 2H, J=8 Hz, 

ArC-CH2CH2-COOCH3), 6.72(app. d, 1H, HN-CH-C(CH2CH2(COOH))-CHCHCH), 6.86 (m, 2H, 

HN-CH-C(CH2CH2(COOH))-CHCHCH), 7.00(app. d, 2H, app. J= 8 Hz, HN-ArCHCH), 

7.09(app. d, 1H, app. J= 8 Hz, C4H9-ArCHCH), 7.16(app. t, 2H, J=8 Hz, 

HN-CH-C(CH2CH2(COOH))-CHCHCH); 13C NMR (100 MHz/CDCl3)/ppm, δ = 14.0, 22.4, 

30.6, 33.8, 34.9, 35.5, 114.8, 116.6, 118.9, 120.1, 129.2, 129.5, 136.2, 140.3, 141.4, 144.1, 

178.8. Found [M+Na]+ (C19H23NO2) m/z = 320.1622 (Calc. 320.1729). 

Preparation of 2-(4-((4-butylphenyl)amino)phenyl)acetic acid (4.24) 

Aqueous potassium hydroxide (41 mL, 8.16 mmol) was added to 4.21 (1.27 g, 4.08 mmol) 

in ethanol (20 mL) at room temperature and allowed to react according to the general 

ester hydrolysis procedure to yield 0.73 g (63%) of 4.24 as a pale orange solid. M.p 105-

108 ᵒC IR (ATR) v/cm-1: 3374, 3088-2535 (br), 2923, 1696, 1611, 1515, 1177, 803. 1H 

NMR (400 MHz/CDCl3)/ppm, δ = 0.93(t, 3H, J=8 Hz, -CH3CH2CH2CH2Ar), 1.38(sex., 2H, 

J=8 Hz, -CH3CH2CH2CH2Ar), 1.58(quin, 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 2.56(t, 2H, 

J=8 Hz, -CH3CH2CH2CH2Ar), 3.58(s, 2H, ArC-CH2-COOH), 6.99(m, 4H, 

HN-ArCH4-CH2(COOCH)), 7.08(app. d, 2H, app. J=8 Hz, HN-ArCHCH), 7.14(app. d, 2H, app. 

J= 8 Hz, C4H9-ArCHCH); 13C NMR (100 MHz/CDCl3)/ppm, δ = 14.0, 22.4, 33.8, 34.9, 40.2, 

117.0, 118.8, 124.8, 129.2, 130.3, 136.2, 140.3, 143.2, 177.4. Found [M+H]+ (C18H21NO2) 

m/z = 284.1645 (Calc. 284.1572). 

Preparation of 3-(4-((4-butylphenyl)amino)phenyl)propanoic acid (4.25) 

Aqueous potassium hydroxide (32 mL, 6.42 mmol) was added to 4.22 (1.0 g, 3.21 mmol) 

in ethanol (16 mL) at room temperature and allowed to react according to the general 

ester hydrolysis procedure to yield 0.91 g (95%) of 4.25 as a pale orange solid. M.p 118-

120 ᵒC. IR (ATR) v/cm-1: 3402, 3090-2607 (br), 2920, 1689, 1514, 1305, 818. 1H NMR 

(400 MHz/CDCl3)/ppm, δ = 0.93(t, 3H, J= 8 Hz, -CH3CH2CH2CH2Ar), 1.39(sex., 2H, J=8 Hz, 

-CH3CH2CH2CH2Ar), 1.58(quin, 2H, J=8 Hz, -CH3CH2CH2CH2Ar), 2.55(t, 2H, J=8 

Hz, -CH3CH2CH2CH2Ar), 2.66(t, 2H, Ar-CH2CH2-(COOCH3)), 2.90(t, 2H, Ar-CH2CH2-

(COOCH3)), 6.97(m, 4H, HN-ArCH4-CH2(COOCH2CH3)), 7.08(m, 4H, C4H9-ArCH4); 13C NMR 
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(100 MHz/CDCl3)/ppm, δ = 14.0, 22.4, 30.0, 33.8, 34.9, 35.8, 117.4, 118.3, 129.1, 129.2, 

132.1, 135.8, 140.7, 142.2, 178.5. Found [M+Na]+ (C19H23NO2) m/z = 320.1622 (Calc. 

320.1729). 

Preparation of mixed amine-phenol (4.26) 

The mono-phenolic linker (4.5) (0.40 g, 0.79 mmol), 3-(3-((4-

butylphenyl)amino)phenyl)propanoic acid (4.23) (0.35 g, 1.18 mmol), DPTS (60%) and 

DCC (0.24 g, 1.18 mmol) were allowed to react according to the general mixed amine-

phenol procedure. The crude product was purified by flash column chromatography on 

silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.39) to afford 0.52 g (84%) of 4.26 

as a dark orange oil. IR (ATR) v/cm-1: 3634, 3380, 2960, 1731, 1515, 1135, 752. 1H NMR 

(400 MHz/CDCl3)/ppm, δ = 0.87(m, 6H, -CH2CH3), 0.93(t, 3H, J=8 Hz, -CH3CH2CH2CH2Ar), 

1.16(s, 3H, -CH3), 1.26-1.35(m, 10H, -CH2CH3), 1.42(s, 18H, -CH3 tert-butyl), 1.58(m, 3H, -

CH3CH2CH2CH2Ar and -CH(CH2CH3)), 2.59(m, 6H, Ph-CH2CH2-COO-, -C3H7CH2Ar, ArC-

CH2CH2-COO), 2.85(m, 4H, Ph-CH2CH2-COO-, ArC-CH2CH2-COO), 4.03(m, 2H, COO-CH2-

CH(CH2CH3)-C4H9), 4.21(s, 4H, COO-CH2-C), 5.07(s, 1H, -OH), 5.69(s, 1H, -NH), 6.69(app. 

d, 1H, HN-ArCH2-C(CH2CH3COO-)-CH4CH5CH6-), 6.82(app. s, 1H, HN-ArCH2-

C(CH2CH3COO-)), 6.87(app. d, 1H, HN-ArCH2-C(CH2CH3COO-)-CH4CH5CH6-), 6.97(s, 2H, 

Ph-CH), 7.00(app. d, 2H, ArCHCHC-NH), 7.08(app. d, 2H, C4H9-ArCHCH), 7.14(app. t, 1H, 

HN-ArCH2-C(CH2CH3COO-)-CH4CH5CH6-); 13C NMR (100 MHz/CDCl3)/ppm, δ =11.0, 14.0, 

17.8, 22.4, 22.9, 23.7, 28.9, 30.2, 30.3, 30.8, 33.8, 34.3, 34.9, 36.2, 38.7, 46.4, 65.4, 65.6, 

67.4, 114.6, 116.7, 118.7, 124.7, 126.1, 129.2, 129.4, 130.8, 135.9, 136.0, 140.4, 141.5, 

144.1, 152.2, 172.4, 172.7, 172.9. Found [M+H]+ (C49H71NO7) m/z = 786.5303 (Calc. 

786.5231). 

Preparation of mixed amine-phenol (4.27) 

The mono-phenolic linker (4.5) (0.51 g, 1.01 mmol), 2-(4-((4-

butylphenyl)amino)phenyl)acetic acid (4.24)  (0.43 g, 1.52 mmol), DPTS (60%) and DCC 

(0.31 g, 1.52 mmol) were allowed to react according to the general mixed amine-phenol 

procedure. The crude product was purified by flash column chromatography on silica 

eluting with hexane/ethyl acetate (85:15) (Rf = 0.33) to afford 0.42 g (54%) of 4.27 as an 

orange oil. IR (ATR) v/cm-1: 3632, 3382, 2960, 1730, 1514, 1132, 753. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.87(m, 6H, -CH2CH3), 0.93(t, 3H, J=8 Hz, -CH3CH2CH2CH2Ar), 
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1.16(s, 3H, -CH3), 1.26-1.36(m, 10H, -CH2CH3), 1.42(s, 18H, -CH3 tert-butyl), 1.57(m, 

3H, -CH3CH2CH2CH2Ar and -CH(CH2CH3)), 2.56(m, 4H, Ph-CH2CH2-COO- and -C3H7CH2Ar), 

2.82(t, 2H, J=8 Hz, Ph-CH2CH2-COO-), 3.53(s, 2H, ArC-CH2-COO), 4.00(m, 2H, 

COO-CH2-CH(CH2CH3)-C4H9), 4.21(m, 4H, COO-CH2-C), 5.07(s, 1H, -OH),  5.60(s, 1H, -NH), 

6.97(m, 6H, Ph-CH and ArCH-CNH), 7.10(m, 4H, ArCH-CCH2); 13C NMR (100 

MHz/CDCl3)/ppm, δ = 11.0, 14.0, 14.1, 17.8, 22.4, 22.9, 23.7, 28.9, 30.3, 30.8, 33.8, 34.3, 

34.9, 36.2, 38.7, 40.4, 46.4, 65.4, 65.8, 67.4, 117.0, 118.6, 124.7, 125.3, 129.2, 130.1, 130.8, 

135.9, 136.1, 140.4, 143.0, 152.2, 171.4, 172.6, 172.8. Found [M+H]+(C48H69NO7) m/z = 

772.5147 (Calc. 772.5074). 

Preparation of mixed amine-phenol (4.28) 

The mono-phenolic linker (4.5) (0.46 g, 0.90 mmol), 3-(4-((4-

butylphenyl)amino)phenyl)propanoic acid (4.25)  (0.4 g, 1.34 mmol), DPTS (60%) and 

DCC (0.28 g, 1.34 mmol) were allowed to react according to the general mixed amine-

phenol procedure. The crude product was purified by flash column chromatography on 

silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.37) to afford 0.64 g (90%) of 4.28 

as a purple oil. IR (ATR) v/cm-1:3633, 3384, 2960, 1731, 1514, 1136, 753. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.87(m, 6H, -CH2CH3), 0.93(t, 3H, J=8 Hz, -CH3CH2CH2CH2Ar), 

1.16(s, 3H, -CH3), 1.27-1.36(m, 10H, -CH2CH3), 1.42(s, 18H, -CH3 tert-butyl), 1.57(m, 

3H, -CH3CH2CH2CH2Ar and -CH(CH2CH3)), 2.59(m, 6H, Ph-CH2CH2-COO-, -C3H7CH2Ar, 

ArC-CH2CH2-COO), 2.85(m, 4H, Ph-CH2CH2-COO-, ArC-CH2CH2-COO), 4.03(m, 2H, 

COO-CH2-CH(CH2CH3)-C4H9), 4.21(s, 4H, COO-CH2-C), 5.07(s, 1H, -OH), 5.56(s, 1H, -NH), 

6.96(m, 6H, Ph-CH and ArCH-CNH), 7.06(m, 4H, ArCH-CCH2); 13C NMR (100 

MHz/CDCl3)/ppm, δ = 11.0, 14.0, 17.8, 22.4, 22.9, 23.7, 28.9, 30.3, 30.8, 33.8, 34.3, 34.9, 

35.9, 36.2, 38.7, 46.4, 65.5, 67.3, 117.5, 118.2, 124.7, 126.1, 129.0, 129.2, 130.8, 132.2, 

135.7, 136.0, 140.8, 142.1, 152.2, 172.5, 172.7, 172.9. Found [M+H]+(C49H71NO7) m/z = 

786.5303 (Calc. 786.5231). 

Preparation of bis(diphenylamine) (4.29) 

The first generation hydroxyl linker (2.3) (0.08 g, 0.35 mmol), 3-(3-((4-

butylphenyl)amino)phenyl)propanoic acid (4.23) (0.24 g, 0.81 mmol), DPTS (60%) and 

DCC (0.17 g, 0.81 mmol) were allowed to react according to the general 

bis(diphenylamine) procedure. The crude product was purified by flash column 
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chromatography on silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.38) to afford 

0.21 g (75%) of 4.29 as a pale orange oil. IR (ATR) v/cm-1: 3382, 2960, 1730, 1514, 1134, 

776. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.86(m, 6H, -CH2CH3), 0.93(t, 6H, J=8 

Hz, -CH3CH2CH2CH2Ar), 1.15(s, 3H, -CH3), 1.26-.139(m, 12H, -CH2CH3), 1.58(m, 

5H, -CH3CH2CH2CH2Ar and -CH(CH2CH3)), 2.55(t, 4H, J=8 Hz, -C3H7CH2Ar), 2.60(t, 4H, J=8 

Hz, ArC-CH2CH2-COO), 2.86(t, 4H, J=8 Hz, ArC-CH2CH2-COO), 4.02(m, 2H, 

COO-CH2-CH(CH2CH3)-C4H9), 4.19(m, 4H, COO-CH2-C), 5.67(s, 2H, -NH), 6.68(app. d, 2H, 

J=8 Hz, HN-ArCH2-C(CH2CH3COO-)-CH4CH5CH6-), 6.80(m, 2H, HN-ArCH2-C(CH2CH3COO-

)), 6.87(m, 2H, HN-ArCH2-C(CH2CH3COO-)-CH4CH5CH6-), 6.99(app. d, 4H, app. J=8 Hz, 

ArCHCHC-NH), 7.10(app. d, 4H, app. J=8 Hz, C4H9-ArCHCH), 7.13(app. t, 2H, app. J=8 Hz, 

HN-ArCH2-C(CH2CH3COO-)-CH4CH5CH6-); 13C NMR (100 MHz/CDCl3)/ppm, δ = 11.0, 14.0, 

17.8, 22.4, 22.9, 23.7, 28.9, 30.3, 30.8, 31.5, 33.8, 34.9, 35.5, 38.7, 46.3, 65.5, 67.4, 114.6, 

116.8, 118.7, 120.1, 129.2, 129.4, 136.0, 140.4, 141.5, 144.1, 172.4, 172.9. Found 

[M+H]+(C51H68N2O6) m/z = 805.5155 (Calc. 805.5077). 

Preparation of bis(diphenylamine) (4.30) 

The first generation hydroxyl linker (2.3) (0.19 g, 0.86 mmol), 2-(4-((4-

butylphenyl)amino)phenyl)acetic acid (4.24) (0.56 g, 1.98 mmol), DPTS (60%) and DCC 

(0.41 g, 1.98 mmol) were allowed to react according to the general bis(diphenylamine) 

procedure. The crude product was purified by flash column chromatography on silica 

eluting with hexane/ethyl acetate (80:20) (Rf = 0.41) to afford 0.46 g (68%) of 4.30 as a 

dark red oil. IR (ATR) v/cm-1:3379, 2960, 1730, 1607, 1514, 1131. 1H NMR (400 

MHz/CDCl3)/ppm, δ = 0.87(m, 6H, -CH2CH3), 0.93(t, 6H, J=8 Hz, -CH3CH2CH2CH2Ar), 

1.15(s, 3H, -CH3), 1.25-1.30(m, 8H, -CH2CH3), 1.36(m, 4H, -CH3CH2CH2CH2Ar), 1.58(m, 5H, 

-CH3CH2CH2CH2Ar and -CH(CH2CH3)), 2.55(t, 4H, J=8 Hz, -CH3CH2CH2CH2Ar), 3.50(s, 4H, 

ArC-CH2-COO-), 3.98(m, 2H, COO-CH2-CH(CH2CH3)-C4H9), 4.16(d, 2H, J=12 Hz, 

COO-CH2-C), 4.22(d, 2H, J=12 Hz,  COO-CH2-C), 5.59(s, 2H, -NH), 6.94(app. d, 4H, 

ArCH-CNH), 6.98(app. d, 4H, ArCH-CNH), 7.07(m, 8H, ArCH-CCH2); 13C NMR (100 

MHz/CDCl3)/ppm, δ = 10.9, 14.0, 17.9, 22.4, 23.0, 28.9, 30.3, 31.5, 33.8, 34.9, 38.6, 40.4, 

46.3, 65.6, 67.4, 117.1, 118.6,125.3, 129.2, 130.1, 136.0, 140.4, 142.9, 171.4, 172.8. Found 

[M+H]+(C49H64N2O6) m/z = 777.4839 (Calc. 777.4764). 
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Preparation of bis(diphenylamine) (4.31) 

The first generation hydroxyl linker (2.3) (0.13 g, 0.58 mmol), 3-(4-((4-

butylphenyl)amino)phenyl)propanoic acid (4.25)  (0.4 g, 1.34 mmol), DPTS (60%) and 

DCC (0.28 g, 1.34 mmol) were allowed to react according to the general 

bis(diphenylamine) procedure. The crude product was purified by flash column 

chromatography on silica eluting with hexane/ethyl acetate (80:20) (Rf = 0.42) to afford 

0.45 g (96%) of 4.31 as a pale yellow oil. IR (ATR) v/cm-1: 3384, 2960, 1730, 1514, 1137, 

752. 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.87(m, 6H, -CH2CH3), 0.92(t, 6H, J=8 

Hz, -CH3CH2CH2CH2Ar), 1.17(s, 3H, -CH3), 1.27-1.38(m, 12H, -CH2CH3 

and -CH3CH2CH2CH2Ar ), 1.57(m, 8H, -CH3CH2CH2CH2Ar and -CH(CH2CH3)), 2.57(m, 

8H, -CH3CH2CH2CH2Ar and Ar-CH2CH2-(COO-)), 2.85(t, 4H, J=8 Hz, Ar-CH2CH2-(COOCH3)), 

4.03(m, 2H, COO-CH2-CH(CH2CH3)-C4H9), 4.19(s, 4H, COO-CH2-C), 5.55(s, 2H, -NH), 

6.95(m, 8H, ArCH-CCH2), 7.05(m, 8H, ArCH-CNH).; 13C NMR (100 MHz/CDCl3)/ppm, δ = 

11.0, 14.0, 17.8, 22.4, 22.9, 23.7, 28.9, 30.1, 30.3, 33.8, 34.9, 35.9, 38.7, 46.3, 65.5, 67.4, 

117.5, 118.2, 129.0, 129.2, 132.2, 135.7, 140.8, 142.0, 172.5, 172.9. Found 

[M+H]+(C51H68N2O6) m/z = 805.5150 (Calc. 805.5077). 
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Chapter 5  

 

From food to petroleum analysis: The development of a screening assay for new 

antioxidants using the stable radical DPPH 

 

Abstract 

By taking inspiration from the food industry, an assay was investigated as a potential 

screening tool to test the efficiency of new phenolic antioxidants. The method was based 

on the spectrophotometric measurement of the stable free radical 

1,1-diphenyl-2-picryl-hydrazyl (DPPH) which, in its radical form, has an absorption 

maxima at 515 nm. The disappearance of this absorption band, upon reaction with an 

antioxidant, was monitored to reveal the kinetic pathway of the reaction which was 

defined simply as either fast, medium or slow. Adaptation of the assay was attempted for 

application to fuel and lubricants whereby the effect of polar and non-polar solvents on 

the kinetics of the reaction was investigated. In addition, the stoichiometry of the radical 

scavenging reaction was also analysed to give an insight into the structure-activity 

relationships of phenolic antioxidants.  

5.1 Introduction 

Oxidation is not only attributed to the oil and automotive industry but is also a prominent 

issue in the food industry where the oxidation of lipids is responsible for changes in the 

colour, flavour, nutritional quality, safety and texture of foods.[1,2] In addition, the 

consumption of radical species in foodstuffs has been found to contribute to the aging 

process of human tissues and to the development of various pathological diseases.[2–4] It 

is therefore necessary for this industry to protect food lipids and human tissues against 

free radicals by introducing antioxidants from a natural or synthetic origin, in a similar 

fashion to the stabilisation of hydrocarbon base oils, which has been discussed in the 

previous chapters of this thesis. Natural antioxidants, particularly those derived from 

fruit and vegetable extracts, have gained increasing interest among the scientific 

community because epidemiological studies have indicated that frequent intake of 

natural antioxidants is associated with a lower risk of cardiovascular disease and 

cancer.[5–7] Furthermore, there is a widespread agreement that some commonly used 
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synthetic antioxidants such as 2-tert-butyl-4-hydroxyanisole (BHA) and 

2,6-di-tert-butyl-4-methylphenol (BHT) (Figure 5.1) need to be replaced with natural 

antioxidants because of their potential health risks and toxicity.[8,9] Hence, in recent years 

an increase in the use of methods for estimating the radical scavenging efficiency of large 

quantities of natural products has been observed.[10–12] 

 

 

Figure 5.1 Structures of the synthetic antioxidants BHT and BHA. 

A wide range of spectrophotometric assays have been adopted with convenient 

methodologies which allow quick and simple quantification of antioxidant capacities 

which lend themselves to high-throughput analysis.[13–17] Free radical scavenging is one 

of the known mechanisms by which antioxidants inhibit oxidation and consequently the 

most popular assays utilise generated or stable radical species such as 2,2ǯ-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl-

2-picryl-hydrazyl (DPPH) (Figure 5.2).[12,18,19]  

 

 

 

Figure 5.2 Structures of the spectrophotometer assay species ABTS and DPPH.  

Both assays are based on an electron transfer process and involve the reduction of a 

coloured oxidant which can be monitored easily by a spectrophotometer. More recent 

developments of the ABTS assay are based on the generation of a blue/green ABTS·+ 

chromophore through an initial reaction with potassium persulfate (K2S2O8).[20] This is a 

relatively long-lived radical species and can subsequently be reduced by an antioxidant 

or hydrogen donor (Scheme 5.1).[10] This process can be monitored by use of UV-Vis 

spectroscopy with multiple absorbance intensities reported at 415, 645, 734 and 

815 nm.[20–22] An advantage of this assay is that it is suitable for strongly coloured 

samples as the absorbance can be measured outside the visible spectral range using the 

734 or 815 nm absorbance.[10] Moreover, this species is water soluble which is of 

particular importance when analysing biological systems.  
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Scheme 5.1  Generation of the blue/green ABTS·+ radical cation and subsequent reduction by an 

antioxidant, AH, to the colourless ABTS+. 

In contrast, the DPPH assay is based on the reduction of the commercially available, stable 

radical DPPH to 1,1-diphenyl-2-picrylhydrazine (DPPHH) (Scheme 5.2). The DPPH assay 

was first reported[23] by Blois in 1958 and the reaction conveniently shows a colour 

change from deep purple to pale yellow. This colour change can be monitored by UV-Vis 

spectroscopy by noting the decrease in intensity of the characteristic absorbance maxima 

at 515 nm. 

 

 

 

Scheme 5.2 Reduction of DPPH free radical by an antioxidant AH to DPPHH. 

Even though both assays are convenient in their application, the DPPH assay has an 

advantage in that the stable radical is commercially available and the initial generation 
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step of the photoactive indicator is not required. An improvement on the original method 

by Blois was introduced by Brand-Williams and co-workers who found that the radical 

scavenging reaction was more complex than originally thought and three possible 

pathways for the reaction between antioxidants and the DPPH radical were proposed 

(Scheme 5.3).[24]   

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5.3 Proposed mechanism for BHT/DPPH reaction showing three possible radical scavenging 

pathways a) donation of a second hydrogen atom, b) dimerisation and c) complexation. 

This method has been implemented by many research groups to analyse a number of 

sample types for their antioxidant properties including fruits, herbs, leaves, spices and 

vegetables.[25–29] There are, however, significant limitations arising from the 

inconsistency of the conditions used across each research group. This makes it difficult 

to compare results and examples of such inconsistencies include different starting 

concentrations of DPPH, incubation times, solvents and temperatures.[30–40] A consistent 

set of parameters needs to be determined for this assay to be used and compared within 
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an industry. These assays were originally designed with the aim of simple, 

high-throughput analysis, however the need for careful consideration of the kinetics and 

mechanisms of the reactions between radical species and phenolic antioxidants needs to 

be emphasised.  

Even though these assays may have limitations regarding a biological application, there 

is, however, an opportunity for the methods to be applied to other industries.  Currently, 

in fuel and lubricant technology, the performance of new antioxidants is measured by 

blending antioxidant chemistries into a hydrocarbon base oil or fuel and accelerated 

oxidative conditions are used to assess the hydrocarbonsǯ resistance to oxidation.[41] 

Exposure to typical conditions found in an engine is important, however these methods 

often require relatively large amounts of the antioxidant and significant blend volumes 

which is not always practical. Oxidative stability tests also require the use of specialised 

and expensive instrumentation whereby standard analysis techniques include 

pressurised differential scanning calorimetry, rancimat analysis and bespoke oxidation 

tests which often have lengthy testing procedures.[41] Through the exploitation of the 

DPPH assay it was proposed that a suitable screening method to evaluate the 

performance of potential antioxidants as radical scavengers could be developed and 

applied to fuel and lubricant technology. The DPPH assay has a greater advantage over 

the ABTS assay in that the radical species is acquired directly therefore eliminating the 

need to introduce more chemical species into the reaction medium. The DPPH assay could 

provide a convenient analysis of potential new antioxidants by giving an estimation of 

which candidates possess radical scavenging capabilities while also probing key 

antioxidant structure-activity relationships.  

5.2 Results and Discussion 

The stable free radical DPPH (Figure 5.2) was employed to determine the antioxidant 

efficiency of a series of phenolic compounds designed for use in lubricant base oils. The 

stability of the DPPH radical occurs from the delocalisation of the unpaired electron over 

the molecule as a whole, hence dimerisation does not take place. The delocalisation 

within the DPPH molecule gives rise to a deep purple colour with a characteristic 

absorption maxima at 515 nm. When DPPH is exposed to a substance that can donate a 

hydrogen atom, such as an antioxidant, it is reduced to DPPHH (Scheme 5.2) and a colour 

change is observed from deep purple to pale yellow. A typical trace showing the decrease 
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in the absorbance maxima at 515 nm corresponding to the consumption of the radical is 

shown in Figure 5.3. 

 

 

 

 

 

 

 

Figure 5.3 UV-Vis spectroscopic analysis shows the reduction in the absorbance maxima at 515 nm 

when the DPPH radical is reduced by reaction with an antioxidant (AH). 

The most common solvent system used for analysing plant and food extracts was found 

to be methanol and hence was investigated first to use as a comparison against literature 

values.   

5.2.1 Radical scavenging analysis using alcoholic solvents. 

UV-Vis spectroscopic analysis was used to monitor the reaction between the antioxidants 

and the DPPH radical. The range of accuracy for spectrophotometric measurements falls 

within an absorbance range of 0.221-0.698 according to Ayres et al.,[42] however, a 

number of researchers in the literature have used DPPH concentrations far beyond the 

spectrophotometric accuracy. For this assay, a calibration of varying concentrations of 

the DPPH radical, in methanol, was achieved successfully (Figure 5.4) with absorbances 

obeying the Beer-Lambert law within the range of accuracy.  
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Figure 5.4 Calibration of the DPPH radical in methanol. 

The first generation (2.9) and second generation (2.10) polyphenols (Figure 5.5), as 

synthesised in Chapter 2, were analysed and compared to the phenolic antioxidant BHT. 

Equimolar solutions of each antioxidant were prepared in methanol.  

 

 

 

 

 

 

 

 

Figure 5.5 Structure of first generation (2.9) and second generation (2.10) polyester dendrons. 

In a 3 mL quartz cuvette, 1.5 mL of the methanolic DPPH solution was added to 1.5 mL of 

the methanolic antioxidant solution hence producing a 1:1 reaction medium. The 

temperature was maintained at 25 ᵒC and the decrease in absorbance was determined at 

515 nm by taking readings at intervals from 0 minutes to 180 minutes whereby a steady 

state was observed. The percentage of DPPH radical remaining was calculated by 

converting the absorbance to concentration (mol dm-3) using Equation 1, derived from 

y = 1.0059x + 1E-04

R² = 0.9992
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the calibration in Figure 5.4. The percentage was subsequently calculated using 

Equation 2 and plotted against time to produce the Ǯtime-scavengingǯ graph shown in 
Figure 5.6. �ܾݏହଵହ௡௠ = ͳ.ͲͲ59[����] + ͳ × ͳͲ−ସ 

Equation 1 

݃݊�݊�ܽ݉݁ݎ ���� ݂݋ % = [����]�=�[����]�=଴  × ͳͲͲ 

Equation 2 

The time-scavenging graph shows the successful reduction of the DPPH radical by all 

three antioxidants (Figure 5.6). The kinetic profile for BHT shows what is described in 

the literature as a Ǯslowǯ reaction with DPPH. The time taken to reach a steady state is 

greater than one hour and this finding corresponds well to that reported by 

Brand-Williams and co-workers.[24]  

 

  

 

 

 

 

 

 

 

Figure 5.6 Radical scavenging analysis of equimolar solutions of BHT and the first generation (2.9) 

and second generation (2.10) polyphenols. 

Structural analysis of each antioxidant suggested that the second generation (2.10), 

which possessed four active phenolic alcohols, would show the best radical scavenging 

capabilities followed by the first generation (2.9) with two active phenolic alcohols and 

finally BHT with one active phenolic alcohol. The results shown in Figure 5.6 confirmed 
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this by showing the second generation (2.10) had the most efficient radical scavenging 

profile by scavenging a higher percentage of DPPH radicals in a shorter time than the first 

generation (2.9) and BHT. An observation to note was once the steady state was reached 

ca. 10% of the DPPH radical still remained. The first generation (2.9) and the second 

generation (2.10) were expected to scavenge all of the DPPH radicals as there was an 

excess of radical scavenging sites compared to the number of moles of DPPH radicals. It 

was postulated that the system, under these experimental conditions, could reach the 

equilibrium suggested in Scheme 5.4. 

 

 

 

Scheme 5.4 Proposed equilibrium of radical scavenging between an antioxidant, BHT, and a radical 

where R. represents the DPPH radical.  

This equilibrium agreed with the mechanistic pathways suggested by Brand-Williams 

and co-workers, shown in Figure 5.3. The presence of an equilibrium highlighted a 

limitation with using the data to analyse antioxidant potentials as it was not possible to 

quantitate the amount of radical scavenged by each antioxidant by reporting the end 

point of the reaction alone. This method did, however, give a good indication of the kinetic 

pathways and an alternative method to quantify radical scavenging capabilities is 

discussed later in this chapter.  

With a significant drive for renewable and more environmentally friendly fuels, biofuel 

production and use is increasing. In Europe, ethanol is currently blended into gasoline at 

a minimum of 10% while in other parts of the world, like Brazil, up to 85% is used.[43] To 

achieve an improved understanding of how antioxidants may behave in a biofuel the 

assay was repeated using ethanol as the solvent with the aim of moving closer to a typical 

fuel or lubricant medium. As before, a calibration of DPPH was carried out with an 

excellent R2 value of 0.9998. Equimolar solutions of BHT, first generation (2.9) and 

second generation (2.10) polyphenols were analysed for their radical scavenging 

properties. In addition, a typical lubricant antioxidant, Irganox L135, was also analysed 

for an industrial comparison (Figure 5.7). 
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Figure 5.7 Structure of the lubricant phenolic antioxidant Irganox L135.  

A steady-state was observed after 3 hours and again a percentage of the DPPH remained 

at the end of the 3 hour test in all of the four compounds tested (Figure 5.8).  

 

 

 

 

 

 

 

 

 

Figure 5.8: Radical scavenging analysis of equimolar solutions of BHT, Irganox L135, first generation 

(2.9) and second generation (2.10) in ethanol. 

From the Ǯtime-scavengingǯ profile, shown in Figure 5.8, it was observed that Irganox 

L135, which possessed one phenolic hydroxyl, was scavenging radicals at a very similar 

rate to the first generation (2.9) which had two phenolic hydroxyls. In addition, Irganox 

L135 scavenged radicals faster than the structurally similar mono-phenol, BHT. The 

longer alkyl chain and the ester functionality in Irganox L135 may have contributed a 

greater stabilising effect than the methyl moiety on BHT therefore allowing a more 

efficient scavenging pathway. Polyphenols can be described as having a higher 

antioxidancy potential than mono-phenols on the basis that there are more phenolic 
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hydroxyls which are available for hydrogen donation to a radical species. It was therefore 

expected that the first generation (2.9) would reveal a greater radical scavenging ability 

than Irganox L135, however this was not observed. The first generation (2.9) had a more 

bulky end group from the 2,2-bis(hydroxymethyl)propionic acid (bis-(MPA)) branching 

unit compared to Irganox L135 which had an unbranched alkyl chain. Furthermore, the 

additional tert-butyl groups surrounding the phenolic hydroxyls on the first generation 

(2.9) may have caused a greater steric effect hence impinging access to the bulky DPPH 

radical. It was suggested by Brand-Williams and co-workers that antioxidants which followed a Ǯslowǯ kinetic profile, as revealed in Figure 5.8, presented a stoichiometry that 

was more difficult to interpret. As proposed previously, further analysis was needed to 

determine the true stoichiometry of these reactions.  

5.2.2 Radical scavenging analysis using hydrocarbon reaction mediums. 

In an effort to represent a more typical reaction medium in which the antioxidants would 

be utilised, the liquid alkane 2,6,10,15,19,23-hexamethyltetracosane, commercially 

known as squalane, was used. Squalane is a saturated branched hydrocarbon with the 

structure shown in Figure 5.9. It is described as a viscous oil (ca. 0.0361 kg m s-1 at 293 K, 

in comparison to ethanol which is reported as ca. 0.0012 kg m s-1)[44] which is 

characteristic of a typical lubricant formulation. 

 

 

Figure 5.9 Structure of the branched hydrocarbon, squalane 

Generation of an accurate DPPH calibration using squalane proved to be more 

challenging. A drawback of using viscous solutions is that accurate dispensing is not 

always possible with a small volume of oil residue unavoidably left in the pipette tip. 

Nevertheless, a satisfactory calibration was achieved with an R2 value of 0.9962. BHT was 

analysed first and a different kinetic profile was observed (Figure 5.10). In ethanol, the kinetics were described as Ǯslowǯ whereas in squalane it was described as Ǯintermediateǯ 
where a steady state was reached between ca. 5 and 10 minutes. A Ǯfastǯ kinetic profile 
would be described as reaching a steady state in less than 1 minute. 
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Figure 5.10 Overlay of the time-scavenging profiles for BHT in ethanol and in squalane to show the 

differences in reaction kinetics between the two solvents.  

From this data it was hypothesised that when the antioxidants were solvated in an 

alcoholic solution, such as methanol or ethanol, there was a potential for hydrogen 

bonding to occur between the alcoholic hydroxyl and the phenolic hydroxyl shown in 

Figure 5.11. This intermolecular association could potentially decrease the rate of 

reaction in comparison to an apolar hydrocarbon based solvent where hydrogen bonding 

would not occur. 

 

 

 

Figure 5.11 Proposed hydrogen bonding interaction between the methanolic hydroxyl and the 

phenolic hydroxyl of BHT. 

Since 1958 the use of the DPPH assay to assess the total antioxidant potential of food and 

plant products has gained increasing popularity. Interestingly, in parallel to these studies, 

independent research into the kinetics of the DPPH/phenol reactions also began around 

the same time. A number of studies, in particular over the last 15 years, have highlighted 

the significant impact that different solvent systems have on the rate of reaction between 

a radical species and phenol derivatives.[44-53] Primarily, these reports disagree with the 

theory of solvent-phenol hydrogen bonding. Other solvents such as acetonitrile and ethyl 

acetate were also shown to hydrogen bond to phenolic compounds, however, alcohols, 

such as methanol and ethanol, produced unexpected kinetic data.[53–55] A controversial 
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paper by Thavasi and co-workers reported that intermolecular hydrogen bonding 

between methanol solvent molecules actually prevented the interaction between 

methanol and the phenolic hydroxyl moieties (Figure 5.12).[45] This scenario ensured 

that more phenolic hydroxyl groups were available for scavenging the free radical hence 

a faster kinetic profile would be expected in alcoholic type solvent mediums.   

 

 

 

 

 

Figure 5.12 Proposed intermolecular hydrogen bonding between methanol solvent molecules.[45] 

Litwinienko and Ingold reported that BHT had the fastest rate of H-atom abstraction in 

the alkane heptane when compared to a number of alcohols including ethanol.[49] To 

probe radical scavenging in an alkane further, the first generation (2.9) and second 

generation (2.10) polyphenols and Irganox L135 were also analysed in squalane 

(Figure 5.13).  

 

 

 

 

 

 

 

 

Figure 5.13 Radical scavenging analysis of equimolar solutions of BHT, Irganox L135, first generation 

(2.9) and second generation (2.10) in squalane. 

0

20

40

60

80

100

0 50 100 150 200

%
 [

D
P

P
H

] 
R

e
m

a
in

in
g

Time (minutes)

BHT Irganox L135 First Generation Second Generation



DPPH Assay: From Food to Petroleum Analysis 
 

156 
 

The analysis revealed that BHT and Irganox L135 both followed the same Ǯintermediateǯ 
kinetic profile whereas the first (2.9) and second (2.10) generation displayed a Ǯslowǯ 
kinetic profile similar to that seen in ethanol. This data suggested that the cause of the 

differences could be ascribed to the solubility of the antioxidants, their ability to diffuse 

within the oil matrix and also their capacity to react with a bulky radical such as DPPH. 

The first (2.9) and second (2.10) generations are both bulky antioxidants and it would 

be sensible to suggest that diffusion within the oil would be reduced when compared to 

the smaller, more soluble Irganox L135 and BHT. The first and second generation 

proposal agrees with the literature findings where the rate of reaction was observed to 

decrease as the viscosity of the solvent increased.[54] The anomaly of BHT and Irganox 

L135 could be attributed to a preferred solvency in the hydrocarbon over an alcohol, 

however, viscous solvent mediums have not been reported widely hence a direct 

comparison of the data is difficult. An evaluation of the kinetic pathways in ethanol and 

squalane for the first generation (2.9) is shown in Figure 5.14, which reinforces the 

unexpected literature proposal that alcoholic solvents give rise to a faster kinetic profile 

in comparison to an alkane.   

 

 

 

 

 

 

 

 

Figure 5.14 Comparison of the kinetic profile of the first generation (2.9) in ethanol and squalane. 

The solvent effects on the kinetics of hydrogen abstraction are significantly more complex 

than hydrogen bonding alone and it has been reported that alcohols reveal unusual 

kinetic behaviours. Extensive research has found that there are two main mechanisms 

regarding phenolic hydrogen atom transfer by radicals.[47–50,53] The first is hydrogen atom 
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transfer (HAT) and the second is sequential proton-loss electron-transfer (SPLET) 

(Scheme 5.5).  

 

 

 

 

Scheme 5.5 Representation of the two key mechanistic pathways of hydrogen abstraction from a 

phenol.[48] 

HAT is generally favoured in alkanes or hydrogen bond acceptor (HBA) solvent types 

such as ethyl acetate. SPLET, in contrast, becomes the dominant mechanism in solvents 

that support ionisation such as methanol. Ionisation of the phenol generates a phenoxide 

anion which is highly reactive towards radical species such as DPPH, hence a higher than 

expected reaction rate is observed.[48,50] The SPLET mechanism is favoured for phenols 

with low pKa values which is typical of stronger acids. Therefore, dissociation into the 

counter ions is more favourable and the formation of the phenoxide anion would be 

preferred. Solvents with a low dielectric constant cause an increase in pKa value for 

example ethanol has a dielectric constant of ca. 24.6 and hexane has a dielectric constant 

of ca. 1.9.[56] Formation of the phenoxide anion is hence unfavourable in alkanes and 

further confirms the reasoning behind the presence of the two hydrogen abstraction 

mechanistic pathways. 

Additional studies have shown that the addition of base increases the rate of the SPLET 

mechanism whereas the addition of acid causes a decrease in rate.[49,52] This is worth 

considering when analysing the lifecycle of an oil formulation. A typical oil formulation is 

basic in nature as a result of the performance enhancing additives and during oxidation, 

various chemical species are generated including acids. This change from a basic 

environment to an acidic environment could have a significant effect on the type of 

mechanism by which the antioxidants function. An additional consideration is that the 

oxidation process continues to occur within the oil even after the engine has stopped. 

This assay therefore potentially gives an insight into antioxidant behaviour during 

resting conditions within the oil sump. The slower kinetics of the first generation (2.9) 

and second generation (2.10) could be beneficial as it would suggest that the antioxidants 
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are present in the oil for longer whereas in the case of BHT and Irganox L135 they are 

both consumed quickly once exposed to radical species.  

From the Ǯtime-scavengingǯ analysis in two different solvent types it was clear that this 

analysis alone was not enough to determine antioxidant efficiency. Not only were there 

significant differences between solvent systems but the number of radicals scavenged 

could not be quantitated as a result of complex mechanistic pathways attributed to each 

individual antioxidant and solvent. In an attempt to overcome these limitations and to 

standardise a method, an alternative analysis procedure known as the Efficient 

Concentration (EC50) was assessed.  

5.2.3 Efficient Concentration (EC50) analysis. 

Anti-radical activity can be defined as the amount of antioxidant necessary to decrease 

the initial concentration of the DPPH radical by 50%. This is termed as the Ǯefficient 
concentrationǯ or EC50 value. The advantage of using this method of analysis over the Ǯtime-scavengingǯ procedure was that numerical values were obtained as a function of the 

molar ratio of antioxidant to radical. This analysis eliminated any issues with incomplete 

scavenging as a result of an equilibrium between the antioxidant and the radical. Initially, 

EC50 analysis was carried out for BHT, Irganox L135, first generation (2.9) and second 

generation (2.10) in ethanol. Ethanol was chosen so that comparisons could be made to 

current literature in addition to ease of handling, low cost and low toxicity. Solutions of 

different molar ratios of antioxidant to DPPH radical were prepared and allowed to stand 

in the dark at room temperature for 3 hours to ensure a steady state was reached. The 

absorbance of each solution was measured at 515 nm and converted to the percentage of 

DPPH radical remaining using Equation 1 and 2. The EC50 value was then determined 

graphically by finding the molar ratio when the remaining DPPH concentration was equal 

to 50%. The graphical analysis for BHT is shown in Figure 5.15. 
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Figure 5.15 Graphical analysis of the EC50 value for BHT.   

Using the EC50 value a number of other parameters were calculated. The anti-radical 

power (ARP) was calculated as the inverse of EC50 whereby the larger the ARP the more 

efficient the antioxidant. The stoichiometry was calculated by multiplying the EC50 value 

by two. This gave the theoretical efficient concentration of antioxidant needed to reduce 

100% of the DPPH radicals. The number of reduced DPPH radicals per mole of 

antioxidant was calculated subsequently by the inverse of the stoichiometry (1/2 x EC50). 

The results for the numerical analysis of each antioxidant are shown in Table 1.  

 

Table 5.1: EC50 analysis of BHT, Irganox L135, first generation (2.9) and second generation (2.10). 

The EC50 value shown in Table 5.1 agreed well with the reported radical scavenging 

pathway (Figure 5.16), suggesting that BHT can scavenge 1.85 DPPH radicals per 

molecule. 
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of -OH 

 

EC50 

Antiradical 

Power  

(ARP, 1/EC50) 

Stoichiometric 

Value 

(2xEC50) 

Number 

of reduced 

DPPH radicals 

BHT 1 0.27 3.70 0.54 1.85 

Irganox L135 1 0.49 2.05 0.98 1.02 

First Generation 

(2.9) 

2 0.22 4.55 0.44 2.27 

Second Generation 

(2.10) 

4 0.06 16.67 0.12 8.33 
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Figure 5.16 Radical scavenging pathway of BHT. 

Referring back to the structures of the first generation (2.9) and second generation 

(2.10) polyphenols (Figure 5.17), and comparing to the radical scavenging pathway of 

BHT, it was sensible to propose that there are four and eight active scavenging sites for 

the first generation (2.9) and second generation (2.10), respectively.  

 

 

 

 

 

 

 

 

Figure 5.17 Structures of first generation (2.9) and second generation (2.10) with potential radical 

scavenging sites highlighted.  

The results from the EC50 analysis revealed that this was true for the second generation 

(2.10) but not for the first generation (2.9). Initial considerations were that the second 

generation (2.10) was a much larger molecule compared to the first generation and it 

was surprising that the results revealed such a high scavenging efficiency for a bulky 

radical like DPPH. The additional bis(MPA) branching units in the second generation may 

have allowed a more disperse structure compared to the first generation where a more 

sterically hindered conformation may have been observed. Computational analysis, using 

Cerius2® modelling software, confirmed this hypothesis and revealed the energy 

minimised structures for the first (2.9) and second (2.10) generation to have different 

preferred spatial arrangements (see Figures 5.18 and 5.19). Analysis of the first 
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generation revealed an energetically minimised structure where both phenolic end-

groups were in close proximity (Figure 5.18, a)). In particular, the phenolic hydroxyl of 

one aromatic ring was aligned with the second scavenging site, in the para position, on 

the second aromatic ring. This led to the proposal that maybe hydrogen abstraction was 

occurring intramolecularly, from one phenolic ring to the other, hence rendering two 

scavenging sites inactive and resulting in a scavenging stoichiometry of 2 radicals per 

mole of antioxidant. This hypothesis was supported by analysing the energy minimised 

structure after intramolecular hydrogen abstraction (Figure 5.18, b)), which again 

revealed a stabilised conformation suggesting that this pathway could be possible. 

 

 

 

 

 

 

 

 

 

Figure 5.18 Energy minimised computational models of the first generation polyphenol (2.9) where 

a) revealed the close proximity of both aromatic rings, suggesting steric hindrance plays 

a role in the lower than expected radical scavenging stoichiometry and b) revealed the 

possibility of proton transfer between aromatic rings rendering one ring inactive to 

radical scavenging.  

Computational analysis of the second generation revealed an energetically favourable 

disperse conformation (Figure 5.19, a)) with an energy of 216 Kcal. This indicated that 

there would be little steric hinderance interferring with the radical scavenging pathway. 

 

 

a) b) 
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Figure 5.19 Energy minimised computational models of the second generation polyphenol (2.10) 

where a) revealed an energetically stabilised disperse structure and b) revealed a further 

energetically stabilised conformation whereby one branch intersects the other to again 

prevent close contact between the phenolic end-groups. 

Further minimisation of the conformation revealed a more favourable structure with a 

reduced energy of 144 Kcal. Interestingly, the geometries of the phenolic end-groups 

meant that an intersection of one diphenol branch through the middle of the second 

diphenol branch was revealed. This intersection prevented close contact of the phenolic 

end-groups therefore making the intramolecular hydrogen abstraction, hypothesised for 

the first generation, unlikely. All potential radical scavenging sites would thus be retained 

hence a scavenging stoichiometry of 8 radicals per mole of antioxidant would be 

expected. 

An additional series of potential phenolic antioxidants, shown in Table 5.2, were also 

analysed for their EC50 values to gather more of an understanding on structure-activity 

relationships.  

 

a) b) 
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Structure Code 

 

 

 

AO1 

 

 

 

 

AO2 

 

 

 

 

5.1 

 

 

 

 

5.2 

 

Table 5.2 Structures of potential phenolic antioxidants AO1 and AO2 (provided by BP Technology 

Centre, Pangbourne) and 5.1 and 5.2 (synthesised at the University of Reading). 

The antioxidants AO1 and AO2 were potential antioxidant candidates and were provided 

as research samples by the BP Technology Centre, Pangbourne. The EC50 results are 

presented in Table 5.3. 

 

Table 5.3 EC50 analysis of AO1, AO2, 5.1 and 5.2.  

The mono-phenol A01 showed very little radical scavenging activity and even at the 

higher molar ratio 2:1, a 50% scavenging was not reached (Figure 5.20). The poor 

scavenging capability could be attributed to the methoxy moieties positioned ortho to the 

phenolic hydroxyl. These moieties could have hydrogen bonding interactions with not 

 

Compound 
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of -OH 

 

EC50 

Antiradical 

Power  

(ARP, 1/EC50) 

Stoichiometric 

Value 

(2xEC50) 

Number 

of reduced 

DPPH radicals 

AO1 1 - - - - 

AO2 1 0.22 4.55 0.44 2.27 

5.1 1 0.43 2.32 0.86 1.16 

5.2 1 0.55 1.82 1.10 0.91 
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only the phenolic hydroxyl but also the ethanol molecules. In addition, the ester moiety 

linking the alkyl chain to the aromatic ring, is directly appended at the para position. This 

direct attachment was also seen to have a negative effect on antioxidant capability in the 

structures discussed previously in Chapter 4.   

 

 

 

 

 

 

Figure 5.20 EC50 radical scavenging analysis of AO1. 

The antioxidant A02 showed good radical scavenging of ca. 2 DPPH radicals per mole of 

antioxidant. By possessing only methyl groups at the 2 and 6 position of the ring it is less 

sterically hindered when compared to the tert-butyl groups of BHT, however, it was 

hypothesised that this antioxidant would not perform well in high temperature 

conditions with the stability of the antioxidant radical being negatively affected. 

Subsequently, the antioxidants 5.1 and 5.2 were both synthesised to investigate the effect 

of different structural features on the radical scavenging ability. A direct comparison 

between AO2 and 5.2 revealed the impact of steric hindrance on the radical scavenging 

process and confirmed a significant limitation of the assay. The DPPH radical is bulky and 

does not represent the typical radical species that would be found in the oil matrix during 

oxidation as small species, such as alkyl and peroxy radicals, are more typical. However, 

Avila and co-workers reported that the rate of hydrogen abstraction was independent of 

the nature of the radical species.[57] This implies that hydrogen abstraction is not the rate 

determining step in this process but rather other scavenging pathways such as 

dimerization and complexation, as described in Scheme 5.3, are determining the 

antioxidant capability. 
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A final series of antioxidants were investigated (Figure 5.21) using this method and the 

results are shown in Table 5.4. Aromatic amines are known to exhibit antioxidant 

characteristics at higher temperatures within the lubricant and typically show a 

synergistic effect when blended with phenolic antioxidants (Chapter 4). It was thought 

that this spectroscopic assay may be able to determine synergistic capabilities.  

 

 

 

 

Figure 5.21 Structures of Irganox L57, where R and Rǯ are typically octyl or tert-butyl, and mixed 

amine-phenol 4.26. 

 

Table 5.4 EC50 analysis of Irganox L57, a blend of Irganox L135 and L57 and 4.26.  

Differential scanning calorimetry analysis, discussed in Chapter 4, revealed that the 

mixed amine-phenol 4.26 exhibited better antioxidancy than a combination of L135 and 

L57 when blended into a hydrocarbon base oil and subjected to oxidative conditions. In 

the case of this assay the result was also true, however it was expected that the number 

of reduced DPPH radicals per mole of antioxidant would be much greater. It is known 

from the literature that aromatic amines and phenolic antioxidants show a synergistic 

effect when in the presence of each other whereby one can be regenerated from the other. 

An additional limitation was revealed from the analysis of Irganox L57 where a similar 

profile to AO1 was observed. Less than 50% of the DPPH radicals were scavenged even 

at the higher ratio of antioxidant to radical.  It was proposed that the activation energy of 

the initial hydrogen abstraction from the secondary amine was not being reached at 

 

Compound 

 

Number  

of -NH 

 

EC50 

Antiradical 

Power  

(ARP, 1/EC50) 

Stoichiometric 

Value 

(2xEC50) 

Number 

of reduced 

DPPH radicals 

Irganox L57 1 - - - - 

Irganox 

L135/L57 

1 0.60 1.67 1.2 0.83 

4.26 1 0.38 2.63 0.76 1.31 
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25 ᵒC. To investigate this further, the time-scavenging profile for Irganox L57 was 

analysed at a higher temperature (Figure 5.22). 

 

 

 

 

 

 

 

Figure 5.22 Time-scavenging analysis of Irganox L57 in ethanol at 25 ᵒC, 40 ᵒC and 60 ᵒC. 

The time-scavenging analysis revealed there was an increase in the percentage of DPPH 

radicals scavenged by increasing the temperature to 60 ᵒC. It can therefore be concluded 

from this analysis that the DPPH assay, at room temperature, would not be suitable for 

testing the performance or synergistic properties of amine-based antioxidants.  

In summary, from these preliminary studies, it was concluded that this assay would not 

be suitable for the analysis of antioxidant compounds in hydrophobic environments. The 

limitations of complex mechanistic pathways and solvent effects have been revealed 

which prevents the development of a standardised method. Further in depth kinetic 

studies would need to be carried out for each individual antioxidant for a reliable data set 

to be generated regarding radical scavenging capabilities. This would in turn defeat the 

object of the work which was to develop a simple, high-throughput analysis of new 

phenolic antioxidants.  

5.3 Conclusions  

A series of antioxidants were analysed for their radical scavenging properties using the 

stable free radical DPPH. Using this assay, both the kinetic profiles and stoichiometry of 

the radical scavenging reactions were investigated. The radical scavenging reactions in ethanol revealed a Ǯslowǯ kinetic profile for BHT, Irganox L135, first generation (2.9) and 

second generation (2.10) phenolic antioxidants which was in agreement with data 

originally reported by Brand-Williams and co-workers. When the solvent system was 
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changed from ethanol to squalane, a significant shift in the kinetic profile of the 

mono-phenols BHT and Irganox L135 was observed whereby a steady state was achieved 

in less than 10 minutes when compared to over 60 minutes in ethanol. The kinetic profiles 

of the first generation (2.9) and second generation (2.10) polyphenols were revealed to 

be slower in squalane than in ethanol. Analysis of the literature highlighted an alternative 

mechanistic pathway for hydrogen abstraction when alcoholic solvents were used which 

resulted in a faster than predicted rate of reaction. Additional factors were considered 

when analysing the polyphenolic antioxidants such as increased bulkiness and steric 

hindrance surrounding the radical scavenging sites within the molecules. A quantitative 

analysis, termed EC50, was carried out to determine the stoichiometry of the reaction 

between the antioxidants and the radicals. The number of DPPH radicals scavenged per 

mole of antioxidant was calculated for a series of phenolic and aminic antioxidants and 

an overriding limitation of using a bulky radical was revealed. Antioxidants known to 

perform well in typical lubricant oxidation tests exhibited poor radical scavenging 

capabilities in this assay. In addition, aromatic amine chemistries were not suitable for 

this test as a result of the activation energy required for the radical scavenging reaction 

to occur. The time-scavenging profile for the aromatic amine Irganox L57 revealed, at 

25 ᵒC, less than 50% scavenging was achieved whereas at higher temperatures this 

percentage was increased. The overall outcome of the development of this assay was that 

there were too many limitations regarding mechanistic pathways and solvent effects for 

it to be used as a reliable study for new antioxidants. If the results are interpreted with 

caution and in conjunction with more in depth kinetic studies, mechanistic pathways of 

phenolic antioxidants could be determined with the potential to guide a more directed 

design of new antioxidants.  

5.4 Experimental 

Reagents and solvents were purchased from Sigma Aldrich and used without further 

purification with the exception of 3-(3,5-di-tert-butyl-4-hydroxy-phenyl)-propionic acid 

which was purchased from Alfa Aesar. Dichloromethane was distilled under a nitrogen 

atmosphere from calcium hydride. All further purification and characterisation was 

carried out as described in Chapter 2.  

All radical scavenging assays were analysed using a Varian Cary 300 UV-Visible 

Spectrometer. The wavelength was set to a range of 200-800 nm and 3 mL quartz 
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cuvettes were used with a 1 cm path length. The temperature was maintained at 25 ᵒC 

unless otherwise stated.  

Time-Scavenging: In a 3 mL quartz cuvette, 1.5 mL of DPPH solution (6x10-4 moldm-3) 

was added to 1.5 mL of the antioxidant solution (6 x 10-4 moldm-3). The temperature was 

maintained at 25 ᵒC and the decrease in absorbance was determined at 515 nm by taking 

readings at intervals from 0 minutes to 180 minutes whereby a steady state was 

observed. For the time-scavenging analysis of Irganox L57 the same procedure was 

followed with the exception that the temperature was raised to either 40 ᵒC or 60 o C using 

the variable temperature setting available on the Varian Cary 300 UV-Visible 

Spectrometer. 

EC50: In a 3 mL quartz cuvette, varying volumes of DPPH solution (6x10-4 moldm-3) to 

antioxidant solution (6x10-4 moldm-3) were added. For example 0.9 mL of antioxidant and 

2.1 mL of DPPH produced a 1:2.3 ratio of antioxidant to DPPH radical. Twelve ratios were 

prepared for each antioxidant and samples were allowed to stand in the dark at room 

temperature for 3 hours. A set of references were prepared using DPPH solutions 

containing no antioxidant. The absorbance of each sample was measured at 515 nm and 

recorded. 

Computational modelling was carried out on a Silicon Graphics O2 workstation using 

Cerius2® (version 3.5, Accelrys San Diego) software. The force-field used for the 

calculations (molecular mechanics with charge equilibration) was Dreiding 2.21, 

developed by the Goddard group at The California Institute of Technology.[58] 

Preparation methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate (5.1) 

3-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-propionic acid (2.00 g, 7.18 mmol) was dissolved 

in methanol (100 mL) and cooled to 0 ᵒC. To the solution, thionyl chloride (2.08 mL, 

28.72 mmol) was added dropwise. The reaction was allowed to warm to room 

temperature and was stirred overnight. Upon completion, the solvent was removed in 

vacuo. The resulting residue was diluted with ethyl acetate (40 mL) and washed with 1M 

aqueous NaOH (3 x 20 mL). The organic phase was dried over MgSO4, filtered and the 

solvent was removed in vacuo to afford 1.99 g (95%) of 5.2 as a pale orange oil. IR (ATR) 

v/cm-1: 3609, 2960, 1716, 1433, 1H NMR (400 MHz/CDCl3)/ppm, δ = 1.43 (s, 18H, -CH3 

tert-butyl), 2.60 (t, 2H, J=8 Hz, -CH2), 2.87 (t, 2H, J=8 Hz, -CH2), 3.69 (s, 3H, -CH3), 5.08 (s, 
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1H, -OH), 6.99 (s, 2H, -CH aromatic); 13C NMR (100 MHz/CDCl3)/ppm, δ = 30.3, 31.0, 34.3, 

36.4, 51.6, 124.8, 131.1, 135.9, 152.2, 173.7. Found [M+H]+ (C18H28O3) m/z = 293.2121 

(Calc. 293.2117). 

Preparation 2-ethylhexyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate (5.2) 

3-(3,5-Di-tert-butyl-4-hydroxy-phenyl)-propionic acid (1.00 g, 3.60 mmol),  

2-ethylhexan-1-ol (0.56 mL, 3.60 mmol) and DPTS (60%) were dissolved in dry 

dichloromethane (15 mL). The solution was stirred at room temperature for 30 minutes. 

To the solution, N,N’-dicyclohexylcarbodiimide (DCC) (0.74 g, 3.60 mmol) dissolved in 

dry dichloromethane (10 mL) was added over 15 minutes. The reaction was left 

overnight at room temperature under a nitrogen atmosphere. The reaction mixture was 

filtered to remove the white N,N’-dicyclohexylurea (DCU) precipitate and the filtrate was 

concentrated. The crude product was dissolved in dichloromethane (40 mL) and washed 

sequentially with 0.5M HCl (40 mL) and saturated NaHCO3 (40 mL). The organic phase 

was dried over MgSO4, filtered and the solvent was removed in vacuo to yield a pale 

yellow oil. Hexane was added to the crude product and the resulting white precipitate 

was filtered off. The solvent was once again removed in vacuo and the resulting oil was 

purified by flash column chromatography on silica eluting with hexane/ethyl acetate 

(95:5) (Rf= 0.18) to afford 1.13 g (80%) of 5.1 as a pale yellow oil. IR (ATR) v/cm-1:3611, 

2960, 1716, 1433, 1H NMR (400 MHz/CDCl3)/ppm, δ = 0.89 (m, 6H, -CH3), 1.28-1.35 (m, 

8H, -CH2), 1.43 (s, 18H, -CH3 tert-butyl), 1.57 (m, 1H, -CH), 2.61 (t, 2H, J=8.0 Hz, -CH2), 2.87 

(t, 2H, J=8.0 Hz, -CH2), 4.00 (m, 2H, -CH2), 5.07 (s, 1H, -OH), 6.99 (s, 2H, -CH aromatic); 

13C NMR (100 MHz/CDCl3)/ppm, δ =11.0, 14.1, 23.0, 23.8, 28.9, 30.3, 30.4, 31.0, 34.3, 36.5, 

38.7, 66.9, 124.8, 131.2, 135.9, 152.2, 173.5. Found [M+H]+ (C25H42O3) m/z = 391.3211 

(Calc. 391.3213).  
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Chapter 6  

 

Conclusions and Future Perspectives  

 

6.1 Conclusions 

Oxidation is a detrimental process which has a profound effect on hydrocarbon based 

materials. This is particularly problematic in the automotive industry where fuels and 

lubricants are subjected to harsh conditions which accelerate the oxidative pathways 

leading to ineffective combustion and engine protection. Antioxidants, such as sterically 

hindered phenols and diphenylamine derivatives, are known to interrupt oxidation 

processes by predominantly reacting with radical species. Numerous small molecule 

antioxidants have been reported in the literature (see Chapter 1), however, these are 

susceptible to volatilisation as a result of the high temperatures experienced within an 

engine environment. Antioxidant immobilisation has hence emerged as a suitable route 

to introducing higher molecular weights and improve thermal stabilities. This study 

focussed on the use of dendritic architectures with the aim of achieving high molecular 

weights with a high degree of functionality while also maintaining good solubility within 

the hydrocarbon based material.  

The first series of dendritic architectures saw the use of the AB2 monomer bis(MPA) to 

synthesise a series of antioxidant functionalised polyester dendrons. The first and second 

generation polyester dendrons (2.9 and 2.10) were synthesised with molecular weights 

of 767 and 1520 with four and eight phenolic peripheral functionalities, respectively. 

Thermogravimetric analysis of 2.9 and 2.10 revealed thermal stabilities that were far 

superior (by an improvement of greater than 200 ᵒC) to the industrial standard BHT 

which has a molecular weight of 220 with only one phenolic functionality. The 

incorporation of a 2-ethylhexanol solubilising unit also promoted good solubility of the 

polyester dendrons 2.9 and 2.10 in a base oil.  When blended into the base oil at 0.5% 

w/w an impressive 229% increase in oxidative stability was observed in comparison to 

two current commercial antioxidants, Irganox L135 and Irganox L57. Once again, these 

commercial antioxidants possessed low molecular weights with only one active 

functionality.  It was therefore revealed that dendritic macromolecules are suitable for 
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use in antioxidant immobilisation whereby the thermal and oxidative stabilities were 

improved dramatically while still maintaining good solubility in the base oil.  

Alternative functional core monomers to bis(MPA) were investigated with a focus on low 

cost and commercial availability. Hence, glycerol and triethanolamine (TREN) were 

targeted and subsequently functionalised with antioxidant moieties and solubilising alkyl 

chains to yield a further series of first generation polyester antioxidants. The series of 

glycerol-based antioxidants revealed some interesting structure-activity relationships 

and highlighted the need to consider a balance between both solubility and functionality 

when designing new antioxidant macromolecules. A series of nitrogen core monomers, 

based on triethanolamine, were also investigated and some excellent oxidation induction 

times in the region of ca. 12-15 minutes were revealed, however solubility in the lubricant 

base oil proved to be an issue. To overcome the solubility issues, a solubilising unit was 

introduced and the diphenols 3.9 and 3.11 were synthesised and again revealed 

oxidation times in the region of ca. 10-12 minutes. It has been revealed that solubility is 

just as important as antioxidant functionality when considering the design of new 

antioxidant macromolecules.  In addition, the oxidation induction times were within the 

same region whether the central core was bis(MPA), glycerol or a triethanolamine 

derivative. It was therefore concluded that the central core monomer does not 

necessarily contribute to the antioxidant capabilities but is instead a facilitator to 

increase the molecular weight through branching and hence achieve reduced volatility. 

The hindered phenolic polyester dendrons revealed some excellent thermal and 

oxidative stabilities, however it was proposed that more enhanced properties could be 

targeted by considering the synergistic relationship between hindered phenols and 

diphenylamines. It was envisaged that by incorporating a diphenylamine derivative into 

the same branching unit as the hindered phenol, synergistic antioxidant properties could 

be achieved. While data has been reported on improving the individual antioxidant 

capabilities of hindered phenols and diphenylamines through structural variations, very 

little research, if any, has been reported on the inclusion of both functional groups within 

the same compound. This study was therefore the first of its kind and a series of novel 

mixed amine-phenolic antioxidants were synthesised and analysed for their oxidative 

stability properties. The relationship between the location of the antioxidant amine 

residue and the link to the branching unit proved to be crucial in these studies. It was 
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revealed that meta and para substitution on the diphenylamine provided the best 

oxidative stability properties and these properties were further enhanced through the 

inclusion of methyl or ethyl spacers between the diphenylamine and the bis(MPA) central 

core. It was observed that meta substitution with an ethyl spacer provided the longest 

oxidation induction time of ca. 23 minutes, which was ca. 8 minutes longer than the 1:1 

blend of Irganox L135 and Irganox L57. It was proposed that electron donation into the 

aromatic ring was potentially allowing better stabilisation of the aminyl radical, 

generated from the initial hydrogen abstraction. Computational modelling also revealed 

that the combination of meta substitution and an ethyl spacer allowed close contact of 

both amine and phenol functionalities suggesting that the regeneration of the 

diphenylamine by the phenol could be enhanced using these structural combinations.    

With the synthesis of new phenolic antioxidants comes the need for an understanding of 

the structural and functional characteristics to allow successful development of new 

antioxidants in the future. The literature has highlighted numerous studies into the 

properties of hindered phenols, however the analysis procedures reported do not often 

correlate hence comparison of results is problematic. A radical scavenging assay, using 

the stable free radical DPPH, was therefore investigated with the aim to understand 

structure-activity relationships of new sterically hindered phenolic antioxidants. Using 

this assay, both the kinetic profiles and stoichiometry of the radical scavenging reactions 

of sterically hindered phenols were investigated. The radical scavenging reactions in ethanol revealed a Ǯslowǯ kinetic profile for the following antioxidants: BHT, Irganox L135, 

first generation (2.9) and second generation (2.10) phenols. This kinetic data is in 

agreement with the report of Brand-Williams and co-workers. When the solvent system 

was changed from ethanol to squalane, a significant shift in the kinetic profile of the 

mono-phenols BHT and Irganox L135 was observed whereby a steady state was achieved 

in less than 10 minutes when compared to over 60 minutes in ethanol. The kinetic profiles 

of the first generation (2.9) and second generation (2.10) polyphenols were revealed to 

be slower in squalane than in ethanol. Analysis of the literature highlighted an alternative 

mechanistic pathway for hydrogen abstraction when alcoholic solvents were used which 

resulted in a faster than predicted rate of reaction. Additional factors were considered 

when analysing the polyphenolic antioxidants such as increased bulkiness and steric 

hindrance surrounding the radical scavenging sites within the molecules. A quantitative 

analysis, termed EC50, was carried out to determine the stoichiometry of the reaction 
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between the antioxidants and the radicals. The number of DPPH radicals scavenged per 

mole of antioxidant was calculated for a series of phenolic and aminic antioxidants and 

an overriding limitation of using a bulky radical was revealed. Antioxidants known to 

perform well in typical lubricant oxidation tests exhibited poor radical scavenging 

capabilities in this assay. In addition, aromatic amine chemistries were not suitable for 

this test as a result of the activation energy required for the radical scavenging reaction 

to occur. The time-scavenging profile for the aromatic amine Irganox L57 revealed, at 

25 ᵒC, less than 50% scavenging was achieved whereas at higher temperatures this 

percentage was increased. The overall outcome of the development of this assay was that 

there were too many limitations regarding mechanistic pathways coupled with complex 

solvent effects for it to be used as a reliable study for new antioxidants. If the results are 

interpreted with caution and in conjunction with more in depth kinetic studies, 

mechanistic pathways of phenolic antioxidants could be determined with the potential to 

guide a more directed design of new antioxidants.  

In summary, a series of novel dendritic antioxidants have been synthesised and excellent 

thermal and oxidative stabilities were revealed. In addition, structure-activity 

relationships have been probed and the use of a radical scavenging assay revealed the 

complexity of the mechanisms involved in antioxidant chemistry. Further studies could 

be carried out in the future to improve upon the results revealed in this research.  

6.2 Future Perspectives 

Whilst advances have been made in the development of dendritic antioxidants, this still 

remains a relatively Ǯyoungǯ area of research and there are considerable opportunities for 

further improvements. Within the scope of this thesis, the first area to address would be 

to further improve on the solubility of the branched structures described. It was revealed 

that the third generation polyester dendron in Chapter 2 was not soluble in the 

hydrocarbon medium and it was proposed that a larger ratio of solubilising units to 

antioxidant functionality would be required. In addition, it was revealed that even though 

an antioxidant may be soluble in the base oil it may not be completely disperse, hence, 

the oxidative stability was affected. This was observed in particular for the glycerol series 

of first generation polyesters in Chapter 3 whereby the diphenol with one solubilising 

unit revealed a greater oxidation induction time than the triphenol without a solubilising 

unit. Therefore, it was proposed that the polyester dendrons would further benefit from 
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a greater number of solubilising units. With a focus on the first and second generation 

polyester dendrons of Chapter 2, there are two possible approaches to improved 

solubility that could be effective. The first is to introduce a longer, branched hydrocarbon 

chain such as a squalane-based unit. It was revealed in Chapter 4 that the lack of 

branching from the butyl chain on the diphenylamine actually promoted stacking and 

hence solubility was effected. Alternatively, a second approach would be to investigate 

heterofunctional dendrimers whereby the number of solubilising units can match the 

number of active phenolic functionalities.  The polyester structure shown in Figure 6.1 

could be a sensible starting structure. 

 

 

 

 

 

Figure 6.1 Example of a ǮJanusǯ dendrimer reported by Rissanen and co-workers bearing bis(MPA) 

and 3,4-bis-hexyloxybenzoic ester terminal groups.[1,2] 

An example of this approach has been observed for dendritic macromolecules which are 

used in drug delivery. Typically, the solubility of these macromolecules in aqueous media 

has often hindered their ability to perform in this complex area of chemistry. The 

literature has revealed a number of adapted dendritic structures which have 

incorporated hydrophilic solubilising units such as polyethylene glycol or charged chain 

ends.[3–5] The enhanced solubility of the dendritic macromolecules has allowed these 

structures to be a viable option for targeted drug delivery and many advances in this area 

have been observed in recent years.[6] It is therefore proposed that if the solubility of the 

first, second and third generation polyphenols from this project was improved, superior 

performance characteristics may be achieved. It would also be interesting to observe 

whether there is a benefit for having a greater number of phenolic functionalities on the 

same compound because the results from Chapter 2 have indicated that there was not a 

large increase in oxidation induction time between the first and second generation.  
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Another area of research would be to investigate the optimum synergistic ratio between 

hindered phenols and diphenylamines. In the present study a ratio of 1:1 was 

investigated, however it is known from the literature that during the radical scavenging 

process the diphenylamine is regenerated by the phenol and is only consumed once the 

phenol functionalities are also expended. It is therefore expected that the optimum 

synergistic ratio would be to have a greater number of phenolic functionalities in 

comparison to diphenylamine functionalities. This could be achieved through extending 

the structure from the first generation to the second or third as revealed in Figure 6.2.  

 

 

 

 

 

 

 

Figure 6.2 Example of a second generation mixed amine-phenol polyester dendron.  

Alternatively, heterofunctional dendrimers could also be used and it would be interesting 

to see whether having phenolic functionalities on one side of the core and 

diphenylamines on the other has any improved effect. Considering the results so far, 

however, it would be proposed that the separation of the active functionalities onto 

opposite sides of the core would potentially not show any improved effect as the contact 

distances would be too great.  

Finally, Chapter 5 revealed the complexity of the radical scavenging mechanism and it 

was found that the DPPH radical scavenging assay did not provide enough information to 

fully understand the structure-activity relationships of phenolic antioxidants. Instead a 

number of assays and data points would need to be considered to reach a conclusion over 

structure-activity relationships. It would therefore appear to be beneficial to attempt to 

correlate the data obtained from a range of studies and assays to build a multidisciplinary 

database of phenolic antioxidant properties. Much like in the area of drug design, a library 
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of data could be searched to find a Ǯhitǯ for a particular function. For example, you may 

require a phenolic antioxidant with a high molecular weight that is suitable for use in 

lipids and can perform at high temperatures. These parameters could be searched and a 

series of possible phenolic antioxidants would be returned or a set of structural 

characteristics could be suggested to guide the design of a new phenolic antioxidant. 

Many iterations of phenolic antioxidants can be generated, however, targeted design 

cannot be achieved without a solid understanding of structure-activity relationships and 

the mechanisms of action.  
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