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Abstract In decadal prediction, the objective is to exploit both the sources of8

predictability from the external radiative forcings and from the internal variability9

to provide the best possible climate information for the next decade. Predicting10

the climate system internal variability relies on initialising the climate model from11

observational estimates. We present a refined method of anomaly initialisation12

(AI) applied to the ocean and sea ice components of the global climate forecast13

model EC-Earth, with the following key innovations: (i) the use of a weight ap-14

plied to the observed anomalies, in order to avoid the risk of introducing anomalies15

recorded in the observed climate, whose amplitude does not fit in the range of the16

internal variability generated by the model; (ii) the anomaly initialisation of the17

ocean density, instead of calculating it from the anomaly initialised state of tem-18
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Météorologique, Météo-France, CNRS, Toulouse, France

F. J. Doblas Reyes
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perature and salinity. An experiment initialised with this refined AI method has19

been compared with a full field and standard AI experiment. Results show that20

the use of such refinements enhances the surface temperature skill over part of21

the North and South Atlantic, part of the South Pacific and the Mediterranean22

Sea for the first forecast year. However, part of such improvement is lost in the23

following forecast years. For the tropical Pacific surface temperature, the full field24

initialised experiment performs the best. The prediction of the Arctic sea-ice vol-25

ume is improved by the refined AI method for the first three forecast years and26

the skill of the Atlantic Multidecadal Oscillation (AMO) is significantly increased27

compared to a non-initialised forecast, along the whole forecast time.28

Keywords Decadal climate prediction · Full field initialisation · Refined Anomaly29

initialisation30

1 Introduction31

Decadal prediction aims at providing interannual to decadal climate information32

socially relevant to implement suitable strategies for adaptation. Decadal predic-33

tions have been shown to provide more skill than climate projections thanks to34

their initialisation from observational data, which allows the climate predictability35

arising from internal variability to be exploited (Doblas-Reyes et al, 2013). How-36

ever, the choice of the most suitable technique to initialise the climate system is37

controversial and several techniques are currently explored. Full field initialisation38

(FFI) makes use of the best estimate of the observed climate system (Pohlmann39

et al, 2009), but model error causes the drift of the prediction towards the model40

attractor (Smith et al, 2013). Distinguishing between the climate signal to be pre-41

dicted and the model drift is a challenging task. The application of a-posteriori42

bias correction has the risk of removing part of the variability signal one aims43

at predicting. With the aim of reducing the drift, the anomaly initialisation (AI)44

assimilates the observed anomaly variables1 onto an estimate of the model mean45

climate (Smith et al, 2008).46

Previous studies (Smith et al, 2013; Hazeleger et al, 2013; Bellucci et al, 2014)47

showed that the differences in skill of the two techniques at interannual time scales48

are small and limited to specific regions. Volpi et al (2015) showed that the AI49

allows for reducing the drift but some residual drift is still present. It allows for50

increasing the skill for sea ice, AMO and the Pacific Decadal Oscillation (PDO)51

compared to full field initialisation. In this work, we explore the possibility of re-52

fining further the anomaly initialisation technique used in Volpi et al (2015) to53

try to obtain a better skill. The use of the standard AI technique involves the risk54

of introducing anomalies recorded in the observed data whose amplitude does not55

fit in the range of the internal variability generated by the model. Figures S1 and56

S2 of the Supplementary Material show how this can affect the prediction of the57

signal. Some further examples of this issue are shown in Section 2.3. The first idea58

developed in this work consists in scaling the observed anomalies in order to take59

into account the different amplitudes of the observed versus the model variability.60

1 The anomaly of a field is defined as its deviation from the mean state (climate), calcu-
lated over a period of at least 30 years (according to the World Meteorological Organisation
definition)
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The second idea implemented aims at providing the most suitable initialisation for61

the density variable which plays a crucial role in the ocean circulation. In fact, the62

ocean variability on decadal timescales is mainly driven by changes in temperature63

and density. On one hand, temperature has a key role in the heat fluxes, and on64

the other hand, the density gradients drive the thermohaline circulation (Broecker,65

1997). When implementing anomaly initialisation or anomaly nudging, density is66

often not directly assimilated. This is the case for DePreSys (Smith et al, 2007),67

the CNRM-CM5.1 (Germe et al, 2014), the MPI-OM (Matei et al, 2012) and the68

EC-Earth (Hazeleger et al, 2013) forecast systems. Instead, it is computed by the69

model from the assimilated temperature and salinity fields through a non-linear re-70

lation. Section 2.4 will describe an alternative method to initialise the temperature71

and density variables instead of the temperature and salinity variables initialised72

in the standard method. Section 2.1 and 2.2 describe respectively the model and73

the hindcast set-ups. The skill of the hindcasts initialised with the improved AI74

method is shown and compared to both an FFI and a standard AI set of hindcasts75

in section 3. The discussion and the conclusions are in section 4.76

2 Methodology77

2.1 Climate model78

The model in use is the coupled general circulation model EC-Earth version 2.379

(Hazeleger et al, 2010). The atmospheric component is based on the European80

Centre for Medium-Range Weather Forecasts integrated forecasting system (IFS81

cy31r1), with 62 vertical levels and a TL159 horizontal resolution. The ocean82

component is the NEMO model version 3.2 (Madec, 2008; Ethe et al, 2006),83

with ORCA1 configuration (about 1 degree with enhanced tropical resolution) and84

42 vertical levels. The sea-ice component is LIM2 (Fichefet and Maqueda, 1997;85

Goosse and Fichefet, 1999) directly embedded into NEMO. The atmospheric and86

ocean components are coupled via OASIS3 (Valcke, 2006). Information on the at-87

mospheric chemistry and the dynamic vegetation are prescribed from observations.88

The atmospheric top is at 5 hPa, so the lower stratosphere is resolved.89

2.2 Reference simulations: the NOINI and the FFI hindcasts90

The benchmark hindcasts of this work are the FFI experiment of Du et al (2012)91

and an uninitialised model experiment, i.e. a historical simulation (Guemas et al,92

2013). They were both part of the CMIP5 exercise. In the FFI experiment, all93

the variables from each model component are initialised by replacing the model94

state at the initialisation time with observational estimates (reanalysis). The at-95

mosphere and land surface initial conditions are taken from the ERA-40 reanalysis96

(Uppala et al, 2005) for start dates before 1989 and ERA-Interim (Dee et al, 2011)97

afterwards. The ocean initial conditions are taken from the 3D-Var five-member98

ensemble ocean re-analysis NEMOVAR-ORAS4 (Mogensen et al, 2012), while the99

sea-ice initial conditions are produced with a simulation using NEMO v2.0 coupled100

to LIM2 driven by DFS4.3 ocean forcing data (Brodeau et al, 2009). The DFS4.3101
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forcing data are derived from ERA40 data with tropical surface air humidity, Arc-102

tic sea surface temperature and global wind field corrections based on high-quality103

observations.104

The observed volcanic and anthropogenic aerosol load and greenhouse gas con-105

centrations are prescribed using observed values up to 2005. After that date the106

RCP4.5 scenario was used, as well as a background solar irradiance level and a107

constant background volcanic aerosol load. Every two years between 1960 and108

2004, on the 1st of November, a set of 5 new simulations were started and run for109

5 years. The 5 members ensemble is generated from atmosphere initial perturba-110

tions based on singular vectors (Magnusson et al, 2008), which are added at the111

initial time to all the prognostic variables except for humidity (Du et al, 2012).112

The uninitialised experiment, called NOINI, is a 3-member historical simulation113

up to 2005, and simulations following the representative concentration pathways114

4.5 (RCP4.5) after 2006 produced in the framework of CMIP5. In the NOINI ex-115

periment, the internal variability is not in phase with the observed variability since116

each member has been initialised in 1850 from a different date of a pre-industrial117

control simulation. The NOINI experiment as well as all the experiments imple-118

mented in this study, employs the same external radiative forcing as described for119

the FFI.120

2.3 Weighted anomalies121

As mentioned in the Introduction, the variability of the model and the observations122

can have different amplitudes. An example is shown in figure 1 that illustrates the123

strength of the meridional overturning stream function averaged vertically and124

meridionally (30◦-40◦N band and 1-2 km depth). The model, shown in red, is the125

historical simulation described in section 2.1 (NOINI). Its meridional overturning126

transport is roughly 50% weaker than the reanalysis NEMOVAR-ORAS4 (blue).127

Moreover its decadal variability is substantially less pronounced.128

As another example of the difference in amplitude of the model and observed129

variability, figure 2 illustrates the variability of the barotropic stream function130

calculated as the horizontal transport integrated vertically. The maps of the left131

column show NEMOVAR-ORAS4 data, while the ones of the right column are132

from NOINI of the model EC-Earth. The rows represent respectively January,133

May and September. Independently from the month considered, EC-Earth has a134

weaker variability than NEMOVAR-ORAS4 in the tropical band and in the North135

Pacific, but it has a stronger variability in the South Atlantic and South Pacific.136

Introducing anomalies outside the model internal variability range could cause137

extreme events, for example, triggering an intense El Niño or stopping the thermohaline138

circulation (Sanchez-Gomez et al, 2015) . To avoid introducing anomalies that are139

outside the model internal variability rangesuch undesirable consequences, the first140

modification in the initialisation proposed in this work consists in weighting the141

observed anomalies to make their amplitude more consistent with the simulated142

variability. As a first attempt of weighting, we measure the model variability ampli-143

tude with the standard deviation, and we calculate the weight as the ratio between144

the standard deviation of the model anomalies and the standard deviation of the145

observed anomalies computed along the 1971-2000 period.146
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2.4 Density initialisation147

The need for a proper initialisation of the density arises from the sensitivity of some148

areas, such as the North Atlantic, to the density anomalies. The density is not a149

prognostic variable, it is calculated at the initial time from the initialised values of150

temperature and salinity. It follows that in the standard AI method, the density151

is calculated from the values of temperature and salinity obtained by placing the152

observed temperature and salinity anomalies onto the model climatology. Such153

an estimate of the density is different from the value that would be obtained if154

the density was anomaly initialised. This happens because the equation of state155

of the density (that we will call g(T, s)) is non-linear and therefore the function156

composition2 of g and AI is not commutative as shown from the inequality 1. Let157

us call AI(x) the anomaly initialisation equation (Carrassi et al, 2014) applied158

to any variable x (x in this case will be the ocean temperature T, salinity s, or159

density ρ). Thus, we define xa the anomaly initialised state after applying AI160

to x, AI(x) = xa (therefore AI(ρo) = ρa, where the superscript o indicates the161

observation). We call g(T o, so) = ρo and g(Ta, sa) = ρstandard the equation of162

state of density calculated respectively from the observed ocean temperature and163

salinity, and from the T and s state after applying AI. ρstandard is the density164

used in the standard anomaly initialisation implementation.165

g ◦ AI 6= AI ◦ g

g ◦ [AI(T o
, s

o)] 6= AI ◦ [g(T o
, s

o)]

g(Ta
, s

a) 6= AI(ρo)

ρ
standard

6= ρ
a
.

(1)

As shown in inequality 1 the standard density ρstandard used in the classical166

anomaly initialisation implementation is different from the density ρa obtained by167

applying AI to the observed density. In a study of the DePreSys decadal prediction168

system, Robson (2010) suggested the errors in the assimilated density anomalies169

(i.e. the use of ρstandard instead of ρa) as responsible for the rapid warming of170

the hindcasts in the sub-polar gyre region in the Atlantic at the beginning of the171

1990s.172

To illustrate the order of magnitude of the difference in density introduced by173

anomaly initialising temperature and salinity, Figure 3 shows the ratio between174

the root mean square difference of the density ρstandard and the density ρa, over175

the root mean square anomalies (standard deviation) of the observed density ρo.176

In this map, the dark blue areas are the ones where the difference in the density177

initial value is three times or even more (the maximum ratio reaches the value of178

6) the observed anomalies. The regions that are affected the most by such differ-179

ence are the Arctic, in particular along the sea ice edge, the North Atlantic, the180

Mediterranean Sea and some regions in the Antarctic. In other words those are181

the areas with the highest non-linearity of g.182

The method implemented and tested in this work consists in applying the weighted183

anomaly initialisation to density and temperature, and to find the salinity s which184

2 The function composition is the application of one function on top of another function and
it is indicated with the symbol ◦
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produces the ideal density ρa through g(Ta, s). Since the density function g(T, s)185

is not invertible, a bisection algorithm has been applied as explained in the sup-186

plementary material.187

2.5 The anomaly initialised simulations188

The hindcasts initialised with standard AI are the ones from Volpi et al (2015),189

with anomaly initialisation in all variables of the ocean and the sea-ice components190

(and referred to as OSI-AI hereafter). The land and the atmosphere components191

are initialised as in FFI. The hindcasts have been initialised on the 1st of Novem-192

ber and are comprised of a set of 5-member simulations, 5-years long to moderate193

the computing time. The choice of having start-dates every two years is a good194

compromise between the computational cost and the statistical robustness of the195

results. The hindcasts initialised with the improved AI method have an analo-196

gous experimental set-up and will be called ρ-OSI-wAI (density, ocean and sea-ice197

weighted anomaly initialisation) hereafter.198

2.6 Skill assessment199

The metrics that we used to evaluate the skill of the hindcasts are the anomaly200

correlation (AC) and the Root Mean Square Error (RMSE) as a function of the201

forecast time f applied to the ensemble mean forecast anomalies. The forecast202

anomalies are calculated by subtracting the forecast climatology from each hind-203

cast. In order to implement a fair comparison between the different experiments204

we have applied the same bias correction to all of them. In fact, there is still a205

residual drift present after applying anomaly initialisation. The forecast climatol-206

ogy at each grid point depends on the forecast time. It is estimated by averaging207

the hindcast variable across the starting dates and the members using only hind-208

cast values for which observations are available at the corresponding dates. This209

data selection process is referred to as per-pair (Garćıa-Serrano and Doblas-Reyes,210

2012). The implementation of the per-pair method guarantees the use of all the211

observational data available with a consistent estimation of the model and refer-212

ence climatologies. Let call Xm,d,f a model variable at forecast time f , start date213

d and member m. M is the total number of member and D the total number of214

start dates, that in this work is 23. Od,f is the corresponding observation. The215

forecast climatology is given by:216

X̄m,f =
1

(M − 1)(D − 1)

∑

M

∑

D

Xm,d,f (Od,f 6= NA)

Ōf =
1

D − 1

∑

D

Od,f (Od,f 6= NA) (2)

when NA refers to a missing value. The difference between the observed and the217

model forecast climatology is the bias and section 3.1 looks at the drift defined as218

the evolution of such bias with forecast time.219
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The anomaly correlation is defined as:220

AC(f) =

∑D

d=1
[xd,f ]

′[od,f ]
′

√

∑D

d=1
[xd,f ]′2

∑D

d=1
[od,f ]′2

(3)

The root mean square error is given by:221

RMSE(f) =

√

∑D

d=1
[[xd,f ]′ − [od,f ]′]2

D
(4)

In equation 3, xd,f indicates the hindcast ensemble mean (for example ensem-222

ble mean global mean temperature) as a function of the forecast time f and223

the start date d, and D is the number of start dates. Note that ′ indicates the224

model or observed per-pair anomalies. The confidence interval is calculated with225

a t-distribution for the AC, and with a χ2 distribution for the RMSE. The depen-226

dence between the hindcasts is accounted for in the computation of the confidence227

interval using Von Storch and Zwiers (2001) formula. The confidence interval also228

takes into account the trend, that is not removed in the computation of the skill.229

The skill scores are computed after applying a one-year running mean in order230

to filter out seasonal climate variability and focus on interannual prediction skill,231

except for the PDO which is calculated with annual mean values.232

3 Results233

3.1 Forecast biases and drift234

Figure 4 shows the bias of the experiments along the forecast time. Its evolution235

(along the forecast time) is the drift. The SST drift (figure 4a) in NOINI is neg-236

ligible because the initial state of NOINI is a random state within the range of237

the possible states of the model climate and therefore it is the most balanced with238

the model climate. Its bias is negative along the whole forecast time, consistent239

with the strong cold tropical bias of the model (not shown). Moreover, figure 4a240

shows the overshoot of FFI (red line) that jumps to too high temperatures in only241

a few months and drops quickly towards too low temperatures as compared to the242

observations (as the bias gets negative) and even to temperatures lower than the243

NOINI ones. This is due to the difference in timescales between the drift toward a244

warm bias in the Southern Ocean (a few months only) and the drift toward a cold245

state in the tropical band and the Northern hemisphere (a few years). FFI has the246

strongest drift because its initial state corresponds to the observed state and it is247

the furthest from the model climate. These results are consistent with Hazeleger248

et al (2013). The AI method does not remove the bias of the model from the initial249

state of the system. Consequently, the drift of both ρ-OSI-wAI and OSI-AI are250

largely reduced with respect to FFI, and the overshoot is avoided in both cases.251

The drift is further reduced in ρ-OSI-wAI compared to OSI-AI. The bias for the252

Arctic sea ice area (figure 4b) of the AI experiments is very close to the NOINI253

bias along the whole forecast time and there is no drift. This is not the case for the254

FFI, for which the bias in winter is still present after 5 forecast years although255

reduced compared with the first year.256
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3.2 Sea surface temperature257

Figure 5 shows the improvements in SST skill of the refined AI technique (ρ-258

OSI-wAI) over the FFI (first panel) and the OSI-AI experiments (second panel),259

for the first forecast year, measured as the ratio of their RMSE. While the refined260

method improves the skill in the Labrador Sea and in the Weddell Sea with respect261

to the FFI experiment, it also degrades the skill in the Bering Sea, the tropical262

Pacific and the Indian Ocean (left panel figure 5). The added value of the anomaly263

weighting and the density initialisation over the standard AI technique is seen264

in the the northern part of the North Atlantic, part of the North Pacific and the265

Southern ocean. The improved sectors of the Mediterranean Sea, the Labrador and266

the Gin Seas correspond to the region highlighted in figure 3 as being sensitive267

to the density error. The following sections will explore, through the study of the268

thermohaline circulation and the main modes of variability, the sources of such269

improvements in skill.270

3.3 Predicting the ocean heat content271

Figure 6a shows the anomaly correlation of the ocean heat content as a function of272

forecast time for the four experiments. The refined AI method (green line) shows273

an improvement in skill with respect to NOINI, although its correlation is lower274

than the other initialised experiments (FFI in red and OSI-AI in purple). The skill275

of the three initialised experiments degrades with forecast time toward the skill of276

NOINI which is nearly constant. The RMSE plot (6b) illustrates the robustness277

of the conclusions drawn from the AC results. The supplementary material shows278

that the improvement in skill of the global ocean heat content does not come279

from the North Atlantic sector, where the best skill is obtained by the NOINI280

experiment (figure S5).281

3.4 Predicting the thermohaline circulation282

The correlation of the three initialised experiments (ρOSI-wAI, OSI-AI and FFI)283

for the AMOC index, calculated as in Figure 1, drops below the NOINI skill after284

the first forecast year (Figure 7a) and the ACs confidence interval cross the zero285

line during the second forecast year, which means that the skill is not significant286

any more. This is consistent with the results of the North Atlantic sub-polar and287

sub-tropical gyres shown in figure S6 and S7 of the Supplementary Material. While288

the correlation shows minor differences between the initialised experiments at the289

beginning of the forecast time, the RMSE plot (figure 7b) shows a higher RMSE of290

the refined AI method than the other initialised experiments at the beginning of291

the forecast, but a lower RMSE and a higher correlation a the end of the forecast.292

3.5 Predicting the sea ice cover293

The performance for the sea ice cover is validated against the HistDfsNudg sea ice294

reconstruction (Guemas et al, 2014), which has also been used for the initialisation.295
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For the Arctic sea-ice area, the forecast skill is improved for all the initialised296

experiments over NOINI during the first one to two forecast years. ρ-OSI-wAI297

is the experiment that has the highest correlation (figure 8a) and the smallest298

RMSE (figure 8b) during the first two forecast years, followed by OSI-AI and FFI.299

The results are less conclusive in the second half of the forecast. For the Arctic300

sea-ice volume (figure 8c and d), the skill of the experiments exhibit two types301

of behaviours: the anomaly initialised experiments (both ρ-OSI-wAI and OSI-302

AI) with the highest correlation and the smallest RMSE, both improving over303

the NOINI experiment for the first three forecast years, and the NOINI and FFI304

experiments with the lowest correlation and the largest RMSE.305

3.6 Impact on some modes of climate variability306

The Atlantic multidecadal oscillation (AMO) is a multidecadal climate variability307

pattern consisting in alternating phases of warm and cold sea surface tempera-308

ture over the North Atlantic (Deser et al, 2010). It is thought to be the surface309

fingerprint of the thermohaline circulation (Kerr, 2000; Knight et al, 2005) and310

is calculated as the difference between the mean SST anomalies in the North At-311

lantic and the global mean SST anomalies between 60◦S and 60◦N following the312

definition of Trenberth and Shea (2006). Previous studies have shown that the313

predictive skill for AMO can be improved by initialisation (Meehl et al, 2014)314

The positive impact of the initialisation for the AMO index persists for the whole315

forecast time (figure 9). There is also a substantial improvement of ρ-OSI-wAI316

compared to FFI at every forecast time except for a few months in year 5 in which317

the skill of the two experiments are very close. ρ-OSI-wAI seems also to perform318

better than OSI-AI, although the skill of the two experiments are close and for a319

few months during the second year OSI-AI has larger skill. The improvements of320

the refined AI method over NOINI are significant along the whole forecast period321

(except for some months in year 3), whereas the difference between FFI and NOINI322

is significant for the first forecast year only. The RMSE results are consistent with323

what is shown in the correlation plot.324

In addition, we focus on the Pacific Decadal Oscillation (PDO), the most long-lived325

sea surface temperature mode in the Pacific. The PDO is defined as the leading326

principal component of the Pacific annual SST variability calculated in the domain327

20◦N − 65◦N (Mantua et al, 1997). The observed dominant EOF has been calcu-328

lated from the detrended observed anomalies and then the model anomalies have329

been projected onto the observed EOF. The PDO is known to impact the North330

Pacific and North American climates and it has also been linked to variations in331

surface air temperature, snowpack, precipitation and marine ecosystems (Mantua332

et al, 1997; Anderson et al, 2009). For the PDO index (figure 10), there is an im-333

provement in skill of ρ-OSI-wAI as well as OSI-AI and FFI, relative to NOINI for334

the first forecast year, but this improvement is not significant. This is consistent335

with the improvement seen in the North Pacific SST shown in section 3.2 from336

the refined AI initialisation method relative to the standard AI. The correlation337

(figure 10) after the first forecast year drops for all the experiments.338
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3.7 Regional behaviour of the initialisation techniques339

Figure 11 shows the minimum SST RMSE across all the experiments respectively340

for the first forecast year (left panel) and the average of the years two to five (right341

panel). Each grid point takes the colour of the experiment that has the minimum342

SST RMSE. The black dots appear in those regions where the minimum RMSE343

differs from the second minimum RMSE by more than 0.05 K. There are a few344

areas where the NOINI experiment has the lowest RMSE during the first forecast345

year in the Southern hemisphere, probably due to the lack of observations that346

does not allow for good initialisation or robust verification. The FFI experiment347

has the lowest RMSE in the tropical Pacific and the ENSO region. This could348

lead to the conclusion that the initialisation of the mean state in the tropical349

region cannot be neglected and therefore the FFI might be preferred to the AI350

technique. Another possible cause of the poor performance in the tropical region351

of the AI might be the fact that the model and the observations reproduce a similar352

variability but in slightly different geographical positions. This would imply that353

when applying the anomaly initialisation, the observed anomalies are introduced354

in a shifted position with respect to the position where the model would simulate355

the corresponding anomalies. In most parts of the Atlantic and some parts of the356

Pacific, the ρ-OSI-wAI experiment performs the best.357

When averaging the forecast years 2−5, the benefits of ρ-OSI-wAI are still shown in358

some parts of the Arctic region, around Europe and in some regions of the tropical359

band. The areas of the tropical Pacific and Atlantic are still best predicted by FFI,360

although the regions where NOINI has the lowest RMSE have increased. Similar361

results are found when computing the maximum correlation for each grid point362

(not shown).363

4 Summary and conclusions364

With the aim of improving the prediction skill on decadal time scales, this work365

has introduced a new anomaly initialisation (AI) method (ρ-OSI-wAI) that tackle366

some of the limitations of the classical AI technique. The innovations implemented367

are:368

– the weighting of the observed anomalies by the ratio between the amplitudes of369

the model and observed variabilities, to avoid the risk of introducing anomalies370

that are outside the range of the model variability in the initial state371

– the anomaly initialisation of the ocean density, instead of calculating it from372

the anomaly initialised state of temperature and salinity.373

We have justified the need for such refinements and illustrated the implementa-374

tion of the new technique in the Methodology section. In the Results section we375

have tried to evaluate the effect of the refinements on the predictions through the376

skill assessment of a set of variables that have been compared with experiments377

initialised with classical techniques (full field initialisation FFI, classical anomaly378

initialisation OSI-AI and with a free run -NOINI-). Although the lack of resources379

did not allow the weight of the variability amplitude and the density correction to380

be tested separately, the combination of these two innovations improves the skill381

globally compared to the other classical methods of initialisation presented in this382

work. In particular the refined method:383



Comparison of full field and anomaly initialisation 11

– allows the drift of sea surface temperature (SST) to be further reduced with384

respect to the FFI and the standard AI.385

– allows for a higher skill than the other methodologies presented in this study386

in the Arctic sea-ice area (first two forecast years) and volume (three forecast387

years), although the improvements are not statistically significant.388

– improves the Pacific Decadal Oscillation skill over the first forecast year with389

respect to the other methodologies presented in this study, but the improve-390

ments are not significant.391

– increases the SST skill over the standard AI method for forecast year 1 in the392

Labrador Sea, the Mediterranean, part of the North Pacific and the Southern393

ocean.394

395

The Mediterranean, the Labrador Sea and the Southern Ocean, where the refined396

AI method improves the forecast quality over the standard ocean and sea ice AI397

implementation, are also some of the areas with high density difference with a398

standard AI technique at the initial time. This relation suggests a potential attri-399

bution to the density anomaly initialisation for the improvements in these regions.400

It might not be then by chance that the skill of the Atlantic Multidecadal Oscil-401

lation is significantly improved by the refined AI method compared to a historical402

simulation along the whole forecast time. In comparison, a full field initialisation403

technique allows for a significant improvement only during the first forecast year404

while a standard ocean and sea ice AI only for the first 2 forecast years. The405

large density differences between the standard and refined AI methods in key ar-406

eas where ocean dynamics might play a key role for the decadal predictability407

would suggest a larger impact of this correction on the skill. The relatively small408

differences in skill found point towards the need of a further understanding of how409

to best implement this approach in current models, with coarse resolution and410

substantial systematic errors. However, the weighting of the observed anomalies411

as it is implemented has some limitations. The use of the standard deviation as a412

measure of the model variability amplitude is fully representative of this variabil-413

ity only when the distribution of the anomalies is Gaussian and the sample size414

is large enough to allow for a robust estimate, which is generally not the case for415

the variables of the climate system. Further efforts could be inverted invested into416

refining the weight implementation and further enhancing the skill of the predic-417

tions. The other open issue to address is the geographical shift between the model418

and the observed variability, that could be the cause of the loss in skill of the419

anomaly initialised predictions in the tropical region.420
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Fig. 5 Ratio of sea surface temperature RMSE maps for the first forecast year, calculated
against ERSST data: the first panel is the ratio between ρOSI-wAI/FFI, the second panel
between ρOSI-wAI/OSI-AI. When the ratio is smaller than 1 (red, yellow areas) the ρOSI-
wAI experiment has smaller RMSE, i.e. improves the skill of the prediction. Vice versa, when
the ratio is larger than 1 (region in blue) the skill is degraded. The black dots over the colours
indicates where the RMSE is 95% significant according to a Fisher test.
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Fig. 6 Correlation and root mean square error for the global mean ocean heat content of
the whole water column, with respect to NEMOVAR-ORAS4. Red for FFI, green for ρ-OSI-
wAI, purple for OSI-AI and orange for NOINI. The thin lines represent the 95% confidence
interval obtained with a t-distribution for the correlation and a χ

2 distribution for the RMSE.
The dependence between the hindcasts is accounted for in the computation of the confidence
interval using the Zebiak (1995) and Von Storch and Zwiers (1999) formula.
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Fig. 7 Correlation and root mean square error for the Atlantic meridional overturning stream
function averaged in the 40−55◦N band and 1-2 km depth with respect to NEMOVAR-ORAS4.
Red for FFI, green for ρ-OSI-wAI, purple for OSI-AI and orange for NOINI. The thin lines
represent the 95% confidence interval obtained with a t-distribution for the correlation and a
χ
2 distribution for the RMSE. The dependence between the hindcasts is accounted for in the

computation of the confidence interval using the Zebiak (1995) and Von Storch and Zwiers
(1999) formula.
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Fig. 8 Correlation and RMSE of Arctic sea-ice area (a-b) and sea-ice volume (c-d). The
reference data is the HistDfsNudg sea ice reconstruction. Red for FFI, green for ρ-OSI-wAI,
purple for OSI-AI and orange for NOINI. The thin lines represent the 95% confidence interval
as in the previous figures.
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Fig. 9 Atlantic multidecadal oscillation a) correlation and b) RMSE with respect to ERSST
data. Red for FFI, green for ρ-OSI-wAI, purple for OSI-AI and orange for NOINI. The thin
lines represent the 95% confidence interval as in the previous figures.

PDO

        a)        Correlation                b)             RMSE                

FFI

ρ-OSI-wAI

OSI-AI

NOINI

Time

c
o
rr

e
la

ti
o
n

Nov

Yr 00

Nov

Yr 01

Nov

Yr 02

Nov

Yr 03

Nov

Yr 04

−
0
.5

0
.0

0
.5

1
.0

Time

K

Nov

Yr 00

Nov

Yr 01

Nov

Yr 02

Nov

Yr 03

Nov

Yr 04

0
.1

5
0
.2

5
0
.3

5
0
.4

5

Fig. 10 Pacific decadal oscillation (20N-65N) a) correlation and b) RMSE with respect to
the ERSST data. Red for FFI, green for ρ-OSI-wAI, purple for OSI-AI and orange for NOINI.
The thin lines represent the 95% confidence interval as in the previous figures.
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SST mimimum RMSE

   FFI               ρ-OSI-wAI          OSI-AI              NOINI
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Fig. 11 Minimum RMSE of SST respectively for the forecast year 1 (left panel ) and 2-5
(right panel). Each grid point takes the colour of the experiment with the smaller RMSE over
the first forecast year on the left and over the forecast years 2-5 on the right. The black dots
indicate the regions where the minimum RMSE differs from the second minimum RMSE for
more than 0.05 K. In red the FFI experiment, in green the ρ-OSI-wAI, in purple the OSI-AI
and in orange the NOINI experiment.


