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Abstract. A community diagnostics and performance met-

rics tool for the evaluation of Earth system models (ESMs)

has been developed that allows for routine comparison of sin-

gle or multiple models, either against predecessor versions

or against observations. The priority of the effort so far has

been to target specific scientific themes focusing on selected

essential climate variables (ECVs), a range of known system-

atic biases common to ESMs, such as coupled tropical cli-

mate variability, monsoons, Southern Ocean processes, con-

tinental dry biases, and soil hydrology–climate interactions,

as well as atmospheric CO2 budgets, tropospheric and strato-

spheric ozone, and tropospheric aerosols. The tool is being

developed in such a way that additional analyses can easily

be added. A set of standard namelists for each scientific topic

reproduces specific sets of diagnostics or performance met-

rics that have demonstrated their importance in ESM evalua-

tion in the peer-reviewed literature. The Earth System Model

Evaluation Tool (ESMValTool) is a community effort open

to both users and developers encouraging open exchange of

diagnostic source code and evaluation results from the Cou-

pled Model Intercomparison Project (CMIP) ensemble. This

will facilitate and improve ESM evaluation beyond the state-

of-the-art and aims at supporting such activities within CMIP

and at individual modelling centres. Ultimately, we envisage

running the ESMValTool alongside the Earth System Grid

Federation (ESGF) as part of a more routine evaluation of

CMIP model simulations while utilizing observations avail-

able in standard formats (obs4MIPs) or provided by the user.

1 Introduction

Earth system model (ESM) evaluation with observations

or reanalyses is performed both to understand the perfor-

mance of a given model and to gauge the quality of a new

model, either against predecessor versions or a wider set

of models. Over the past decades, the benefits of multi-

model intercomparison projects such as the Coupled Model

Intercomparison Project (CMIP) have been demonstrated.

Since the beginning of CMIP in 1995, participating mod-

els have been further developed, with more complex and

higher resolution models joining in CMIP5 (Taylor et al.,

2012) which supported the Intergovernmental Panel on Cli-

mate Change (IPCC) Fifth Assessment Report (AR5) (IPCC,

2013). The main purpose of these internationally coordinated

model experiments is to address outstanding scientific ques-

tions, to improve the understanding of climate, and to pro-

vide estimates of future climate change. Standardization of

model output in a format that follows the Network Common

Data Format (netCDF) Climate and Forecast (CF) Metadata

Convention (http://cfconventions.org/) and collection of the

model output on the Earth System Grid Federation (ESGF,

http://esgf.llnl.gov/) facilitated multi-model analyses. How-

ever, CMIP has historically lacked a common analysis tool

available that could operate directly on submitted model data

and deliver a standard evaluation of models against observa-

tions.

An important new aspect in the next phase of CMIP (i.e.

CMIP6; Eyring et al., 2015) is a more distributed organi-

zation under the oversight of the CMIP Panel, where a set

of standard model experiments, which were common across

earlier CMIP cycles, the Diagnostic, Evaluation and Char-

acterization of Klima (DECK) experiments and the CMIP6

historical simulations, will be used to broadly characterize

model performance and sensitivity to standard external forc-

ing. Standardization, coordination, common infrastructure,

and documentation functions that make the simulation re-

sults and their main characteristics available to the broader

community are envisaged to be a central part of CMIP6. The

Earth System Model Evaluation Tool (ESMValTool) pre-

sented here is a community development that can be used

as one of the documentation functions in CMIP to help diag-

nose and understand the origin and consequences of model

biases and inter-model spread. Our goal is to develop an eval-

uation tool that users can run to produce well-established

analyses of the CMIP models once the output becomes avail-

able on the ESGF. This is realized through text files that we

refer to as standard namelists, each calling a certain set of

diagnostics and performance metrics to reproduce analyses

that have demonstrated to be of importance in ESM evalua-

tion in previous peer-reviewed papers or assessment reports.

Through this approach, routine and systematic evaluation of

model results can be made more efficient. The framework en-

ables scientists to focus on developing more innovative anal-

ysis methods rather than constantly having to “re-invent the

wheel”. An additional purpose of the ESMValTool is to fa-

cilitate model evaluation at individual modelling centres, in

particular to rapidly assess the performance of a new model

against predecessor versions. Righi et al. (2015) and Jöckel

et al. (2016) have applied a subset of the namelists presented

here to evaluate a set of simulations using different config-

urations of the global ECHAM/MESSy Atmospheric Chem-

istry model (EMAC). In this paper we also highlight the inte-

gration of ESMValTool into modelling workflows – includ-

ing models developed at NOAA’s Geophysical Fluid Dynam-

ics Laboratory (GFDL), the EMAC model, and the NEMO

ocean model – through the use of the ESMValTool’s refor-

matting routine capabilities.

In addition to standardized model output, the ESGF

hosts observations for Model Intercomparison Projects

(obs4MIPs; Ferraro et al., 2015; Teixeira et al., 2014) and re-

analyses data (ana4MIPs, https://www.earthsystemcog.org/

projects/ana4mips). The obs4MIPs and ana4MIPs projects

provide the community with access to CMIP-like data sets

(in terms of variables, temporal and spatial frequencies, and

time periods) of satellite data and reanalyses, together with

the corresponding technical documentation. The ESMVal-

Tool makes use of these observations as well as observations

available from other sources to evaluate the models. In sev-
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eral of the diagnostics and metrics, more than one observa-

tional data set or meteorological reanalysis is used to account

for uncertainties in observations. This is crucial for assessing

model performance in a more robust and scientifically valid

way.

For the model evaluation we apply diagnostics and in sev-

eral cases also performance metrics. Diagnostics (e.g. the

calculation of zonal means or derived variables in compar-

ison to observations) provide a qualitative comparison of

the models with observations. Performance metrics are de-

fined as a quantitative measure of agreement between a sim-

ulated and observed quantity which can be used to assess the

performance of individual models or generation of models.

Quantitative performance metrics are routinely calculated for

numerical weather forecast models, but have been increas-

ingly applied to atmosphere–ocean general circulation mod-

els (AOGCMs) or ESMs. Performance metrics used in these

studies have mainly focused on climatological mean values

of selected ECVs (Connolley and Bracegirdle, 2007; Gleck-

ler et al., 2008; Pincus et al., 2008; Reichler and Kim, 2008),

and only a few studies have developed process-based perfor-

mance metrics (SPARC-CCMVal, 2010; Waugh and Eyring,

2008; Williams and Webb, 2009). The implementation of

performance metrics in the ESMValTool enables a quantita-

tive assessment of model improvements, both for different

versions of individual ESMs and for different generations

of model ensembles used in international assessments (e.g.

CMIP5 versus CMIP6). Application of performance metrics

to multiple models helps in highlighting when and where one

or more models represent a particular process well. While

quantitative metrics provide a valuable summary of overall

model performance, they usually do not give information on

how particular aspects of a model’s simulation interact to de-

termine the overall fidelity. For example, a model could sim-

ulate a mean state (and trend) in global mean surface tem-

perature that agrees well with observations, but this could be

due to compensating errors. To learn more about the sources

of errors and uncertainties in models and thereby highlight

specific areas requiring improvement, evaluation of the un-

derlying processes and phenomena is necessary. A range of

diagnostics and performance metrics focussing on a number

of key processes are also included in the ESMValTool.

This paper describes ESMValTool version 1.0 (v1.0),

which is the first release of the tool to the wider community

for application and further development as open-source soft-

ware. It demonstrates the use of the tool by showing example

figures for each namelist for either all or a subset of CMIP5

models. Section 2 describes the technical aspects of the tool,

and Sect. 3 the type of modelling and observational data cur-

rently supported by the ESMValTool (v1.0). In Sect. 4 an

overview of the namelists of the ESMValTool (v1.0) is given

along with their diagnostics and performance metrics and the

variables and observations used. Section 5 describes the use

of the ESMValTool in a typical model development cycle and

evaluation workflow and Sect. 6 closes with a summary and

an outlook.

2 Brief overview of the ESMValTool

In this section we give a brief overview of the ESMValTool

(v1.0) which is schematically depicted in Fig. 1. A detailed

user’s guide is provided in the Supplement.

The ESMValTool consists of a workflow manager and a

number of diagnostic and graphical output scripts. It builds

on a previously published diagnostic tool for chemistry–

climate model evaluation (CCMVal-Diag Tool; Gettelman et

al., 2012), but is different in its focus. In particular, it extends

to ESMs by including diagnostics and performance metrics

relevant for the coupled Earth system, and also focuses on

evaluating models with a common set of diagnostics rather

than being mostly flexible as the CCMVal-Diag tool. In addi-

tion, several technical and structural changes have been made

that facilitate development by multiple users. The workflow

manager is written in Python, while a multi-language sup-

port is provided in the diagnostic and the graphic routines.

The current version supports Python (www.python.org), the

NCAR Command Language (NCL, 2016), and R (Ihaka and

Gentleman, 1996), but it can be extended to other open-

source languages. The ESMValTool is executed by invoking

the main.py script, which takes a namelist as a single input

argument. The namelists are text files written using the XML

(eXtensible Markup Language) syntax and define the data to

be read (models and observations), the variables to be anal-

ysed, and the diagnostics to be applied. The XML syntax has

been chosen in order to allow users to express the relation-

ship between these three elements (data, variables, and diag-

nostics) in a structured, easy to use way.

Within the workflow, the input data are checked for com-

pliance with the CF and Climate Model Output Rewriter

(CMOR, http://pcmdi.github.io/cmor-site/tables.html) stan-

dards required by the tool (see Sect. 3) via a set of dedi-

cated reformatting routines, which are also able to fix the

most common errors in the input data (e.g. wrong coordi-

nates, undefined or missing values, non-compliant units). It is

additionally possible to define new variables using variable-

specific scripts, for example to calculate the total column

ozone from a 3-D ozone field (tro3), temperature (ta), and

surface pressure (ps). The diagnostic and graphic routines

are written in a modular and flexible way so that they can

be customized by the user via diagnostic-specific settings in

the configuration file (cfg-file) and variable-specific settings

(in the directory variable_defs/) without changing the source

code. These routines are complemented by a set of libraries,

providing general-purpose code for the most common oper-

ations (statistical analyses, regridding tools, graphic styles,

etc.). The output of the tool can be both NetCDF and graph-

ics files in various formats. In addition, a log file is written

containing all the information of a specific call of the main

www.geosci-model-dev.net/9/1747/2016/ Geosci. Model Dev., 9, 1747–1802, 2016
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namenlist_XYZ.xml

variable_defs/

cfg_XYZ/

diag_scripts/*.typ
plot_scripts/typ/*

derive_var.ncl

Calculate derived variable

diag_scripts/lib

Common libraries

main.py
ESMValTool main driver

reformat.py

launchers.py

Check/reformat the input
according to CF/CMOR

Model data
Observations

Processed data

Call diagnostic scripts
different languages (typ)

supported: NCL, python, R

reformat_default
reformat_EMAC
reformat_obs

Reformat routines

Output (NetCDF)

Plots (ps, eps, png, pdf)

Log file (references)

Figure 1. Schematic overview of the ESMValTool (v1.0) structure. The primary input to the workflow manager is a user-configurable text

namelist file (orange). Standardized libraries/utilities (purple) available to all diagnostics scripts are handled through common interface

scripts (blue). The workflow manager runs diagnostic scripts (red) that can be written in several freely available scripting languages. The

output of the ESMValTool (grey) includes figures, binary files (netCDF), and a log file with a list of relevant references and processed input

files for each diagnostic.

script: time and date of the call, version number, analysed

data (models and observations), applied diagnostics and vari-

ables, and corresponding references. This helps to increase

the traceability and reproducibility of the results.

To facilitate the development of new namelists and di-

agnostics by multiple developers from various institutions

while preserving code quality and reliability, an automated

testing framework is included in the package. This allows

the developers to verify that modifications and new code are

compatible with the existing code and do not change the re-

sults of existing diagnostics. Automated testing within the

ESMValTool is implemented on two complementary levels:

– unittests are used to verify that small code units (e.g.

functions/subroutines) provide the expected results.

– integration testing is used to verify that a diagnostic in-

tegrates well into the ESMValTool framework and that a

diagnostic provides expected results. This is verified by

comparison of the results against a set of reference data

generated during the implementation of the diagnostic.

Each diagnostic is expected to produce a set of well-defined

results, i.e. files in a variety of formats and types (e.g. graph-

ics, data files, ASCII files). While testing results of a diag-

nostic, a special namelist file is executed by the ESMValTool

which runs a diagnostic on a limited set of test data only, min-

imizing executing time for testing while ensuring that the di-

agnostic produces the correct results. The tests implemented

include

– file availability: a check that all required output data

have been successfully generated by the diagnostic. A

missing file is always an indicator for a failure of the

program.

– file checksum: currently the MD5 checksum is used to

verify that contents of a file are the same.

– graphics check: for graphic files an additional test is im-

plemented which verifies that two graphical outputs are

identical. This is in particular useful to verify that out-

puts of a diagnostic remain the same after code changes.

Unittests are implemented for each diagnostic independently

using nose (https://nose.readthedocs.org/en/latest/). Test files

are searched recursively, executed, and a statistic on success

and failures is provided at the end of the execution. In or-

der to run integration tests for each diagnostic, a small script

needs to be written once. As for the unittests, a summary of

success and failures is provided as output (see the Supple-

ment for details).

For the documentation of the code, Sphinx is used (http:

//sphinx-doc.org/) to organize and format ESMValTool doc-

umentation, including text which has been extracted from

source code. Sphinx can help to create documentation in a va-

riety of formats, including HTML, LaTeX (and hence print-

able PDF), manual pages and plain text. Sphinx was orig-

inally developed for documenting Python code, and one of

its features is the capability – using the so-called autodoc

Geosci. Model Dev., 9, 1747–1802, 2016 www.geosci-model-dev.net/9/1747/2016/
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extension – to extract documentation strings from Python

source files and use them in the documentation it generates.

This feature apparently does not exist for NCL source files

(such as those which are used in ESMValTool), but it has

been mimicked here via a Python script, which walks through

a subset of the ESMValTool NCL scripts, extracts function

names, argument lists and descriptions (from the comments

immediately following the function definition), and assem-

bles them in a subdirectory for usage with Sphinx. The docu-

mentation includes a listing of the functions, procedures, and

plotting routines in order to encourage the reuse of existing

code in multiple namelists.

3 Models and observations

The open-source release of ESMValTool (v1.0) that accom-

panies this paper is intended to work with CMIP5 model out-

put, but the tool is compatible with any arbitrary model out-

put, provided that it is in CF-compliant netCDF format and

that the variables and metadata are following the CMOR ta-

bles and definitions. The namelists are designed such that it

is straightforward to execute the same diagnostics with either

CMIP DECK or CMIP6 model output rather than CMIP5

output, and these will be provided when the new simulations

are available. As mentioned in the previous section, routines

are provided for checking CF/CMOR compliance and fixing

the most common minor flaws in the model output submit-

ted to CMIP5. More substantial deviations from the required

standards in the model output may be corrected via project-

and model-specific procedures defined by the user and auto-

matically applied within the workflow. The current reformat-

ting routines are, however, not able to convert arbitrary model

output to the full CF/CMOR standard. In this case, it is the

responsibility of the individual modelling groups to perform

that conversion. Currently, model-specific reformatting rou-

tines are provided for EMAC (Jöckel et al., 2016, 2010), the

GFDL CM3 and ESM models (Donner et al., 2011; Dunne

et al., 2012, 2013), and for NEMO (Madec, 2008) which is

the ocean model used in for example EC-Earth (Hazeleger

et al., 2012). Users can develop similar reformatting routines

specific to their model using the existing reformat routines

for other models as a template. This will allow the tool to run

directly on the original model output rather than having to

reformat the model output to CF/CMOR beforehand.

The observations are organized in tiers. Where available,

observations from the obs4MIPs and reanalysis from the

ana4MIPs archives at the ESGF are used in the ESMValTool.

These data sets form “Tier 1”. Tier 1 data are freely available

for download to be directly used by the tool since they are

formatted following the CF/CMOR standard and do not need

any additional processing. For other observational data sets,

the user has to retrieve the data from their respective source

and reformat them into the CF/CMOR standard. To facili-

tate this task, we provide specific reformatting routines for a

large number of such data sets together with detailed infor-

mation of the data source, as well as download and process-

ing instructions (see Table 1). “Tier 2” includes other freely

available data sets and “Tier 3” includes restricted data sets

(e.g. requiring the user to accept a license agreement issued

by the data owner). For Tier 2 and 3 data, links and help

scripts are provided, so that these observations can be eas-

ily retrieved from their respective sources and processed by

the user. A collection of all observational data used in ES-

MValTool (v1.0) is hosted at DLR and the ESGF nodes at

BADC and DKRZ, but depending on the license terms of the

observations these might not be publicly available.

4 Overview of namelists included in the

ESMValTool (v1.0)

A number of namelists have been included in the ESMVal-

Tool (v1.0) that group a set of performance metrics and di-

agnostics for a given scientific topic. Namelists that focus

on the evaluation of a physical climate process for, respec-

tively, the atmosphere, ocean, and land surface are presented

in Sects. 4.1, 4.2, and 4.3. These can be applied to simula-

tions with prescribed SSTs (i.e. AMIP runs) or the CMIP5

historical simulations (simulations for 1850 to the present

day conducted with the best estimates of natural and an-

thropogenic climate forcing) that are run by either coupled

AOGCMs or ESMs. Another set of namelists has been de-

veloped to evaluate biogeochemical biases present in ESMs

when additional components of the Earth system such as the

carbon cycle, atmospheric chemistry, or aerosols are simu-

lated interactively (Sects. 4.4 and 4.5 for carbon cycle and

aerosols/chemistry, respectively).

In each subsection, we first scientifically motivate the in-

clusion of the namelist by reviewing the main systematic bi-

ases in current ESMs and their importance and implications.

We then give an overview of the namelists that can be used

to evaluate such biases along with the diagnostics and perfor-

mance metrics included, and the required variables and cor-

responding observations that are used in ESMValTool (v1.0).

For each namelist we provide one to two example figures that

are applied to either all or a subset of the CMIP5 models. An

assessment of CMIP5 models is however not the focus of

this paper. Rather, we attempt to illustrate how the namelists

contained within ESMValTool (v1.0) can facilitate the devel-

opment and evaluation of climate model performance in the

targeted areas. Therefore, the results of each figure are only

briefly described in each figure caption.

Table 1 provides a summary of all namelists included in

ESMValTool (v1.0) along with information on the quantities

and ESMValTool variable names for which the namelist is

tested, the corresponding observations or reanalyses, the sec-

tion and example figure in this paper, and references for the

namelist. Table 2 then provides an overview of the diagnos-

tics included for each namelist along with specific calcula-

www.geosci-model-dev.net/9/1747/2016/ Geosci. Model Dev., 9, 1747–1802, 2016
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Table 1. Overview of standard namelists implemented in ESMValTool (v1.0) along with the quantity and ESMValTool variable name for

which the namelist is tested, the corresponding observations or reanalyses, the section and example figure in this paper, and references for

the namelist. When the namelist is named with a specific paper (naming convention: namelist_SurnameYearJournalabbreviation.xml), it can

be used to reproduce in general all or in some cases only a subset of the figures published in that paper. Otherwise the namelists group a set

of diagnostics and performance metrics for a specific scientific topic (e.g. namelist_aerosol_CMIP5.xml). Observations and reanalyses are

listed together with their Tier, type (e.g. reanalysis, satellite or in situ observations), the time period used, and a reference. Tier 1 includes

observations from obs4MIPs or reanalyses from ana4MIPs. Tier 2 and tier 3 indicate freely available and restricted data sets, respectively. For

these observations, reformatting routines are provided to bring the original data in the CF/CMOR standard format so that they can directly

be used in the ESMValTool.

xml namelist Tested quantity (CMOR units) ESMValTool

variable

name

Tested observations/reanalyses

(Tier, type, time period, reference)

Sect./example

Figure(s)

References for namelist

Sect. 4.1: detection of systematic biases in the physical climate: atmosphere

namelist_perfme

trics_CMIP5

namelist_righi

15gmd_ECVs

Temperature (K)

Eastward wind (m s−1)

Northward wind (m s−1)

Near-surface air temperature (K)

Geopotential height (m)

ta

ua

va

tas

zg

ERA-Interim (Tier 3, reanalysis,

1979–2014, Dee et al., 2011)

NCEP (Tier 2, reanalysis, 1948–

2012, Kistler et al., 2001)

Sect. 4.1.1./Figs. 2

and 3

Gleckler et al. (2008); Taylor

(2001); Fig. 9.7 of Flato et

al. (2013); Righi et al. (2015)

Specific humidity (1) hus AIRS (Tier 1, satellite, 2003–2010,

Aumann et al., 2003)

Precipitation (kg m−2 s−1) pr GPCP-SG (Tier 1, satellite & rain

gauge, 1979–near-present, Adler et

al., 2003)

TOA outgoing shortwave radia-

tion (W m−2)

rsut CERES-EBAF (Tier 1, satellite,

2001–2011, Wielicki et al., 1996)

TOA outgoing longwave radia-

tion (W m−2)

rlut

TOA outgoing clear sky long-

wave radiation (W m−2)

rlutcs

Shortwave cloud radiative effect

(W m−2)

SW_CRE

Longwave cloud radiative effect

(W m−2)

LW_CRE

Aerosol optical depth at 550 nm

(1)

od550aer MODIS (Tier 1, satellite, 2001–

2012, King et al., 2003)

ESACCI-AEROSOL (Tier 2, satel-

lite, 1996–2012, Kinne et al., 2015)

Total cloud amount (%) clt MODIS (Tier 1, satellite, 2001–

2012, King et al., 2003)

namelist_fla Near-surface air temperature (K) tas ERA-Interim (Tier 3, reanalysis,

1979—2014, Dee et al., 2011)

Sect. 4.1.2/Fig. 4 Figs. 9.2 and 9.4 of Flato et al.

(2013)

to13ipcc Precipitation (kg m−2 s−1) pr GPCP-1DD (Tier 1, satellite, 1997–

2010, Huffman et al., 2001)

namelist_SA

Monsoon

namelist_SA

Monsoon_

AMIP

Eastward wind (m s−1)

Northward wind (m s−1)

ua

va

ERA-Interim (Tier 3, reanalysis,

1979–2014, Dee et al., 2011)

MERRA (Tier 1, reanalysis, 1979–

2011, Rienecker et al., 2011)

Sect. 4.1.3 “South

Asian sum-

mer monsoon

(SASM)”/Figs. 5

and 6

Goswami et al. (1999); Sperber et

al. (2013); Wang and Fan (1999);

Wang et al. (2012); Webster and

Yang (1992); Lin et al. (2008);

Fig. 9.32 of Flato et al. (2013)

namelist_SA

Monsoon_daily

Precipitation (kg m−2 s−1) pr TRMM-3B42-v7 (Tier 1, satellite,

1998–near-present, Huffman et al.,

2007)

GPCP-1DD 1DD (Tier 1, satellite,

1997–2010, Huffman et al., 2001)

CMAP (Tier 2, satellite & rain

gauge, 1979–near-present, Xie and

Arkin, 1997)

MERRA (Tier 1, reanalysis, 1979–

2011, Rienecker et al., 2011)

ERA-Interim (Tier 3, reanalysis,

1979–2014, Dee et al., 2011)

Skin temperature (K) ts HadISST (Tier 2, reanalysis, 1870–

2014, Rayner et al., 2003)

Geosci. Model Dev., 9, 1747–1802, 2016 www.geosci-model-dev.net/9/1747/2016/
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Table 1. Continued.

xml namelist Tested quantity (CMOR units) ESMValTool

Variable

Name

Tested observations/reanalyses

(Tier, type, time period, reference)

Sect./Example

Figure(s)

References for namelist

namelist_WA

Monsoon

namelist_WA

Monsoon_daily

Eastward wind (m s−1)

Northward wind (m s−1)

Temperature (K)

Near-surface air temperature (K)

ua

va

ta

tas

ERA-Interim (Tier 3, reanalysis,

1979–2014, Dee et al., 2011)

Sect. 4.1.3

“West African

Monsoon Diag-

nostics”/Fig. 7

Roehrig et al. (2013); Cook and

Vizy (2006)

Precipitation (kg m−2 s−1) pr GPCP-1DD (Tier 1, satellite, 1997–

2010, Huffman et al., 2001)

TRMM (Tier 1, satellite, 1998–

near-present, Huffman et al., 2007)

TOA outgoing shortwave radia-

tion (W m−2)

TOA outgoing longwave radia-

tion (W m−2)

TOA outgoing clear sky short-

wave radiation (W m−2)

TOA outgoing clear sky long-

wave radiation (W m−2)

Shortwave cloud radiative effect

(W m−2)

Longwave cloud radiative effect

(W m−2)

Shortwave downwelling radia-

tion at surface (W m−2)

Longwave downwelling radia-

tion at surface (W m−2)

rsut

rlut

rsutcs

rlutcs

SW_CRE

LW_CRE

rsds

rlds

CERES-EBAF (Tier 1, satellite,

2001–2011, Wielicki et al., 1996)

TOA outgoing longwave radia-

tion (W m−2)

rlut NOAA polar-orbiting satellites

(Tier 2, satellite, 1974–2013,

Liebmann and Smith, 1996)

namelist_CVDP Precipitation (kg m−2 s−1) pr GPCP-SG (Tier 1, satellite & rain

gauge, 1979–near-present, Adler et

al., 2003)

TRMM (Tier 1, satellite, 1998–

near-present, Huffman et al., 2007)

Sect. 4.1.4

“NCAR cli-

mate variability

diagnostics pack-

age”/Figs. 8 and

9

Phillips et al. (2014)

Air pressure at sea level (Pa) psl NOAA-CIRES Twentieth Century

Reanalysis Project (Tier 1, reanal-

ysis, 1900–2012, Compo et al.,

2011)

Near-surface air temperature (K) tas NCEP (Tier 2, reanalysis, 1948–

2012, Kistler et al., 2001)

Skin temperature (K) ts HadISST (Tier 2, satellite-based,

1870–2014, Rayner et al., 2003)

Snow depth (m) snd without obs

Ocean meridional overturning

mass streamfunction (kg s−1)

msftmyz without obs

namelist_mjo

_daily

namelist_mjo

_mean_state

Eastward wind (m s−1)

Northward wind (m s−1)

ua

va

ERA-Interim (Tier 3, reanalysis,

1979–2014, Dee et al., 2011)

NCEP (Tier 2, reanalysis, 1979–

2013, Kistler et al., 2001)

Sect. 4.1.4

“Madden-

Julian oscillation

(MJO)”/Fig. 10

Waliser et al. (2009); Kim et al.

(2009)

Precipitation (kg m−2 s−1) pr GPCP-1DD (Tier 1, satellite, 1997–

2010, Huffman et al., 2001)

TOA longwave radiation

(W m−2)

rlut NOAA polar-orbiting satellites

(Tier 2, satellite, 1974–2013,

Liebmann and Smith, 1996)

www.geosci-model-dev.net/9/1747/2016/ Geosci. Model Dev., 9, 1747–1802, 2016
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Table 1. Continued.

xml namelist Tested quantity (CMOR units) ESMValTool

Variable

Name

Tested observations/reanalyses

(Tier, type, time period, reference)

Sect./example

Figure(s)

References for namelist

namelist_Diur

nalCycle

Precipitation (kg m−2 s−1)

Convective Precipitation

(kg m−2 s−1)

pr

prc

TRMM (Tier 1, satellite, 1998–

near-present, Huffman et al., 2007)

Sect. 4.1.5/Fig. 11 Rio et al. (2009)

TOA outgoing longwave radia-

tion (W m−2)

TOA outgoing shortwave radia-

tion (W m−2)

TOA outgoing clear sky long-

wave radiation (W m−2)

TOA outgoing clear sky short-

wave radiation (W m−2)

Surface downwelling shortwave

radiation (W m−2)

Surface downwelling clear

sky sky shortwave radiation

(W m−2)

Surface upwelling shortwave

radiation (W m−2)

Surface upwelling clear sky

shortwave radiation (W m−2)

Surface upwelling longwave

radiation (W m−2)

Surface upwelling clear sky

longwave radiation (W m−2)

Surface downwelling shortwave

radiation (W m−2)

Surface downwelling clear sky

longwave radiation (W m−2)

rlut

rsut

rlutcs

rsutcs

rsds

rsdscs

rsus

rsuscs

rlus

rluscs

rlds

rldscs

CERES-SYN1deg (Tier 1, satellite,

2001–2011, Wielicki et al., 1996)

namelist_

lauer13jclim

Atmosphere cloud condensed

water content (kg m−2)

clwvi UWisc: SSM/I, TMI, AMSR-E

(Tier 3, satellite, 1988–2007,

O’Dell et al., 2008)

Sect. 4.1.6

“Clouds and

radiation”/Fig. 12

Lauer and Hamilton (2013);

Fig. 9.5 of Flato et al. (2013)

Atmosphere cloud ice content

(kg m−2)

clivi MODIS-CFMIP (Tier 2, satellite,

2003–2014, King et al., 2003; Pin-

cus et al., 2012)

Total cloud amount (%) clt MODIS (Tier 1, satellite, 2001–

2012, King et al., 2003)

TOA outgoing longwave radia-

tion (W m−2)

TOA outgoing longwave radia-

tion (clear sky) (W m−2)

TOA outgoing shortwave radia-

tion (W m−2)

TOA outgoing shortwave radia-

tion (clear sky) (W m−2)

rlut

rlutcs

rsut

rsutcs

CERES-EBAF (Tier 1, satellite,

2001–2011, Wielicki et al., 1996)

SRB (Tier 2, satellite, 1984–2007,

GEWEX-news, 2011)

Precipitation (kg m−2 s−1) pr GPCP-SG (Tier 1, satellite & rain

gauge, 1979–near-present, Adler et

al., 2003)

namelist_will

iams09clim

dyn_CREM

ISCPP mean cloud albedo (1)

ISCCP mean cloud top pressure

(Pa)

ISCCP total cloud fraction (%)

TOA outgoing shortwave radia-

tion (W m−2)

TOA outgoing longwave radia-

tion (W m−2)

TOA outgoing clear sky short-

wave radiation (W m−2)

TOA outgoing clear sky long-

wave radiation (W m−2)

Surface snow area fraction (%)

Surface snow amount (kg m−2)

Sea ice area fraction (%)

albisccp

pctisccp

cltisccp

rsut

rlut

rsutcs

rlutcs

snc

snw

sic

ISCCP (Tier 1, satellite, 1985–

1990, Rossow and Schiffer, 1991)

ISCCP-FD (Tier 2, satellite, 1985–

1990, Zhang et al., 2004)

Sect. 4.1.6

“Quantitative

performance as-

sessment of cloud

regimes”/Fig. 13

Williams and Webb (2009)

Geosci. Model Dev., 9, 1747–1802, 2016 www.geosci-model-dev.net/9/1747/2016/
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Table 1. Continued.

xml namelist Tested quantity (CMOR units) ESMValTool

Variable

Name

Tested observations/reanalyses

(Tier, type, time period, reference)

Sect./example

Figure(s)

References for namelist

Sect. 4.2: detection of systematic biases in the physical climate: ocean

namelist_Sou

thernOcean

Ocean mixed-layer thickness de-

fined by Sigma T (m)

mlotst ARGO (Tier 2, buoy, monthly mean

climatology 2001–2006, Dong et

al., 2008)

Sect. 4.2.2

“Southern Ocean

mixed layer

dynamics and

surface turbulent

fluxes”/Fig. 14

CDFTOOLS

Sea surface temperature (K)

Downward heat flux at

seawater surface (W m−2)

Surface downward eastward

wind stress (Pa)

Surface downward northward

wind stress (Pa)

Water flux from precipitation and

evaporation (kg m−2 s−1)

tos

hfds (hfls+

hfss + rsns

+ rlns)

tauu

tauv

wfpe (pr +

evspsbl)

ERA-Interim (Tier 3, reanalysis,

1979–2014, Dee et al., 2011)

Seawater salinity (psu)

Sea surface salinity (psu)

Seawater temperature (K)

so

sos

to

WOA09 (Tier 2, in situ, clima-

tology, Antonov et al., 2010; Lo-

carnini et al., 2010)

Seawater X velocity (m s−1)

Seawater Y velocity (m s−1)

uo

vo

without obs

namelist_Sou

thernHemi

sphere

Total cloud fraction (%)

Atmosphere cloud ice content

(kg m−2)

Atmosphere cloud condensed

water content (kg m−2)

clt

clivi

clwvi

CloudSat (Tier 1, satellite, 2000–

2005, Stephens et al., 2002)

Sect. 4.2.2

“Atmospheric

processes forcing

the Southern

Ocean”/Fig. 15

Frolicher et al. (2015)

Surface upward latent heat flux

(W m−2)

Surface upward sensible heat flux

(W m−2)

hfls

hfss

WHOI-OAflux (Tier 2, satellite-

based, 2000–2005, Yu et al., 2008)

TOA outgoing longwave radia-

tion (W m−2)

TOA outgoing clear sky long-

wave radiation (W m−2)

TOA outgoing shortwave radia-

tion (W m−2)

TOA outgoing clear sky short-

wave radiation (W m−2)

Surface downwelling shortwave

radiation (W m−2)

Surface downwelling clear sky

longwave radiation (W m−2)

Surface downwelling shortwave

radiation (W m−2)

Surface downwelling clear sky

shortwave radiation (W m−2)

rlut

rlutcs

rsut

rsutcs

rlds

rldscs

rsds

rsdscs

CERES-EBAF (Tier 1, satellite,

2001–2011, Wielicki et al., 1996)

SRB (Tier 2, satellite, 1984–2007,

GEWEX-news, February 2011)

namelist_Tro

picalVariability

Precipitation (kg m−2 s−1) pr TRMM (Tier 1, satellite, 1998–

near-present, Huffman et al., 2007)

Sect. 4.2.3/Fig. 16 Choi et al. (2011); Li and Xie

(2014)

Sea surface temperature (K) tos HadISST (Tier 2, satellite-based,

1870–2014, Rayner et al., 2003)

Eastward wind (m s−1)

Northward wind (m s−1)

ua

va

ERA-Interim (Tier 3, reanalysis,

1979–2014, Dee et al., 2011)

namelist_SeaIce Sea ice area fraction (%) sic HadISST (Tier 2, satellite-based,

1870–2014, Rayner et al., 2003)

NSIDC (Tier 2, satellite, 1978–

2010, Meier et al., 2013; Peng et al.,

2013)

Sect. 4.2.4/Fig. 17 Stroeve et al. (2007, 2012);

Fig. 9.24 of Flato et al. (2013)

www.geosci-model-dev.net/9/1747/2016/ Geosci. Model Dev., 9, 1747–1802, 2016
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Table 1. Continued.

xml namelist Tested quantity (CMOR units) ESMValTool

Variable

Name

Tested observations/reanalyses

(Tier, type, time period, reference)

Sect./example

Figure(s)

References for namelist

Sect. 4.3: Detection of systematic biases in the physical climate: land

namelist_Eva

potranspiration

namelist_SPI

Surface upward latent heat flux

(W m−2)

hfls LandFlux-EVAL (Tier 3, ground,

1989–2004, Mueller et al., 2013)

GPCC (Tier 2, Rain gauge analysis,

1901–2010, Becker et al., 2013)

Sect. 4.3.1/Fig. 18 Mueller and Seneviratne (2014);

Orlowsky and Seneviratne

(2013)

Precipitation (kg m−2 s−1) pr CRU (Tier 2, rain gauge analy-

sis, 1901–2010, Mitchell and Jones,

2005)

namelist_run

off_et

Total runoff (kg m−2 s−1)

Evaporation (kg m−2 s−1)

Precipitation (kg m−2 s−1)

mrro

evspsbl

pr

GRDC (Tier 2, river runoff gauges,

varying periods, Dümenil Gates et

al., 2000)

WFDEI (Tier 2, Reanalysis, 1979–

2010, Weedon et al., 2014)

Sect. 4.3.2/Fig. 19 Dümenil Gates et al. (2000);

Hagemann et al. (2013); Weedon

et al. (2014)

Sect. 4.4: detection of biogeochemical biases: carbon cycle

namelist_ana

v13jclim

Net biosphere production of car-

bon (kg m−2 s−1)

nbp TRANSCOM (Tier 2, reanalysis,

1985–2008, Gurney et al., 2004)

Sect. 4.4.1/Figs.

20 and 21

Anav et al. (2013)

Gross primary production of car-

bon (mol m−2 s−1)

gpp MTE (Tier 2, Reanalysis, 1982–

2008; Jung et al., 2009)

Leaf area index (mol m−2 s−1) lai LAI3g (Tier 2, reanalysis, 1981–

2008; Zhu et al., 2013)

Carbon mass in vegetation

(kg m−2)

cVeg NDP-017b (Tier 2, remote sensing

2000, Gibbs, 2006)

Carbon mass in soil pool

(kg m−2)

cSoil HWSD (Tier 2, reanalysis, clima-

tology, Fischer et al., 2008)

Primary organic carbon produc-

tion by all types of phytoplankton

(mol m−2 s−1)

intPP SeaWiFS (Tier 2, satellite, 1998–

2010, Behrenfeld and Falkowski,

1997; McClain et al., 1998)

Near-surface air temperature (K) tas CRU (Tier 3, near-surface tempera-

ture analysis, 1901–2006)

Precipitation (kg m−2 s−1) pr CRU (Tier 2, rain gauge analy-

sis, 1901–2010, Mitchell and Jones,

2005)

namelist_Glob

alOcean

Surface partial pressure of CO2

(Pa)

spco2 SOCAT v2 (Tier 2, in situ, 1968–

2011, Bakker et al., 2014)

ETH SOM-FFN (Tier 2, extrap-

olated in situ, 1998–2011, Land-

schützer et al., 2014a, b)

Sect. 4.4.2/Fig. 22

Total chlorophyll mass concen-

tration at surface (kg m−3)

chl SeaWiFS (Tier 2, satellite, 1997–

2010, Behrenfeld and Falkowski,

1997; McClain et al., 1998)

Dissolved oxygen concentration

(mol m−3)

o2 WOA05 (Tier 2, in situ, clima-

tology 1950–2004, Bianchi et al.,

2012)

Total alkalinity at surface

(mol m−3)

talk T14 (Tier 2, in situ, 2005, Takahashi

et al., 2014)

Geosci. Model Dev., 9, 1747–1802, 2016 www.geosci-model-dev.net/9/1747/2016/
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Table 1. Continued.

xml namelist Tested quantity (CMOR units) ESMValTool

Variable

Name

Tested observations/reanalyses

(Tier, type, time period, reference)

Sect./example

Figure(s)

References for namelist

Sect. 4.5: Detection of biogeochemical biases: chemistry and aerosols

namelist_ae

rosol_CMIP5

Surface concentration of SO4

(kg m−3)

Surface concentration of NO3

(kg m−3)

Surface concentration of NH4

(kg m−3)

Surface concentration of black

carbon aerosol (kg m−3)

Surface concentration of dry aerosol

organic matter (kg m−3)

Surface concentration of PM10

aerosol (kg m−3)

Surface concentration of PM2.5

aerosol (kg m−3)

sconcso4

sconcno3

sconcnh4

sconcbc

sconcoa

sconcpm10

sconcpm2p5

CASTNET (Tier 2, ground, 1987–

2012, Edgerton et al., 1990)

EANET (Tier 2, ground, 2001–

2005, Totsuka et al., 2005)

EMEP (Tier 2, ground, 1970–

2014)

IMPROVE (Tier 2, ground, 1988–

2014)

Sect. 4.5.1/Fig. 23 Lauer et al. (2005); Aquila et

al. (2011); Righi et al. (2013);

Fig. 9.29 of Flato et al. (2013)

Aerosol number concentration

(m−3)

BC mass mixing ratio (kg kg−1)

Aerosol mass mixing ratio

(kg kg−1)

BC-free mass mixing ratio

(kg kg−1)

conccn

mmrbc

mmraer

mmrbcfree

Aircraft campaigns (Tier 3, aircraft,

various)

Aerosol optical depth at 550 nm (1) od550aer AERONET (Tier 2, ground, 1992–

2015, Holben et al., 1998)

MODIS (Tier 1, satellite, 2001–

2012, King et al., 2003)

MISR (Tier 1, satellite, 2001–2012,

Stevens and Schwartz, 2012)

ESACCI-AEROSOL (Tier 2, satel-

lite, 1998–2011, Kinne et al., 2015)

namelist_righ

i15gmd_tropo3

namelist_righ

i15gmd_Emmons

Ozone (nmol mol−1) tro3 Aura MLS-OMI (Tier 2, satellite,

2005–2013, Ziemke et al., 2011)

Ozone sondes (Tier 2, sondes,

1995–2009, Tilmes et al., 2012)

Sect. 4.5.2/Fig. 24 Emmons et al. (2000); Righi et al.

(2015)

Carbon monoxide (mol mol−1) vmrco GLOBALVIEW (Tier 2, ground,

1991–2008, GLOBALVIEW-CO2,

2008)

Nitrogen dioxide

(NOx =NO+NO2) (mol mol−1)

C2H4 propane (mol mol−1)

C2H6 propane (mol mol−1)

C3H6 propane (mol mol−1)

C3H8 propane (mol mol−1)

CH3COCH3 acetone

(mol mol−1)

vmrnox

vmrc2h4

vmrc2h6

vmrc3h6

vmrc3h8

vmrch3coch3

Emmons (Tier 2, aircraft, various

campaigns, Emmons et al., 2000)

namelist_ey

ring13jgr

Temperature (K)

Eastward wind (m s−1)

ta

ua

ERA-Interim (Tier 3, reanalysis,

1979–2014, Dee et al., 2011)

NCEP (Tier 2, reanalysis, 1948–

2012, Kistler et al., 2001)

Sect. 4.5.2/Fig. 25 Eyring et al. (2013); Fig. 9.10 of

Flato et al. (2013)

Total column ozone (DU) toz NIWA (Tier 3, sondes, climatology,

Bodeker et al., 2005)

Tropospheric column ozone (DU)

Ozone (nmol mol−1)

tropoz

tro3

AURA-MLS-OMI (Tier 2, satellite,

2005–2013, Ziemke et al., 2011)

Sect. 4.6: linking model performance to projections

namelist_we

nzel14jgr

Near-surface air temperature (K) tas NCDC (Tier 2, reanalysis, 1880–

2001, Smith et al., 2008)

Sect. 4.6/Fig. 26 Wenzel et al. (2014); Fig. 9.45 of

Flato et al. (2013)

Net biosphere production of carbon

(kg m−2 s−1)

Carbon dioxide (mol mol−1)

Surface downward CO2 flux into

ocean (kg m−2 s−1)

nbp

co2

fgco2

GCP (Tier 2, reanalysis, 1959–

present, Le Quéré et al., 2015)

www.geosci-model-dev.net/9/1747/2016/ Geosci. Model Dev., 9, 1747–1802, 2016
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Table 2. Overview of the diagnostics included for each namelist along with specific calculations, the plot type, settings in the configuration

file (cfg-file), and comments. See also Annex C in the Supplement for additional information.

xml namelist Diagnostics

included

Specific calculations

(e.g. statistical mea-

sures, regridding)

Plot types Settings in cfg-file Comments

Sect. 4.1: Detection of systematic biases in the physical climate: atmosphere

namelist_perf

metrics_

CMIP5

namelist_righ

i15gmd_ECVs

perfmetrics_main

.ncl

Time averages,

Regional weighted av-

erages,

t test for difference

plots

Annual cycle line

plot, zonal mean

plot, lat–lon map plot

Specific plot type, time aver-

aging (e.g. annual, seasonal

and monthly climatolo-

gies, annual and multi-year

monthly means), region,

target grid, pressure level,

reference model,

difference plot (true/false),

statistical significance level

of t test for difference plot,

multi-model mean/median

The results of the analysis are

saved to a netCDF file for

each model to be read by perf-

metrics_grading.ncl or perfmet-

rics_taylor.ncl.

perfmetrics_grad

ing.ncl

Grading metric,

normalization

No plot Time averaging, region, pres-

sure level, reference model,

type of metric for grading

models (RMSE, bias)

type of normalization (mean,

median, centered median)

For tractability the filename

for every diagnostic is written

into a temporary file, which

then is read by the perfmetrics

_XXX_collect.ncl scripts.

Additional metric and normal-

ization methods can be added.

perfmetrics_tay

lor.ncl

Taylor metrics No plot Time averaging, region, pres-

sure level, reference model

perfmetrics_grad

ing_collect.ncl

Collection of model

grades from pre-

calculated netCDF

files

Portrait diagram If individual models did not

provide output for all variables

or are compared to a differ-

ent number of observations, the

code will recognize this and re-

turn a blank array entry, produc-

ing a white box in the portrait

diagram; produces Fig. 9.7 in-

cluded in namelist_flato13ipcc

perfmetrics_tay

lor_collect.ncl

Collection of model

grades from precalcu-

lated netCDF files

Taylor diagram

namelist_

flato13ipcc

clouds_ipcc.ncl Multi-model means,

linear regridding to the

grid of the reference

data set

Zonal mean plots,

global map

Map projection (Cylindri-

calEquidistant, Mercator,

Mollweide), selection of

target grid, time mean (an-

nualclim, seasonal-clim),

reference data set

Produces Fig. 9.5 of

Flato et al. (2013) with

namelist_flato13ipcc

clouds_bias.ncl Multi-model means,

linear regridding to the

grid of the reference

data set

Global map map projection (CylindricalE-

quidistant, Mercator, Moll-

weide), selection of target

grid, time mean (annualclim,

seasonal-clim), reference data

set

Produces Figs. 9.2 and 9.4

of Flato et al. (2013) with

namelist_flato13ipcc
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Table 2. Continued.

xml namelist Diagnostics

included

Specific calculations

(e.g. statistical mea-

sures, regridding)

Plot types Settings in cfg-file Comments

namelist_SA

Monsoon

SAMonsoon_wind

_basic.ncl

Mean and interannual

standard deviation

Map contour plot, re-

gional mean, RMSE

and spatial correla-

tion are given in plot

titles

Region (latitude, longitude),

season (consecutive month),

contour levels

Zonal and meridional wind

fields are used; mean and stan-

dard deviation (across all years)

for each model. This diagnostic

also plots the difference of the

mean/standard deviation with

respect to a reference data set.

Mean contour plots include

wind vectors.

SAMonsoon_wind

_seasonal.ncl

Climatology, sea-

sonal anomalies and

interannual variability

Annual cycle Region (latitude, longitude),

season (consecutive month),

line colours, multi-model

mean (y/n)

Dynamical indices calculated

from zonal and meridional

wind fields are used. Wind

levels are selected by input

quantity (e.g. ua-200-850 and

va-200-850)

SAMonsoon_precip

_basic.ncl

Mean and interannual

standard deviation

Map contour plot, re-

gional mean, RMSE

and spatial correla-

tion are given in plot

titles

Region (latitude, longitude),

season (consecutive month),

contour levels

Similar to SAMon-

soon_wind_basic.ncl

SAMonsoon_precip

_seasonal.ncl

Climatology, sea-

sonal anomalies and

interannual variability

Annual cycle Region (latitude, longitude),

season (consecutive month),

line colours, multi-model

mean (y/n)

Similar to SAMon-

soon_wind_seasonal.ncl

SAMonsoon_precip

_domain.ncl

Mean and standard de-

viation

Map contour plot Region (latitude, longitude),

season (consecutive month),

contour levels

Domain and intensity defined

using summer and winter

precipitation defined appro-

priately for each hemisphere.

Differences from reference

data set also plotted. Pro-

duces Fig. 9.32 included in

namelist_flato13ipcc

SAMonsoon_tele

connections.ncl

Correlation between

interannual seasonal

mean Nino3.4 SST

time series (5◦ S–

5◦ N, 190–240◦ E)

and precipitation over

monsoon region.

Map contour plot, re-

gional mean, RMSE

and spatial correla-

tion are given in plot

titles

Region (latitude, longitude),

season (consecutive month),

contour levels

pr and ts are used to calculate

teleconnections between precip

and interannual Nino3.4 SSTs.

Differences from reference data

set also plotted.

namelist_SA

Monsoon

_AMIP

SAMonsoon_wind

_IAV.ncl

Mean and standard de-

viation

Time-series line plot Region (latitude, longitude),

season (consecutive month),

multi-model mean (y/n)

Seasonal means of dynami-

cal indices calculated for each

year from zonal and meridional

wind fields are used.

SAMonsoon_precip

_IAV.ncl

Mean and standard de-

viation

Time-series line plot Region (latitude, longitude),

season (consecutive month),

multi-model mean (y/n)

Seasonal means of precipitation

for each year are used.

Note that the scripts in

namelist_SAMonsoon and

namelist_SAMonsoon_daily

can be used for coupled and

atmosphere-only models alike,

but this namelist allows year-to-

year variations to be examined

only for atmosphere-only

simulations forced by observed

SSTs.
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Table 2. Continued.

xml namelist Diagnostics

included

Specific calculations

(e.g. statistical mea-

sures, regridding)

Plot types Settings in cfg-file Comments

namelist_SA

Monsoon_daily

SAMonsoon_precip

_daily.ncl

Standard deviation of

filtered daily precipita-

tion rates for each sea-

son

Map contour plot.

Regional mean,

spatial correlation

and averages for the

Bay of Bengal (10–

20◦N, 80–100◦ E)

and E. eq. Indian

Ocean (10◦ S–10◦ N,

80–10◦ E) are given

in plot titles.

Region (latitude, longitude),

season (consecutive month),

contour levels

Both, actual standard deviations

and standard deviations nor-

malized by a climatology (with

masking for precipitation rates

< 1 mm day−1) are plotted.

SAMonsoon_precip

_propagation.ncl

Regional averages,

lagged correlations,

band-pass filtering of

daily precipitation rates

Hovmöller diagrams:

(lag, lat) and (lag,

lon)

Regions (latitude, longitude),

season (consecutive months),

filter settings

Similar to

namelist_mjo_daily_propagation

but using 30–80 day band-pass

filtering and regions appropri-

ate for SASM.

namelist_

WAMonsoon

WAMonsoon_con

tour_basic.ncl

Mean and standard de-

viation

Map contour plot Region (latitude, longitude),

season (consecutive months),

specific contour levels

Similar to SAMon-

soon_wind_basic.ncl

namelist_WA

Monsoon_

daily

WAMonsoon_wind

_basic.ncl

Mean and standard de-

viation

Map contour and

vector plot

Region (latitude, longitude),

season (consecutive months),

contour levels, reference vec-

tor length

Mean wind contour and vec-

tor plots at selected pressure

level. Similar to SAMon-

soon_wind_basic.ncl

WAMonsoon_

10W10E_1D_basic

.ncl

Zonal average over

10◦W–10◦ E

Latitude line plot Region (latitude), season

(consecutive month)

Only 2 dimensional fields

WAMonsoon_

10W10E_3D_basic

.ncl

Zonal average over

10◦W–10◦ E

Vertical profile (lati-

tude vs. level) con-

tour plot

Region (latitude, pressure

level), season (consecutive

month), contour levels

Only 3-D fields

WAMonsoon_precip

_IAV.ncl

Seasonal anomalies and

interannual variability

Time-series line plot Region (latitude, longitude) Similar to SAMon-

soon_wind_IAV.ncl

WAMonsoon_precip

_seasonal.ncl

Mean annual cycle Time-series line plot Region (latitude, longitude) Similar to SAMon-

soon_wind_seasonal.ncl

WAMonsoon_ au-

tocorr.ncl

1-day autocorrelation

of 1–90d (intrasea-

sonal) anomalies

Map contour plot Region (latitude, longitude),

season (consecutive months),

filtering properties, contour

levels

WAMonsoon_isv

_filtered.ncl

Intraseasonal variance

(time filtering)

Map contour plot Region (latitude, longitude),

season (consecutive months),

filtering properties, contour

levels

namelist_CVDP cvdp_atmos.ncl Renaming climo files to

CVDP naming conven-

tion, generates CVDP

namelist with all mod-

els

No plot Needed for the CVDP coupling

to the ESMValTool.

cvdp_ocean.ncl Renaming climo files to

CVDP naming conven-

tion

No plot

cvdp_obs.ncl Generates CVDP

namelist with all

observations

No plot Reference model(s) for each

variable

Needed for the CVDP coupling

to the ESMValTool.

cvdp_driver.ncl Calls the CVDP No plot Needed for the CVDP coupling

to the ESMValTool. Flexible

implementation for easy update

processes; results of the analy-

sis are saved in netCDF files for

each model/observation.
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Table 2. Continued.

xml namelist Diagnostics

included

Specific calculations

(e.g. statistical mea-

sures, regridding)

Plot types Settings in cfg-file Comments

amo.ncl Area-weighted average,

linear regression, spec-

tral analysis, regridding

for area-weighted

pattern correlation and

RMS difference

Lat–lon contour

plots, time series,

spectral plots

Original CVDP diagnostic

amoc.ncl Mean, standard devia-

tion, EOF, linear regres-

sion, lag correlations,

spectral analysis

Pattern plots, spectral

plots, time series

Original CVDP diagnostic

pdo.ncl EOF, linear regression,

spectral analysis

Lat–lon contour

plots, time series,

spectral plots

Original CVDP diagnostic

pr.mean_stddev.ncl Global means, standard

deviation

Lat–lon contour plots Original CVDP diagnostic

pr.trends_timeser

ies.ncl

Global trends Lat–lon contour

plots, time series

Original CVDP diagnostic

psl.mean_stddev

.ncl

Global means, standard

deviation

Lat–lon contour plots Original CVDP diagnostic

psl.modes_indi

ces.ncl

EOF, linear regression Lat–lon contour

plots, time series

Original CVDP diagnostic

psl.trends.ncl Global trends Lat–lon contour plots Original CVDP diagnostic

snd.trends.ncl Global trends Lat–lon contour plots Original CVDP diagnostic

sst.indices.ncl Area-weighted aver-

age, standard deviation,

spectral analysis

Spatial composites,

Hovmöller diagram,

time series, spectral

plots

Original CVDP diagnostic

sst.mean_stddev

.ncl

Global means, standard

deviation

Lat–lon contour plots Original CVDP diagnostic

sst.trends_timeser

ies.ncl

Global trends Lat–lon contour

plots, time series

Original CVDP diagnostic

tas.mean_stddev

.ncl

Global means, standard

deviation

Lat–lon contour plots Original CVDP diagnostic

tas.trends_timeser

ies.ncl

Global trends Lat–lon contour

plots, time series

Original CVDP diagnostic

metrics.ncl Collect all area-

weighted pattern

correlations and RMS

differences created by

the various scripts,

calculates total score

txt-file Original CVDP diagnostic

webpage.ncl Creates webpages to

display CVDP results

.html files Original CVDP diagnostic

namelist_mjo

_daily

mjo_wave_freq.ncl Meridional averaged

over 10◦ S–10◦ N,

wavenumber frequency

Wavenumber-

frequency contour

plot

Season (summer, winter),

daily max/min, region (lati-

tude)

mjo_univariate

_eof.ncl

Conventional (covari-

ance) univariate EOF

analysis

Lat–lon contour plot Region (latitude, longitude),

number and name of EOF

modes, contour levels

EOF for 20–100-day band-pass

filtered daily anomaly data

mjo_precip_u850-

200_propagation.ncl

Correlation, zonal av-

erage over 80–100◦ E,

meridional average

over 10◦ S–10◦ N,

reference region over

75–100◦ E, 10◦ S–5◦ N

Lag-longitude and

lag-latitude diagram

Season(summer, winter, an-

nual), region(latitude, longi-

tude)

Lead/lag correlation of two

variables with daily time reso-

lution

mjo_precip_uwnd

_variance.ncl

Variance Lat–lon contour plot Season (summer, winter),

region (latitude, longitude),

contour levels

20–100-day bandpass filtered

variance for two variables with

daily time resolution
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Table 2. Continued.

xml namelist Diagnostics

included

Specific calculations

(e.g. statistical mea-

sures, regridding)

Plot types Settings in cfg-file Comments

mjo_olr_u850-

200_cross_spectra

.ncl

Coherence squared and

phase lag

Wavenumber-

frequency contour

plot

Region (latitude), segments

length and overlapped seg-

ments length, spectra type

Missing values are not allowed

in the input data.

mjo_olr_u850_200

_ceof.ncl

CEOF Line plot Region (latitude), number and

names of CEOF modes, y axis

limit

the first two CEOF modes (PC1

and PC2) are retained for the

MJO composite life cycle anal-

ysis

mjo_olr_uv850

_ceof_life_cycle.ncl

Calculate mean value

for each phase category

Lat–lon contour plot Season (summer, winter), re-

gion (latitude, longitude)

The appropriate MJO phase cat-

egories are derived from PC1

and PC2 of CEOF analysis

namelist_mjo

_mean_state

mjo_precip_u850_

basic.ncl

Season mean Lat–lon contour plot Season (summer, winter), re-

gion (latitude, longitude)

Based on monthly data

namelist_Diur

nalCycle

Mean diurnal cycle

computation, regrid-

ding of observations

and models over a

specific grid and first

harmonic analysis to

derive amplitude and

phase of maximum

rainfall

Composites of diur-

nal cycles over spe-

cific regions and sea-

sons, global maps of

maximum precipita-

tion phase and ampli-

tude

A prerequisite to use this

namelist is to check the time

axis of high-frequency data

from models and observations

to be sure of what is provided.

One should check in particular

whether it is instantaneous or

averaged values, and whether

the time provided corresponds

to the middle or the end of the

3 h interval. Note that the time

axis is modified in the namelist

to make data coherent.

namelist_lau

er13jclim

clouds.ncl Multi-model mean Lat–lon contour plot map projection (CylindricalE-

quidistant, Mercator, Moll-

weide), destination grid

Produces Fig. 9.5 included in

namelist_flato13ipcc

clouds_taylor.ncl Multi-model mean Taylor diagram

clouds_interan

nual.ncl

Interannual variability,

multi-model mean

Lat–lon contour plot Map projection (Cylindri-

calEquidistant, Mercator,

Mollweide), destination grid,

reference data sets

namelist_will

iams09climdyn

_CREM

ww09_ESMValTool

.py

Model data assigned to

observed cloud regimes

and regime frequency

and mean radiative

properties calculated.

Bar graph

Sect. 4.2: detection of systematic biases in the physical climate: ocean

namelist_South

ernOcean

SeaIce_polcon.ncl Polar stereographic

maps

contour values

SeaIce_polcon_

diff.ncl

Regridding (ESMF) Polar stereographic

maps

contour values, reference

model

SouthernOcean_

vector_polcon_

diff.ncl

Vector overlay (magni-

tude and direction)

Polar stereographic

maps

contour plot scales, reference

model

based on SeaIce_polcon

_diff.ncl, variables with u and

v components

SouthernOcean_

areamean_ vertcon-

plot.ncl

Regridding (ESMF) Zonal mean vertical

profiles (Hovmöller

diagrams)

coordinates of subdomain based on CDFTOOLS package

SouthernOcean_

transport.ncl

Seawater volume trans-

port calculation

Line plot coordinates of subdomain

namelist_South

ernHemisphere

SouthernHemis

phere.py

Regridding (interpola-

tion to common grid),

Temporal and zonal av-

erages, RMSEs

Seasonal cycle line

plot with calculated

RMSEs and zonal

mean contour plot

Masking of unwanted values

(limits), region (coordinates)

and season (months) specifi-

cation, plotting limits, contour

colourmap

SouthernHemis

phere_scatter.py

Covariability of radia-

tion fluxes as function

of cloud metrics

Scatterplot of values

with line plot of

value distribution
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Table 2. Continued.

xml namelist Diagnostics

included

Specific calculations

(e.g. statistical mea-

sures, regridding)

Plot types Settings in cfg-file Comments

namelist_Trop

icalVariability

TropicalVariability

.py

Temporal and zonal av-

erages, RMSEs, nor-

malization, covariabil-

ity

Annual cycles, sea-

sonal scatterplots

with calculated

RMSEs

Masking of unwanted values

(limits),

Region (coordinates) and sea-

son (months), plotting limits

Fig. 5 of Li and Xie (2014)

TropicalVariability

_EQ.py

Temporal and zonal av-

erages, RMSEs, nor-

malization, covariabil-

ity

Latitude cross sec-

tions of equatorial

variables

TropicalVariability

_wind.py

Regridding (interpola-

tion)

Wind divergence

plots

namelist_SeaIce SeaIce_tsline.ncl Sea ice area and extent,

regridding (ESMF)

Time series Selection of Arctic/Antarctic, Produces Fig. 9.24 included in

namelist_flato13ipcc

SeaIce_ancyc.ncl Sea ice area and extent,

regridding (ESMF)

Annual cycle line

plot

Selection of Arctic/Antarctic

SeaIce_polcon.ncl Sea ice area and extent,

regridding (ESMF)

Polar stereographic

maps

Selection of Arctic/Antarctic,

optional red line depicting

edges of sea ice extent

SeaIce_polcon

_diff.ncl

Sea ice area and extent,

regridding (ESMF)

Polar stereographic

maps

Selection of Arctic/Antarctic,

optional red line depicting

edges of sea ice extent

Sect. 4.3: detection of systematic biases in the physical climate: land

namelist_Eva

potranspiration

Evapotranspiration

.ncl

Conversion to evap-

otranspiration units,

global average, RMSE

Lat–lon contour plot Time period

namelist_SPI SPI.r SPI calculation Lat–lon contour plot Time period, timescale (3-, 6-

or 12-monthly)

May require manual installation

of certain R-packages to run

namelist_run

off_et

catchment_analysis

_val.py

Temporal and spatial

mean for 12 large river

catchments,

regridding to 0.5× 0.5

lat–lon grid

Bar plots of evap-

otranspiration and

runoff bias against

observation, scatter-

plots of runoff bias

against the biases of

evapotranspiration

precipitation

(no cfg. file) Three variables are read by this

diagnostic.

Sect. 4.4: detection of biogeochemical biases: carbon cycle

namelist_anav

13jclim

Anav_MVI_IAV_

Trend_Plot.ncl

Regridding to common

grid, monthly and an-

nual special averages,

variability (MVI =

(model/reference −

reference/model) 2)

Scatterplot Region (latitude), resolution

size for regridding (e.g. 0.5, 1,

2◦)

All carbon flux variables were

corrected for the exact amount

of carbon in the coastal regions

by applying the models land–

ocean fraction to the variables.

Anav_Mean_IAV_

Error-

Bars_Seasonal

_cycle_plots.ncl

Regridding to common

grid

Monthly and annual

special averages

Seasonal cycle line

plot, scatterplot,

error-bar plot

Region (latitude), resolution

size for regridding (e.g. 0.5, 1,

2◦)

Anav_cSoil-

cVeg_Scatter.ncl

Regridding to common

grid

annual special averages

Scatterplot Region (latitude), resolution

size for regridding (e.g. 0.5, 1,

2◦)

Two variables are read by this

diagnostic

perfmetrics_grad

ing.ncl

RMSE, PDF-skill score No plot See details in namelist_

perfmetrics_CMIP5

perfmetrics_grad

ing_collect.ncl

Portrait diagram See details in namelist_

perfmetrics_CMIP5
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Table 2. Continued.

xml namelist Diagnostics

included

Specific Calcula-

tions (e.g. statistical

measures, regridding)

Plot Types Settings in cfg-file Comments

namelist_Glob

alOcean

GO_tsline.ncl Multi-model mean Time-series line plot Region (lat/lon), pressure

levels, optional smoothing,

anomaly calculations, over-

laid trend lines, and masking

of model data according to

observations

GO_comp_map.ncl Mean, standard devia-

tion, and difference to

reference model

Lat–lon contour plot

(for specified z level)

Region (Lat/lon), ocean

depth, contour levels

Actual metrics ported from UK

MetOffice IDL-monsoon evalu-

ation scripts

Sect. 4.5: detection of biogeochemical biases: chemistry and aerosols

namelist_aerosol

_CMIP5

aerosol_stations.ncl Collocation of model

and observational data

Time series, scatter-

plot, map plot

Time averaging, station data

network

All available observational data

in the selected time period, on

a monthly mean basis, are con-

sidered. The model data are ex-

tracted in the grid boxes where

the respective observational sta-

tions are located (collocated

model and observational data).

aerosol_satellite.ncl Regridding to coarsest

grid

Map plots and differ-

ence plots

Target grid

aerosol_profiles.ncl Mean, standard devia-

tion, median, 5–10–25–

75–90–95 percentiles

Vertical profiles The model data are extracted

based on the campaign/station

location (lat–lon box) and time

period (on a climatological ba-

sis, i.e. selecting the same

days/months, but regardless of

the year).

Rather specific variables are re-

quired (i.e. aerosol number con-

centration for particles with di-

ameter larger than 14 nm) to

match the properties of the in-

struments used during the cam-

paign.

tsline.ncl Line plot Time averaging (annual, sea-

sonal and monthly climatolo-

gies, annual and multi-year

monthly means), region (lati-

tude, longitude)

namelist_righ

i15gmd_tropo3

ancyc_lat.ncl Regridding to coarsest

grid

global (area-weighted)

average,

zonal mean

Seasonal Hovmöller

(month vs. latitude)

global (area-weighted) average

is calculated only for grid

cells with available observa-

tional data

lat_lon.ncl Regridding to coarsest

grid

global (area-weighted)

average

global (area-weighted) average

is calculated only for grid

cells with available observa-

tional data

perfmetrics_main

.ncl

Annual cycle line

plot, zonal mean

plot, lat–lon map plot

See details in namelist_

perfmetrics_CMIP5

perfmetrics_grad

ing.ncl

No plot See details in namelist_

perfmetrics_CMIP5

perfmetrics_taylor

.ncl

No plot See details in namelist_

perfmetrics_CMIP5

perfmetrics_grad

ing_collect.ncl

Portrait diagram See details in namelist_

perfmetrics_CMIP5

perfmetrics_taylor

_collect.ncl

Taylor diagram See details in namelist_

perfmetrics_CMIP5
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Table 2. Continued.

xml namelist Diagnostics

included

Specific calculations

(e.g. statistical mea-

sures, regridding)

Plot types Settings in cfg-file Comments

namelist_righ

i15gmd_Emmons

Emmons.ncl Percentiles (5, 25, 75,

95) %

Vertical profiles Name(s) of the observational

campaign(s)

namelist_eyr

ing13jgr

ancyc_lat.ncl Seasonal Hovmöller

(month vs. latitude)

See details in

namelist_righi15gmd_tropo3

eyring13jgr_fig01.ncl Seasonal Hovmöller

(month vs. latitude)

Multi-model mean

(true/false), regions (latitude,

longitude), time averaging

(annual, individual month,

seasons)

eyring13jgr_fig02.ncl Time series Multi-model mean

(true/false), regions (latitude,

longitude), time averaging

(annual, individual month,

seasons)

Produces Fig. 9.10 of Flato

et al. (2013) included in

namelist_flato13ipcc

eyring13jgr_fig04.nxl Tropospheric column

ozone

Global maps

eyring13jgr_fig06.ncl Anomalies with respect

to a specifiable base

line, mean and standard

deviation (95 % confi-

dence) for simulation

experiment

Time series Multi-model mean

(true/false), regions (latitude,

longitude), time averaging

(annual, individual month,

seasons)

eyring13jgr_fig07.ncl Mean simulation exper-

iments, differences be-

tween future scenario

simulations and histori-

cal simulations

Vertical profile Multi-model mean

(true/false), regions (latitude,

longitude), time averaging

(annual, individual month,

seasons), list of models w/o

interactive chemistry

eyring13jgr_fig10.ncl Time averages, linear

trends

Error bar plot Multi-model mean

(true/false), regions (lati-

tude, longitude), height (in

km), time averaging (annual,

individual month, seasons)

eyring13jgr_fig11.ncl Correlations and corre-

lation coefficient

Scatterplot Multi-model mean

(true/false), regions (latitude,

longitude), time averaging

(annual, individual month,

seasons)

Two quantities are compared to

each other for individual mod-

els and simulations at once.

Simulations are indicated by

different marker types.

Sect. 4.6: linking model performance to projections

namelist_wen

zel14jgr

tsline.ncl Cosine weighting for

latitude averaging,

anomaly with respect

to first 10 years

Line plot Multi-model mean

(true/false), anomaly

(true/false),

regions (latitude, longitude),

time averaging (annual,

individual month, seasons)

carbon_corr_2vars

.ncl

Linear regression Scatterplot and cor-

relation coefficient

Exclude 2 years after volcanic

eruptions (true/false: Mount

Agung, 1963; El Chichon,

1982; and Mount Pinatubo,

1991)

Two variables are read.

The gradient of the linear re-

gression and the prediction er-

ror of the fit, giving γIAV, are

saved in an external netCDF

file to be read by the car-

bon_constraint.ncl script.

carbon_constraint

.ncl

γLT =
1nbpc

−1nbpu

1tasc

“c” coupled simulation

“u” biochemically cou-

pled simulation

Gaussian-normal PDF

Conditional PDF

Scatterplot and cor-

relation coefficient

Time period, region (latitude) Three variables are read.

(1) γLT is diagnosed from the

models (2) the previously saved

netCDF files containing γIAV

values are read and correlated

to γLT (3) normal and condi-

tional PDFs for the pure model

ensemble and the constraint

γLT values are calculated

Produces Fig. 9.45 included in

namelist_flato13ipcc
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Figure 2. Relative space–time root-mean square error (RMSE) calculated from the 1980–2005 climatological seasonal cycle of the CMIP5

historical simulations. A relative performance is displayed, with blue shading indicating performance being better and red shading worse

than the median of all model results. A diagonal split of a grid square shows the relative error with respect to the reference data set (lower

right triangle) and the alternate data set (upper left triangle). White boxes are used when data are not available for the given model and

variable or no alternate data set has been used. The figure shows that performance varies across CMIP5 models and variables, with some

models comparing better with observations for one variable and another model performing better for a different variable. Except for global

average temperatures at 200 hPa where most but not all models have a systematic bias, the multi-model mean outperforms any individual

model. Similar to Gleckler et al. (2008) and Fig. 9.7 of Flato et al. (2013) produced with namelist_perfmetrics_CMIP5.xml.

tions, the plot type, settings in the configuration file (cfg-file),

and comments.

4.1 Detection of systematic biases in the physical

climate: atmosphere

4.1.1 Quantitative performance metrics for

atmospheric ECVs

A starting point for the calculation of performance metrics is

to assess the representation of simulated climatological mean

states and the seasonal cycle for essential climate variables

(ECVs, GCOS, 2010). This is supported by a large observa-

tional effort to deliver long-term, high-quality observations

from different platforms and instruments (e.g. obs4MIPs and

the ESA Climate Change Initiative (CCI, http://cci.esa.int/))

and ongoing efforts to improve global reanalysis products

(e.g. ana4MIPs).

Following Gleckler et al. (2008) and similar to Fig. 9.7

of Flato et al. (2013), a namelist has been imple-

mented in the ESMValTool that produces a “portrait di-

agram” by calculating the relative space–time root-mean

square error (RMSE) from the climatological mean sea-

sonal cycle of historical simulations for selected variables

[namelist_perfmetrics_CMIP5.xml]. In Fig. 2 the relative

space–time RMSE for the CMIP5 historical simulations

(1980–2005) against a reference observation and, where

available, an alternative observational data set, is shown.

The overall mean bias can additionally be calculated and

adding other statistical metrics is straightforward. Different

normalizations (mean, median, centered median) can be cho-

sen and the multi-model mean/median can also be added.

In order to calculate the RMSE, the data are regridded to

a common grid using a bilinear interpolation method. The

user can select which grid to use as a target grid. The re-

sults shown in this section have been obtained after regrid-

ding the data to the grid of the reference data set. With

this namelist it is also possible to perform more in-depth

analyses of the ECVs, by calculating seasonal cycles, Tay-

lor diagrams (Taylor, 2001), zonally averaged vertical pro-

files, and latitude–longitude maps. In the latter two cases, it

is also possible to produce difference plots between a given

model and a reference (usually the observational data set)

or between two versions of the same model, and to apply

a statistical test to highlight significant differences. As an

example, Fig. 3 (left panel) shows the zonal profile of sea-

sonal mean temperature differences between the MPI-ESM-

LR model (Giorgetta et al., 2013) and ERA-Interim reanal-

ysis (Dee et al., 2011), and Fig. 3 (right panel) a Taylor di-

agram for temperature at 850 hPa for CMIP5 models com-

pared to ERA-Interim. A similar analysis can be performed

Geosci. Model Dev., 9, 1747–1802, 2016 www.geosci-model-dev.net/9/1747/2016/
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with namelist_righi15gmd_ECVs.xml, which reproduces the

ECV plots of Righi et al. (2015) for a set of EMAC simula-

tions.

Tested variables in ESMValTool (v1.0) that are shown

in Fig. 2 are selected levels of temperature (ta), eastward

(ua) and northward wind (va), geopotential height (zg), and

specific humidity (hus), as well as near-surface air temper-

ature (tas), precipitation (pr), all-sky longwave (rlut) and

shortwave (rsut) radiation, longwave (LW_CRE) and short-

wave (SW_CRE) cloud radiative effects, and aerosol optical

depth (AOD) at 550 nm (od550aer). The models are eval-

uated against a wide range of observations and reanalysis

data: ERA-Interim and NCEP (Kistler et al., 2001) for tem-

perature, winds, and geopotential height, AIRS (Aumann et

al., 2003) for specific humidity, CERES-EBAF for radiation

(Wielicki et al., 1996), the Global Precipitation Climatology

Project (GPCP, Adler et al., 2003) for precipitation, the Mod-

erate Resolution Imaging Spectrometer (MODIS, Shi et al.,

2011), and the ESA CCI aerosol data (Kinne et al., 2015) for

AOD. Additional observations or reanalyses can be provided

by the user for these variables and easily added. The tool

can also be applied to additional variables if the required ob-

servations are made available in an ESMValTool compatible

format (see Sect. 2 and Supplement).

4.1.2 Multi-model mean bias for temperature and

precipitation

Near-surface air temperature (tas) and precipitation (pr) are

the two variables most commonly requested by users of ESM

simulations. Often, diagnostics for tas and pr are shown for

the multi-model mean of an ensemble. Both of these vari-

ables are the end result of numerous interacting processes

in the models, making it challenging to understand and im-

prove biases in these quantities. For example, near surface

air temperature biases depend on the models’ representation

of radiation, convection, clouds, land characteristics, surface

fluxes, as well as atmospheric circulation and turbulent trans-

port (Flato et al., 2013), each with their own potential biases

that may either augment or oppose one another.

The namelist_flato13ipcc.xml reproduces a subset of the

figures from the climate model evaluation chapter of IPCC

AR5 (Chapter 9, Flato et al., 2013). This namelist will be

further developed and a more complete version included

in future releases. The diagnostic that calculates the multi-

model mean bias compared to a reference data set is part of

this namelist and reproduces Figs. 9.2 and 9.4 of Flato et

al. (2013). Figure 4 shows the CMIP5 multi-model average

as absolute values and as biases relative to ERA-Interim and

the GPCP data for the annual mean surface air temperature

and precipitation, respectively. Model output is regridded us-

ing bilinear interpolation to the reanalysis or observational

grid by default, but alternative options that can be set in the

cfg-file include regridding of the data to the lowest or high-

est resolution grid in the entire input data set. Such figures

can also be produced for individual seasons as well as for

a single model simulation or other 2-D variables if suitable

observations are provided.

4.1.3 Monsoon

Monsoon systems represent the dominant seasonal climate

variation in the tropics, with profound socio-economic im-

pacts. Current ESMs still struggle to capture the major fea-

tures of both the South Asian summer monsoon (SASM,

Sect. “South Asian summer monsoon (SASM)”) and the

West African monsoon (WAM, Sect. “West African Mon-

soon Diagnostics”). Sperber et al. (2013) and Roehrig et

al. (2013) provide comprehensive assessments of the ability

of CMIP5 models to represent these two monsoon systems.

By implementing diagnostics from these two studies into ES-

MValTool (v1.0), we aim to facilitate continuous monitoring

of progress in simulating the SASM and WAM systems in

ESMs.

South Asian summer monsoon (SASM)

While individual models vary in their simulations of the

SASM, there are known biases in ESMs that span a range

of temporal and spatial scales. The namelists in the ESM-

ValTool are targeted toward analysing these biases in a sys-

tematic way. Climatological mean biases include excess pre-

cipitation over the equatorial Indian Ocean, too little pre-

cipitation over the Indian subcontinent, and excess precip-

itation over orography such as the southern slopes of the

Himalayas (Annamalai et al., 2007; Bollasina and Nigam,

2009; Sperber et al., 2013); see also Fig. 4. The monsoon

onset is typically too late in the models, and the boreal sum-

mer intraseasonal oscillation (BSISO), which has a partic-

ularly large socio-economic impact in South Asia, is often

weak or not present (Sabeerali et al., 2013). Monsoon low-

pressure systems, which generate many of the most intense

rain events during the monsoon (Krishnamurthy and Misra,

2011), are often too infrequent and weak (Stowasser et al.,

2009). In coupled models, biases in SSTs, evaporation, pre-

cipitation, and air–sea coupling are common (Bollasina and

Nigam, 2009) and have been shown to affect both present-

day simulations and future projections (Levine et al., 2013).

Interannual teleconnections with El Niño-Southern Oscilla-

tion (ENSO, Lin et al., 2008) and the Indian Ocean Dipole

(Ashok et al., 2004; Cherchi and Navarra, 2013) are also not

well captured (Turner et al., 2005).

Three SASM namelists for the basic climatology, seasonal

cycle, intraseasonal and interannual variability, and key

teleconnections have been implemented in the ESMVal-

Tool focusing on SASM rainfall and horizontal winds

in June–September (JJAS) [namelist_SAMonsoon.xml,

namelist_SAMonsoon_AMIP.xml,

namelist_SAMonsoon_daily.xml]. Rainfall and wind cli-

matologies, including their pattern correlations and RMSE

www.geosci-model-dev.net/9/1747/2016/ Geosci. Model Dev., 9, 1747–1802, 2016
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Figure 3. Left panel: Zonally averaged temperature profile difference between MPI-ESM-LR and the ERA-Interim reanalysis data with

masked non-significant values. MPI-ESM-LR has generally small biases in the troposphere (< 1–2 K), but a cold bias in the tropopause region

that is particularly strong in the extratropical lower stratosphere. This is a systematic bias present in many of the CMIP3 and CCMVal models

(IPCC, 2007; SPARC-CCMVal, 2010), related to an overestimation of the water vapour concentrations in that region. Right panel: Taylor

diagram for temperature at 850 hPa from CMIP5 models compared with ERA-Interim (reference observation-based data set) and NCEP

(alternate observation-based data set) showing a very high correlation of R> 0.98 with the reanalyses demonstrating very good performance

in this quantity. Both figures produced with namelist_perfmetrics_CMIP5.xml.

against observations, are similar to the metrics proposed

by the Climate Variability and Predictability (CLIVAR)

Asian–Australian Monsoon Panel (AAMP) Diagnostics

Task Team and used by Sperber et al. (2013). Diagnostics

for determining global monsoon domains and intensity

follow the definition of Wang et al. (2012) where the global

precipitation intensity is calculated from the difference

between the hemispheric summer (May–September in the

Northern Hemisphere, November–March in the Southern

Hemisphere) and winter (vice versa) mean values, and the

global monsoon domain is defined by those areas where

the precipitation intensity exceeds 2.0 mm day−1 and the

summer precipitation is > 0.55× the annual precipitation

(Fig. 5). Seasonal cycle diagnostics include monthly rainfall

over the Indian region (5–30◦ N, 65–95◦ E) and dynamical

indices based on wind shear (Goswami et al., 1999; Wang

and Fan, 1999; Webster and Yang, 1992). Figure 6 shows

examples of the seasonal cycle of area-averaged Indian

rainfall from selected CMIP5 models and their AMIP

counterparts. The namelists include diagnostics to calculate

maps of interannual standard deviation of JJAS rainfall and

horizontal winds at 850 and 200 hPa, and maps of telecon-

nection diagnostics between Nino3.4 SSTs (defined by the

region 190–240◦ E, 5◦ S to 5◦ N) and JJAS precipitation

across the monsoon region (30◦ S to 30◦ N, 40–300◦ E)

following Sperber et al. (2013). To generate difference

maps, data are first regridded using an area-conservative

binning and using the lowest-resolution grid as a target. For

atmosphere-only models, we also evaluate their ability to

represent year-to-year monsoon variability directly against

time-equivalent observations to check whether models, given

correct interannual SST forcing, can reproduce observed

year-to-year variations and significant events occurring in

particular years. This evaluation is done by plotting the

time series across specified years of standardized anomalies

(normalized by climatology) of JJAS-averaged dynamical

indices and area-averaged JJAS precipitation over the Indian

region (defined above) for both the models and observations.

Namelists for intraseasonal variability include maps of

standard deviation of 30–50-day filtered daily rainfall, with

area-averaged values for key regions including the Bay of

Bengal (10–20◦ N, 80–100◦ E) and the eastern equatorial

Indian Ocean (10◦S–10◦ N, 80–100◦E) given in the plot

titles. To illustrate the northward and eastward propagation

of the BSISO, Hovmöller lag-longitude and lag-latitude dia-

grams show either the latitude-averaged (10◦ S–10◦ N) and

plotted for 60–160◦ E, or longitude-averaged (80–100◦ E)

and plotted for 10◦ S–30◦ N, anomalies of 30–80-day

filtered daily rainfall correlated against intraseasonal

precipitation at the Indian Ocean reference point (75–

100◦ E, 10◦ S–5◦ N). These use a slightly modified (for

season, region, and filtering band) version of the existing

Geosci. Model Dev., 9, 1747–1802, 2016 www.geosci-model-dev.net/9/1747/2016/
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Figure 4. Annual-mean surface air temperature (upper row) and precipitation rate (mm day−1, lower row) for the period 1980–2005. The left

panels show the multi-model mean and the right panels the bias as the difference between the CMIP5 multi-model mean and the climatology

from ERA-Interim (Dee et al., 2011) and the Global Precipitation Climatology Project (Adler et al., 2003) for surface air temperature and

precipitation rate, respectively. The multi-model mean near-surface temperature agrees with ERA-Interim mostly within ±2 ◦C. Larger

biases can be seen in regions with sharp gradients in temperature, for example in areas with high topography such as the Himalaya, the sea

ice edge in the North Atlantic, and over the coastal upwelling regions in the subtropical oceans. Biases in the simulated multi-model mean

precipitation include too low precipitation along the Equator in the western Pacific and too high precipitation amounts in the tropics south of

the Equator. Similar to Figs. 9.2 and 9.4 of Flato et al. (2013) and produced with namelist_flato13ipcc.xml.

Madden–Julian Oscillation (MJO) NCL scripts, available

at https://www.ncl.ucar.edu/Applications/mjoclivar.shtml,

that are based on the recommendations from the US CLI-

VAR MJO Working Group (Waliser et al., 2009) and are

similar to those shown in Lin et al. (2008) and used in

Sect. “Madden–Julian Oscillation (MJO)” for the MJO.

Tested variables in ESMValTool (v1.0), some of which are

illustrated in Figs. 5 and 6, include precipitation (pr), east-

ward (ua) and northward wind (va) at various levels, and

skin temperature (ts). The primary reference data sets are

ERA-Interim for horizontal winds, Tropical Rainfall Mea-

suring Mission 3B43 version 7 (TRMM-3B43-v7; Huffman

et al., 2007, for rainfall and HadISST, Rayner et al., 2003, for

SST), although the models are evaluated against a wide range

of other observational precipitation data sets (see Table 1)

and an alternate reanalysis data set: the Modern-Era Retro-

spective Analysis for Research and Applications (MERRA;

Rienecker et al., 2011).

West African monsoon diagnostics

West Africa and the Sahel are highly dependent on sea-

sonal rainfall associated with the WAM. Rainfall in the re-

gion exhibits strong inter-decadal variability (Nicholson et

al., 2000), with major socio-economic impacts (Held et al.,

2005). Projecting the future response of the WAM to in-

creasing concentrations of greenhouse gases (GHG) is there-

fore of critical importance, as is the ability to make depend-

able forecasts of the WAM evolution on monthly to seasonal

timescales. Current ESMs exhibit biases in their representa-

tion of both the mean state (Cook and Vizy, 2006; Roehrig

et al., 2013) and temporal variability (Biasutti, 2013) of the

WAM. Such biases can affect the skill of monthly to seasonal

predictions of the WAM as well as long-term future projec-

tions. CMIP5 coupled models often exhibit warm SST biases

in the equatorial Atlantic, which induce a southward shift of

the WAM in summer (Richter et al., 2014). Because of the

zonal symmetry, the 10◦W–10◦ E meridional transect of any

geophysical variable (see below) is particularly informative

with respect to the main features of the WAM and their rep-

resentation in climate models (Redelsperger et al., 2006). For

instance, the JJAS-averaged Sahel rainfall has a large inter-

model spread, with biases ranging from ±50 % of the ob-

served value (Cook and Vizy, 2006; Roehrig et al., 2013).

Differences in simulated surface air temperatures are large

over the Sahel and Sahara, with deficiencies in the Saharan

www.geosci-model-dev.net/9/1747/2016/ Geosci. Model Dev., 9, 1747–1802, 2016
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Figure 5. Monsoon precipitation intensity (upper panels) and monsoon precipitation domain (lower panels) for TRMM and an example

of deviations from observations from three CMIP5 models (EC-Earth, HadGEM2-ES, and GFDL-ESM2M). The models have difficulties

representing the eastward extent of the monsoon domain over the South China Sea and western Pacific, and several models (e.g. HadGEM2-

ES) underestimate the latitudinal extent of most of the monsoon regions. The monsoon precipitation intensity tends to be underestimated in

the South Asian, East Asian and Australian monsoon regions, while in the African and American monsoon regions the sign of the intensity

bias varies between models. Similar to Fig. 9.32 of Flato et al. (2013) and produced with namelist_SAMonsoon.xml.

heat low inducing feedback errors on the WAM structure.

Here, a correct simulation of the surface energy balance is

critical, where biases related to the representation of clouds,

aerosols, and surface albedo (Roehrig et al., 2013). The sea-

sonal cycle also shows large inter-model spread, pointing to

deficiencies in the representation of key processes important

for the seasonal dynamics of the WAM. Daily precipitation

is highly intermittent over the Sahel, mainly caused by a few

intense mesoscale convective systems during the monsoon

season (Mathon et al., 2002). Intense mesoscale convective

systems over Africa as well as the diurnal cycle of the WAM

are still a challenge for most climate models (Roehrig et al.,

2013). Improving the quality of the WAM in climate models

is therefore urgently needed.

To evaluate key aspects of the WAM, two

namelists have been implemented in the ESM-

ValTool (v1.0): namelist_WAMonsoon.xml and

namelist_WAMonsoon_daily.xml. These include maps

and meridional transects (averages over 10◦W to 10◦ E)

that provide a climatological picture of the summer (JJAS)

WAM structure: (i) precipitation (pr) for the mean position

of the WAM, (ii) near-surface air temperature (tas) for

biases in the Atlantic cold tongue and the Saharan heat low,

(iii) horizontal winds (ua, va) for the mean position and

intensity of the monsoon flow at 925 hPa and of the mid-

(700 hPa) and upper-level (200 hPa) jets. The surface and

top of the atmosphere (TOA) radiation budgets provide a

picture of the radiative fluxes associated with the WAM.

Figure 7 shows the meridional transect of summer-averaged

Geosci. Model Dev., 9, 1747–1802, 2016 www.geosci-model-dev.net/9/1747/2016/
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Figure 6. Seasonal cycle of monthly rainfall averaged over the In-

dian region (5–30◦ N, 65–95◦ E) for a range of CMIP5 coupled

models (upper panel) and their AMIP counterparts (lower panel),

averaged over available years (models: 1980–2004; observations:

1998–2010). The grey area in each panel indicates the standard de-

viation from the model mean, to indicate the spread between models

(observations/reanalyses are not included in this spread). These il-

lustrate the range of rainfall simulated particularly in AMIP exper-

iments where there is no feedback between precipitation and SST

biases that might moderate the rainfall biases (Bollasina and Ming,

2013; Levine et al., 2013). Some of the CMIP5 coupled models

(e.g. HadGEM2-ES, IPSL-CM5A-MR) show a delayed monsoon

onset that is not apparent in their AMIP configurations. This is re-

lated to cold SST biases in the Arabian Sea which develop dur-

ing boreal winter and spring (Levine et al., 2013). Produced with

namelist_SAMonsoon.xml.

precipitation over West Africa for a range of CMIP5 models

as an example of this namelist. The diagnostic for the mean

seasonal cycle of precipitation is also provided to evaluate

the WAM onset and withdrawal. Finally, a set of diagnostics

for the WAM intraseasonal variability evaluates the ability of

models to capture variability of precipitation on timescales

associated with African easterly waves (3–10 days), the

MJO (25–90 days) and more broadly the WAM intraseasonal

variability (1–90 days). The strong day-to-day intermittency

of precipitation is also diagnosed using maps of 1-day auto-

correlation of intraseasonal precipitation anomalies (Roehrig

et al., 2013). To perform the autocorrelation analysis, data

is first regridded to a common 1◦× 1◦ map using a bilinear

interpolation method, whereas for generating difference

maps the same regridding method as for the SASM diag-

nostics is used (see Sect. “South Asian summer monsoon

(SASM)”). Observations for evaluation are based on the

following data sets: GPCP version 2.2 and Tropical Rainfall

Measuring Mission 3B43 version 7 (TRMM-3B43-v7,

Huffman et al., 2007) precipitation retrievals, Clouds and

Earth’s Radiant Energy Systems (CERES) Energy Balanced

and Filled (EBAF) edition 2.6 radiation estimates (Loeb et

al., 2009), NOAA daily TOA outgoing longwave radiation

(Liebmann and Smith, 1996), and ERA-Interim reanalysis

for the dynamics.

4.1.4 Natural modes of climate variability

NCAR climate variability diagnostics package

Modes of natural climate variability from interannual to

multi-decadal timescales are important as they have large

impacts on the regional and even global climate with at-

tendant socio-economic impacts. Characterization of inter-

nal (i.e. unforced) climate variability is also important for

the detection and attribution of externally forced climate

change signals (Deser et al., 2012, 2014). Internally gener-

ated modes of variability also complicate model evaluation

and intercomparison. As these modes are spontaneously gen-

erated, they do not need to exhibit the same chronological

sequence in models as in nature. However, their statistical

properties (e.g. timescale, autocorrelation, spectral character-

istics, and spatial patterns) are captured to varying degrees of

skill among climate models. Despite their importance, sys-

tematic evaluation of these modes remains a daunting task

given the wide time range to consider, the length of the data

record needed to adequately characterize them, the impor-

tance of sub-surface oceanic processes, and uncertainties in

the observational records (Deser et al., 2010).

In order to assess natural modes of climate variability in

models, the NCAR Climate Variability Diagnostics Package

(CVDP, Phillips et al., 2014) has been implemented into the

ESMValTool. The CVDP has been developed as a standalone

tool. To allow for easy updating of the CVDP once a new

version is released, the structure of the CVDP is kept in its

original form and a single namelist [namelist_CVDP.xml] has

been written to enable the CVDP to be run directly within

ESMValTool. The CVDP facilitates evaluation of the ma-

jor modes of climate variability, including ENSO (Deser et

al., 2010), PDO (Deser et al., 2010; Mantua et al., 1997),

the Atlantic Multi-decadal Oscillation (AMO, Trenberth and

Shea, 2006), the Atlantic Meridional Overturning Circula-

tion (AMOC, Danabasoglu et al., 2012), and atmospheric

teleconnection patterns such as the Northern and Southern

Annular Modes (NAM, Hurrell and Deser, 2009; Thomp-

son and Wallace, 2000, and SAM, Thompson and Wallace,

2000, respectively), North Atlantic Oscillation (NAO, Hur-

rell and Deser, 2009), and Pacific North and South Amer-

ican (PNA and PSA, respectively; Thompson and Wallace,

www.geosci-model-dev.net/9/1747/2016/ Geosci. Model Dev., 9, 1747–1802, 2016
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Figure 7. Precipitation (mm day−1) averaged over 10◦W–10◦ E for the JJAS season for the years 1979–2005 for CMIP5 historical simula-

tions (left) and 1979–2008 for CMIP5 AMIP simulations (right) compared to 1998–2008 for TRMM 3B43 Version 7 data set. The results

illustrate the inter-model spread in the mean position and intensity of the WAM among the CMIP5 models. The spread is slightly reduced in

AMIP simulations, as the warm SST bias in the equatorial Atlantic is removed. The WAM mean structure, however, is not captured by many

models. Produced with namelist_WAMonsoon.xml.

2000) patterns. For details on the actual calculation of these

modes in CVDP we refer to the original CVDP package

and explanations available at http://www2.cesm.ucar.edu/

working-groups/cvcwg/cvdp.

Depending on the climate mode analysed, the CVDP pack-

age uses the following variables: precipitation (pr), sea level

pressure (psl), near-surface air temperature (tas), skin tem-

perature (ts), snow depth (snd), and the basin-average ocean

meridional overturning mass stream function (msftmyz). The

models are evaluated against a wide range of observations

and reanalysis data, for example NCEP for near-surface air

temperature, HadISST for skin temperature, and the NOAA-

CIRES Twentieth Century Reanalysis Project (Compo et al.,

2011) for sea level pressure. Additional observations or re-

analysis can be added by the user for these variables. The

ESMValTool (v1.0) namelist runs on all CMIP5 models. As

an example, Fig. 8 shows the representation of the PDO as

simulated by 41 CMIP5 models and observations (HadISST)

and Fig. 9 the mean AMOC from 13 CMIP5 models.

Madden–Julian Oscillation (MJO)

The MJO is the dominant mode of tropical intraseasonal vari-

ability (30–80 day) and has wide impacts on numerous re-

gional climate and weather phenomena (Madden and Julian,

1971). Associated with enhanced convection in the tropics,

the MJO exerts a significant influence on monsoon precipita-

tion, e.g. on the South Asian Monsoon (Pai et al., 2011) and

on the west African monsoon (Alaka and Maloney, 2012).

The eastward propagation of the MJO into the West Pacific

can trigger the onset of some El Niño events (Feng et al.,

2015; Hoell et al., 2014). The MJO also influences tropical

cyclogenesis in various ocean basins (Klotzbach, 2014). In-

creased vertical resolution in the atmosphere and better rep-

resentation of stratospheric processes have led to an improve-

ment in MJO fidelity in CMIP5 compared to CMIP3 (Lin et

al., 2006). However, current generation models still struggle

to adequately capture the eastward propagation of the MJO

(Hung et al., 2013) and the variance intensity is typically too

weak. Identifying and reducing such biases will be important

for ESMs to accurately represent important climate phenom-

ena, such as regional precipitation variability in the tropics

arising through the differing impact of MJO phases on ENSO

and ENSO forced regional climate anomalies (Hoell et al.,

2014).

To assess the main MJO features in ESMs, a namelist

with a number of diagnostics developed by the US CLIVAR

MJO Working Group (Kim et al., 2009; Waliser et al.,

2009) has been implemented in the ESMValTool (v1.0)

[namelist_mjo_mean_state.xml, namelist_mjo_daily.xml].

These diagnostics are calculated using precipitation (pr),

outgoing longwave radiation (OLR) (rlut), and eastward

(ua) and northward wind (va) at 850 hPa (u850) and

200 hPa (u200) against various observations and reanalysis

data sets for boreal summer (May–October) and winter

(November–April).

Observation and reanalysis data sets include GPCP-1DD

for precipitation, ERA-Interim and NCEP-DOE reanalysis 2

for wind components (Kanamitsu et al., 2002) and NOAA

polar-orbiting satellite data for OLR (Liebmann and Smith,

1996). The majority of the scripts are based on example

scripts at http://ncl.ucar.edu/Applications/mjoclivar.shtml.

Daily data is required for most of the scripts. The basic di-
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Figure 8. The PDO as simulated by 41 CMIP5 models (individual panels labelled by model name) and observations (upper left panel) for

the historical period 1900–2005. These patterns show the global SST anomalies (◦C) associated with a one standard deviation change in

the normalized principal component (PC) time series. The percent variance accounted by the PDO is given in the upper right of each panel.

The PDO is defined as the leading empirical orthogonal function of monthly SST anomalies (minus the global mean SST) over the North

Pacific (20–70◦ N, 110◦ E–100◦W). The global patterns (◦C) are formed by regressing monthly SST anomalies at each grid point onto the

PC time series. Most CMIP5 models show realistic patterns in the North Pacific. However, linkages with the tropics and the tropical Pacific

in particular, vary across models. The lack of a strong tropical expression of the PDO is a major shortcoming in many CMIP5 models (Flato

et al., 2013). Figure produced with namelist_CVDP.xml.

agnostics include mean seasonal state and 20–100-day band-

pass filtered variance for precipitation and u850 in summer

and winter. To better assess and understand model biases in

the MJO, a number of more sophisticated diagnostics have

also been implemented. These include; univariate empirical

orthogonal function (EOF) analysis for 20–100 day band-

pass filtered daily anomalies of precipitation, OLR, u850 and

u200. To illustrate the northward and eastward propagation

of the MJO, lag-longitude and lag-latitude diagrams show ei-

ther the equatorial (latitude) averaged (10◦ S–10◦ N) or zonal

(longitude) averaged (80–100◦ E) intraseasonal precipitation

anomalies and u850 anomalies correlated against intrasea-

sonal precipitation at the Indian Ocean reference point (75–

100◦ E, 10◦ S–5◦ N). Similar figures can also be produced

for other key variables and regions following the defini-

tions of Waliser et al. (2009). To further explore the MJO

www.geosci-model-dev.net/9/1747/2016/ Geosci. Model Dev., 9, 1747–1802, 2016
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Figure 9. Long-term annual mean Atlantic Meridional Overturning

Streamfunction (AMOC; Sv) as simulated by 13 CMIP5 models

(individual panels labelled by model name) for the historical period

1900–2005. AMOC annual averages are formed, weighted by the

cosine of the latitude and by the depth of the vertical layer, and then

the data is masked by setting all those areas to missing where the

variance is less than 1× 10−6. The figure shows that there is a wide

spread among the CMIP5 models, with maximal AMOC strength

ranging from ∼ 13 Sv (CanESM2) to over ∼ 28 Sv (NorESM1),

while the models agree generally well on the position of maximal

AMOC strength. Figure produced with namelist_CVDP.xml.

intraseasonal variability, the wavenumber-frequency spectra

for each season is calculated for individual variables. In ad-

dition, we also produce cross-spectral plots to quantify the

coherence and phase relationships between precipitation and

u850. Figure 10 shows examples of boreal summer (May–

October) wavenumber-frequency spectra of 10◦ S–10◦ N av-

eraged daily precipitation from GPCP-1DD, HadGEM2-ES,

MPI-ESM-LR and EC-Earth. Finally, we also calculate the

multivariate combined EOF (CEOF) modes using equatorial

averaged (15◦ S–15◦ N) daily anomalies of u850, u200 and

OLR. This analysis demonstrates the relationship between

lower- and upper-tropospheric wind anomalies and convec-

tion. To further illustrate the spatial-temporal structure of the

Figure 10. May–October wavenumber-frequency spectra of

10◦ S–10◦ N averaged precipitation (mm2 day−2) for GPCP-1DD,

HadGEM2-ES, MPI-ESM-LR and EC-Earth. Individual May–

October spectra are calculated for each year and then averaged over

all years of data. Only the climatological seasonal cycle and time

mean for each May–October segment are removed before calcula-

tion of the spectra. The bandwidth is (180 days)−1. The observed

precipitation shows that the dominant MJO spatial scale is zonal

wavenumbers 1–3 at the 30–80-day frequency. According to the

definition, the positive frequency represents eastward propagation

of the MJO. Compared with observations, both HadGEM2-ES and

EC-Earth models have difficulties simulating precipitation variabil-

ity on MJO timescales. Produced with namelist_mjo_daily.xml.

MJO, the first two leading CEOFs are used to derive a com-

posite MJO life cycle which highlights intraseasonal vari-

ability and northward/eastward propagation of the MJO. The

data used in these diagnostics are regridded to a common

0.5◦× 0.5◦ grid using an area-conservative method.

4.1.5 Diurnal cycle

In addition to the previously discussed biases in precipita-

tion, many ESMs that rely on parameterized convection ex-

hibit biases related to the diurnal cycle and timing of precip-

itation. Over land, ESMs tend to simulate a diurnal cycle of

continental convective precipitation in phase with insolation,

while observed precipitation peaks in the early evening. This

constitutes one of the endemic biases of ESMs, in which con-

vective precipitation intensity is often related to atmospheric

instability. This bias can have important implications for the

simulated climate, as the timing of precipitation influences

Geosci. Model Dev., 9, 1747–1802, 2016 www.geosci-model-dev.net/9/1747/2016/
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subsequent surface evaporation, and convective clouds affect

radiation differently around noon or in late afternoon. The

biases in the diurnal cycle are most pronounced over land

areas and the diurnal cycles of convection and clouds dur-

ing the day contribute to the continental warm bias (Cheruy

et al., 2014). Similarly, biases in the diurnal cycle also ex-

ist over the ocean (Jiang et al., 2015). Another motivation

for looking at the diurnal cycle in models is that its rep-

resentation is more closely linked to the parameterizations

of surface fluxes, boundary-layer, convection and cloud pro-

cesses than any other diagnostics. The phase of precipita-

tion and radiative fluxes during the day is the consequence

of surface warming, boundary-layer turbulence mixing and

cumulus clouds moistening, as well as of the triggering crite-

ria used to activate deep convection, and the closure used to

compute convective intensity. The evaluation of the diurnal

cycle thus provides a direct insight into the representation of

physical processes in a model. Recent efforts to improve the

representation of the diurnal cycle of precipitation models

include modifying the convective entrainment rate, revisiting

the quasi-equilibrium hypothesis for shallow and deep con-

vection, and adding a representation of key missing processes

such as boundary-layer thermals or cold pools. We envisage

that ESMValTool will help to quantify the impact of those

improvements in the next generation of ESMs.

To help document progress made in the representation of

the diurnal cycle of precipitation (pr) in models, a set of

diagnostics has been implemented in the ESMValTool. Af-

ter regridding all data on a common 2.5◦× 2.5◦ grid us-

ing bilinear interpolation, the mean diurnal cycle computed

every 3 h is approximated at each grid point by a sum of

sine and cosine functions (first harmonic analysis) allow-

ing one to derive global maps of the amplitude and phase

of maximum rainfall over the day. The mean diurnal cycle

of precipitation is also provided over specific regions in the

tropics. Over land, we contrast semi-arid (Sahel) and hu-

mid (Amazonia) regions as well as West Africa and India.

Over the ocean, we focus on the Gulf of Guinea, the In-

dian Ocean and the eastern and western equatorial Pacific.

We use TRMM 3B42 V7 as a reference (http://mirador.gsfc.

nasa.gov/collections/TRMM_3B42_daily__007.shtml). The

ESMValTool also includes diagnostics for the evaluation of

the diurnal cycle of radiative fluxes at the top of the at-

mosphere and at the surface, and their decomposition into

LW and SW, total and clear sky components; however, not

all are available for all models from the CMIP5 archive.

As a reference, we use 3-hourly SYN1deg CERES products

(Wielicki et al., 1996), derived from measurements at the

top of the atmosphere and computed using a radiative trans-

fer model at the surface (http://ceres.larc.nasa.gov/products.

php?product=SYN1deg). These diagnostics provide a first

insight into the representation of the diurnal cycle, but fur-

ther analysis is required to understand the links between the

model’s parameterizations and the representation of the diur-

nal cycle, as well as the impact of errors in the diurnal cy-

cle on other, slower timescale climate processes. Figure 11

shows the evaluation against TRMM observations of the

mean diurnal cycle averaged over specific regions in the trop-

ics for five summers (2004–2008) simulated by four CMIP5

ESMs.

4.1.6 Clouds

Clouds and radiation

Clouds are a key component of the climate system because of

their large impact on the radiation budget as well as their cru-

cial role in the hydrological cycle. The simulation of clouds

in climate models has been challenging because of the many

non-linear processes involved (Boucher et al., 2013). Simu-

lations of long-term mean cloud properties from the CMIP3

and CMIP5 models show large biases compared to observa-

tions (Chen et al., 2011; Klein et al., 2013; Lauer and Hamil-

ton, 2013). Such biases have a range of implications as they

affect application of these models to investigate chemistry–

climate interactions and aerosol–cloud interactions, while

also having an impact on the climate sensitivity of the model.

The namelist namelist_lauer13jclim.xml computes the cli-

matology and interannual variability of climate relevant

cloud variables such as cloud radiative forcing, liquid and

ice water path, and cloud cover, and reproduces the evalu-

ation results of Lauer and Hamilton (2013). The standard

namelist includes a comparison of the geographical distri-

bution of multi-year average cloud parameters from individ-

ual models and the multi-model mean with satellite observa-

tions. Taylor diagrams are generated that show the multi-year

annual or seasonal average performance of individual mod-

els and the multi-model mean in reproducing satellite ob-

servations. The diagnostic routine also facilitates the assess-

ment of the bias of the multi-model mean and zonal averages

of individual models compared with satellite observations.

Interannual variability is estimated as the relative temporal

standard deviation from multi-year time series of data with

the temporal standard deviations calculated from monthly

anomalies after subtracting the climatological mean seasonal

cycle. Data regridding is applied using a bilinear interpola-

tion method and choosing the grid of the reference data set

as a target. As an example, Fig. 12 shows the bias of the

20-year average (1985–2005) annual mean cloud radiative

effects from CMIP5 models (multi-model mean) against the

CERES EBAF satellite climatology (2001–2012) (Loeb et

al., 2012, 2009), similar to Flato et al. (2013; their Fig. 9.5).

The cloud namelist focuses on precipitation (pr) and four

cloud parameters that largely determine the impact of clouds

on the radiation budget and thus climate in the model sim-

ulations: total cloud amount (clt), liquid water path (lwp),

ice water path (iwp), and TOA cloud radiative effect (CRE)

consisting of the longwave CRE and shortwave CRE that

can also separately be evaluated with the performance met-

rics namelist (see Sect. 4.1.1). Precipitation is evaluated with
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Figure 11. Mean diurnal cycle of precipitation (mm h−1) averaged over five summers (2004–2008) over specific regions in the tropics

(Sahel, West Africa, Gulf of Guinea, India, Indian Ocean, Amazonia, eastern equatorial Pacific, and western equatorial Pacific) as observed

by TRMM 3B42 V7 and as simulated by four CMIP5 models: CNRM-CM5, EC-Earth, HadGEM2-A, and IPSL-CM5A-LR. ESMs produce

a too strong peak of rainfall around noon over land, while the observed precipitation maximum is weaker and delayed to 18:00. At the

same time, most models underestimate nocturnal precipitation. Over the ocean, the diurnal cycle of precipitation is more flat, but the rainfall

maximum usually occurs a few hours earlier than in observations during the night, and the amplitude of oceanic precipitation shows large

variations among models. Produced with namelist_DiurnalCycle_box_pr.xml.
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Figure 12. Climatological (1985–2005) annual-mean cloud radiative effects from the CMIP5 models against CERES EBAF (2001–2012) in

W m−2. Top row shows the shortwave effect; middle row the longwave effect, and bottom row the net effect. Multi-model-mean biases against

CERES EBAF 2.7 are shown on the left, whereas the right panels show zonal averages from CERES EBAF 2.7 (black), the individual CMIP5

models (thin grey lines), and the multi-model mean (red). The multi-model mean longwave CRE is overestimated in models, particularly in

the Pacific and Atlantic south of the inter-tropical convergence zone (ITCZ) and in the South Pacific convergence zone (SPCZ). The longwave

CRE is underestimated over Central and South America as well as parts of Central Africa and southern Asia. The most striking biases in the

multi-model mean shortwave CRE are found in the stratocumulus regions off the west coasts of North and South America, southern Africa,

and Australia. Despite biases in component cloud properties, simulated CRE is in quite good agreement with observations. Reproducing

Fig. 9.5 of Flato et al. (2013) and produced with namelist_flato13ipcc.xml.

GPCP data, total cloud amount with MODIS, liquid water

path with passive-microwave satellite observations from the

University of Wisconsin (O’Dell et al., 2008), and the ice wa-

ter path with MODIS Cloud Model Intercomparison Project

(MODIS-CFMIP, Pincus et al., 2012; King et al., 2003) data.

Quantitative performance assessment of cloud regimes

The cloud–climate radiative feedback process remains one

of the largest sources of uncertainty in determining the cli-

mate sensitivity of models (Boucher et al., 2013). Tradi-

tionally, clouds have been evaluated in terms of their im-

pact on the mean top of atmosphere fluxes. However, it is

possible to achieve good performance on these quantities

through compensating errors; for example, boundary layer

clouds may be too reflective but have insufficient horizon-

tal coverage (Nam et al., 2012). Williams and Webb (2009)

proposed a Cloud Regime Error Metric (CREM) which crit-

ically tests the ability of a model to simulate both the rela-

tive frequency of occurrence and the radiative properties cor-

rectly for a set of cloud regimes determined by the daily mean

cloud top pressure, in-cloud albedo and fractional coverage

at each grid box. Having previously identified the regimes by

clustering joint cloud-top pressure-optical depth histograms

from the International Satellite Cloud Climatology Project

(ISCCP, Rossow and Schiffer, 1999) as per Williams and

Webb (2009), each daily model grid box is assigned to the

regime cluster centroid with the closest cloud top pressure,

www.geosci-model-dev.net/9/1747/2016/ Geosci. Model Dev., 9, 1747–1802, 2016
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in-cloud albedo and fractional coverage as determined by the

three-element Euclidean distance. The fraction of grid points

assigned to each of the regimes and the mean radiative prop-

erties of those grid points are then compared to the observed

values. This routine also uses a bilinear regridding method

with a 2.5◦× 2.5◦ target grid.

This metric is now implemented in the ESMValTool

(v1.0), with references in the code to tables in the

Williams and Webb (2009) study defining the cluster cen-

troids [namelist_williams09climdyn_CREM.xml]. Required

are daily data from ISCCP mean cloud albedo (albisccp), IS-

CCP mean cloud top pressure (pctisccp), ISCCP total cloud

fraction (cltisccp), TOA outgoing short- and long-wave ra-

diation (rsut, rlut), TOA outgoing shortwave and longwave

(clear sky) radiation (rsutcs, rlutcs), surface snow area frac-

tion (snc) or surface snow amount (snw), and sea ice area

fraction (sic). The metric has been applied over the pe-

riod January 1985 to December 1987 to those CMIP5 mod-

els with the required diagnostics (daily data) available for

their AMIP simulation (see caption of Fig. 13). A perfect

score with respect to ISCCP would be zero. Williams and

Webb (2009) also compared data from the MODIS and

the Earth Radiation Budget Experiment (ERBE, Barkstrom,

1984) to ISCCP in order to provide an estimate of observa-

tional uncertainty. This observational regime characteristic

was found to be 0.96 as marked in Fig. 13 when calculated

over the period March 1985 to February 1990. Hence a model

with a score that is similar to this value can be considered

to be within observational uncertainty, although it should be

noted that this does not necessarily mean that the model lies

within the observations for each regime. Error bars are not

plotted since experience has shown that the metric has little

sensitivity to interannual variability and models that are vis-

ibly different in Fig. 13 are likely to be significantly so. A

minimum of 2 years, and ideally 5 years or more, of daily

data are required for the scientific analysis.

4.2 Detection of systematic biases in the physical

climate: ocean

4.2.1 Handling of ocean grids

Analysis of ocean model data from ESMs poses several

unique challenges for analysis. First, in order to avoid numer-

ical singularities in their calculations, ocean models often use

irregular grids where the poles have been rotated or moved to

be located over land areas. For example, the global configu-

ration of the Nucleus for European Modelling of the Ocean

(NEMO) framework uses a tripolar grid (Madec, 2008), with

the three poles located over Siberia, Canada, and Antarc-

tica. Second, transports of scalar quantities (e.g. overturn-

ing stream functions and heat transports) can only be calcu-

lated accurately on the original model grids as interpolation

to other grids introduces errors. This means that e.g. for the

calculation of water transport through a strait, both the hori-

Figure 13. Cloud Regime Error Metric (CREM) from Williams

and Webb (2009) applied to some CMIP5 AMIP simulations with

the required data in the archive. The results show that MIROC5 is

the best performing model on this metric, other models are slightly

worse on this metric. The red dashed line shows the observational

uncertainty estimated from applying this metric to independent data

from MODIS. An advantage of the metric is that its components

can be decomposed to investigate the reasons for poor performance.

This requires extra print statements compared to the default code but

might help to identify, for instance, cloud regimes that are too reflec-

tive or simulated too frequently at the expense of some of the other

regimes. Produced with namelist_williams09climdyn_CREM.xml.

zontal and vertical extent of the grids on which the u and v

currents are defined is required. Therefore, this type of diag-

nostic can only be used for models for which all native grid

information is available. State variables like SSTs, sea ice,

and salinity are regridded using grid information (i.e. coor-

dinates, bounds, and cell areas) available in the ocean input

files of the CMIP5 models. To create difference plots against

observations or other models, all data are regridded to a com-

mon regular grid (e.g. 1◦× 1◦) using the regridding func-

tionality of the Earth System Modeling Framework (ESMF,

https://www.ncl.ucar.edu/Applications/ESMF.shtml).

4.2.2 Southern Ocean diagnostics

Southern Ocean mixed-layer dynamics and surface

turbulent fluxes

Earth system models often show large biases in the Southern

Ocean mixed layer. For example, Sterl et al. (2012) showed

that in EC-Earth/NEMO the Southern Ocean is too warm and

salinity too low, while the mixed layer is too shallow. These

biases are not specific to EC-Earth, but are rather widespread.

At the same time, values for Antarctic Circumpolar Current

(ACC) transport vary between 90 and 264 Sv in CMIP5 mod-

els, with a mean of 155± 51 Sv. The differences are associ-

ated with differences in the ACC density structure.
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Figure 14. Annual-mean difference between EC-Earth/NEMO and ERA-Interim sea surface temperatures (a), the World Ocean At-

las sea surface salinity (b), and the Argo float observations for ocean mixed-layer thickness (c), showing that in the Southern Ocean

SSTs in EC-Earth are too high, sea surface salinity too fresh, and the mixed layer too shallow. The other available diagnostics of the

namelist_SouthernOcean.xml help in understanding these biases. Vertical sections of temperature (d) and salinity differences (e) reveal that

the SST bias is mainly an austral summer problem, but also that vertical mixing is not able to penetrate a year-round existing warm layer

below 80 m depth.

A namelist has been implemented in the ESMValTool to

analyse these biases [namelist_SouthernOcean.xml]. With

these diagnostics polar stereographic (difference) maps

can be produced to compare monthly/annual mean model

fields with corresponding ERA-Interim data. The patch

recovery technique is applied to regrid data to a common

1◦× 1◦ grid. There are also scripts to plot the differences

in the area mean vertical profiles of ocean temperature and

salinity between models and data from the World Ocean

Atlas (Antonov et al., 2010; Locarnini et al., 2010). The

ocean mixed-layer thickness from models can be compared

with that obtained from the Argo floats (Dong et al., 2008).

Finally, the ACC strength, as measured by water mass

transport through the Drake Passage, is calculated using the

same method as in the CDFTOOLS package (CDFTOOLS,

http://servforge.legi.grenoble-inp.fr/projects/CDFTOOLS).

This diagnostic can be used to calculate the transport through

other sections as well, but is presently only available for

NEMO/ORCA1 output, for which all grid information is

available. The required variables for the comparison with

ERA-Interim are sea surface temperature (tos), downward

heat flux (hfds, calculated from ERA-Interim by summing

the surface latent and sensible heat flux and the net shortwave

and longwave fluxes (hfls+ hfss+ rsns+ rlns)), water flux

(wfpe, calculated by summing precipitation and evaporation

(pr+ evspsbl)) and the wind stress components (tauu and

tauv). For the comparison with the World Ocean Atlas 2009

data (WOA09) sea surface salinity (sos), seawater salinity

(so), and temperature (to) are required variables. For the

comparison with the Argo floats the ocean mixed-layer
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thickness (mlotst) is required. Finally the two components

of seawater velocity (uo and vo) are required for the volume

transport calculation. Some example figures from this set of

diagnostic scripts are shown for EC-Earth in Fig. 14.

Atmospheric processes forcing the Southern Ocean

One leading cause of SST biases in the Southern Ocean is

systematic biases in surface radiation fluxes (Trenberth and

Fasullo, 2010) coupled with systematic errors in macrophys-

ical (e.g. cloud amount) and microphysical (e.g. frequency of

mixed-phase clouds) cloud properties (Bodas-Salcedo et al.,

2014).

A namelist has been implemented in the ESMValTool that

compares model estimates of cloud, radiation, and surface

turbulent flux variables over the Southern Ocean with suit-

able observations [namelist_SouthernHemisphere.xml]. Due

to the lack of surface/in situ observations over the South-

ern Ocean, remotely sensed data can be subject to consid-

erable uncertainty (Mace, 2010). While this uncertainty is

not explicitly addressed in ESMValTool (v1.0), in future

releases we will include a number of alternative satellite-

based data sets for cloud variables (e.g. MISR, MODIS, IS-

CCP) as well as new methods under development to de-

rive surface turbulent flux estimates constrained by observed

TOA radiation flux estimates and atmospheric energy diver-

gence derived from reanalysis products (Trenberth and Fa-

sullo, 2008). Inclusion of multiple satellite-based estimates

will provide some estimate of observational uncertainty over

the region. Variables analysed include (i) total cloud cover

(clt), vertically integrated cloud liquid water and cloud ice

water (clwvi, clivi), (ii) surface/(TOA) downward/outgoing

total sky and clear sky shortwave and longwave radiation

fluxes (rsds, rsdcs, rlds, rldscs/rsut, rsutcs, rlut, rlutcs), and

(iii) surface turbulent latent and sensible heat fluxes (hfls,

hfss). Observational constraints are derived from, respec-

tively, cloud: CloudSat level 3 data (Stephens et al., 2002);

radiation: CERES-EBAF level 3 Ed2 data; and surface tur-

bulent fluxes: WHOI-OAflux (Yu et al., 2008).

The following diagnostics are calculated with accompa-

nying plots: (i) seasonal mean absolute-value and difference

maps for model data versus observations covering the South-

ern Ocean region (30–65◦ S) for all variables. (ii) Mean sea-

sonal cycles using zonal means averaged separately over

three latitude bands: (i) 30–65◦ S, the entire Southern Ocean,

(ii) 30–45◦ S, the sub-tropical Southern Ocean and (iii) 45–

65◦ S, the mid-latitude Southern Ocean. (iii) Annual means

of each variable (models and observations) plotted as zonal

means, over 30–65◦ S. (iv) Scatterplots of seasonal mean

downward (surface) and outgoing (TOA) longwave and

shortwave radiation as a function of total cloud cover, cloud

liquid water path or cloud ice water path, calculated for the

three regions outlined above. The data are regridded using a

cubic interpolation method with the observation grid as a tar-

get. Figure 15 provides an example diagnostic, with the top

panel showing covariability of seasonal mean surface down-

ward shortwave radiation as a function of total cloud cover.

To construct the figure, grid point values of cloud cover,

for each season covering 30 to 65◦ S, are saved into bins

of 5 % increasing cloud cover. For each grid point the cor-

responding seasonal mean radiation value is used to obtain

a mean radiation flux for each cloud cover bin. The lower

panel plots the fractional occurrence of seasonal mean cloud

cover from CloudSat and model data for the same spatial and

temporal averaging as used in the upper panel. Observations

from CERES-EBAF radiation plotted against CloudSat cloud

cover are compared to an example CMIP5 model. From the

covariability plot we can diagnose whether models exhibit

a similar dependency between incoming surface shortwave

radiation and cloud cover as seen in observations. We can

further assess whether there is a systematic bias in surface

solar radiation and whether this bias occurs at specific val-

ues of cloud cover. Similar covariability plots are available

for surface incoming longwave radiation and for TOA long-

wave and shortwave radiation, plotted, respectively, against

cloud cover, cloud liquid water path, and cloud ice water

path. Combining these diagnostics provides a comprehen-

sive evaluation of simulated relationships between surface

and TOA radiation fluxes and cloud variables.

4.2.3 Simulated tropical ocean climatology

An accurate representation of the tropical climate is funda-

mental for ESMs. The majority of solar energy received by

the Earth is in the tropics and the potential for thermal emis-

sion of absorbed energy back into space is also largest in

the tropics due to the high column concentrations of wa-

ter vapour at low latitudes (Pierrehumbert, 1995; Stephens

and Greenwald, 1991). Coupled interactions between equato-

rial SSTs, surface wind stress, precipitation and upper-ocean

mixing are central to many tropical biases in ESMs. This

is the case both with respect to the mean state and for key

modes of variability, influenced by, or interacting with, the

mean state (e.g. ENSO, Choi et al., 2011). Such biases are

often reflected in a “double ITCZ” seen in the majority of

CMIP3 and CMIP5 CCMs (Li and Xie, 2014; Oueslati and

Bellon, 2015). The double ITCZ bias, present in many ESMs,

occurs when models fail to simulate a single, year-round,

ITCZ rainfall maximum north of the Equator. Instead, an un-

realistic secondary maximum in models south of the Equator

is present for part or all of the year. Such biases are partic-

ularly prevalent in the tropical Pacific, but can also occur in

the Atlantic (Oueslati and Bellon, 2015). This double ITCZ is

often accompanied by an overextension of the eastern Pacific

equatorial cold tongue into the central Pacific, collocated

with a positive bias in easterly near-surface wind speeds and

a shallow bias in ocean mixed-layer depth (Lin, 2007). Such

biases can directly impact the ability of an ESM to accurately

represent ENSO variability (An et al., 2010; Guilyardi, 2006)

and its potential sensitivity to climate change (Chen et al.,
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Figure 15. Upper panel: covariability between incoming surface shortwave radiation (rsds) and total cloud cover (clt). Lower panel: fraction

occurrence histograms of binned cloud cover: observations are CERES-EBAF (radiation) and CloudSat (cloud cover). The CanESM2 model

from the CMIP5 archive is shown as an example for comparison to observations (the namelist runs on all CMIP5 models). CanESM2

generally reproduces the observed slope of rsds as a function of clt, although there is a systematic positive bias in the amount of shortwave

radiation reaching the surface for most cloud cover values. A positive bias is also seen in the CanESM2 histogram of cloud occurrence, with

a strong peak in seasonal cloud fraction of 90 % in most seasons. Produced with namelist_SouthernHemisphere.xml.

2015), with negative consequences for a range of simulated

features, such as regional tropical temperature and precipita-

tion variability, monsoon dynamics, and ocean and terrestrial

carbon uptake (Iguchi, 2011; Jones et al., 2001).

To assess such tropical biases with the ESMVal-

Tool, we have implemented a namelist with diagnos-

tics motivated by the work of Li and Xie (2014):

namelist_TropicalVariability.xml. In particular, we reproduce

their Fig. 5 for models and observations/reanalyses, cal-

culating the equatorial mean (5◦ N–5◦ S), longitudinal sec-

tions of annual mean precipitation (pr), skin temperature (ts),

horizontal winds (ua and va), and 925 hPa divergence (de-

rived from the sum of the partial derivatives of the wind

components extracted at the 925 hPa pressure level (that is,

du/dx+ dv/dy). Latitude cross sections of the model vari-

ables are plotted for the equatorial Pacific, Indian and At-

lantic oceans with observational constraints provided by the

TRMM-3B43-v7 for precipitation, the HadISST for SSTs,

and ERA-Interim reanalysis for temperature and winds. Lat-

itudinal sections of absolute and normalized annual mean

SST and precipitation are also calculated, spatially averaged

for the three ocean basins. Normalization follows the pro-

cedure outlined in Fig. 1 of Li and Xie (2014) whereby

values at each latitude are normalized by the tropical mean

(20◦ N–20◦ S) value of the corresponding parameter (e.g. an-

nual mean precipitation at a given location is divided by the

20◦ N–20◦ S annual mean value). Finally, to assess how mod-

els capture observed relationships between SST and precipi-

tation, we calculate the covariability of precipitation against

SST for specific regions of the tropical Pacific. This anal-

ysis includes calculation of the mean square error (MSE)

between model SST/precipitation and observational equiv-

alents. A similar regridding procedure as for the Southern

Hemisphere diagnostics is applied here, based on a cubic

interpolation method and using the observations as a target

grid. The namelist as included in the ESMValTool (v1.0) runs

on all CMIP5 models. Figure 16 provides one example of the

tropical climate diagnostics, with latitude cross sections of

absolute and tropical normalized SST and precipitation from

three CMIP5 models (HadGEM2-ES, Collins et al., 2011,

MPI-ESM-LR and IPSL-CM5A-MR, Dufresne et al., 2013)

plotted against HadISST and TRMM data.

4.2.4 Sea ice

Sea ice is a key component of the climate system through

its effects on radiation and seawater density. A reduction in

sea ice area results in increased absorption of shortwave ra-

diation, which warms the sea ice region and contributes to

further sea ice loss. This process is often referred to as the

sea ice albedo climate feedback which is part of the Arctic

amplification phenomena. CMIP5 models tend to underesti-

mate the decline in summer Arctic sea ice extent observed

by satellites during the last decades (Stroeve et al., 2012)

which may be related to models’ underestimation of the sea

ice albedo feedback process (Boé et al., 2009). Conversely in

the Antarctic, observations show a small increase in March

sea ice extent, while the CMIP5 models simulate a small de-

crease (Flato et al., 2013; Stroeve et al., 2012). It is therefore

important that model sea ice processes are evaluated and im-

provements regularly assessed. Caveats have been noted with

respect to the limitations of using only sea ice extent as a met-
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Figure 16. Latitude cross section of seasonal and zonally averaged values of SSTs and precipitation for the tropical Pacific (zonal averages

are made between 120◦ E and 100◦W). The upper panel shows absolute values of SST and precipitation, and the lower panel shows values

normalized by their respective tropical mean value (20◦ N to 20◦ S). The figure shows that HadGEM2-ES simulates a double ITCZ in the

equatorial Pacific, with excessive precipitation south of the Equator. This bias is accompanied by off-equatorial warm biases in normalized

SST in both hemispheres and a relative cold bias along the Equator. The IPSL-CM5A-MR and MPI-ESM-LR models better capture the SST

and precipitation distributions in the tropical Pacific. Produced with namelist_TropicalVariability.xml.

ric of model performance (Notz et al., 2013) as the sea ice

concentration, volume, and drift, sea ice thickness and sur-

face albedo, as well as sea ice processes such as melt pond

formation or the summer sea ice melt are all important sea ice

related quantities. In addition, the atmospheric forcings (e.g.

wind, clouds, and snow) and ocean forcings (e.g. salinity and

ocean transport) impact on the sea ice state and evolution.

In ESMValTool (v1.0) the sea ice namelist includes

diagnostics that cover sea ice extent and concentration

[namelist_SeaIce.xml], but work is underway to include other

variables and processes in future releases. An example diag-

nostic produced by the sea ice namelist is given in Fig. 17,

which shows the time series of September Arctic sea ice

extent from the CMIP5 historical simulations compared to

observations from the National Snow and Ice Data Center

(NSIDC) produced by combining concentration estimates

created with the NASA Team algorithm and the Bootstrap

algorithm (Meier et al., 2013; Peng et al., 2013) and SSTs

from the HadISST data set, similar to Fig. 9.24 of Flato et

al. (2013). Sea ice extent is calculated as the total area (km2)

of grid cells over the Arctic or Antarctic with sea ice concen-

trations (sic) of at least 15 %. The sea ice namelist can also

calculate the seasonal cycle of sea ice extent and polar stere-

ographic contour and polar contour difference plots of Arctic

and Antarctic sea ice concentrations. For the latter diagnos-

tic, data are regridded to a common 1◦× 1◦ grid using the

patch recovery technique.

4.3 Detection of systematic biases in the physical

climate: land

4.3.1 Continental dry bias

The representation of land surface processes and fluxes in cli-

mate models critically affects the simulation of near-surface

climate over land. In particular, energy partitioning at the sur-

face strongly influences surface temperature, and it has been

suggested that temperature biases in ESMs can be in part re-

lated to biases in evapotranspiration. The most notable fea-

ture in the majority of CMIP3 and CMIP5 models is a ten-

dency to overestimate evapotranspiration globally (Mueller

and Seneviratne, 2014).

A diagnostic to analyse the representation of evapotran-

spiration in ESMs has been included in the ESMValTool

[namelist_Evapotranspiration.xml]. For comparison with the

LandFlux-EVAL product (Mueller et al., 2013), the mod-

elled surface latent heat flux (hfls) is converted to evapo-

transpiration units using the latent heat of vaporization. The

diagnostic then produces lat–lon maps of absolute evapo-

transpiration as well as bias maps (model minus reference

product, after regridding data to the coarsest grid using area-

conservative interpolation). In Fig. 18, the global pattern of

monthly mean evapotranspiration is evaluated against the

LandFlux-EVAL product. The evapotranspiration diagnos-

tic is complemented by the Standardized Precipitation Index

(SPI) diagnostic [namelist_SPI.xml], which gives a measure
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Figure 17. Time series (1960–2005) of September mean Arctic sea ice extent from the CMIP5 historical simulations. The CMIP5 ensemble

mean is highlighted in dark red and the individual ensemble members of each model (coloured lines) are shown in different linestyles. The

model results are compared to observations from the NSIDC (1978–2005, black solid line) and the Hadley Centre sea ice and sea surface

temperature (HadISST, 1960–2005, black dashed line). Consistent with observations, most CMIP5 models show a downward trend in sea

ice extent over the satellite era. The range in simulated sea ice is however quite large (between 3.2 and 12.1× 106 km2 at the beginning of

the time series). The multi-model-mean lies below the observations throughout the entire time period, especially after 1978, when satellite

observation became available. Similar to upper left panel of Fig. 9.24 of Flato et al. (2013) and produced with namelist_SeaIce.xml.

of drought intensity from an atmospheric perspective and

can help relating biases in evapotranspiration to atmospheric

causes such as the accumulated precipitation amounts. For

each month, precipitation (pr) is summed over the preceding

months (options for 3, 6 or 12-monthly SPI). Then a two-

parameter 0 distribution of cumulative probability is fitted

to the strictly positive month sums, such that the probability

of a non-zero precipitation sum being below a certain value

x corresponds to 0(x). The shape and scale parameters of

the gamma distribution are estimated with a maximum like-

lihood approach. Accounting for periods of no precipitation,

occurring at a frequency q, the total cumulative probability

distribution of a precipitation sum below x, H(x), becomes

H(x)= q + (1− q) ·0(x). In the last step, a precipitation

sum x is assigned to its corresponding SPI value by comput-

ing the quantile qN(0,1) of the standard normal distribution

at probability H(x). The SPI of a precipitation sum x, thus,

corresponds to the quantile of the standard normal distribu-

tion which is assigned by preserving the probability of the

original precipitation sum, H(x). Mean and annual cycle are

not meaningful since the SPI accounts for seasonality and

transforms the data to a zero average in each month. There-

fore the diagnostic focuses on lat–lon maps of annual or sea-

sonal trends in SPI (unitless) when comparing models with

observations.

4.3.2 Runoff

Evaluation of precipitation is a challenge due to potentially

large errors and uncertainty in observed precipitation data

(Biemans et al., 2009; Legates and Willmott, 1990). An alter-

native or additional option to the direct evaluation of precipi-

tation over land (such as e.g. included in the global precipita-

tion evaluation in Sect. 4.1.2) is the evaluation of river runoff

that can in principle be measured with comparatively small

errors for most rivers. Routine measurements are performed

for many large rivers, generating a large global database (e.g.

available at the Global Runoff Data Centre (GRDC, Düme-

nil Gates et al., 2000)). The length of available time series,

however, varies between the rivers, with large data gaps es-

pecially in recent years for many rivers. The evaluation of

runoff against river gauge data can provide a useful inde-

pendent measure of the simulated hydrological cycle. If both

river flow and precipitation are given with reasonable ac-

curacy, it will also provide an observational constraint on

model surface evaporation, provided that the considered av-

eraging time periods are long enough so that changes in sur-

face water storages are negligible (Hagemann et al., 2013),

e.g. by considering climatological means of 20 years or more.

For present climate conditions ESMs often exhibit a dry

and warm near-surface bias during summer over mid-latitude

continents (Hagemann et al., 2004). Continental dry biases

in precipitation exist in the majority of CMIP5 models over

South America, the Mid-West of the US, the Mediterranean

region, central and eastern Europe, and western and South

Asia (Fig. 4 of this paper and Fig. 9.4 of Flato et al., 2013).

These precipitation biases often transfer into dry biases in

runoff, but sometimes dry biases in runoff can be caused by

a too large evapotranspiration (Hagemann et al., 2013). In

order to relate biases in runoff to biases in precipitation and
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Figure 18. Bias in evapotranspiration (mm day−1) for July in a subset of CMIP5 models in reference to the LandFlux-EVAL evapotranspira-

tion product. The global mean bias is also indicated for each model as well as the RMSE. The comparison reveals the existence of biases in

July evapotranspiration for a subset of CMIP5 models. All models overestimate evapotranspiration in summer, especially in Europe, Africa,

China, Australia, Western North America, and parts of Amazonia. Biases of the opposite sign (underestimation in evapotranspiration) can

be seen in some other regions of the world, notably over parts of the tropics. For most regions, there is a clear correlation between biases in

evapotranspiration and precipitation (see precipitation bias in Fig. 4). Produced with namelist_Evapotranspiration.xml.

evapotranspiration, the catchment oriented evaluation in this

section considers biases in all three variables. This means

that the respective variables are considered to be spatially av-

eraged over the drainage basins of large rivers.

Beside bias maps, a set of diagnostics to produce

basin-scale comparisons of runoff (mrro), evapotranspiration

(evspsbl) and precipitation (pr) have also been implemented

in ESMValTool [namelist_runoff_et.xml]. This namelist cal-

culates biases in climatological annual means of the three

variables for 12 large-scale catchments areas on different

continents and for different climates. For total runoff, catch-

ment averaged model values are compared to climatologi-

cal long-term averages of GRDC observations. Due to the

incompleteness of these station data, a year-to-year corre-

spondence of data cannot be achieved so only climatological

data are considered, as in Hagemann et al. (2013). Simulated

precipitation is compared to catchment-averaged WATCH

forcing data based on ERA-Interim (WFDEI) data (Weedon

et al., 2014) for the period 1979–2010. Here, the GPCC-

corrected WFDEI precipitation data are taken. Note that

these were recently being extended until 2013. Evapotranspi-

ration observations are estimated using the difference of the

catchment-averaged WFDEI precipitation minus the clima-

tological GRDC river runoff. As an example, Fig. 19 shows
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Figure 19. Biases in runoff coefficient (runoff/precipitation) and

precipitation for major catchments of the globe. The MPI-ESM-

LR historical simulation is used as an example. Even though posi-

tive and negative precipitation biases exist for MPI-ESM-LR in the

various catchment areas, the bias in the runoff coefficient is usu-

ally negative. This implies that the fraction of evapotranspiration

generally tends to be overestimated by the model independently of

whether precipitation has a positive or negative bias. Produced with

namelist_runoff_et.xml.

biases in runoff coefficient (runoff/precipitation) against the

relative precipitation bias for the historical simulation of one

of the CMIP5 models (MPI-ESM-LR).

4.4 Detection of biogeochemical biases: carbon cycle

4.4.1 Terrestrial biogeochemistry

A realistic representation of the global carbon cycle is a fun-

damental requirement for ESMs. In the past, climate models

were directly forced by atmospheric CO2 concentrations, but

since CMIP5, ESMs are routinely forced by anthropogenic

CO2 emissions, the atmospheric concentration being inferred

from the difference between these emissions and the ESM

simulated land and ocean carbon sinks. These sinks are af-

fected by atmospheric CO2 and climate change, inducing

feedbacks between the climate system and the carbon cycle

(Arora et al., 2013; Friedlingstein et al., 2006). Quantifica-

tion of these feedbacks is critical to estimate the future of

these carbon sinks and hence atmospheric CO2 and climate

change (Friedlingstein et al., 2014).

The diagnostics implemented in the ESMValTool to eval-

uate simulated terrestrial biogeochemistry are based on the

study of Anav et al. (2013) and span several timescales:

climatological means, and intra-annual (seasonal cycle), in-

terannual, and long-term trends [namelist_anav13jclim.xml].

Further extending these routines, the diagnostics presented in

Sect. 4.1.1 are also applied here to calculate quantitative per-

formance metrics. These metrics assess how both the land

and ocean biogeochemical components of ESMs reproduce

different aspects of the land and ocean carbon cycle, with

an emphasis on variables controlling the exchange of carbon

between the atmosphere and these two reservoirs. The anal-

ysis indicates some level of compensating errors within the

models. Selecting, within the namelist, several specific diag-

nostics to be applied to more key variables controlling the

land or ocean carbon cycle, can help to reduce the risk of

missing such compensating errors. Figure 20 shows a por-

trait diagram similar to Fig. 3 of Anav et al. (2013), but for

seasonal carbon cycle metrics against suitable reference data

sets (see below).

For land, diagnostics of the land carbon sink net bio-

sphere productivity (nbp) are essential. Although direct ob-

servations are not available, nbp can be estimated from at-

mospheric CO2 inversions (JMA and TRANSCOM) and on

the global scale combined with observation-based estimates

of the oceanic carbon sink (fgco2 from GCP, Le Quéré et

al., 2015). In addition to net carbon fluxes, diagnostics for

gross primary productivity of land (gpp), leaf area index

(lai), vegetation (cVeg), and soil carbon pools (cSoil) are

also implemented in the ESMValTool to assess possible er-

ror compensation in ESMs. Observation-based gpp estimates

are derived from Model Tree Ensemble (MTE) upscaling

data (Jung et al., 2009) from the network of eddy-covariance

flux towers (FLUXNET, Beer et al., 2010). The leaf area

index data set used for evaluation (LAI3g) is derived from

the Global Inventory Modeling and Mapping Studies group

(GIMMS) AVHRR normalized difference vegetation index

(NDVI-017b) data (Zhu et al., 2013). Finally, cSoil and cVeg

are assessed as mean annual values over different large sub-

domains using the Harmonised World soil Database (HWSD,

Fischer et al., 2008) and the Olson-based vegetation carbon

data set (Gibbs, 2006; Olson et al., 1985).

4.4.2 Marine biogeochemistry

Marine biogeochemistry models form a core component of

ESMs and require evaluation for multiple passive tracers.

The increasing availability of quality-controlled global bio-

geochemical data sets for the historical period (e.g. Sur-

face Ocean CO2 Atlas Version 2 (SOCAT v2, Bakker et al.,

2014)) provides further opportunity to evaluate model per-

formance on multi-decadal timescales. Recent analyses of

CMIP5 ESMs indicate that persistent biases exist in simu-

lated biogeochemical variables, for instance as identified in

ocean oxygen (Andrews et al., 2013) and carbon cycle (Anav

et al., 2013) fields derived from CMIP5 historical experi-

ments. Some systematic biases in biogeochemical tracers can

be attributed to physical deficiencies within ocean models

(see Sect. 4.2), motivating further understanding of coupled

physical-biogeochemical processes in the current generation

of ESMs. For example, erroneous over oxygenation of sub-

surface waters within the MPI-ESM-LR CMIP5 model has
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Figure 20. Relative space–time RMSE calculated from the 1986–2005 climatological seasonal cycle of the CMIP5 historical simulations

over different sub-domains for net biosphere productivity (nbp), leaf area index (lai), gross primary productivity (gpp), precipitation (pr) and

near-surface air temperature (tas). The RMSE has been normalized with the maximum RMSE in order to have a skill score ranging between

0 and 1. A score of 0 indicates poor performance of models reproducing the phase and amplitude of the reference mean annual cycle, while

a perfect score is equal to 1. The comparison suggests that there is no clearly superior model for all variables. All models have significant

problems in representing some key biogeochemical variables such as nbp and lai, with the largest errors in the tropics mainly because of a

too weak seasonality. Similar to Fig. 18 of Anav et al. (2013) and produced with namelist_anav13jclim.xml.

been attributed to excess ventilation and vertical mixing in

mid- to high-latitude regions (Ilyina et al., 2013).

A namelist is provided that includes diagnostics to sup-

port the evaluation of ocean biogeochemical cycles at global

scales, as simulated by both ocean-only and coupled climate–

carbon cycle ESMs [namelist_GlobalOcean.xml]. Supported

input variables include surface partial pressure of CO2

(spco2), surface chlorophyll concentration (chl), surface to-

tal alkalinity (talk), and dissolved oxygen concentration (o2).

These variables provide an integrated view of model skill

with regard to reproducing bulk marine ecosystem and car-

bon cycle properties. Observation-based reference data sets

include SOCAT v2 and ETH-SOM-FFN (Landschützer et

al., 2014a, b) for surface pCO2, Sea-viewing Wide Field-of-

view Sensor (SeaWiFS) satellite data for surface chlorophyll

(McClain et al., 1998), climatological data for total alkalin-

ity (Takahashi et al., 2014), and World Ocean Atlas 2005

climatological data (WOA05) with in situ corrections fol-

lowing Bianchi et al. (2012) for dissolved oxygen. Diagnos-

tics calculate contour plots for climatological distributions,

interannual or interseasonal (e.g. JJAS) variability, together

with the difference between each model and a chosen ref-

erence data set. Such differences are calculated after regrid-

ding the data to the coarsest grid using an area-conservative

interpolation. Monthly, seasonal, or annual frequency time-

series plots can also be produced either globally averaged

or for a selected latitude–longitude range. Optional exten-

sions include the ability to mask model data with the same

coverage as observations, calculate anomaly fields, and to

overlay trend lines, and running or multi-model means. Pre-

processing routines are also included to accommodate na-

tive curvilinear grids, common in ocean model discretiza-

tion (see Sect. 4.2.1), along with providing the ability to ex-

tract depth levels from 3-D input fields. An example plot is

presented in Fig. 22, showing interannual variability in sur-

face ocean pCO2 as simulated by a subset of CMIP5 ESMs

(BNU-ESM, HadGEM2-ES, GFDL-ESM2M), expressed as

the standard deviation of de-trended annual averages for the

period 1992–2005. As an observation-based reference pCO2

field, ETH-SOM-FFN (1998–2011) is used, which extrap-

olates SOCAT v2 data (Bakker et al., 2014) using a two-

step neural network method. As described in Landschützer et

al. (2014a), ETH-SOM-FFN partitions monthly SOCAT v2

pCO2 observations into discrete biogeochemical provinces
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Figure 21. Error-bar plot showing the 1986–2005 CMIP5 integrated nbp for different land subdomains. Positive values of nbp correspond

to land uptake, vertical bars are computed considering the interannual variation. The models are compared to JMA inversion estimates. The

models’ range is very large and results show that ESMs fail to accurately reproduce the global net land CO2 flux. At the hemispheric scale,

there is no clear bias common in most ESMs, except in the tropics where models simulate a lower CO2 source than that estimated by the

inversion. Reproducing Fig. 6 of Anav et al. (2013) and produced with namelist_anav13jclim.xml.

by establishing common relationships between independent

input parameters using a self-organizing map (SOM). Non-

linear input–target relationships, as derived for each bio-

geochemical province using a feed-forward network (FFN)

method, are then used to extrapolate observed pCO2.

A diagnostic for oceanic net primary production (npp)

is also implemented in the ESMValTool for the clima-

tological annual mean and seasonal cycle, as well as

for interannual variability over the 1986–2005 period

[namelist_anav13jclim.xml]. Observations are derived from

the SeaWiFS satellite chlorophyll data, using the Verti-

cally Generalized Production Model (VGPM, Behrenfeld

and Falkowski, 1997).

4.5 Detection of biogeochemical biases: aerosols and

trace gas chemistry

4.5.1 Tropospheric aerosols

Tropospheric aerosols play a key role in the Earth system

and have a strong influence on climate and air pollution.

The global aerosol distribution is characterized by a large

spatial and temporal variability which makes its representa-

tion in ESMs particularly challenging (Ghan and Schwartz,

2007). In addition, aerosol interactions with radiation (direct

aerosol effect, Schulz et al., 2006) and with clouds (indirect

aerosol effects, Lohmann and Feichter, 2005) need to be ac-

counted for. Model-based estimates of anthropogenic aerosol

effects are still affected by large uncertainties, mostly due to

an incorrect representation of aerosol processes (Kinne et al.,

2006). Myhre et al. (2013) report a substantial spread in sim-

ulated aerosol direct effects among 16 global aerosol models

and attribute it to diversities in aerosol burden, aerosol opti-

cal properties and aerosol optical depth (AOD). Diversities

in black carbon (BC) burden up to a factor of three, related

to model disagreements in simulating deposition processes

were also found by Lee et al. (2013). Model meteorology can

be a source of diversity since it impacts on atmospheric trans-

port and aerosol lifetime. This in turn relates to the simulated

essential climate variables such as winds, humidity and pre-

cipitation (see Sect. 4.1). Large biases also exist in simulated

aerosol indirect effects (IPCC, 2013) and are often a result of

systematic errors in both model aerosol and cloud fields (see

Sect. 4.1.6).

To assess current biases in global aerosol models, the

aerosol namelist of the ESMValTool comprises several di-

agnostics to compare simulated aerosol concentrations and

optical depth at the surface against station data, motivated

by the work of Pringle et al. (2010), Pozzer et al. (2012), and

Righi et al. (2013) [namelist_aerosol_CMIP5.xml]. Diagnos-

tics include time series of monthly or yearly mean aerosol

concentrations, scatterplots with the relevant statistical indi-
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Figure 22. Interannual variability in de-trended annual mean surface pCO2 (Pa) for the period 1998–2011 from an observation-based

reference product (ETH-SOM-FFN; upper left) and three CMIP5 models (1992–2005). The spatial structure of interannual variability

differs between individual CMIP5 ESMs; however, both BNU-ESM and GFDL-ESM2M are able to reproduce pronounced variability in

surface ocean pCO2 within the equatorial Pacific, primarily associated with ENSO variability (Rödenbeck et al., 2014). Produced with

namelist_GlobalOcean.xml.

cators, and contour maps directly comparing model results

against observations. The comparison is performed consid-

ering collocated model and observations in space and time.

In the current version of ESMValTool, these diagnostics are

supplied with observational data from a wide range of station

networks, including Interagency Monitoring of Protected

Visual Environments (IMPROVE) and CASTNET (North

America), the European Monitoring and Evaluation Pro-

gramme (EMEP, Europe), and the recently established Asian

network (EANET). The AERONET data are also available

for evaluating aerosol optical depth in continental regions

and in a few remote marine locations. For evaluating aerosol

optical depth, we also use satellite data, the primary advan-

tage of which is almost-global coverage, particularly over the

oceans. Satellite data are however affected by uncertainties

related to the algorithm used to process radiances into rel-

evant geophysical state variables. The tool currently imple-

ments data from the Multi-angle Imaging SpectroRadiome-

ter (MISR, Stevens and Schwartz, 2012), MODIS, and the

ESACCI-AEROSOL product (Kinne et al., 2015), which is

a combination of ERS2-ATSR2 and ENVISAT-AATSR data.

To calculate model biases against satellite data, regridding is

performed using a bilinear interpolation to the coarsest grid.

Aerosol optical depth time series over the ocean for the pe-

riod 1850–2010 are shown in Fig. 23 for the CMIP5 models

in comparison to MODIS and ESACCI-AEROSOL. Finally,

more specific aerosol diagnostics have been implemented to

compare aerosol vertical profiles of mass and number con-

centrations and aerosol size distributions, based on the eval-

uation work by Lauer et al. (2005) and Aquila et al. (2011).

These diagnostics, however, use model quantities that were

not part of the CMIP5 data request and therefore will not be

discussed here.

4.5.2 Tropospheric trace gas chemistry and

stratospheric ozone

In the past, climate models were forced with prescribed tro-

pospheric and stratospheric ozone concentration, but since

CMIP5 some ESMs have included interactive chemistry and

are capable of representing prognostic ozone (Eyring et al.,

2013; Flato et al., 2013). This allows models to simulate

important chemistry–climate interactions and feedback pro-

cesses. Examples include the increase in oxidation rates in a

warmer climate which leads to decreases in methane and its

lifetime (Voulgarakis et al., 2013) or the increase in tropical

upwelling (associated with the Brewer–Dobson circulation)

in a warmer climate and corresponding reductions in tropi-

cal lower stratospheric ozone as a result of faster transport

and less time for ozone production (Butchart et al., 2010;

Eyring et al., 2010). It is thus becoming important to evaluate

the simulated atmospheric composition in ESMs. A common

high bias in the Northern Hemisphere and a low bias in the

Southern Hemisphere have been identified in tropospheric

column ozone simulated by chemistry–climate models par-

ticipating in the Atmospheric Chemistry Climate Model In-

tercomparison Project (ACCMIP), which could partly be re-
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Figure 23. Time series of global oceanic mean aerosol optical depth

(AOD) from individual CMIP5 models’ historical (1850–2005) and

RCP 4.5 (2006–2010) simulations, compared with MODIS and

ESACCI-AEROSOL satellite data. All models simulate a positive

trend in AOD starting around 1950. Some models also show dis-

tinct AOD peaks in response to major volcanic eruptions, e.g. El

Chichon (1982) and Pinatubo (1991). The models simulate quite a

wide range of AODs, between 0.05 and 0.20 in 2010, which largely

deviates from the observed values from MODIS and ESACCI-

AEROSOL. A significant difference, however, exists also between

the two satellite data sets (about 0.05), indicating an observational

uncertainty. Similar to Fig. 9.29 of Flato et al. (2013) and produced

with namelist_aerosol_CMIP5.xml.

lated to deficiencies in the ozone precursor emissions (Young

et al., 2013). Analysis of CMIP5 models with respect to

trends in total column ozone show that the multi-model mean

of the models with interactive chemistry is in good agree-

ment with observations, but that significant deviations exist

for individual models (Eyring et al., 2013; Flato et al., 2013).

Large variations in stratospheric ozone in models with inter-

active chemistry drive large variations in lower stratospheric

temperature trends. The results show that both ozone recov-

ery and the rate of GHG increase determine future Southern

Hemisphere summer-time circulation changes and are impor-

tant to consider in ESMs (Eyring et al., 2013).

The namelists implemented in the ESMValTool to

evaluate atmospheric chemistry can reproduce the

analysis of tropospheric ozone and precursors of

Righi et al. (2015) [namelist_righi15gmd_tropo3.xml,

namelist_righi15gmd_Emmons.xml] and the study by Eyring

et al. (2013) [namelist_eyring13jgr.xml]. The calculation of

the RMSE, mean bias, and Taylor diagrams (see Sect. 4.1.1)

has been extended to tropospheric column ozone (derived

from tro3 fields), ozone profiles (tro3) at selected levels,

and surface carbon monoxide (vmrco) (see Righi et al.,

2015, for details). This enables a consistent calculation of

relative performance for the climate parameters and ozone,

which is particularly relevant given that biases in climate can

impact on biases in chemistry and vice versa. In addition,

diagnostics that evaluate tropospheric ozone and its precur-

sors (nitrogen oxides (vmrnox), ethylene (vmrc2h4), ethane

(vmrc2h6), propene (vmrc3h6), propane (vmrc3h8) and

acetone (vmrch3coch3)) are compared to the observational

data of Emmons et al. (2000). A diagnostic to compare

tropospheric column ozone from the CMIP5 historical

simulations to Aura MLS/OMI observations (Ziemke et al.,

2011) is also included and shown as an example in Fig. 24.

This diagnostic also remaps the data to the coarsest grid

using local area averaging in order to calculate differences.

For the stratosphere, total column ozone (toz) diagnostics are

implemented. As an example, Fig. 25 shows the CMIP5 total

column ozone time series compared to the NIWA combined

total column ozone database (Bodeker et al., 2005).

4.6 Linking model performance to projections

The relatively new research field of emergent constraints

aims to link model performance evaluation with future pro-

jection feedbacks. An emergent constraint refers to the use

of observations to constrain a simulated future Earth system

feedback. It is referred to as emergent because a relation-

ship between a simulated future projection feedback and an

observable element of climate variability emerges from an

ensemble of ESM projections, potentially providing a con-

straint on the future feedback. Emergent constraints can help

focus model development and evaluation onto processes un-

derpinning uncertainty in the magnitude and spread of fu-

ture Earth system change. Systematic model biases in certain

forced modes, such as the seasonal cycle of snow cover or

interannual variability of tropical land CO2 uptake appear to

project in an understandable way onto the spread of future

climate change feedbacks resulting from these phenomena

(Cox et al., 2013; Hall and Qu, 2006; Wenzel et al., 2014).

To reproduce the analysis of Wenzel et al. (2014) that

provides an emergent constraint on future tropical land car-

bon uptake, a namelist is included in ESMValTool (v1.0)

to perform an emergent constraint analysis of the carbon

cycle–climate feedback parameter (γLT) (Cox et al., 2013;

Friedlingstein et al., 2006) [namelist_wenzel14jgr.xml]. This

namelist only considers the CMIP5 ESMs that have pro-

vided the necessary output for the analysis. This criterion

precludes most CMIP5 models and only seven ESMs are

therefore considered here. The namelist includes diagnostics

which analyse the short-term sensitivity of atmospheric CO2

to temperature variability on interannual timescales (γIAV)

for models and observations, as well as diagnostics for γLT

from the models. The observed sensitivity γIAV is calcu-

lated by summing land (nbp) and ocean (fgco2) carbon fluxes

which are correlated with tropical near-surface air tempera-

ture (tas). Results from historical model simulations are com-

pared to observational-based estimates of carbon fluxes from

the Global Carbon Project (GCP, Le Quéré et al., 2015) and

reanalysis temperature data from the NOAA National Cli-

mate Data Center (NCDC, Smith et al., 2008). For diagnos-

ing γLT from the models, nbp from idealized fully coupled

and biochemically coupled simulations are used as well as
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Figure 24. Climatological mean annual mean tropospheric column ozone averaged between 2000 and 2005 from the CMIP5 historical

simulations compared to MLS/OMI observations (2005–2012). The values on top of each panel show the global (area-weighted) average,

calculated after regridding the data to the horizontal grid of the model and ignoring the grid cells without available observational data. The

comparison shows a high bias in tropospheric column ozone in the Northern Hemisphere and a low bias in the Southern Hemisphere in the

CMIP5 multi-model mean. Similar to Fig. 13 of Righi et al. (2015) and produced with namelist_righi15gmd_tropo3.xml.

tas from fully coupled idealized simulations (see Fig. 26).

Emergent constraints of this type help to understand some of

the underlying processes controlling future projection sensi-

tivity and offer a promising approach to reduce uncertainty

in multi-model climate projections.

5 Use of the ESMValTool in the model development

cycle and evaluation workflow

5.1 Model development

As new model versions are developed, standardized diagnos-

tics suites as presented here allow model developers to com-

pare their results against previous versions of the same model

or against other models, e.g. CMIP5 models. Such analyses

help to identify different aspects in a model that have either

improved or degraded as a result of a particular model de-

velopment. The benchmarking of ESMs using performance

metrics (see Sect. 4.1.1) provides an overall picture of the

quality of the simulation, whereas process-oriented diagnos-

tics help determine whether the simulation quality improve-

ments are for the correct underlying physical reasons and

point to paths for further model improvement.

The ESMValTool is intended to support modelling cen-

tres with quality control of their CMIP DECK experiments

and the CMIP6 historical simulation, as well as other ex-

periments from CMIP6-Endorsed Model Intercomparison

Projects (Eyring et al., 2015). A significant amount of insti-

tutional resources go into running, post-processing, and pub-

lishing model results from such experiments. It is important

that centres can easily identify and correct potential errors in

this process. The standardized analyses contained in the ES-

MValTool can be used to monitor the progress of CMIP ex-

periments. While the tool is designed to accommodate a wide

range of time axes and configurations, and many of the diag-

nostics may be run on control or future climate experiments,

ESMValTool (v1.0) is largely targeted to evaluate AMIP and

the CMIP historical simulations.

5.2 Integration into modelling workflows

The ESMValTool can be run as a stand-alone tool, or inte-

grated into existing modelling workflows. The primary chal-

lenge is to provide CF/CMOR compliant data. Not all mod-

elling centres produce CF/CMOR compliant data directly as

part of their workflow although we note that more are do-

ing so as the potential benefits are being realized. For many

groups conversion to CF/CMOR standards involves signif-

icant post-processing of native model output. This may re-

quire some groups to perform analysis via the ESMValTool

on their model output after conversion to CF/CMOR, or to

create intermediate “CMOR-like” versions of the data. Users

who wish to use native model output can take advantage

of the reformatting routine flexibility (see Sect. 3) to cre-

ate scripts that convert this data into the CF/CMOR stan-

dard. As an example, reformat scripts for the NOAA-GFDL,

EMAC and NEMO models are included with the initial re-

lease. These scripts are used to convert the native model out-

put for direct use with the ESMValTool. The reformatting

routine capability may provide an alternative to more expen-

sive and complete “CMORization” processes that are usually

required to formally publish model data on the ESGF.

5.3 Running the ESMValTool alongside the ESGF

Large international model inter-comparison projects such as

CMIP stimulated the development of a globally distributed

federation of data providers, supporting common data provi-

sioning policies and infrastructures. ESGF is an international

open-source effort to establish a distributed data and com-

puting platform, enabling worldwide access to Peta- (in the

future Exa-) byte-scale scientific climate data. Data can be

searched via a globally distributed search index with access

possible via HTTP, OpenDAP, and GridFTP. To efficiently

run the ESMValTool on CMIP model data and observations

alongside the ESGF, the necessary data hosted by the ESGF

have to be made locally accessible at the site where ESM-

ValTool is executed. There are various ways this might be
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Figure 25. Total column ozone time series for (a) annual global and (b) Antarctic October mean. CMIP5 models are shown in coloured

lines and the multi-model mean in thick black, their standard deviation as grey shaded area, and observations from NIWA (black triangles).

The CMIP5 multi-model mean is in good agreement with observations, but significant deviations exist for individual models with interactive

chemistry. Based on Fig. 2 of Eyring et al. (2013) and reproducing Fig. 9.10 of Flato et al. (2013), with namelist_eyring13jgr.xml.

achieved. One possibility is to run ESMValTool separately

at each site holding data sets required by the analysis; then,

combine the results. However, this is limited by the extent to

which calculations can be performed without requiring data

from another site. A more practical possibility is running ES-

MValTool alongside a large store of replica data sets gathered

from across the ESGF, so that all the required data are in

one location. Certain large ESGF sites (e.g. DKRZ, BADC,

IPSL, PCMDI) provide replica data set stores, and ESMVal-

Tool has been run in such a way at several of these sites.

Replica data set stores do not provide a complete solu-

tion however, as it is impossible to replicate all ESGF data

sets at one site, so circumstances will arise when one or

more required data sets are not available locally. The obvi-

ous solution is to download these data sets from elsewhere in

the ESGF, and store them locally whilst the analysis is car-

ried out. The indexed search facility provided by the ESGF

makes it easy to identify the download URL of such “remote”

data sets, and a prototype of the ESMValTool (not included

in v1.0) has been developed that performs this search auto-

matically using esgf-pyclient (https://pypi.python.org/pypi/

esgf-pyclient). If the search is successful, the prototype pro-

vides the user with the URL of each file in the data set, and

the user (or system administrator) is then responsible for per-

forming the download. The workflow of this prototype is il-

lustrated in Fig. 27. It is possible that the fully automated

downloading of remote ESGF data sets may be provided by

a future version of the ESMValTool, but for now it is prefer-

able for a human to manage the process due to the large size

of the files involved. A more complete coupling to the ESGF

was originally planned for version 1.0, but was not possible

due to the long down period of the ESGF.

6 Summary and outlook

The Earth System Model Evaluation Tool (ESMValTool)

is a diagnostics package for routine evaluation of Earth

System Models (ESMs) with observations and reanalyses

data or for comparison with results from other models. The

ESMValTool has been developed to facilitate the evaluation

of complex ESMs at individual modelling centres and to help

streamline model evaluation standards within CMIP. Priori-

ties to date that are included in ESMValTool (v1.0) described

in this paper concentrate on selected systematic biases that

were a focus of the European Commission’s 7th Framework

Programme “Earth system Model Bias Reduction and assess-

ing Abrupt Climate change (EMBRACE) project, the DLR

Earth System Model Evaluation (ESMVal) project and other

collaborative projects, in particular: performance metrics for

selected ECVs, coupled tropical climate variability, mon-

soons, Southern Ocean processes, continental dry biases and

soil hydrology–climate interactions, atmospheric CO2 bud-

gets, ozone, and tropospheric aerosol. We have applied the

bulk of the diagnostics of ESMValTool (v1.0) to the entire

set of CMIP5 historical or AMIP simulations. The namelist

on emergent constraints for the carbon cycle has been addi-
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Figure 26. (a) The carbon cycle-climate feedback (γLT) versus the short-term sensitivity of atmospheric CO2 to interannual temperature

variability (γIAV) in the tropics for CMIP5 models. The red line shows the best fit line across the CMIP5 simulations and the grey-shaded area

shows the observed range of γIAV. (b) Probability distribution function (PDF) for γLT. The solid line is derived after applying the interannual

variability (IAV) constraint to the models while the dashed line is the prior PDF derived purely from the models before applying the IAV

constraint. The results show a tight correlation between γLT and γIAV that enables the projections to be constrained with observations. The

conditional PDF sharpens the range of γLT to−44± 14 GtC K−1 compared to the unconditional PDF which is (−49± 40 GtC K−1). Similar

to Fig. 9.45 of Flato et al. (2013) and reproducing the CMIP5 model results from Fig. 5 of Wenzel et al. (2014) with namelist_wenzel14jgr.xml.

tionally applied to idealized carbon cycle experiments and

the emission driven RCP 8.5 simulations.

ESMValTool (v1.0) can be used to compare new model

simulations against CMIP5 models and observations for the

selected scientific themes much faster than this was possible

before. Model groups, who wish to do this comparison before

submitting their CMIP6 historical simulations or AMIP ex-

periments to the ESGF can do so since the tool is provided as

open-source software. In order to run the tool locally, obser-

vations need to be downloaded and for tiers 2 and 3 reformat-

ted with the help of the reformatting scripts that are included.

Model output needs to be either in CF compliant NetCDF or

a reformatting routine needs to be written by the modelling

group, following given examples for EMAC, GFDL models,

and NEMO.

Users of the ESMValTool (v1.0) results need to be aware

that ESMValTool (v1.0) only includes a subset of the wide

behaviour of model performance that the community aims to

characterize. The results of running the ESMValTool need to

be interpreted accordingly. Over time, the ESMValTool will

be extended with additional diagnostics and performance

metrics. A particular focus will be to integrate additional

diagnostics that can reproduce the analysis of the climate

model evaluation chapter of IPCC AR5 (Flato et al., 2013) as

well as the projection chapter (Collins et al., 2013). We will

also extend the tool with diagnostics to quantify forcings and

feedbacks in the CMIP6 simulations and to calculate metrics

such as the equilibrium climate sensitivity (ECS), transient

climate response (TCR), and the transient climate response to

cumulative carbon emissions (TCRE) (IPCC, 2013). While

inclusion of these diagnostics is straightforward, the evalua-

tion of processes and phenomena to improve understanding

about the sources of errors and uncertainties in models that

we also plan to enhance remains a scientific challenge. The

field of emergent constraints remains in its infancy and more

research is required how to better link model performance

to projections (Flato et al., 2013). In addition, an improved

consideration of the interdependency in the evaluation of a

multi-model ensemble (Sanderson et al., 2015a, b) as well as

internal variability in ESM evaluation is required.

A critical aspect in ESM evaluation is the availability

of consistent, error-characterized global and regional Earth

observations, as well as accurate globally gridded reanaly-

ses that are constrained by assimilated observations. Addi-

tional or longer records of observations and reanalyses will

be used as they become available, with a focus on using

obs4MIPs – including new contributions from the European

Space Agency’s Climate Change Initiative (ESA CCI) – and

ana4MIPs data. The ESMValTool can consider observational

uncertainty in different ways, e.g. through the use of more

than one observational data set to directly evaluate the mod-

els, by showing the difference between the reference data

set and the alternative observations, or by including an ob-

served uncertainty ensemble that spans the observed uncer-

tainty range (e.g. available for the surface temperature data

set compiled for HadISST). Often the uncertainties in the ob-

servations are not readily available. Reliable and robust error

characterization/estimation of observations is a high priority

throughout the community, and obs4MIPs and other efforts

that create data sets for model evaluation should encourage

the inclusion of such uncertainty estimates as part of each

data set.

The ESMValTool will be contributed to the analysis code

catalogue being developed by the WGNE/WGCM climate

model metrics panel. The purpose of this catalogue is to

make the diversity of existing community-based analysis ca-

pabilities more accessible and transparent, and ultimately for

developing solutions to ensure they can be readily applied to
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Figure 27. Schematic overview of the coupling of the ESMValTool to the ESGF.

the CMIP DECK and the CMIP6 historical simulation in a

coordinated way. We are currently exploring options to in-

terface with complimentary efforts, e.g. the PCMDI Metrics

Package (PMP, Gleckler et al., 2016) and the Auto-Assess

package that is under development at the UK Met Office. An

international strategy for organising and presenting CMIP

results produced by various diagnostic tools is needed, and

this will be a priority for the WGNE/WGCM climate met-

rics panel in collaboration with the CMIP Panel (http://www.

wcrp-climate.org/index.php/wgcm-cmip/about-cmip).

This paper presents ESMValTool (v1.0) which allows

users to repeat all the analyses shown. Additional updates

and improvements will be included in subsequent versions

of the software, which are planned to be released on a reg-

ular basis. The ESMValTool works on CMIP5 simulations

and, given CMIP DECK and CMIP6 simulations will be in

a similar format, it will be straightforward to run the pack-

age on these simulations. A limiting factor at present is the

need to download all data to a local cache. This limitation has

spurred the development allowing ESMValTool to run along-

side the ESGF at one of the data nodes. A prototype exists

that couples the tool to the ESGF (see Sect. 5.3). An addi-

tional limiting factor is that the model output from all CMIP

models has to be mirrored to the ESGF data node where the

tool is installed. This is facilitated by providing a listing of

the variables and time frequencies that are used in ESMVal-

Tool (v1.0) which uses a significantly smaller volume than

the data request for the CMIP DECK and CMIP6 simula-

tions includes. This reduced set of data could be mirrored

with priority.

Several technical improvements are required to make the

software package more efficient. One current limitation is the

lack of a parallelization. Given the huge amount of data in-

volved in a typical CMIP analysis, this can be highly CPU-

time-intensive when performed on a single processor. In fu-

ture releases, the possibility of parallelizing the tool will be

explored. Additional development work is ongoing to cre-

ate a more flexible pre-processing framework, which will in-

clude operations like ensemble-averaging and regridding to

the current reformatting procedures as well as an improved

coupling to the ESGF. Here, future versions of the ESM-

ValTool will build as much as possible on existing efforts

for the backend that reads and reformats data. In this regard

it would be helpful if an application programming interface

(API) could be defined for example by the WGCM Infras-

tructure Panel (WIP) that allows for flexible integration of di-

agnostics across different tools and programming languages

in CMIP to this backend.

We aim to move ESM evaluation beyond the state-of-the-

art by investing in operational evaluation of physical and

biogeochemical aspects of ESMs, process-oriented evalua-

tion and by identifying processes most important to the mag-

nitude and uncertainty of future projections. Our goal is to

support model evaluation in CMIP6 by contributing the ES-

MValTool as one of the standard documentation functions

and by running it alongside the ESGF. In collaboration with

similar efforts, we aim for a routine evaluation that provides

a comprehensive documentation of broad aspects of model

performance and its evolution over time and to make evalu-

ation results available at a timescale that was not possible in

CMIP5. This routine evaluation is not meant to replace fur-

ther in-depth analysis of model performance and can to date

not strongly reduce uncertainties in global climate sensitivity

which remains an active area of research. However, the abil-

ity to routinely perform such evaluation will drive the quality

and realism of ESMs forward and will leave more time to

develop innovative process-oriented diagnostics – especially

those related to feedbacks in the climate system that link to

the credibility of model projections.

Code availability

ESMValTool (v1.0) is released under the Apache Li-

cense, VERSION 2.0. The latest version of the ESM-

ValTool is available from the ESMValTool webpage at

http://www.esmvaltool.org/. Users who apply the Soft-

ware resulting in presentations or papers are kindly
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asked to cite this paper alongside with the Software doi

(doi:10.17874/ac8548f0315) and version number. In addi-

tion, ESMValTool will be further developed in a version con-

trolled repository that is accessible only to the development

team. Regular releases are planned for the future. The wider

climate community is encouraged to contribute to this effort

and to join the ESMValTool development team for contribu-

tion of additional more in-depth diagnostics for ESM evalua-

tion. A wiki page for the development that describes ongoing

developments is also available. Interested users and develop-

ers are welcome to contact the lead author.

The Supplement related to this article is available online

at doi:10.5194/gmd-9-1747-2016-supplement.
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